IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 1

Stochastic event based model checking for
predicting component failures and service
availability

Muffy Calder and Michele Sevegnani

Abstract—When a component failure occurs in a complex, critical system it can be difficult to assess the impact and prioritise and
schedule repairs. We propose stochastic event based modelling, based on continuous time Markov chains, and analysis by model
checking stochastic temporal logic properties, can inform assessments and operational decisions. By relating the status of components
to service availability, we quantify the risk of service failure now, and in given times the future. Decisions about which component to
repair, and when, can then be taken according to those risks. The quantified risks can also inform evaluation of designs. We
demonstrate the approach through application to an industrial case study and we calibrate the models with rates inferred from historical
field data about failures over a one year period. Our analysis allows us to predict the likelihood of no-service within 48 hours, before
and after making repairs to specific components, and to estimate expected costs for maintentance, over a specific time period (e.g. a

month).

Index Terms—Computer network reliability, decision support systems, formal verification, predictive models, stochastic systems.

1 INTRODUCTION

Operational decision making about which components
to fix in a complex, critical service, and how quickly, in the
event of component failures and reduced redundancy, is
difficult. Ideally, when failures are uncovered (e.g. through
monitoring and sensing), they would be fixed immediately.
But this might not be possible, e.g. due to limited resources,
the nature of the failure, and/or physical distance or access
to the component.

The problem we address is: how can we assess if the
failure is critical, and how can we prioritise and schedule
repairs, to make best use of resources, while ensuring the
service is operating within acceptable levels of risk of fail-
ure, up until such time as the failure can be repaired or
ameliorated?

Key to our approach is predicting future behaviours and
the risk of service failure from: i) a state in which faults have
occurred, and ii) a state after repairs are made to selected
components. We call a system configuration in which there
are faulty components degraded, so our approach entails
quantification of risk of service failure from degraded con-
figurations, both at the current time, and at future times.

We consider systems in which components have state
and collections of components provide a service. There
may be hierarchies of components in which a lower level
provides a service to a higher level, and numerous levels
of redundancy. Typical examples of such systems include
communications infrastructure and condition monitoring.

We propose a stochastic event-based modelling ap-
proach, with analysis by model checking stochastic tempo-
ral logic formulae that quantify risks. By relating component

o M. Calder and M. Sevegnani are with the School of Computing Science,
University of Glasgow, Glasgow, G12 8RZ, UK.
E-mail: {muffy.calder,michele.sevegnani}@glasgow.ac.uk

Manuscript received July 21, 2015; revised September 17, 2015.

failures to service availability, our analysis supports offline
and online decision making, as well as evaluation of design
aspects such as system architectures, monitoring practices,
degrees of autonomy and levels of redundancy and hier-
archy. We demonstrate the approach through application
to an industrial case study of a critical service in which
component failures are sensed and monitored. The service
has been deployed for several years and so a novel aspect of
this work is we calibrate the model(s) based on inferences
over historical field data. This means our reasoning can
inform decision making in the actual deployed system.

We advocate temporal properties and model checking
because this allows us to quantify all possible future
behaviours, whereas simulation only ever considers one
behaviour (or trace) at a time. Thus we can deliver a
comprehensive analysis.

Service availablity is our primary concern and so the key
temporal property is: from a degraded configuration, what
is the likelihood over the next t hours of the system reaching
a no-service state? Knowledge of how that likelihood varies
over time can help us quantify the risk to the system posed
by that fault and the urgency of repair, and contribute to
answering questions such as “do I need to fix the fault right
now, in the next 4 hours, or can I wait until tomorrow?”.
For example, if we find the probability is well below an
established safety threshold during the next 4 hours, but
thereafter rises exponentially above the threshold, we would
conclude that a repair need not be immediate, but must be
completed within the next 4 hours. There may be other pa-
rameters (e.g. resources and costs) to minimise or maximise.

1.1 Overview of approach

Our approach is hierarchical, compositional and event-based,
the last reflecting that components transition between states.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 2

Each component is regarded as a process, and the overall
system is the concurrent composition of all components,
synchronising on common events. Two key decisions are
the level of abstraction for components and how to model
the passage of time in the system. For the former, since our
concern is availability of higher level services, we employ
counter abstraction models for lower levels of the hierarchy
(a counter abstraction records the numbers of processes in
a particular state, rather than details of which process is
in which state). We assign rates to events, thus our models
are continuous time Markov chains (CTMCs), i.e. the state
space is discrete but time is continuous. By adopting CTMCs
as the underlying semantics, we can relate our models to
mean time between failure (MTBF) values, if required: if the
MTBEF is r, then the associated rate for the (failure) event
is 1/r and the probability the event occurs/has completed
by time ¢ is exponential: 1 — e¢”*. Note, we can instantiate
rates in a variety of ways: rates derived from safety and
business cases, rates inferred from actual historical field
data, and hypothetical rates that reflect possible changes
to business or technical processes. Throughout, we assume
prior knowledge of key events and system structure.

1.2 Contributions

Our focus is a case study of a communications link monitor-
ing system with four levels of hierarchy and high degrees of
redundancy. The contributions of the paper are:

e an event based, parameterised, CTMC model of the
case study system,

o identification of degraded configurations in which
the service is available, but there is reduced redun-
dancy,

o steady state temporal logic properties that are used
to validate the model against expected and historical
behaviour,

o transient temporal logic properties that are used
to predict the likelihood of service availability and
maintenance costs over a time period from a given
state, and to distinguish envelopes of degraded be-
haviours,

e how transient property results can inform decision
making concerning which components to repair and
how quickly,

o how steady state and transient temporal logic prop-
erty results can inform design evaluations,

o example analyses of the model with event rates in-
ferred from actual field data over a one year period.

The paper is organised as follows. The next section con-
tains an overview of the case study system and in following
that we review basic concepts of CTMCs and continuous
stochastic logic (CSL). Section 4 contains an overview of the
case study model and Section 5 defines rates for the model
based on inferences over historical data. Section 6 defines
the propositions, steady-state and transient CSL properties
we use for analysis, along with results for an example
sector. Section 7 shows how, by way of examples, analysis
of transient properties can inform decision making con-
cerning which component to repair, and to what timescale.
In Section 8, we define envelopes of behaviour for transient

properties and degraded configurations, which quantify the
effect of the status of lower level components on service
availability. In Section 9, we consider two properties con-
cerning behaviours after reaching no-service: recoverability
and survivability, and in Section 10 we present analysis of
(maintenance) costs using PRISM rewards, again illustrating
with examples. An overview of a web app we developed to
make the analysis process more accessible is presented in
Section 11, and in Section 12 we summarise our modelling
and analysis framework, reflecting upon what we have
learned from the case study. Related work is discussed in
Section 13, followed by conclusions.

2 CASE STUDY: A COMMUNICATIONS LINK MONI-
TORING SYSTEM

The primary components of the system are channels, frequen-
cies, sites, and sectors. There are 35 sectors, each of which
is allocated a fixed set of frequencies, plus an emergency
frequency. There are 17 sites, each with several antennas,
or channels, that transmit (Tx) and receive (Rx) on different
frequencies. There is redundancy by design: every sector
is allocated several frequencies, a frequency is covered by
more than one site, and in every site there are idle backup
channels. We refer to the main channel as the A channel and
the backup channel as the B channel. Sites are monitored for
power line status, communication link status, and there are
sensors for intrusion and flooding.

2.1 Monitoring

The monitoring system senses components in real-time and
uses a colour coding to indicate status: green — functioning
or serviceable; red — faulty, raise an alarm; blue — under
maintenance; amber — reduced redundancy and possibly
not fully functioning (for example, when one antenna goes
down for a given frequency).

3 TECHNICAL BACKGROUND
3.1 Continuous Time Markov Chains

Following [1], given a finite set of atomic propositions AP, a
(labelled) continuous-time Markov chain (CTMC) is a triple C =
(S, R, L) where S is a finite set of states with a designated
initial state, R : S x S — R>(a rate matrix, and L : S —
24P alabelling of states. The exit rate E(s) = " .5 R(s,s')
denotes the probability of taking a transition from s within
t time units and is equal to 1 — e~ () If R(s,s’) > 0 for
more than one state s/, a race between outoing transitions
from s exits. That is, the probability of moving from s to
s’ in a single transition is the probability that the delay of
going from s to s’ finishes before the delays of any other
outgoing transition (from s). We use an informal, graphical
notation for indicating the states and transitions of a CTMC,
for example, in Fig. 1.

3.2 Continuous Stochastic Logic

We use Continuous Stochastic Logic (CSL) [2], a stochastic
extension of the Computational Tree Logic (CTL) that

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 3

allows the expression of a probability measure of the satis-
faction of a temporal property in either transient or steady-
state behaviours. The formulae of CSL are state formulae ®
with path formulae W:

& o= true|la| Q| PAD| Py (V]| Spap V]
U o= X&|0U®

where a ranges over a set of atomic propositions AP, >1€
{<,<,>,>},p €10,1], and L is an interval of R>.

Informally, path formula X ® is true on a path starting
in s if ® is satisfied in the next state following s in the
path, whereas ®; Ul ®, is true on a path w if ®3 holds at
some time instant in the interval I in a state s’ in w and at
all preceding times ®; holds. We additionally use the path
operator (syntactic sugar): the eventually operator F (future)
where F! @ = true U' ®.

A transient formula Py, [V] is true in state s, denoted
by s = Psap [V], if the probability that U is satisfied by the
paths starting from state s meets the bound > p. A steady-
state formula S, [¥] is true in a state s if the steady-state
(long-run) probability of being in a state that satisfies ¥
meets the bound 1 p.

We use the PRISM probabilistic model checker [3], which
allows us to leave the bound < p unspecified. The proba-
bility is calculated in PRISM thus: P—; [¥] and S=-[¥].
Additionally, PRISM allows for experimentation: the verifica-
tion of an open formula, when the range, and step size of
the variable(s) are specified. For example, a typical property
is P_y [F=<'¢ |, which delivers the probability that we can
reach a state in which ¢ is true, within ¢ units of time (e.g.
hours or minutes). We typically consider hours as the unit
of time and vary ¢ from 1 to 48 (i.e. behaviour over the next
48 hours).

3.3 PRISM rewards

PRISM allows for the augmentation of models with re-
wards (or, equivalently, costs) that are associated with states
or transitions. The model checker can analyse properties
that relate to the expected values of these rewards by
using the R operator, which works in a similar fashion
to the P and S operators, except that it depends on the
name of a reward structure. Reward structures defined
(named) rewards on transitions or state. We employ re-
wards on transitions and cumulative and steady-state reward
properties. A cumulative (reward) property has the form
R{reward}—, [C < t], which corresponds to the reward
(named reward) accumulated along all paths until ¢ time
units have elapsed. A steady state (reward) property has the
form R{reward}—- [S], which corresponds to the (named)
reward per unti time, in the long run.

3.4 PRISM language of reactive modules

There are several formalisms for specifying Markov pro-
cesses based on rate transition matrix descriptions, state-
transition graphs, amd guarded command languages such
as Reactive Modules [4], which is the basis of the PRISM lan-
guage. The PRISM language matches our requirements very
well, as it supports processes and compositionality. See [3]
for more details.

Processes are represented by modules consisting of
action-labelled guarded commands (which denote transi-
tions), and modules are composed over all common ac-
tions. Each module has the form: local variable declarations
followed by a non-deterministic choice between guarded
commands.

A guarded command has the form:

[action] guard — rate : update

meaning the process makes a transition to a state described
by the update at the given rate when the guard is true. In the
update, if = is a variable, then 2’ denotes the value of = in
the next state. The action label is optional (i.e. events can be
anonymous or named). An update may be a choice between
two or more assignments, indicating by the + operator, for
example

[action] guard — rate; : update; + rates : updates
meaning there is a race condition between the two updates.
Transitions are synchronised when they have the same
action labels, in which case the the rate of the synchronised
transition is the product of all the individual rates. For
example if one module contains

[actiony] guardy — ratey : 2’ =2

and it synchronises with a module that contains

[action] guards — rates 1y’ =3

and guardy and guards are true, then in a next state, x = 2
and y = 3, and the rate of the transition to that state is
rate; - rates.

4 OVERVIEW OF THE CASE STUDY MODEL

After experimentation with a number of different abstrac-
tions, we found the following as an ideal compromise be-
tween detail, efficiency of analysis, and ease of expression
of key properties. Recall the the primary components of
the system are channels, frequencies, sites, and sectors. Com-
ponents are modelled by PRISM modules, and events that
must be synchronised have the same action labels.

4.1 Channels

A channel is characterised by three parameters: whether it
is receiver (Rx) or transmitter (Tx), the frequency, and the
site reference. There are four possible states for a receiver/-
transmitter: S for serviceable (green), F for faulty (red), M
for under maintenance (blue) and E for external site failure
(red). There is no reduced redundancy in a single channel
(i.e. there is no amber for an individual channel).

We will not reason about individual channels directly:
we employ a counter abstraction whereby a pair of A and B
channels is represented by a single module and state labels
indicate the counts of the constituent channels. For example,
state (label) SS means that both A and B channels are ser-
viceable, state SF means that one channel is serviceable and
the other is faulty (note, the label notation is not positional).
The CTMC for a pair of channels is given on the left-hand
side of Fig. 1. States are colour coded to indicate servicability
so whereas individual channels may be green/blue/red,
channel pairs are green/amber/red’.

1. A component that is under maintenance is not serviceable, there-
fore we have abstracted away from the “under maintenance” (blue)
class.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 4

4.2 Sites

The site environment is characterised by major physical
events that cause a failure of the site (e.g. instrusion, pow-
erline and backup generator failure, flooding) or minor
events that mean the site is more likely to fail, but is still
functioning (e.g. powerline failure but backup generators
functioning). Minor events typically precede major (failure)
events and so we have three states for the site environment:
EO for serviceable (green), E1 site minor event (amber), and
E2 site major event (red).

A site is represented by the concurrent composition of
three modules: the transmitters, the receivers, and the site
environment. We denote a site by a triple (Tx,Rx,Env) con-
sisting of the two channel pairs and a site environment. This
means the notation for a site is positional: for example, site
(SF,SS, E0) is distinguished from (SS, SF, E0). The former
denotes a configuration where the transmitter is reduced re-
dundancy and the receiver is serviceable, whereas the latter
denotes a configuration where the transmitter is serviceable
and the receiver is reduced redundancy.

States are labelled and classified by three colours: W
(working) for serviceable (green), R for reduced redundancy
(amber), and N for no-service (red). Fig. 1 is the CTMC for
a channel pair and site environment with symbolic rates a,
b, ¢, etc. A key aspect of the model is the interaction be-
tween the site environment and the channels: the transition
between E1 and E2 in the site environment synchronises
with any channel transition to state E (red arrows in Fig 1);
that is, an external site event causes the channel to move to
state E. Similarly, the (site environment) transition between
E2 and EO synchronises with the channels (reset) transition
to SS (green arrows in Fig. 1). Note, not all configurations
are reachable. For example, the configuration (SS,E, E2)
is not possible because of synchronisation on site failure:
when a site failure occurs, both the transmitter and receiver
synchronise on this event and move to (channel) state E.

4.3 Sectors

An n-ary sector is represented by its n constituent sites.
Without loss of generality, we assume a sector with three
sites. WWW denotes a serviceable sector (green), NNN
is a no-service sector (red), and amber is for a reduced
redundancy sector, which consists of all remaining states,
ie. the language defined by L \ {WWW,NNN}, where
L = (W|N|R)(WINIR)(W|NJ|R). Note, this notation is po-
sitional. We assume the rates for events for transmitters and
receivers are identical and if either the transmitter or receiver
is no-service, then the entire site is no-service. The rates for
events will usually differ from site to site; for example, for a
given sector, the rate for an event ¢ for the first site may be
different from the rate for the same event e for the second
site (in that sector).

For a given frequency, a sector is represented by the con-
current composition of its constituent sites, which typically
varies between 2 and 5 sites. Note that sites within a sector
are independent (i.e. there is no synchronisation).

Table 1 contains a summary of the (labels of the) states
that are represented in a model with a ternary sector, using
regular expression notation, e.g. ‘|” for disjunction and “’ for
wildcard. Strictly speaking, the labels of states in a CTMC

are the propositions that are true in that state. Here, we
introduce a convenient labelling for states that indicates the
properties of that state.

As example, the code snippet in Fig. 2 specifies the
PRISM modules for the transmitters (Tx) and the environ-
ment for site X, in the context of rate declarations. State
labels are represented by (local) integer variables sO_X and
env_X, e.g. 2 for FF, etc. Note the last two transition choices
in the transmitters module, labelled by alarm_major_X and
fix_X, cause the synchronisation with the site environment.

4.4 Rates

The model is governed by seven rates, which we refer to as
a,...,g; these are indicated in in Fig. 1. Note there are two
transitions from the repairing state: a quick, local repair that
returns to the serviceable state, and a slower transition to
the under maintenance state. The former reflects an error
that can usually be fixed by a remote reboot. The latter
reflects the fact it may take some time for an engineer to
physically reach a site and/or repair the fault. Interviews
with engineers indicated the ratio between these rates is
typically about 3 : 1.

Rate a indicates the failure rate of a single channel.
Intuitively, it describes the transition of a channel from
state S to state F (downwards arrows in the Fig. 1). Since
state SS contains two channels that can individually and
independently fail, the rate for transition SS — SF must be
2a.

Rate b is the rate of a quick repair. It describes the
transition of a channel from state F to state S (without
passing through an M state). Interviews with engineers
revealed that the time to repair a single channel and a pair
of channels is the same, we use b (not 2b) as the rate for
transition FF — SF.

Rate ¢ is the rate for slow repairs and describes the
transition of a channel from state F to state M. Events of
this kind are always in a race condition with b-rated events.
In order to reflect the 1 : 3 ratio between quick and slow
repairs, c is defined as b /3.

Similarly, rate d is the duration of a repair of an under
maintenance channel (M), i.e. a transition of a channel from
state M to state S.

Rates e and g are the rates for external site events and
site failures, respectively, and g is the rate of (external) site
repair.

4.5 Which rates?

Actual rates depend on how we intend to use the model, e.g.
to evaluate how the system architecture is designed to meets
service requirements, or how the system architecture actually
meets service requirements, when in operation. For the
former, we instantiate rates with those derived from typical
MTBF values, interviews with engineers, and inspection
of the business cases. For the latter, we instantiate rates
according to historical, field data. Since this is more novel
challenging, for the remainder of this paper we focus on
analysis based on rates inferred from historical data.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 5

2a

9\\

e

N

R

a

A/B CHANNELS

¢.5 o
f

SITE ENVIRONMENT

Fig. 1. CTMC for channel pair and site environment. Synchronisation on red and green transitions. Rates: a = channel failure, b = channel quick
repair, ¢ = channel slow repair, d = channel under maintenance repair, e = site minor event, f = site repair, g = site failure.

TABLE 1

State labelling and colour coding.

Component Colour States Description
channel green S serviceable channel
blue M under maintenance channel
red F faulty channel
red E site failure
channel pair green SS serviceable AB
(A,B) amber SF|SM reduced redundancy AB
red FFIFM|MM|E no-service AB
site green SS, SS, EO W serviceable site
(Tx,Rx,Env) amber SS,SS,E1 R reduced redundancy site
amber SF,(SM|SF|SS),(EOJE1) R reduced redundancy site
amber SM,(SM|SF|SS)(EO|E1) R reduced redundancy site
amber (SM|SF|SS),SF(EO|E1) R reduced redundancy site
amber (SMISF|SS),SM(EO|E1) R reduced redundancy site
red E,E,E2 N no-service site
red (FFIFM|MM) s = N no-service site
red *(FFIFM|MM)=x N no-service site
ternary sector green WwWWwW serviceable sector
(site,site,site) amber all other combinations reduced redundancy sector
red NNN no-service sector

5 INFERRED RATES FROM FIELD DATA

The company gave us access to their SAP incident ticketing
system, which they employ for long term storage of logged
failures. The data logs record failure occurrences and repair
durations, as well as a textual description, which allow us
to categorise events. Inference of rates was by manual in-
spection, sector by sector, for nominated time periods. Note,
longer term, we aim to influence the design of readouts and
tickets, and subsequently to automate the inference process.

As an example, we give results for one sector, which we
call FIR, over a one year period: February 2012 to February
2013. The data included 61 alarms, of which 24 were site
events. From this data we calculated mean inter-failure
times, which we then used to define failure rates (namely
rates a, e and g), and we calculated and used repair duration
times and mean repair duration times to define repair rates.
The results are reported in Table 2.

Examination of the field data confirmed the inferred
rates are of the expected orders of magnitude and also our

TABLE 2
Inferred rates from historical event data for sector FIR.

Rate Inferred value
Mean inter-failure time 452 h
Mean repair time 18 h
Response 57 m
Site event 1107 h
Percentage of quick repairs 15

Site failure 1 every 11.33 years

assumption (as told to us during interviews with engineer-
ing staff) that the duration of repairs is independent of the
number of channels (requiring repair). However, analysis
raised some issues that require further consideration. First,
some events were impossible to detect by analysing the cho-
sen data set. For example, the textual descriptions for repair
events did not specify whether an event was a quick or a

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 6

// Ratio quick Tepairs to slow Tepairs
const double x=3;

// Channels — mean times
const double failure=..
const double repair=..
const double qgrepair=..
// Site environment
const double event=..
const double site_failure=..
const double fix_e_event=..
// Rates
const double
const double
const double
const double
const double
const double
const double

in hours

a=1/failure;
b=1/qrepair;
c=b/x;
d=1/repair;
e=1/event;
f=1/fix_e_event;
g=1/site_failure;

// A/B channels
2=FF, 3=SM, 4=FM,

module Site_Tx_X
// 0=8S, 1=SF,
s0_X [0..6];

5=SM, 6=E

[] sO_X=0 —> 2xa:(s0_X’=1);

[1] sO_X=1 —> a:(s0_X’=2);
[quick_0_X] sO0_X=1 —> b:(s0_X’=0);
[1] sO0_X=1 —> c:(s0_X’=3);
[quick_0_X] s0_X=2 —> Db:(s0_X’=1);
[1] s0_X=2 —> c:(s0_X’=4);
[alarm_O0_X] s0_X=3 —> a:(s0_X’=4);
[repair_0_X] s0_X=3 —> d:(s0_X’=0);
[quick_0_X] s0_X=4 —> Db:(s0_X’=3);
[l s0_X=4 —> c:(s0_X’=5);
[repair_0_X] sO0_X=4 —> d:(s0_X’=1);
[repair_0_X] s0_X=5 —> d:(s0_X’=3);
[alarm_major_X] true —> 1:(s0_X’=6);

[fix_X] s0_X=6 —> 1:(s0_X’=0);
endmodule
module Site_env_X // Site environment
env_X [0..21; // 0=E0, 1=E1, 2=E2

[] env_X=0 —> e:(env_X’=1);

[alarm_major_X] env_X=1 —> g:(env_X’=2);

[fix_X] env_X=1 —> f:(env_X’=0);

[fix_X] env_X=2 —> f:(env_X’=0);
endmodule

Fig. 2. PRISM specification of transmitters and site environment mod-
ules, for site X.

slow repair. Therefore, in order to infer the ratio between
rates b and ¢, we assumed that repair events with a duration
greater than 2 hours were slow repairs. Second, rare events
such as site failures did not occur in the time span covered
by the data set; we had to inspect data from previous years
to find an occurrence. Third, we identified two classes of
events that may require a different representation model:

o dependent events such as the contemporaneous fail-
ure of both the A and B channels, and
e deterministic events such as scheduled maintenance.

We will return to these issues in Section 12.2.

6 TEMPORAL LOGIC PROPERTIES

We now turn our attention to CSL properties for analysis,
considering both steady-state and transient properties. We
begin with the underlying propositions.

TABLE 3
Atomic propositions for status of channel pairs, sites and sectors.

serviceable_chan(c) = (¢ =SS)
serviceable_env(e) = (e = EO)
serviceable_site(s) = serviceable_chan(Txs)

A serviceable_chan(Rxs)
A serviceable_env(Envy)

serviceable_sector(A) = A . 4 Serviceable_site(s)

rr_chan(c) = (¢ = SF) V (¢ = SM)

rr_env(e) = (e = E1)

rr_site(s) = —(serviceable_site(s)
V noservice_site(s))

rr_sector(A) = V/, y 4 Fr_site(s)

noservice_chan(c) = (¢ = FF) V (¢ = FM)
V(c=MM)V (c=E)
(e =E2)

noservice_site(s) = noservice_chan(Txs)

noservice_env(e) =

V noservice_chan(Rxs)
V noservice_env(Envy)

noservice_sector(A) = A, i 4 DOService_site(s)

6.1 Atomic propositions

The atomic propositions indicate the status (i.e. level of
service) of channel pairs, sites, efc. The levels of service:
servicable, reduced redundancy, and no-service, are defined
in Table 3.

6.2 Steady state properties

Steady state properties express long run behaviour? and we
use these properties for validation of the model. Typically we
examine steady state behaviour for a given sector, comput-
ing the likelihood to be in a service state, a reduced redundancy
state, or a no-service state, in the long run. Namely, we
consider three steady state properties:

S—7 [serviceable_sector(A)]
S—7[rr_sector(A4)]

S_7 [noservice_sector(A)]

6.3 Transient properties

Transient properties express the probability of reaching a
state that satisfies a proposition within a period of time.
For our analysis, the crucial question is: what is the the
likelihood of reaching no-service in a given sector within time
t. This is expressed, for sector A, by the transient property

P—- [th(noservice_sector(A))} @

By experimentation in PRISM with property (1) we can
consider different instantiations of ¢, to plot how the likeli-
hood changes over over time. But there is another parameter
to consider: the state from which we compute the likelihood.
(Note, hereafter we use configuration and state interchange-
ably.) In standard model checking, the given state is, by

2. Note, in a CTMC, long run behaviour is distribution over states.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 7

default, the initial state of the system. In our case, this
would be the all-green configuration (serviceable channels,
sites, sectors, efc.). However, we are considering a deployed
system in which failures have occurred and the interesting
cases are the degraded, amber configurations. Specifically,
once we have reduced-redundancy, we require to quantify
the criticality of the situation and take informed decisions —
for example, do I need to fix a fault now, or can I wait? And
if I can wait, for how long should I wait?

6.4 Example results

For example sector FIR, steady state analysis results are
given in the left hand column in Table 4, indicating that
in the long run, the sector is serviceable for the majority
of time (over 88%). This accords with the experiences of
the engineers we interviewed. For further validation, we
analysed the historical data for that sector (over one year),
to calculate the percentage time spent in a service state,
etc. These results are indicated in the right hand column
in Table 4. As can be seen, the model results align very
well with actual performance in that sector over a one year
period. For completeness, we give detailed results for the
52 configurations with probability > 1072 in Fig. 3a, noting
the log scale for probabilities and use of shades of green to
indicate degree of degradation/reduced-redundancy.

For transient property analysis, recall we require to
choose a state (from which to perform the analysis). For
sector FIR there are 389,017 states, of which 1 is fully
serviceable (WWW), 166,375 are no-service (NNN), and
222,641 are degraded, reduced-redundancy configurations.
The degraded configurations we examined for the FIR sec-
tor, with three sites that we call A, B, and C, are given in
Table 5. We refer to Table 1 for the definitions of W, R and
N. Observe that both N and R can be the result of many
different site Conﬁgurations3, so we randomly selected one
for each occurrence of R and N.

Figures 3b, 3c, and 3d give the results for the proba-
bility of reaching a no-service configuration, from different
degraded configurations, over a time interval of 48 hours.

We are considering a critical service (in a safety-critical
domain) and so we expect probabilities to be very low. How-
ever, observe the orders of magnitude difference on the Y
axis. In Fig. 3b, the scale is 107, whereas in Fig. 3c, the scale
is 1074, and in Fig. 3d, the scale is 10~3. Also, observe that in
Fig. 3b the steepest trajectory is WWN, which contains one
no-service site, and in Fig. 3d, the trajectory with highest
probability, RNN, has two no-service sites. However, in the
same Figures, WNN also contains two no-service sites, but
one serviceable site and the overall probability of service
failure is constantly low.

Following similar analysis of different sectors with dif-
ferent topologies, we observed the contribution of addi-
tional sites increases service availability, however that in-
crease is inversely proportional to the number of additional
sites. The example in Fig. 4a illustrates this: the difference
between 3- and 4-ary sites is negligible. Overall, these
results show that site redundancy (i.e. sector topology) is
the most crucial factor affecting the behaviour of the system

3. For example, R could be SF,SM,E0 or SF,SS,E1; N could be
E,E,E2 or FF, SS, EO or E, E, E2.

and we also conclude the system is not sensitive to the
number n of sites, when n > 3. This implies the plots for the
ternary site given in Fig. 3b to 3d are good approximations
for sectors with more sites.

Finally, we remark that channel redundancy within a site
is a contributory factor to overall behaviour. When both
channels A and B are serviceable, i.e. the site is W, then
this redundancy guarantees safe service levels in the time
frame 0 — 48 hours, even in the extreme configuration in
which only one site is in configuration W. For examples of
this, see Fig. 3¢, in which the plot for WRR is effectively flat,
and similarly in Fig. 3d, in which the plots for WRN and
WNN are also effectively flat.

7 TRANSIENT PROPERTIES FOR DECISION MAKING

We now show, with reference to an example, how predic-
tions of no-service can inform operational decision making.
Consider the following scenario:

1) the current configuration of the system is RRR,

2) the system safety threshold (i.e. probability of no-
service) is 4 x 1073, and

3) the mean repair time is 20 hours.

We predict the behaviour of the system by checking the
transient property of reaching no-service as explained in the
previous section: the plot, from the current configuration, is
indicated with the solid line in Fig. 6a. We remark that the
solid line denotes the expected behaviour if no assumptions
are changed in the system, i.e. if we assume the current failure
and repair rates. Now consider the shaded area in Fig. 6a,
which indicates the probabilities above the safety threshold.
The prediction shows that the system is likely to become
unsafe after 20 hours. We reach the conclusion that within 20
hours, we want to be on another trajectory, which is below the
system safety threshold. We can do this by altering one or
more rates so as to, in effect, transition to a more favourable
configuration in an alternative CMTC, ie. in one that is
structurally the same but has different transition rates. For
example, we could ensure that maintenance on one of the
no-service sites is prioritised, effectively pushing down the
mean repair time to 15 hours. In this case, the expected
behaviour of the system over the next 48 hours improves be-
cause the system becomes unsafe only after 34 hours instead
of 20 hours. This is shown in Fig. 6a with the dashed line.
Now consider the behaviour from a configuration with one
serviceable site, WRR; this is the configuration of the current
system (RRR) after the site repair is successfully completed.
The expected behaviour is indicated by the dotted line in
Fig. 6a. As can be seen, configuration WRR is much safer
because within the time frame, the safety threshold is never
reached.

Further, assume we choose to prioritise site maintenance
and the one site is repaired after 20 hours (a random value
taken by the exponential variable when the mean repair
time is 15 hours). The transient property never reaches
the system safety threshold, as shown by the solid line in
Fig. 6b. The dotted line shows the original trajectory: the
probability of no-service if the repair is never performed.
The discontinuity indicates exactly when the current state

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 8

TABLE 4
Comparison of model long run behaviour and manual analysis of historical data for sector FIR.

Status Proposition Model result Result from historical data
serviceable serviceable_sector(FIR) 88.46% 86.54%
reduced-redundancy rr_sector(FIR) 11.53% 13.56%
no-service noservice_sector(FIR) 1073% 0.00%

8e-07 T

7e-07 | me -

WWN
6e-07 -

Probability

|||""HHHlllmnnunuu!um.

DDDDD

Configurations
(a)

0.00035

T T
WRR ——
r| RRR

0.00025 +

0.0003

0.0002 -

Probability

0.00015 +

0.0001 +

5e-05 |-

0 il . e
5 10 15 20 25 30 35 40 45
Time (h)

(©)

5e-07 -

4e-07

Probability

3e-07 -

2e-07

1e-07 -

0.008

0.007 -

0.006 1

0.005 -

0.004 |-
RNN ——
WRN -----
RRN

WNN -----

Probability

0.003 -

0.002 -

0.001 -

Time (h)

(d)

Fig. 3. Analysis results for sector FIR: (a) steady-state distribution of the 52 most probable configurations; (b) prediction of no-service from WWW,
WWR and WWN configurations; (c) prediction of no-service from WRR and RRR configurations; (d) prediction of no-service from RNN, WRN, RRN

and WNN configurations.

TABLE 5
Selected degraded configurations for sector FIR.

Site A Site B Site C

N

T DM EEE
zZox IS =ZS
ZZ21x 002

of the system is updated to WRR (at time 20h) because the
site has became serviceable.

Fig. 5 is a pictorial representation of decision making;
transitions indicate component failures. On the left we have
the initial (green) state and on the right the (red) no-service
states. The (amber) degraded configurations are the majority
of states in between these two extremes: the dashed edge
indicates the decision to make a discrete transition from one
degraded confituration to another (more favourable) one.

Note, we can employ a similar approach to predict the

behaviour of the system after specific events occur, such
as scheduled maintenance or rare site failures (since they
have such a small influence over transient probabilities,
within a short time frame). In such cases, we are moving
the trajectory up, instead of down at the the discontinuity, i.e.
we are increasing likelihood of no-service.

It may be tempting to consider as more favourable states
those that are far (in terms of the number of transitions in the
shortest path) from a no-service configuration, in the belief
that configurations closer to a no-service configuration are
more degraded than more distant configurations. But this
is misguided, because the length of the path is possibly
irrelevant. For example, from one amber configuration it
may require only two events to reach a no-service config-
uration, yet both those events are very rare. On the other
hand, from another amber configuration, it may take more
discrete events (i.e. failures) before we reach no-service, yet
all of them may be quite likely. So, in the former case, the
probability of reaching no-service within a fixed time may
well be lower than in the latter case, depending on choice of
time interval.

We illustrate with an example. The distance to no-service
is at most 6, because every configuration is at most 3 steps

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 9

0.5
0.45

1 site
2 sites

0.4 3 sites
4 sites

Probability

Time (h)

(a)

2500

1 site
2 sites
3 sites
4 sites

2000

1500 o

Cost

1000 o

500 o

Time (h)

(b)

Fig. 4. Comparison of 1- to 4-ary sector topologies over 48 hours: (a) probability of no-service; (b) maintenance cost. Each site configuration is

SM, SM, E1 € R.

Fig. 5. Changing configuration after analysis of service availability.

away from a site failure. For example, even configuration
WWW becomes NNN in 6 steps when, in each site, transi-
tions E0 — E1 — E2 take place.

Consider the following reduced-redundancy configu-
rations: (SS,FS,E0)(SS, FS,E0)(SS,FF,E0) € RRN, and
(SS,SS, E0)(SS, SS,EO)(E, E, E2) € WWN. The first one is
only two transitions away from no-service, while the second
one is four transitions away. This is because two channel
failures FS — FF and two site failures EO — E1 — E2
are needed to take place in order to reach NNN in the first
and in the second cases, respectively. But the first is not
more degraded because the probability of reaching a no-
service configuration within 48 hours is 2.251 x 107° and
3.304 x 107* for the first and the second configurations,
respectively. The second configuration is more degraded —
despite being more distant from no-service than the first
one: an example of how can often be misleading in a
probabilistic setting intuition.

8 ENVELOPES OF BEHAVIOUR FOR TRANSIENT
PROPERTIES

When we require to reason about behaviour from a given de-
graded configuration, we know exactly the configuration of
all the component sites. And if the we do not know the exact
configuration of all the components, we can simply select
random representatives, as above. An interesting question
is can we quantify the effect of the choice of status of the
lowest level components on the analysis? To answer this
we consider how to identify, for a given transient property,
upper and lower probability bounds induced by the dif-
ferent possible combinations of the lower level component
states; in our case, this refers specifically to the status of
the sites. These bounds will allow us to define envelopes of
behaviour, for a property. We illustrate through examples of

the likelihood of reaching no-service, within 48 hours, when
applied to the FIR sector®.

FIR is a ternary sector that has 25 possible degraded, or
reduced-redundancy configurations.” This can be reduced
to 8 cases, by symmetry. For each configuration, we define
the lower bound to be the lower bound for the most de-
graded site, and conversely we define upper bound to be
the upper bound for least degraded site. The lower/upper
bounds for the most/least degraded sites are found by
analysis of all the possible component sites. We illustrate
by example. Assume the first two sites are W, then perform
transient property analysis (for the sector) for all possible
R and N configurations. For the former, there are 17 cases
to consider, which reduce to 11 after removing symmetric
cases; for the latter, there are 37 to consider, which reduce
to 31. Results are shown in Figures 7a (WWR) and 7b
(WWN); in each, for comparison, we also give the result
for (SS,SS, EQ), which of course is not degraded. To ease
interpretation, configurations are colour coded according to
the level of degradation: recall, green means no degradation,
while red means consistent degradation. It is not suprising
that clusters occur, depending on the site environment:
all the configurations with E1 in clusters C} and C} are
considerably more degraded than the configurations with
EO in cluster C} and Cy, and no-service configuration
E,E,E2 € Cf is even further degraded.

We use these bounds to define the lower and upper
bounds of the envelopes of behaviour for a property p,
using the notation |, and 1, to denote lower and upper,
respectively. For instance, the lower bound for configuration
WNN, WNN |,, is obtained by selecting the lower bound
for both N sites, namely SS, FF, EO. The lower bound for
WWR is defined by taking the lower bound for R, namely
SS, FS, EO.

Details of the site configurations for each bound are
given in Fig. 6, with the corresponding probabilities of no-
service over 48 hours shown in Fig. 8. In the latter, for
simplicity, we omit the subscript p. Note that the red shaded
area between RNN 1 and RNN | indicates the envelope for
any configuration in the form RNN.

4. This is the property defined by (1).
5. Each site can take one of 3 forms (3 x 3 x 3 configurations), from
which we remove WWW and NNN.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 10

0.009 T T T T T T T T T 0.005

0.008 - 0.0045 |-

0.007 L 0.004 -

0.006 | 0.0035 |-

0.003
0.005 |-
0.0025 |-
0.004 |

Probability
Probability

0.002 -

0.003
0.0015 |

0.002 0.001 |

0.001 - 0.0005

I 1 L L L L L L L L L L L L L L
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Time (h) Time (h)

(a) (b)

Fig. 6. Transient property for service availability: (a) comparison of different configurations and repair rates and system safety threshold; (b) before
and after discrete transition to a new state, in context of 4 x 10~ system safety threshold.

0.00014 - SM,SM ET 0.00035 -
ES,5M,ET 2
S3.SMET | EEE2 Cf
FS,FS,ET R 0.0003 =
000012 1 5 | T
| EENEY
1 0.00025 "MM!
0.0001 2o MM ET
MEMEL |
> 2> SEEM.ET |Cn
£z 8e-05 - £ 0.0002 FE/EM/E1
= 5 FSEM'ET
E 3
o 6e-05 - S 0.00015
a o
4e-05 0.0001
2e-05 - 5e-05
€ 35,5M.E0 |CQ a
E2.F2.EQ PE.EM.EQ
SY,ESEQ EEEME
0 85,SSE0 0 g%wf%
10 20 30 40 10 20 30 40 EFV'F;F'F;FVEE%
Time (h) Time (h) EEEER -

(a) (b)
Fig. 7. Likelihood of no-service within 48 hours for all the WWR (a) and the WWN (b) configurations.

0.3 RNN1] ‘ _ TABLE 6
Site configurations for bounds for property p.
0.25
Bound Site A Site B Site C
0.2 RNN 1, SM,SM,E1 E,E,E2 E,E,E2

RRN1, SM,SME1 SMSME1 EEE2

RRR1, SM,SM,E1 SMSM,E1 SM,SM,E1

WNN1, SS.SSE0 EEE2 E,E,E2
RRNT WRN 1, SS,SS,E0 SMSME1 EEE2
WRR1, SS,SS,E0 SM,SME1 SM,SM,E1
WWN1, SS.SSE0 SSSSE0 EEE2
RNN|, SSFSE0 SSFFE0 SSFFEO0

Probability
o
=
w

}H:

RANY
W}pﬁl WWR 1, SS,SS,E0 SS,SS,E0 SM,SM,E1
Time (h) WRAY WNN |, SS,SS,E0 SSFFE0 SS,FFEO
]] . RRN |, SS,FS,E0 SS,FS,E0 SS,FFEO
Fig. 8. Envelopes of behaviour for property p, for degraded configura- WRN | SS SS.E0 SSFSEO SS.FFEO
D s 3 3 3 L)

tions.
RRR {p SS,FS,E0 SS,FS,E0 SS,FS,E0

WWN |, SS,SSE0 SS,SSE0 SSFFEO
8.1 Limitations WRR], SS,SSE0 SS,FS,E0 SS,FS,E0

In this case study we have been able to assume symmetries WWRJ, SSSSE0 SSSSE0 SSFSEO

in configurations. However, if for example, the transmitters
and receivers have different rates, then when identifying
bounds for R and N would have to consider all 17 WWR Another possible shortcoming is that, in some cases,
configurations (instead of 11) and all 37 WWN configura- the envelope may be too broad. For example, consider
tions (instead of 31). Additionally, if rates vary across sites, configuration RNN, with envelope bounds RNN |, and
then analysis has to be repeated independently for each site. RNN 1, (as indicated in Figure 8). That means the proba-

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 11

bility of no-service at 48 hours may take any value in the
range [2.54 x 1074,2.96 x 10~]. If this is considered too
broad, we may specify intermediate bounds for different
sub-classes of RNN configurations (i.e. other than the worst
and best case scenarios). For example, upper and lower
bounds for RNN configurations with all site environments
set to E1 are (SM,SM,E1)(MM,MM,E1)(MM,MM,E1) and
(SS,SS,E1)(SS,FFE1)(SS,FFE1) respectively; this can be
confirmed by inspecting the plots in Figures 7a and 7b.

9 RECOVERABILITY AND SURVIVABILITY

So far, we have considered properties that define the like-
lihood of reaching a no-service state from degraded (i.e.
reduced-redundancy) configurations. Now, we turn our at-
tention to properties after reaching a no-service state. We con-
sider two stochastic properties: recoverability and survivabil-
ity, as proposed by Cloth and Haverkort in [5]. Both proper-
ties refer to behaviours after a disaster has occurred — in our
case the “disaster” is reaching a no-service state. As before,
we refer to examples taken from the FIR sector. We also write
noservice as a shorthand for noservice_sector(FIR).

9.1 Recoverability

Recoverability is the probability of recovering service within
time bound ¢. In our model, this is expressed in CSL by:

P_o [th(ﬂnoservice)} ()

We denote this property by r and give results over time
interval ¢ < 48 h in Fig. 9. The state(s) from which we
perform analysis are combinations of the bounds of the
clusters® for N identified in Fig. 7b.

Observe the envelope of behaviour for any no-service
configuration is given by:

NNN 4, = (SS, FF, E1)(SS, FF, E1)(SS, FF, E1) and
NNN |, = (E, E, E2)(E, E, E2)(E, E, E2) .

Generally, the patterns are preserved, i.e. SS,FFEOQ is less
degraded than MM,MM,EO. However, it interesting to ob-
serve that configurations with EO take longer to recover than
configurations with E1, which is the opposite behaviour we
observed for N sites in reduced redundancy configurations.

Note that the property r (trivially) evaluates to (prob-
ability) 1, for any time bound, when the initial state is a
reduced-redundancy configuration, this is because in that
state —noservice already holds.

9.2 Survivability

Survivability is the ability of a no-service configuration to
recover service, in a timely manner and within a given prob-
ability bound. This is a subtle elaboration on property (2)
and expressed in CSL by

. < .
noservice = P, {F—t(ﬁnoservme)

There are two free variables, a time bound ¢ and a prob-
ability g. If we inspect Figure 9, for a particular (no-service)

6. For example, the upper bund of cluster Cy, is MM, MM, E1.

configuration, we can conclude the configuration is surviv-
able for all points (t,q) on and below the curve, whereas
the points above the curve indicate time bound/probabil-
ity pairs for which the system is not survivable. For ex-
ample, the plot for (MM,MM,EQ)(MM,MM,EQ)(MM,MM,EO)
indicates the configuration is not recoverable within 10
hours with probability greater than 0.8, therefore it is not
survivable. If we choose pair (40, 0.9) instead, the configu-
ration is recoverable (the point lays below the curve), thus
survivable. Note we can conclude the system is survivable
for (48,0.9) because all the configurations are survivable
for this pair (this follows from the lower bound NNN).

10 COST ANALYSIS WITH TRANSITION REWARDS

We may analyse costs of particular behaviours, and make
decisions based on those costs, using the facility in PRISM to
specify rewards and perform analysis of reward-based prop-
erties. As an example, we associate a cost with each transi-
tion in the model representing a maintenance intervention,
and then reason about (i.e. forecast) the expected mainte-
nance costs over one month period, for a given configura-
tion, using a cumulative reward property, as follows.

We augment our model with the reward structure for
site X given in Fig. 10. Each transition is assigned a cost
— most have no precondition (i.e. the condition is simply
true), but a condition is used to disambiguate the two
transitions labelled by fix_X. For confidentiality reasons,
we refer here to costs that are fictional but reflect actual
proportions: ¢ = 10, r = 100, s0O = 100, s1 = 3000. The
cumulative reward property is

R{cost}_»[C < 730]

where 730 is the time bound expressed in hours. Results for
19 configurations are given in Table 7. Note the maintenance
cost of the more degraded configurations are higher than
those for less degraded configurations. This is because when
considering short time windows, maintenance interventions
are more likely to be scheduled in more degraded configu-
rations.

Cost analysis can be used along with safety analysis
for decision making as described in Section 7. We note
that while total maintenance costs increase linearly with
the number of sites (when changing sector topology), as
indicated in Fig. 4b, where each site is in the upper bound
SM,SM,E1 € R configuration, recall the contribution to
overall safety, from each site, decreases exponentially with
the number of sites, as indicated in Fig. 4a

Finally, we note that the reward structure defined in
Fig. 10 also allows for the analysis of steady state properties
i.e. the cost in the long-run. The corresponding formula is

R{cost}_2[S]

which for the example FIR sector evaluates to 6.93. This
represents the expected long-run cost rate per unit of time
(one hour in our model), and is independent of the initial
configuration.

This concludes our analysis. In the next section we
comment briefly on the model implementation and then we
reflect on our overall approach.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 12

Probability

M

A

(M
(M

mE=

0 ; ; ‘
10 20 30
Time (h)

40

Fig. 9. Recoverability of selected no-service configurations within 48 hours.

rewards cost
// Transmitter
[quick_0_X] true:
// Receiver
[quick_1_X] true:

q;[repair_0_X] true: r;

q;[repair_1_X] true: r;

// Site environment
[fix_X] e_X=1: s0;[fix_X] e_X=2: s1;
endrewards

Fig. 10. PRISM specification of cost reward structure for site X.

TABLE 7
Expected monthly maintenance cost for 19 configurations

Site A Site B Site C Monthly cost
E,EE2 E,E,E2 E,E,E2 13448.19
SM,SM,E1 E,E,E2 E,EE2 11851.93
SS,SS,E0 E,E,E2 E,EE2 10558.47
SM,SM,E1 SM,SM,E1 E,E,E2 10255.67
SS,SS,E0 SM,SM,E1 E,E,E2 8962.21
SM,SM,E1 SM,SM,E1 SM,SM,E1 8659.41
SS,SS,E0 SS,SS,E0 E,EE2 7668.75
SS§,SS,E0 SM,SM,E1 SM,SM,E1 7365.95
SS,SS,E0 SS,SS,E0 SM,SM,E1 6072.49
SS,FFEO SS,FFEO SS,FFEO 4964.70
SS,SFEO SS,FFEO SS,FFEO 4933.75
SS,SFEO SS,SFEO SS,FFEO 4902.81
SS,SS,E0 SS,FFEO SS,FFEO 4902.81
SS,SFEO SS,SFEO SS,SFEO 4871.86
SS,SS,E0 SS,SFEO0 SS,FFEO 4871.86
SS,SS,E0 SS,SFE0 SS,SFEO 4840.92
SS,SS,E0 SS,SS,E0 SS,FFEO 4840.92
SS,SS,E0 SS,SS,E0 SS,SFEO 4809.97
SS,SS,E0 SS,SS,E0 SS,SS,E0 4779.02

11 IMPLEMENTATION

To make the models accessible to a variety of users, we
developed a multi-platform web app, as illustrated in Fig. 11
running on an Android tablet. The system is a client-server
architecture, implemented in Node.js’ that relies on remote
PRISM instances for heavyweight computations. The web
app supports simple instantiation, using sliders, of model

7. https:/ /nodejs.org/

Fig. 11. Web app for setting rates and topologies running on an Android
tablet.

parameters such as rates channels and sites, sector topol-
ogy, percentage of quick repairs, and current configuration.
Default values are provided. Analysis results, displayed on
the device, are in the formats as given in this paper (e.g.
graphs or bar charts) and PRISM raw textual output.

12 DISCUSSION
121

Our overall framework is depicted in Fig. 12 and sum-
marised as follows. Model definition and analysis is indi-
cated by solid lines, feedback from the analysis is indicated
by the dashed lines, property outputs are screenshots from
the web app. A model is validated by examining the results
of steady state temporal logic properties and comparing
them with the expected (or required) results from the safety
and business cases, and with the observed, operational
results inferred from the field data (left-hand side of Fig. 12).
An example result of steady state property analysis is given
in the bottom left hand side of the Figure. The right hand
side of the Figure indicates how quantified predictions of
behaviours and cumulative costs, the result of transient
temporal logic properties, inform decisions (right hand side
of Fig. 12). The framework can be used:

Summary of modelling and analysis framework

1) at design time, to investigate whether or not a
particular architecture meets service requirements,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 13

Safety & business cases ‘

Field data ‘
I A \’

1

P Event rates

Data

analysis |/
K Parameterised
K CTMC Model
l’/\
! -
h
Validation Prediction

Steady state properties Transient properties

Fig. 12. Modelling and analysis framework, with feedback.

2) after the system has been deployed, and the model
is parameterised by operational data, to investigate
whether or not a particular architecture actually
meets service requirements,

3) in real-time, on-line, to inform operational decision
making,

4) as a combination of the second and third in which a
“catalogue” of predictions (generated off-line) for a
variety of degraded configurations is provided and
then consulted as the system in real-time.

12.2 Modelling scheduled events and spatial aspects

One consequence of modelling within a Markovian frame-
work is that we cannot easily model scheduled, i.e. non-
stochastic, events. There are several possibile solutions such
as a) remaining within the CTMC paradigm but modelling
the new events with hyper-Erlang distributions, which
means the state space explodes because of all the interleav-
ing/expansions or b) modelling with probabilistic timed
automata, which means the (exponentially distributed) fail-
ure rates are discretised by a geometric distribution, or
¢) modelling with hybrid CTMCs that model the scheduled
events as discrete switching between CTMCs. Each of these
would result in (possibly unnecessarily) more complicated
semantics and analysis techniques. On the other hand, it
would be relatively simple to encode any spatial aspects of
the system (e.g. if transmitters/receivers are mobile) using
(stochastic) bigraphs with sharing [6]. Given the data we
have seen for scheduled maintenance in this case study is
relatively sparse, we have not yet incorporated it into the
model.

12.3 Reflections on case study

When we inspected the historical data, we found evidence
of dependencies between channel A and B faults. This
had not been raised with us previously, and so while on
the one hand it was disappointing to uncover possible
omissions in the model, this demonstrated the value of a
formal approach and analysing historical data. The cause of
dependencies is as yet unclear, but in part it may be due to
the formats for recording faults and the use of free text.

However, there may be further contributory factors such
are transmitters and receivers are usually commissioned at
the same time (and therefore failures occur a similar times),
and more likely, communications network failures typically
affect both channels simultaneously. Determining the causes
requires further investigation, however, any modifications
to the model would be relatively straightforward and would
involve the introduction of synchronised Tx and Rx failures.

13 RELATED WORK

Formal modelling and reasoning is well established for
safety-critical systems, especially in the context of formal
system development [7], and runtime models for managing
self adaptation and the complexity of evolving software
behaviour while it is executing [8]. But to our knowledge
there has been little work using formal modelling and
reasoning using (temporal) logics to predict future service
availability and inform operational decisions in the pres-
ence of component failures. This work is therefore a novel
contribution. If we choose in future to model scheduled
maintenance by deterministic, timed events, as mentioned
in Section 12.2, then we may also consider how these
are handled in [9], where a system with rejuvenation — a
system that is periodically stopped and then restored in a
robust state after maintenance — is modelled as a Markov
regenerative process and then Markov renewal theory is
applied to carry out quantitative analysis. Another approach
is considered in [10], which employs a partially observable
Markov decision model for a maintenance problem. How
these models may provide a suitable semantic underpinning
for our framework, especially with regard to reasoning
about logical properties, is further work. One issue for
quantitative analysis is state space explosion and numerical
simulation difficulties in the presence of rare events [11].
We note we have not encountered state space explosion
problems nor numerical difficulties, mainly because our
modelling approach involves counter abstraction and we do
not analyse the system from the standard “initial state”, but
from degraded configurations that can occur as the system
is running (regardless of the probability of reaching them).
Moreover, we typically examine transient behaviours over a
relatively short, i.e. 24 — 48 hour period, and so state space
explosion is not an issue. Concerning run-time modelling
and analysis, in [12] we augmented a domestic network
management system so that, as the system is running, a
simulation trace (consisting of formal, bigraph models) is
generated in real time, These are analysed, in real time,
according to various state properties, and notification of
violations are fed back to the system and to users. Finally,
we note an early version of this work was presented in [13];
the main differences here are we provide more details of
the model and underlying system, degraded configurations
and envelopes, and temporal property analysis including
recoverability, survivability, and costs.

14 CONCLUSIONS AND FUTURE WORK

We have proposed an approach for assessing the impact of
component failures in complex, critical systems based on
stochastic event based modelling and analysis by stochastic

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. XX, NO. YY, DRAFT JULY 2015 14

temporal logic model checking. The models are continuous
time Markov chains, specified using high level language
descriptions. By relating the status of components to service
availability, and then reasoning about service availability
and costs using continuous stochastic temporal logic, we
quantify the risk of service failure and maintenance costs
now, from a given degraded configuration, and in the future
after elapsed times. Decisions about which component to
repair, and when, can then be taken according to those risks
and costs. The quantified risks can also inform evaluation
of designs, such as levels of redundancy. A novel aspect
of our approach is it is based on analysis from (classes)
of degraded configurations, not the initial configuration
(which is standard for many formal approaches).

This work was motivated by an industrial partner, as
part of a larger programme within the company to address
system management. However, the approach is applicable
to any component based system with discrete, stochastic
events and failures. Throughout the paper we have demon-
strated our approach through application to a critical com-
munications service in which in which component failures
are sensed and monitored. The system has been deployed
for several years and we had access to failure data, thus
we were able to infer actual failure rates over a one year
period and to demonstrate how well the model aligned
with actual behaviours. We showed how transient, temporal
property analysis allows us to predict the likelihood of no-
service within 48 hours, before and after making repairs to
specific components, to define envelopes of behaviours, for
abstractions over sites, and to estimate expected costs for
maintentance, over a specific time period (e.g. a month). The
modelling and analysis framework is implemented in the
PRISM language and model checker, with a bespoke multi-
platform web app.

Crucial modelling decisions include the representa-
tion of time, nondeterminism, stochasicity, and their inter-
relationships. We have chosen CTMCs as our underlying
semantics, which gives us concise, realistic and effective
models and analysis techniques. But, there are other possi-
bilities if we wish to extend to combining deterministic and
stochastic events such as hybrid or probabilistic timed au-
tomata, or models such as bigraphs that incorporate spatial
aspects. Regardless of the semantics, our overall approach
remains the same: to analyse a component based system
using temporal logic and to quantify future behaviour from
selected degraded configurations. The analysis can be used
in a variety of ways: from evaluating whether an archi-
tecture meets service requirements, to informing decisions
about repairs and costs in an operational system.

ACKNOWLEDGMENTS

We thank our industrial collaborators (Suki Lal, Dave Bell-
shaw and Terry Wright) for for help and guidance through-
out the project. This work was partially funded by the EP-
SRC grant Verifying Interoperability Requirements in Pervasive
Systems EP/F033206/1, the University of Glasgow EPSRC
funded Impact Acceleration Account and Sevegnani’s EP-
SRC Prize PostDoctoral Fellowship.

REFERENCES

[1] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic model
checking,” in Formal Methods for the Design of Computer, Communi-
cation and Software Systems: Performance Evaluation (SFM’07), 2007.

[2] C. Baier, B. R. Haverkort, H. Hermanns, and].-P. Katoen, “Model-
Checking Algorithms for Continuous-Time Markov Chains,” IEEE
Trans. Software Eng., vol. 29, no. 6, pp. 524-541, 2003.

[3] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verifica-
tion of probabilistic real-time systems,” in Proc. 23rd International
Conference on Computer Aided Verification (CAV’11), ser. LNCS,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer, 2011,
pp. 585-591.

[4] R. Alur and T. A. Henzinger, “Reactive Modules,” Formal Methods
in System Design, vol. 15, no. 1, pp. 7-48, 1999.

[5] L. Cloth and B. R. Haverkort, “Model checking for survivability!”
in Quantitative Evaluation of Systems, 2005. Second International
Conference on the, Sept 2005, pp. 145-154

[6] M. Sevegnani and M. Calder, “Bigraphs with sharing,” Theoretical
Computer Science, vol. 577, p. 43 74, 2015

[7] A. Galloway, F. Iwu, J. A. McDermid, and I. Toyn, “On the formal
development of safety-critical software,” in VSTTE, 2005, pp. 362—
373.

[8] U. Afmann, N. Bencomo, B. H. C. Cheng, and R. B.
France, “Models@run.time (Dagstuhl Seminar 11481),” Dagstuhl
Reports, vol. 1, no. 11, pp. 91-123, 2012. [Online]. Available:
http:/ /drops.dagstuhl.de/opus/volltexte /2012 /3379

[9] S. Garg, A. Puliafito, M. Telek, and K. Trivedi, “Analysis of
software rejuvenation using markov regenerative stochastic petri
net,” in Software Reliability Engineering, 1995. Proceedings., Sixth
International Symposium on, 1995, pp. 180-187.

[10] R. Srinivasan and A. Parlikad, “Semi-markov decision process
with partial information for maintenance decisions,” Reliability,
IEEE Transactions on, vol. 63, no. 4, pp. 891-898, Dec 2014.

[11] D. Reijsbergen, P-T. de Boer, W. R. W. Scheinhardt, and B. R.
Haverkort, “Rare event simulation for highly dependable systems
with fast repairs,” Perform. Eval., vol. 69, no. 7-8, pp. 336-355, 2012.

[12] M. Calder, A. Koliousis, M. Sevegnani, and]. Sventek, “Real-time
verification of wireless home networks using bigraphs with
sharing,” Science of Computer Programming, vol. 80, Part B,
pp- 288-310, 2014. [Online]. Available: http:/ /www.sciencedirect.
com/science/article/pii/S0167642313001974

[13] M. Calder and M. Sevegnani, “Do I need to fix a failed
component now, or can I wait until tomorrow?” Proceedings
Tenth European Dependable Computing Conference (EDCC 2014),
IEEE, 2014. [Online]. Available: http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=6820885

Muffy Calder Biography text here.

PLACE
PHOTO
HERE

Michele Sevegnani Biography text here.

PLACE
PHOTO
HERE

