
ON THE DESIGN OF SIDE�STICK CONTROLLERS IN FLY�BY�WIRE

AIRCRAFT

Mu�y Thomas and Bowen Ormsby�

University of Glasgow� Scotland� U�K�

Abstract

This paper presents the problem of designing the functional
behaviour of the interaction between two side�stick con�
trollers� an autopilot� and a �ight control computer in a
�y�by�wire aircraft� Two models are developed using the
ISO formal description technique LOTOS� and analysed us�
ing rigorous abstract testing techniques�

Keywords� Avionics� Design� Formal Description Tech�
niques� LOTOS� Process Algebras� Safety�Critical Software�
Speci�cation� Testing� Veri�cation� Validation�

Introduction

The reliability of software in embedded computer systems is
a matter of increasing concern� particularly for safety�critical
systems�

There are no known quantitative methods for demon�
strating high levels of software reliability �	� 
�� instead�
most approaches to software in safety�critical situations rely
mainly on assurance� based on the evidence produced dur�
ing the software lifecycle� Our interest lies in augmenting
the preliminary and detailed design stages with mathemati�
cal modelling and validation stages� our goal is the reduction
of errors and design changes during unit testing after imple�
mentation i�e� by �nding the errors before implementation��
Thus� we are interested in applying formal methods as design
tools�

The aerospace industry is an area where software� on
the whole� is extending existing electromechanical systems�
the concerns of control and protection must be clearly sep�
arated and quali�ed� with a high degree of assurance� It
is becoming clear from our own experience� from others in
the �eld ���� ��� ��� and in the aerospace industry eg� �����
that techniques such as static analysis and validation based
on mathematical models can have an important role to play
in the design of safety�critical software� This is particularly
the case when analysis addresses the questions of whether
the software satis�es safety constraints�

Here� we consider a case study� the problem of design�
ing the functional behaviour of the interactions between two
side�stick controllers� the autopilot� and a �ight control com�
puter in a �y�by�wire aircraft� This is a relevant example
since such a con�guration is part of the current Airbus Indus�
trie A��� ���� Our aim is to develop a model from an initial
statement of the requirements� to verify that the model does
ful�l the requirements� and to provide some degree of assur�
ance that this is a good design by analysing the model with

�Funded by University of Glasgow Research Studentship

respect to some safety requirements� Two models� of increas�
ing complexity� are developed and analysed using the ISO
formal description technique LOTOS Language of Tempo�
ral Ordering Speci�cation� ���� LOTOS is appropriate since
we are concerned only with relative time� rather than with
real time�

The �rst section gives the informal requirements of the
side�sticks controllers� and the second section introduces LO�
TOS� The basic design description is given in the third sec�
tion� followed by an analysis of the design� Then� the design
is extended to include time� and this too is analysed� There
follows a discussion and our conclusions�

� Requirements

The requirements have been extracted from ����
Each pilot has a side�stick� and the two sticks are linked

to the �ight control computer� Normally� both sticks are
enabled and movements of them produce a response which
depends on the sum of their displacements� up to a maximum
of the full de�ection of one stick� So� if both sticks are moved
forward two degrees� the aircraft will behave as if one stick
had been moved forward four degrees� Similarly� equal and
opposite movements cancel each other out�

In an emergency� one pilot can override the other pilot�s
controls by pressing a button on his�her stick� This button
which also acts as the autopilot disengage button� causes
inputs from the other pilot�s stick to be ignored� and gives
priority control to the pilot who pressed it� If the button is
held down for more than thirty seconds� the stick retains pri�
ority until the system is reset by centralising the disengaged
stick� This override system allows one pilot to take sole con�
trol of the aircraft if the other pilot gets into di�culty or if
a stick jams�

Amongst many other controls� both pilots also have an
autopilot engage button� If both pilots are in control i�e�
not overridden� and one of them presses this button� the au�
topilot also gains control of the aircraft until one of the pilots
presses the autopilot disengage button on his�her side�stick�
A pilot in control can engage or disengage the autopilot� but
a pilot not in control cannot a�ect the state of the autopilot�

� Design Descriptions

The natural language description given above� whilst rela�
tively clear� is still ambiguous and incomplete� Further� it
o�ers no possibility of rigorously demonstrating that it is a
good� safe protocol that can be implemented�

Our intention is to develop a design description which is
closer to an eventual implementation� but abstract enough



to allow for rigorous analysis of the essential behaviour�
The formal description technique LOTOS is used to

model the design� LOTOS is a process algebra similar to
CCS ��� but with data types and multi�way synchronisa�
tion� which allows us to model processes that can be non�
deterministic and�or concurrent� with or without synchro�
nisation� Processes can be parameterised by abstract data
type values� and such values can be passed� or negotiated�
between processes through synchronisation�

A good introduction to LOTOS is given in ���� a very
brief review of the features of LOTOS we use is as follows�
Processes are built up from constant processes� events� and
process operators� Events are atomic� indivisible actions� In
the following� P and Q are processes�

LOTOS Informal description

exit termination
a�P pre�x P by event a
P �� Q choice between P and Q
P �� Q become Q after P terminates
P ��� Q P in parallel with Q
P ��l�� Q P in parallel with Q� synchronising

on events in list l
�exp� �� P if exp holds then become P

Abstract data types are speci�ed in the ACT ONE sub�
language� using many�sorted equational logic� Values and
processes are combined in two ways� lists of values may be
associated with events� and processes may be parameterised
by values� We use two forms of value association with events�
the event o�er a�v o�ers value v at event a� and the event
o�er a	v
T o�ers any value of type T at event a� Two events
o�ering equivalent values may synchnronise� e�g� a�true can
synchronise with a�true� or a�not�false�� and an event of�
fer a�v can synchronise with an event o�er a	v�
T� with
the e�ect that v� is bound to v� when v has type T�

The underlying semantics of a LOTOS description is a
state transition system� rather like a �nite state automata�
except that there is no restriction to �nite states� We use
laws which describe equivalences between processes� based
on the concept of weak bisimulation ��� between transition
systems� Bisimulation is so�called because the processes can
simulate each other�� These laws include� for example� the
rule that choice is commutative� and that parallel processes
expand into processes involving only choice and pre�x�

For brevity� all the events in our descriptions will be ob�
servable� This will allow us to omit the usual list of ob�
servable� parameter events in process declarations� except
in the few cases where the actual and formal events do in�
deed di�er� We also introduce some further� trivial� abuses
of LOTOS notation� for brevity�

� Basic Design

We begin with a design of the basic system� excluding timing
constraints�

Four data types are de�ned to represent the status of
a stick� a pilot�s controls pcontrols�� the control priority
priority� and the autopilot� In the interest of brevity�
most of the obvious� equations are omitted from these
types�

A stick can be in any position along an axis from n� neg�
ative �� to p� positive ��� with �� as origin� Stick positions
may be summed� with over and under�ows rounded up or
down to n�� p� respectively�

type stickpos is boolean
sorts stickpos

opns n��n��n��n����p�p��p��p� 
 �� stickpos
Succ � Pred 
 stickpos �� stickpos
��� ��eq� 
 stickpos�stickpos �� stickpos

eqns forall x�y
stickpos
���

endtype

A pilot�s controls consists of the x and y coordinates of
a stick� the coordinates are selected with operations xstick
and ystick� and the coordinates are incremented and decre�
mented with operations xinc� xdec� etc� The operation
central is a predicate to test whether both coordinates are
at the origin� Again� many of the equations are omitted�

type pilotcontrols is stickpos
sorts pcontrols
opns mk
 stickpos�stickpos �� pcontrols

xstick�ystick
 pcontrols �� stickpos
xinc�xdec
 pcontrols �� pcontrols
yinc�ydec
 pcontrols �� pcontrols
central
 pcontrols �� bool

eqns forall x�y
stickpos
ofsort stickpos

xstick�mk�x�y�� � x�
ystick�mk�x�y�� � y�

ofsort pcontrols
xinc�mk�x�y�� � mk�succ�x��y��
xdec�mk�x�y�� � mk�pred�x��y��
���

ofsort bool
central�mk�x�y��� ��x eq ��� and �y eq ����

endtype

There are � distinct values for priority status�

type priority is boolean
sorts priority
opns one�two�none 
 �� priority

�eq� 
priority� priority �� bool
eqns

���
endtype

There are � values for autopilot status�

type autopilot is boolean renamedby
sortnames autopilot for bool
opnnames on for true

off for false
endtype

The main process components of the system are the two
human� pilots� referred to as pilot � and pilot �� the autopi�
lot� and the �ight control computer�

The two human� pilots� behaviours are identical� up to
the names of the events� and so the process is parameterised�
Each pilot may move the stick along one of the four axes�
forward Fd�� backward Bk�� left Lt�� right Rt�� depress or
release their priority button� P� and Pr� respectively� and
depress or release their autopilot button� AU� and AuD�
respectively�

process Pilot�Fd�Bk�Lt�Rt�Au�AuD�P�PR�
�
�Fd �� Bk �� Lt �� Rt ��
Pr �� Au �� P �� AuD��Pilot

�� exit
endproc

The autopilot has a more restricted functionality which
includes only stick movements�



process AutoPilot�Fd�Bk�Lt�Rt� 
�
�Fd �� Bk �� Lt �� Rt��AutoPilot

�� exit
endproc

The �ight control computer polls for the current
summed� positions of the sticks and the priorities with event
s� and sends on the appropriate signal with event signal
to the control surfaces� There are several possibilities for
combining the inputs into the appropriate signal� depending
on which human� pilot if any� is in overall control� and
whether or not the autopilot is engaged�

process FCC 
�
s	pi�pi��pi�
pcontrols�one�on�
signal�mk�xstick�pi��xstick�pi���

ystick�pi��ystick�pi����
FCC�s�signal�

�� s	pi�pi��pi�
pcontrols�one�off�
signal�mk�xstick�pi��ystick�pi���
FCC�s�signal�

�� s	pi�pi��pi�
pcontrols�two�on�
signal�mk�xstick�pi���xstick�pi���

ystick�pi���ystick�pi����
FCC�s�signal�

�� s	pi�pi��pi�
pcontrols�two�off�
signal�mk�xstick�pi���ystick�pi����
FCC�s�signal�

�� s	pi�pi��pi�
pcontrols�none�on�
signal�mk�xstick�pi��xstick�pi���xstick�pi���

ystick�pi��ystick�pi���ystick�pi����
FCC�s�signal�

�� s	pi�pi��pi�
pcontrols�none�off�
signal�mk�xstick�pi��xstick�pi���

ystick�pi��ystick�pi����
FCC�s�signal�

�� exit
endproc

The e�ects of the pilots� actions on the FCC are de�ned
by the process State� which is composed� in a constraint�
oriented style� with the three pilots and the FCC� The
constraint�oriented style ���� is one in which constraints are
regarded as behavioural properties of the system� and the
complete system is formed by combining all of these proper�
ties using a form of parallelism� Unconstrained parallelism
corresponds to the disjunction of the behavioural proper�
ties� and constrained parallelism� i�e� with synchronisation�
corresponds to a form of conjunction depending on the syn�
chronising events��

The constraint�oriented style is the best approach� for
this problem� for two reasons� First� in the design process� it
allows us to separate concerns and decouple the main com�
ponents of the system� the pilots and the FCC� We can con�
sider them in isolation� as independent agents� and then de�
�ne their interaction� Second� this approach best re�ects the
separation of components in the intended hardware�software
implementation�

The overall process is given by the appropriate combina�
tion of the �ve components�

process Controller�pi�pi��pi�
pcontrols�
p
priority�a
autopilot�
�

State�pi�pi��pi��p�a�
��all events��

�Pilot ��� Pilot� ��� AutoPilot�
��s��

FCC�s�signals�
endproc

where
Pilot � Pilot�F�B�L�R�A�AD�P�PR��
Pilot� � Pilot�F��B��L��R��A��AD��P��PR��� and
AutoPilot � AutoPilot�F��B��L��R���

The State process is where the behaviour of the interaction
between the pilots is de�ned� All pilot events are possible�
i�e� a pilot can always apply a force to his�her stick�button�
but that event may have no observable e�ect� Since much
of the details concerning the three pilots is similar� we have
omitted parts of this process unfortunately� LOTOS is not
higher order and does not allow parameterisation over pro�
cesses��

process State�pi�pi��pi�
pcontrols�
p
priority�a
autopilot�
�

F�State�yinc�pi��pi��pi��p�a�
�� F��State�pi�yinc�pi���pi��p�a�
�� F��State�pi�pi��yinc�pi���p�a�

���similarly for B��B��B��R��R��R��L��L��L����

�� P���not �p eq two����State�pi�pi��pi��one�off�
�� �p eq two� ��State�pi�pi��pi��p�a��

�� P����not �p eq one����State�pi�pi��pi��two�off�
�� �p eq one� ��State�pi�pi��pi��p�a��

�� PR���p eq one� ��State�pi�pi��pi��none�off�
�� �not�p eq one����State�pi�pi��pi��p�a��

�� PR����p eq two� ��State�pi�pi��pi��none�off�
�� �not�p eq two����State�pi�pi��pi��p�a��

�� A���not�p eq two�� ��State�pi�pi��pi��p�on�
�� �p eq two� ��State�pi�pi��pi��p�a��

�� A����not�p eq one�� ��State�pi�pi��pi��p�on�
�� �p eq one�� ��State�pi�pi��pi��p�a��

�� AD���not�p eq two����State�pi�pi��pi��p�off�
�� �p eq two� ��State�pi�pi��pi��p�a��

�� AD����not�p eq one����State�pi�pi��pi��p�off�
�� �p eq one� ��State�pi�pi��pi��p�a��

�� �s�pi�pi��p�a�State�pi�pi��pi��p�a��
�� exit
endproc

Note that the e�ect of the priority and autopilot button
events depend on the overall pilot priority�

� Analysis

Our analysis of the design has two aims� to verify that it
does ful�ll the requirements� and that to show that it is a
good design with respect to some basic safety properties�

Some of them are�

�� Moving a pilot�s stick cannot a�ect the state of control
nor of the autopilot�

�� If the autopilot is on� then the signal sums the au�
topilot stick positions with the pilots� stick positions
depending on who is in control��

�� If the autopilot is o�� then the autopilot stick positions
are not summed in the signal�

�� If both pilots are in control i�e� neither is overridden�
and one of them presses the autopilot button� the au�
topilot also gains control of the aircraft until one of the
pilots presses the autopilot disengage button on their
side�stick�

�� A pilot in control can engage or disengage the autopi�
lot� but a pilot not in control cannot a�ect the state of
the autopilot�



Unlike the description of the �ight warning computer in
LOTOS in ���� we are able to perform rigorous analysis di�
rectly on our design� In ���� �black�box� testing was per�
formed on an ADA implementation��

Speci�cally� we perform an abstract form of testing�
called property testing which is described in and used exten�
sively in ����� Testing� in LOTOS� is a form of state reach�
ability analysis� property testing is a more abstract form of
testing for a speci�c property� The property is de�ned as
a LOTOS process� and then the test process is combined�
in parallel� synchronising on the events of the test process�
with the given process� Essentially� we are testing to see if
the given process can behave like the test process� without
deadlock� If the test is passed� then we can be assured that
the property does hold� in that the test behaviour is possi�
ble� On the other hand� if the test is not passed� then we
can conclude only that the behaviour is not possible for the
states considered so far�

This illustrates an important point� there are always
more states to explore because there are in�nitely many
processes� i�e� the processes have the form P 
� exit ��
����P� We can only reason conclusively� using testing� over
a �nite number of states� However� if we detect duplicate
states� then we can reason about recursive processes� using
a �xed point theorem� This means that if we can �nd a
recursive de�nition of the combined process under inspec�
tion� then if the test cannot be passed in the non�recursive
pre�xes� we can conclude that the test can never be passed�

Property testing is not the most sophisticated veri�cation
technique in comparison to� say� a temporal�modal logic�
But� it is particularly attractive to us because it can be per�
formed with the software tool LOLA see ����� � a simula�
tion tool for symbolic computation that can recognise dupli�
cate states� Also� and no less important� we use LOLA for
straightforward prototyping� or animation� when developing
the descriptions�

We cannot discuss each property in detail here� but as one
example� consider testing for the �rst property� Because this
is a general property� i�e� not one about a speci�c instance of
the controller� the test process depends on the free variables
in the given process� say Controller�x�y�p�a�� At �rst� it
seems then that the corresponding test process is the process
which o�ers any number of stick events from the three pilots�
followed by an o�er of the s event the event which passes
information to the �ight controller� with the priority and
autopilot values unchanged� i�e�

Controller�x�y�p�a�
��all events��

��Sticks�F�B�R�L� ��� Sticks�F��B��R��L��
��� Sticks�F��B��R��L���
���s	pi�pi��pi�
pcontrols�p�a�exit��

where Sticks����� is just identical to AutoPilot�
Using LOLA� the test is passed� with a suitable depth of
state exploration� However� this only shows that it is possible
that the stick actions do not a�ect the priority or autopilot
status� it does not show that they cannot have such an e�ect�
In order to show this� we need to show that tests such as

Controller�x�y�p�on�
��all events��

��Sticks�F�B�R�L� ��� Sticks�F��B��R��L��
��� Sticks�F��B��R��L���
���s	pi�pi��pi�
pcontrols�p�off�exit��

cannot be passed� Using LOLA� we are able to transform
this particular process into a rather large and complicated�
set of recursion equations� examination of the non�recursive
pre�xes reveals that this test cannot be passed�

Demonstrating that the other properties hold involves
considerably more complex test processes� It is easier to
demonstrate that a re�nement of a property holds� For ex�
ample� we can easily show a re�nement of property ��

Controller�x�y�none�off�
��all events��

�P�
�Sticks�F�B�R�L� ��� Sticks�F��B��R��L��
��� Sticks�F��B��R��L���

��
A�� s	pi�pi��pi�
pcontrols�none�off�exit�

Informally� we are testing for� given no pilot is in overall
control and the autopilot is o�� if pilot � depresses his�her
priority button� and then after any number of events which
do not include any button events� pilot � depresses his�her
autopilot� the autopilot is still o��

One requirement which we are not able to express and
verify in this design is one concerning time� namely� the
behaviour when a priority button has been engaged for a
length of time� In order to express this� we will need to
extend the design to include a notion of time� we will do so
in Section ��

��� Discussion� the Design Process

The LOTOS model has been invaluable� it has allowed us to
precisely de�ne our design� to test it� and analyse it� More�
over� the activity of describing the design in LOTOS made
us think very carefully� and hard� about the interactions of
the various components of the system� We were often forced
to determine the interaction between pilot control and the
autopilot� in more detail� than was explicitly discussed in
the requirements� For example� when the autopilot is dis�
engaged� what is the control priority� We conclude that it
remains unchanged��

Also� we did get some aspects of the design clearly wrong�
For example� at �rst� we could not show the �fth property�
This was because in the process State we had the choices

AD�State�pi�pi��p�off� �� AD��State�pi�pi��p�off�

i�e� any pilot can switch o� the autopilot� But� the require�
ments clearly state that a pilot not in control cannot a�ect
the state of the autopilot� and in our design� a pilot is only
not in control when the other pilot has sole control� e�g� pi�
lot � is not in control when the priority is two� Fortunately�
through the process of testing� we found the error� and cor�
rected it accordingly� A �nal lesson learned was� catch de�
sign errors early� develop the design iteratively� and save the
iterations carefully� In other words� careful management of
the design process is essential�

� Timed Design

In this section we discuss how to augment our design with an
explicit model of time� We will not deal with real time� since
we do not know what these constraints are for this problem�
There are various ways to model time� we have chosen to
take an approach which is consistent with the interleaving
model of parallelism rather than true concurrency� which
underlies LOTOS� All processes synchronise on one clock�
with the tick event t� The tick is assumed to be of such a
short duration that at most one event can occur at each tick�
although no event is required to occur�

First� we extend the current description in a constraint�
oriented style� with a clock process� In addition to the tick



event� this process o�ers an event now which is associated
with the current value of the clock�

process Clock�t�now��current
Nat�
�
t� Clock�t�now��Succ�current��

�� now�current� Clock�t�now��current�
�� exit
endproc

Each high level process in the controller process is aug�
mented with an initial o�er of the tick event� So� for example
instead of �Pilot ��� Pilot� ��� AutoPilot� we de�ne
a process Pilots�

process Pilots 
�
t� �Pilot ��� Pilot� ��� AutoPilot�
�� Pilots

endproc

Second� we extend the design to model the behaviour
when a priority button has been engaged for a length of
time� e�g� �� seconds� We will assume here� without loss of
generality� that a tick represents a second� Again� we extend
the description in a constraint�oriented style with a process
Button which stores the last time of depression of a priority
button� Event wb models the write action and event rb the
read action�

process Button�rb�wb��time
Nat�
�
wb	btime
Nat� Button�rb�wb��btime�

�� rb�time� Button�rb�wb��time�
�� exit
endproc

The process State is extended to re�ect three di�erent
modes� These are� as before� i�e� neither pilot has overall
control� pilot � has what we call absolute control� or pilot
� has absolute control� By absolute control we mean that a
pilot has had sole priority for more than �� seconds�

These three modes are modelled by subprocesses State
which is essentially the old process State� but it recur�
sively calls the new State instead of State�� State�one
and State�two�

The two latter processes are identical� modulo event and
value renaming� State�one� for example� de�nes the be�
haviour when pilot � has absolute control� Since the e�ects
of the stick movements are exactly as in State� these are
omitted�

process State�one
�pi�pi��pi�
pcontrols�p
priority�a
autopilot� 
�
t�
� ���
�� P�State��pi�pi��pi��p�a�
�� P���central�pi������now	time
Nat�wb�time�

State�pi�pi��pi��two�a��
�� �not�central�pi������State�one�pi�pi��pi��p�a�

�� PR��central�pi�����State�pi�pi��pi��none�a�
�� �not�central�pi������State�one�pi�pi��pi��p�a�

�� PR��State�one�pi�pi��pi��p�a�
�� A�State�one�pi�pi��pi��p�on�
�� A��State�one�pi�pi��pi��p�a�
�� AD�State�one�pi�pi��pi��p�off�
�� AD��State�one�pi�pi��pi��p�a�
�� �s�pi�pi��pi��p�a�State�one�pi�pi��pi��p�a��
�� State�one�pi�pi��pi��p�a�
�� exit�
endproc

Again� the process of making the LOTOS description has
forced us to consider just the kinds of details not covered by
the requirements� Recall that priority cannot be given to
the pilot without control� unless the disengaged stick has
been centralised� But� for example� if a pilot has absolute
control� and the other pilot depresses his�her priority button
when his�her stick is centralised� then does the other pilot
immediately gain control� without the �rst pilot releasing
his�her priority button� We conclude that the answer is
yes��

Moreover� what happens when a pilot who has absolute
control releases his�her priority button� We conclude that
this should have no e�ect on the overall priority when the
other pilot�s stick is not centralised� The absolute priority is
usually only relinquished after actions from both pilots as�
suming that the pilot not in control has to centralise his�her
stick�� This re�ects� we think� the idea that the timing con�
straint is there to alleviate the need for a pilot to depress the
priority button for long periods of time� and so after a period
of time� depression or release of that button� in the absence
of any centralising movements to the other stick e�g� the
other pilot has had a heart attack�� conveys no information�
However� an overidden pilot can gain control from one in ab�
solute control if� after �� seconds� he�she centralises his�her
stick and presses his�her priority button�

The State process is where the mode is determined� If
one pilot has sole control� then this involves determining
whether or not that pilot has absolute control� This is done
by comparing the current time with the last time a priority
button was engaged�

process State
�pi�pi��pi�
pcontrols�p
priority�a
autopilot�
�

�p eq none� �� State�pi�pi��pi��p�a�
�� �not�p eq none�� ��

�now	time
Nat� rb	pt
Nat�
���p eq one� and ��time � pt� gt ����
�� State�one

�� ��p eq one� and ��time � pt� lt ���
�� State�pi�pi��pi��p�a�

�� ��p eq two� and ��time � pt� gt ����
�� State�two

�� ��p eq two� and ��time � pt� lt ���
�� State�pi�pi��pi��p�a�

endproc

Finally� the synchronisation lists in the overall controller pro�
cess are amended�

process Controller
�pi�pi��pi�
pcontrols�
p
priority�a
autopilot�time�pt
Nat�
�
State�pi�pi��pi��p�a�
��all events��

Pilots
��t�s��

FCC�s�signals�t�
��t�now��

Clock�t�now��time�
��rb�wb��

Button�rb�wb��pt�
endproc

	 Analysis

This design was considerably more di�cult to develop and
analyse than the basic design� The use of an automated test�
ing and simulation tool such as LOLA was crucial as timing



constraints are notoriously di�cult to get right� and this
example was no exception� Moreover� with the additional
events� the state space has grown enormously and some de�
gree of automation is essential�

The properties to consider remain as before� with the ad�
dition of a variety of properties about the behaviour when
a pilot gains and loses absolute control� Again� we do not
give full details here� but as an example� we describe how
we can construct the test� if pilot � is in priority for more
than �� seconds� pilot ��s stick is not centralised� and pilot
� depresses his�her priority button� then pilot � is still in
priority� We de�ne a process which expands into a choice
between instances of the form�
t�P�� t� �nF�� t� �m�P�� s�pi�� pi�� pi��one�a�
where n �m � ���
We consider only one stick event after the P and it doesn�t
matter which one it is� because we have already shown that
stick events cannot a�ect the status of the priority or au�
topilot� Also� we do not constrain the occurrences of button
read or writes in the test� therefore it is important to exclude
the events rb and wb from the synchronisation list between
the test and the controller�


 Discussion

Until recently� LOTOS has been used mainly for descrip�
tions in the OSI open systems interconnection� context and
the telecommunications �eld some other applications are
reported in ���� ���� At �rst� this seemed a new application
area for LOTOS� but in hindsight� this problem has many
characteristics of a protocol and LOTOS has been ideal for
articulating many of the design decisions� It has allowed�
indeed forced us to think carefully about the interaction
between pilots and in particular� how and when priority is
gained and relinquished� This study is a preliminary inves�
tigation of the problem� and future work will consider other
possible protocols for this system�

� Conclusions

LOTOS has allowed us to develop a constraint�oriented de�
sign description for this problem� This approach invites us
to develop and test the important details of the components�
and then to consider their interactions� The resulting design
is one which is close enough to the implementation design�
yet abstract enough to allow for rigorous reasoning using
automated tools� We are able to conclude� with some con��
dence� that we have a good� safe design�

Acknowledgements

We thank Tom Melham for his comments�

Addresses for correspondence

M� Thomas� Dept� of Computing Science� B� Ormsby� Dept�
of Aerospace Engineering� University of Glasgow� Glasgow
G�� 
QQ� Scotland�
email� muffy�dcs�gla�ac�uk� bowen�dcs�gla�ac�uk�

References

��� L� M� Barroca and J� A� McDermid� Formal Meth�
ods� Use and Relevance for the Development of Safety�
Critical Systems� The Computer Journal� ����� �����

��� T� Bolognesi and E� Brinksma� Introduction to the ISO
Speci�cation Language LOTOS� In P�H�J� van Eijk�
C�A� Vissers� and M� Diaz� editors� The Formal De�
scription Technique LOTOS� pages �� 	�� Elsevier Sci�
ence Publishers B�V� North�Holland�� ��
��

��� Hubert Garavel and Ren!e�Pierre Hautbois� Experiment�
ing LOTOS in Aerospace Industry� chapter ��� Amast
Series in Computing� World Scienti�c� ����� To appear�

��� Fly�by�wire controls� The new airliner standard� Inter�
national Civil Aviation Authority Bulletin� pages �� ���
March ��

�

��� International Organisation for Standardisation� Infor�
mation Processing Systems � Open Systems Intercon�

nection � LOTOS � A Formal Description Technique
Based on the Temporal Ordering of Observational Be�

haviour� ��

�

��� C� Kirkwood and M� Thomas� Experiences with LO�
TOS Veri�cation� A Report on Two Case Studies� �����
Submitted for publication�

�	� B� Littlewood� The Need for Evidence from Disparate
Sources to Evaluate Software Safety� In T� Anderson
F� Redmill� editor� Directions in Safety�Critical Sys�

tems� Safety Critical Systems Club� �����

�
� J� McDermid� Issues in the development of safety�
critical systems� In T� Anderson F� Redmill� editor�
Safety Critical Systems� Current issues� techniques and
standards� Safety Critical Systems Club� Chapman and
Hall� �����

��� R� Milner� A Calculus of Communicating Systems�
LNCS ��� Springer�Verlag� ��
��

���� J� Rushby� Formal Speci�cation and Veri�cation for
Critical Systems� Tools� Achievements� and Prospects�
Technical Report EPRI TR�������� Electric Power Re�
search Institute� January �����

���� J Rushby� Formal Methods and the Certi�cation of
Critical Systems� Technical Report CSL����	� SRI In�
ternational� December �����

���� M� Thomas� The Story of the Therac��� in LOTOS�
High Integrity Systems Journal� ����� ��� �����

���� K� J� Turner� editor� Using Formal Description Tech�

niques� An Introduction to ESTELLE� LOTOS and
SDL� Communication and Distributed Systems� Wiley�
�����


