ON THE DESIGN OF SIDE-STICK CONTROLLERS IN FLY-BY-WIRE
AIRCRAFT

Muffy Thomas and Bowen Ormsby*
University of Glasgow, Scotland, U.K.

Abstract

This paper presents the problem of designing the functional
behaviour of the interaction between two side-stick con-
trollers, an autopilot, and a flight control computer in a
fly-by-wire aircraft. Two models are developed using the
ISO formal description technique LOTOS, and analysed us-
ing rigorous abstract testing techniques.

Keywords: Avionics, Design, Formal Description Tech-
niques, LOTOS, Process Algebras, Safety-Critical Software,
Specification, Testing, Verification, Validation.

Introduction

The reliability of software in embedded computer systems is
a matter of increasing concern, particularly for safety-critical
systems.

There are no known quantitative methods for demon-
strating high levels of software reliability [7, 8]; instead,
most approaches to software in safety-critical situations rely
mainly on assurance, based on the evidence produced dur-
ing the software lifecycle. Our interest lies in augmenting
the preliminary and detailed design stages with mathemati-
cal modelling and validation stages; our goal is the reduction
of errors and design changes during unit testing after imple-
mentation (i.e. by finding the errors before implementation).
Thus, we are interested in applying formal methods as design
tools.

The aerospace industry is an area where software, on
the whole, is extending existing electromechanical systems;
the concerns of control and protection must be clearly sep-
arated and qualified, with a high degree of assurance. [t
is becoming clear from our own experience, from others in
the field [10, 11, 1], and in the aerospace industry (eg. [3]),
that techniques such as static analysis and validation based
on mathematical models can have an important role to play
in the design of safety-critical software. This is particularly
the case when analysis addresses the questions of whether
the software satisfies safety constraints.

Here, we consider a case study: the problem of design-
ing the functional behaviour of the interactions between two
side-stick controllers, the autopilot, and a flight control com-
puter in a fly-by-wire aircraft. This i1s a relevant example
since such a configuration is part of the current Airbus Indus-
trie A320 [4]. Our aim is to develop a model from an initial
statement of the requirements, to verify that the model does
fulfil the requirements, and to provide some degree of assur-
ance that this is a good design by analysing the model with

*Funded by University of Glasgow Research Studentship

respect to some safety requirements. T'wo models, of increas-
ing complexity, are developed and analysed using the ISO
formal description technique LOTOS (Language of Temnpo-
ral Ordering Specification) [5]. LOTOS is appropriate since
we are concerned only with relative time, rather than with
real time.

The first section gives the informal requirements of the
side-sticks controllers, and the second section introduces LO-
TOS. The basic design description is given in the third sec-
tion, followed by an analysis of the design. Then, the design
is extended to include time, and this too is analysed. There
follows a discussion and our conclusions.

1 Requirements

The requirements have been extracted from [4].

Each pilot has a side-stick, and the two sticks are linked
to the flight control computer. Normally, both sticks are
enabled and movements of them produce a response which
depends on the sum of their displacements, up to a maximum
of the full deflection of one stick. So, if both sticks are moved
forward two degrees, the aircraft will behave as if one stick
had been moved forward four degrees. Similarly, equal and
opposite movements cancel each other out.

In an emergency, one pilot can override the other pilot’s
controls by pressing a button on his/her stick. This button
(which also acts as the autopilot disengage button) causes
inputs from the other pilot’s stick to be ignored, and gives
priority control to the pilot who pressed it. If the button is
held down for more than thirty seconds, the stick retains pri-
ority until the system is reset by centralising the disengaged
stick. This override system allows one pilot to take sole con-
trol of the aircraft if the other pilot gets into difficulty or if
a stick jams.

Amongst many other controls, both pilots also have an
autopilot engage button. If both pilots are in control (i.e.
not overridden) and one of them presses this button, the au-
topilot also gains control of the aircraft until one of the pilots
presses the autopilot disengage button on his/her side-stick.
A pilot in control can engage or disengage the autopilot, but
a pilot not in control cannot affect the state of the autopilot.

2 Design Descriptions

The natural language description given above, whilst rela-
tively clear, is still ambiguous and incomplete. Further, it
offers no possibility of rigorously demonstrating that it is a
good, safe protocol that can be implemented.

Our intention is to develop a design description which 1s
closer to an eventual implementation, but abstract enough

to allow for rigorous analysis of the essential behaviour.

The formal description technique LOTOS is used to
model the design; LOTOS is a process algebra (similar to
CCS [9] but with data types and multi-way synchronisa-
tion) which allows us to model processes that can be non-
deterministic and/or concurrent, with or without synchro-
nisation. Processes can be parameterised by abstract data
type values, and such values can be passed, or negotiated,
between processes through synchronisation.

A good introduction to LOTOS is given in [2]; a very
brief review of the features of LOTOS we use is as follows.
Processes are built up from constant processes, events, and
process operators. Events are atomic, indivisible actions. In
the following, P and Q are processes.

LOTOS Informal description

exit termination

a;P prefix P by event a

PIQ choice between P and Q

P > Q become Q after P terminates

PIIlQ P in parallel with Q

P |[11] Q P in parallel with Q, synchronising
on events in list 1

[exp] -> P | if exp holds then become P

Abstract data types are specified (in the ACT ONE sub-
language) using many-sorted equational logic. Values and
processes are combined in two ways: lists of values may be
associated with events, and processes may be parameterised
by values. We use two forms of value association with events:
the event offer a!v offers value v at event a, and the event
offer a?v:T offers any value of type T at event a. T'wo events
offering equivalent values may synchnronise, e.g. a!true can
synchronise with a!true, or a'not (false), and an event of-
fer a!v1l can synchronise with an event offer a?v2:T, with
the effect that v2 i1s bound to v1, when v1 has type T.

The underlying semantics of a LOTOS description is a
state transition system, rather like a finite state automata,
except that there 1s no restriction to finite states. We use
laws which describe equivalences between processes, based
on the concept of weak bisimulation [9] between transition
systems. (Bisimulation is so-called because the processes can
simulate each other.) These laws include, for example, the
rule that choice is commutative, and that parallel processes
expand into processes involving only choice and prefix.

For brevity, all the events in our descriptions will be ob-
servable. This will allow us to omit the usual list of ob-
servable, parameter events in process declarations, except
in the few cases where the actual and formal events do in-
deed differ. We also introduce some further, trivial, abuses
of LOTOS notation, for brevity.

3 Basic Design

We begin with a design of the basic system, excluding timing
constraints.

Four data types are defined to represent the status of
a stick, a pilot’s controls (pcontrols), the control priority
(priority) and the autopilot. In the interest of brevity,
most of the (obvious) equations are omitted from these
types.

A stick can be in any position along an axis from n4 (neg-
ative 4) to p4 (positive 4), with 00 as origin. Stick positions
may be summed, with over and underflows rounded up or
down to n4, p4 respectively.

type stickpos is boolean
sorts stickpos

opns n4,n3,n2,n1,00,pl,p2,p3,p4 : -> stickpos
Succ , Pred : stickpos -> stickpos
+ ,_eq_ : stickpos,stickpos -> stickpos
eqns forall x,y:stickpos

endtype

A pilot’s controls consists of the x and y coordinates of
a stick; the coordinates are selected with operations xstick
and ystick, and the coordinates are incremented and decre-
mented with operations xinc, xdec, etc. The operation
central is a predicate to test whether both coordinates are
at the origin. Again, many of the equations are omitted.

type pilotcontrols is stickpos
sorts pcontrols
opns mk: stickpos,stickpos -> pcontrols
xstick,ystick: pcontrols -> stickpos
xinc,xdec: pcontrols -> pcontrols
yinc,ydec: pcontrols -> pcontrols
central: pcontrols -> bool
eqns forall x,y:stickpos
ofsort stickpos
xstick(mk(x,y)) = x;
ystick(mk(x,y)) = y;
ofsort pcontrols
xinc(umk (x,y)) = mk(succ(x),y);
xdec(uk (x,y)) = nk(pred(x),y);

ofsort bool
central (mk(x,y))= ((x eq 00) and (y eq 00))
endtype

There are 3 distinct values for priority status.

type priority is boolean
sorts priority
opns one,two,none : -> priority
eq :priority, priority -> bool
eqns

endtype
There are 2 values for autopilot status.

type autopilot is boolean renamedby
sortnames autopilot for bool
opnnames on for true
off for false
endtype

The main process components of the system are the two
(human) pilots, referred to as pilot 1 and pilot 2, the autopi-
lot, and the flight control computer.

The two (human) pilots’ behaviours are identical, up to
the names of the events, and so the process is parameterised.
Each pilot may move the stick along one of the four axes:
forward (Fd), backward (Bk), left (Lt), right (Rt); depress or
release their priority button: (P) and (Pr) respectively, and
depress or release their autopilot button: (AU) and (AuD)
respectively.

process Pilot[Fd,Bk,Lt,Rt,Au,AuD,P,PR]:=
(Fa [1 Bk [1 Lt [1 Rt []
Pr [1 Au [P [] AuD);Pilot
[1 exit
endproc

The autopilot has a more restricted functionality which
includes only stick movements.

process AutoPilot[Fd,Bk,Lt,Rt] :=
(F4 [1 Bk [1 Lt [1 Rt);AutoPilot
[1 exit
endproc

The flight control computer polls for the current
(summed) positions of the sticks and the priorities with event
s, and sends on the appropriate signal with event signal
to the control surfaces. There are several possibilities for
combining the inputs into the appropriate signal, depending
on which (human) pilot (if any) is in overall control, and
whether or not the autopilot is engaged.

process FCC :=
s?pil,pi2,pi3:pcontrols'!one'on;
signal 'mk (xstick (pil)+xstick(pi3),
ystick (pil)+ystick (pi3));
FCC[s,signall
[1 s?pil,pi2,pi3:pcontrols!one!off;
signal 'mk (xstick (pil) ,ystick(pil));
FCC[s,signall
[1 s?pil,pi2,pi3:pcontrols!two'on;
signal 'mk (xstick (pi2)+xstick(pi3),
ystick (pi2)+ystick (pi3));
FCC[s,signall
[1 s?pil,pi2,pi3:pcontrols!two!off;
signal 'mk (xstick (pi2) ,ystick(pi2));
FCC[s,signall
[1 s?pil,pi2,pi3:pcontrols!none!on;
signal 'mk (xstick (pil)+xstick (pi2)+xstick(pi3),
ystick(pil)+ystick(pi2)+ystick(pi3));
FCC[s,signall
[1 s7pil,pi2,pi3:pcontrols!none!off;
signal 'mk (xstick (pil)+xstick(pi2),
ystick (pil)+ystick (pi2));
FCC[s,signall
[1 exit
endproc

The effects of the pilots’ actions on the FCC are defined
by the process State, which is composed, in a constraint-
oriented style, with the three pilots and the FCC. The
constraint-oriented style [13] is one in which constraints are
regarded as behavioural properties of the system, and the
complete system is formed by combining all of these proper-
ties using a form of parallelism. Unconstrained parallelism
corresponds to the disjunction of the behavioural proper-
ties, and constrained parallelism, i.e. with synchronisation,
corresponds to a form of conjunction (depending on the syn-
chronising events).

The constraint-oriented style is the best approach, for
this problem, for two reasons. First, in the design process, it
allows us to separate concerns and decouple the main com-
ponents of the system: the pilots and the FCC. We can con-
sider them in isolation, as independent agents, and then de-
fine their interaction. Second, this approach best reflects the
separation of components in the intended hardware /software
implementation.

The overall process is given by the appropriate combina-
tion of the five components.

process Controller(pil,pi2,pi3:pcontrols,
p:priority,a:autopilot):=
State(pil,pi2,pi3,p,a)
| [all events]|
(Pilot1 ||| Pilot2 ||| AutoPilot)
[[s]1
FCC[s,signals]
endproc

where

Pilot1 Pilot[F1,B1,L1,R1,A1,AD1,P1,PR1],
Pilot2 Pilot[F2,B2,L2,R2,A2,AD2,P2,PR2], and
AutoPilot = AutoPilot[F3,B3,L3,R3].

The State process is where the behaviour of the interaction
between the pilots is defined. All pilot events are possible,
i.e. a pilot can always apply a force to his/her stick/button,
but that event may have no observable effect. Since much
of the details concerning the three pilots is similar, we have
omitted parts of this process (unfortunately, LOTOS is not
higher order and does not allow parameterisation over pro-
cesses).

process State(pil,pi2,pi3:pcontrols,
p:priority,a:autopilot):=
F1;State(yinc(pil),pi2,pi3,p,a)
[1 F2;State(pil,yinc(pi2),pi3,p,a)
[1 F3;State(pil,pi2,yinc(pi3),p,a)

...similarly for B1,B2,B3,R1,R2,R3,L1,L.2,L.3...

[1 P1;([not (p eq two)]->State(pil,pi2,pi3,one,off)
[0 [p eq twol] ->State(pil,pi2,pi3,p,a))

[1 P2; ([not (p eq one)]->State(pil,pi2,pi3,two,off)
[1 [p eq onel ->State(pil,pi2,pi3,p,a))

[1 PR1; ([p eq onel ->State(pil,pi2,pi3,none,off)
[1 [not(p eq one)]->State(pil,pi2,pi3,p,a))

[1 PR2; ([p eq twol ->State(pil,pi2,pi3,none,off)
[1 [not(p eq two)l->State(pil,pi2,pi3,p,a))

[1 A1; ([not(p eq two)] ->State(pil,pi2,pi3,p,on)
[1 [p eq twol ->State(pil,pi2,pi3,p,a))

[1 A2; ([not(p eq one)] ->State(pil,pi2,pi3,p,on)
[0 [p eq one)] ->State(pil,pi2,pi3,p,a))

[1 AD1; ([not(p eq two)]l->State(pil,pi2,pi3,p,off)
[0 [p eq twol] ->State(pil,pi2,pi3,p,a))

[1 AD2; ([not(p eq one)]->State(pil,pi2,pi3,p,off)
[1 [p eq onel ->State(pil,pi2,pi3,p,a))

[1 (s!pil!pi2!pla;State(pil,pi2,pi3,p,a))

[1 exit

endproc

Note that the effect of the priority and autopilot button
events depend on the overall pilot priority.

4 Analysis

Our analysis of the design has two aims: to verify that it

does fulfill the requirements, and that to show that it is a

good design with respect to some basic safety properties.
Some of them are:

1. Moving a pilot’s stick cannot affect the state of control
nor of the autopilot.

2. If the autopilot is on, then the signal sums the au-
topilot stick positions with the pilots’ stick positions
(depending on who is in control).

3. If the autopilot 1s off, then the autopilot stick positions
are not summed in the signal.

4. If both pilots are in control (i.e. neither is overridden)
and one of them presses the autopilot button, the au-
topilot also gains control of the aircraft until one of the
pilots presses the autopilot disengage button on their
side-stick.

5. A pilot in control can engage or disengage the autopi-
lot, but a pilot not in control cannot affect the state of
the autopilot.

Unlike the description of the flight warning computer in
LOTOS in [3], we are able to perform rigorous analysis di-
rectly on our design. (In [3], “black-box” testing was per-
formed on an ADA implementation.)

Specifically, we perform an abstract form of testing,
called property testing which is described in and used exten-
sively in [12]. Testing, in LOTOS, is a form of state reach-
ability analysis; property testing is a more abstract form of
testing for a specific property. The property is defined as
a LOTOS process, and then the test process is combined,
in parallel, synchronising on the events of the test process,
with the given process. Essentially, we are testing to see if
the given process can behave like the test process, without
deadlock. If the test is passed, then we can be assured that
the property does hold, in that the test behaviour is possi-
ble. On the other hand, if the test is not passed, then we
can conclude only that the behaviour is not possible for the
states considered so far.

This illustrates an important point: there are always
more states to explore because there are infinitely many
processes, i.e. the processes have the form P := exit []
...;P. We can only reason conclusively, using testing, over
a finite number of states. However, if we detect duplicate
states, then we can reason about recursive processes, using
a fixed point theorem. This means that if we can find a
recursive definition of the combined process under inspec-
tion, then if the test cannot be passed in the non-recursive
prefixes, we can conclude that the test can never be passed.

Property testing is not the most sophisticated verification
technique in comparison to, say, a temporal/modal logic.
But, it is particularly attractive to us because it can be per-
formed with the software tool LOLA (see [13]) - a simula-
tion tool for symbolic computation that can recognise dupli-
cate states. Also, and no less important, we use LOLA for
straightforward prototyping, or animation, when developing
the descriptions.

We cannot discuss each property in detail here, but as one
example, consider testing for the first property. Because this
is a general property, i.e. not one about a specific instance of
the controller, the test process depends on the free variables
in the given process, say Controller(x,y,p,a). At first, it
seems then that the corresponding test process is the process
which offers any number of stick events from the three pilots,
followed by an offer of the s event (the event which passes
information to the flight controller) with the priority and
autopilot values unchanged, i.e.

Controller(x,y,p,a)
| [all events]|
((sticks[F1,B1,R1,L1] ||| Sticks[F2,B2,R2,L2]
[l Sticks[F3,B3,R3,L3])
>>(s7pil,pi2,pi3:pcontrols!pla;exit))

where Sticks[...] is just identical to AutoPilot.

Using LOLA, the test is passed, with a suitable depth of
state exploration. However, this only shows that it is possible
that the stick actions do not affect the priority or autopilot
status; it does not show that they cannot have such an effect.
In order to show this, we need to show that tests such as

Controller(x,y,p,on)
| [all events]|
((sticks[F1,B1,R1,L1] ||| Sticks[F2,B2,R2,L2]
[l Sticks[F3,B3,R3,L3])
>>(s?pil,pi2,pi3:pcontrols!ploff;exit))

cannot be passed. Using LOLA, we are able to transform
this particular process into a (rather large and complicated)
set of recursion equations; examination of the non-recursive
prefixes reveals that this test cannot be passed.

Demonstrating that the other properties hold involves
considerably more complex test processes. It i1s easier to
demonstrate that a refinement of a property holds. For ex-
ample, we can easily show a refinement of property 4:

Controller(x,y,none,off)
| [all events]|

(P1;

(Sticks[F1,B1,R1,L1] ||| Sticks[F2,B2,R2,L2]
|l Sticks[F3,B3,R3,L3])

>>

A2; s7pil,pi2,pi3:pcontrols!none!off;exit)

Informally, we are testing for: given no pilot is in overall
control and the autopilot is off, if pilot 1 depresses his/her
priority button, and then after any number of events which
do not include any button events, pilot 2 depresses his/her
autopilot, the autopilot is still off.

One requirement which we are not able to express and
verify in this design is one concerning time: namely, the
behaviour when a priority button has been engaged for a
length of time. In order to express this, we will need to
extend the design to include a notion of time; we will do so
in Section 5.

4.1 Discussion: the Design Process

The LOTOS model has been invaluable; it has allowed us to
precisely define our design, to test it, and analyse it. More-
over, the activity of describing the design in LOTOS made
us think very carefully, and hard, about the interactions of
the various components of the system. We were often forced
to determine the interaction between pilot control and the
autopilot, in more detail, than was explicitly discussed in
the requirements. For example, when the autopilot is dis-
engaged, what is the control priority? (We conclude that it
remains unchanged.)

Also, we did get some aspects of the design clearly wrong.
For example, at first, we could not show the fifth property.
This was because in the process State we had the choices

AD1;State(pil,pi2,p,off) [] AD2;State(pil,pi2,p,off)

i.e. any pilot can switch off the autopilot. But, the require-
ments clearly state that a pilot not in control cannot affect
the state of the autopilot, and in our design, a pilot is only
not in control when the other pilot has sole control, e.g. pi-
lot 1 is not in control when the priority is two. Fortunately,
through the process of testing, we found the error, and cor-
rected it accordingly. A final lesson learned was: catch de-
sign errors early, develop the design iteratively, and save the
iterations carefully. In other words, careful management of
the design process is essential.

5 Timed Design

In this section we discuss how to augment our design with an
explicit model of time. We will not deal with real time, since
we do not know what these constraints are for this problem.
There are various ways to model time; we have chosen to
take an approach which is consistent with the interleaving
model of parallelism (rather than true concurrency) which
underlies LOTOS. All processes synchronise on one clock,
with the tick event t. The tick is assumed to be of such a
short duration that at most one event can occur at each tick,
although no event is required to occur.

First, we extend the current description in a constraint-
oriented style, with a clock process. In addition to the tick

event, this process offers an event now which is associated
with the current value of the clock.

process Clock[t,now] (current:Nat):=
t; Clock[t,now] (Succ(current))

[1 now!current; Clock[t,now] (current)

[1 exit

endproc

Each high level process in the controller process is aug-
mented with an initial offer of the tick event. So, for example
instead of (Pilotl ||| Pilot2 ||| AutoPilot) we define
a process Pilots.

process Pilots :=
t; (Pilot1 ||| Pilot2 ||| AutoPilot)
>> Pilots

endproc

Second, we extend the design to model the behaviour
when a priority button has been engaged for a length of
time, e.g. 30 seconds. We will assume here, without loss of
generality, that a tick represents a second. Again, we extend
the description in a constraint-oriented style with a process
Button which stores the last time of depression of a priority
button. Event wb models the write action and event rb the
read action.

process Button[rb,wb] (time:Nat) :=
wb?btime:Nat; Button[rb,wb] (btime)

[T rb!'time; Button[rb,wb] (time)

[1 exit

endproc

The process State is extended to reflect three different
modes. These are: as before, i.e. neither pilot has overall
control; pilot 1 has what we call absolute control; or pilot
2 has absolute control. By absolute control we mean that a
pilot has had sole priority for more than 30 seconds.

These three modes are modelled by subprocesses Statel
(which is essentially the old process State, but it recur-
sively calls the new State instead of Statel), State2one
and State2two.

The two latter processes are identical, modulo event and
value renaming. State2one, for example, defines the be-
haviour when pilot 1 has absolute control. Since the effects
of the stick movements are exactly as in Statel, these are
omitted.

process State2one
(pil,pi2,pi3:pcontrols,p:priority,a:autopilot) :=
t;
C ...
[1 P1;State2(pil,pi2,pi3,p,a)
[1 P2;[central (pi2)]->(now?time:Nat;wb!time;
State(pil,pi2,pi3,two,a))
[1 [not(central(pi2))]->State2one(pil,pi2,pi3,p,a)
[1 PR1; [central(pi2)]->State(pil,pi2,pi3,none,a)
[1 [not(central(pi2))]->State2one(pil,pi2,pi3,p,a)
[1 PR2;State2one(pil,pi2,pi3,p,a)
[1 A1;State2one(pil,pi2,pi3,p,on)
[1 A2;State2one(pil,pi2,pi3,p,a)
[] AD1;State2one(pil,pi2,pi3,p,off)
[1 AD2;State2one(pil,pi2,pi3,p,a)
[1 (s!pil!pi2'pi3!pla;State2one(pil,pi2,pi3,p,a))
[1 StateZone(pil,pi2,pi3,p,a)
[1 exit)
endproc

Again, the process of making the LOTOS description has
forced us to consider just the kinds of details not covered by
the requirements. Recall that priority cannot be given to
the pilot without control, unless the disengaged stick has
been centralised. But, for example, if a pilot has absolute
control, and the other pilot depresses his/her priority button
when his/her stick is centralised, then does the other pilot
immediately gain control, without the first pilot releasing
his/her priority button? (We conclude that the answer is
yes.)

Moreover, what happens when a pilot who has absolute
control releases his/her priority button? We conclude that
this should have no effect on the overall priority when the
other pilot’s stick is not centralised. The absolute priority is
usually only relinquished after actions from both pilots (as-
suming that the pilot not in control has to centralise his/her
stick). This reflects, we think, the idea that the timing con-
straint is there to alleviate the need for a pilot to depress the
priority button for long periods of time, and so after a period
of time, depression or release of that button, in the absence
of any centralising movements to the other stick (e.g. the
other pilot has had a heart attack!) conveys no information.
However, an overidden pilot can gain control from one in ab-
solute control if, after 30 seconds, he/she centralises his/her
stick and presses his/her priority button.

The State process is where the mode is determined. If
one pilot has sole control, then this involves determining
whether or not that pilot has absolute control. This is done
by comparing the current time with the last time a priority
button was engaged.

process State
(pil,pi2,pi3:pcontrols,p:priority,a:autopilot) :=
[p eq none] -> Statel(pil,pi2,pi3,p,a)
[1 [not(p eq none)] ->
(now?time:Nat; rb?pt:Nat;
([(p eq one) and ((time - pt) gt 30)]
-> State2one
[1 [(p eq one) and ((time - pt) 1t 31)]
-> Statel(pil,pi2,pi3,p,a)
[1 [(p eq two) and ((time - pt) gt 30)]
-> State2two
[1 [(p eq two) and ((time - pt) 1t 31)]
-> Statel(pil,pi2,pi3,p,a)
endproc

Finally, the synchronisation lists in the overall controller pro-
cess are amended.

process Controller
(pil,pi2,pi3:pcontrols,
p:priority,a:autopilot,time,pt:Nat):=
State(pil,pi2,pi3,p,a)
| [all events]|
Pilots
[[t,e]1
FCC[s,signals,t]
| [t ,now] |
Clock[t,now] (time)
| [rb,wb]|
Button[rb,wb] (pt)
endproc

6 Analysis

This design was considerably more difficult to develop and
analyse than the basic design. The use of an automated test-
ing and simulation tool such as LOLA was crucial as timing

constraints are notoriously difficult to get right, and this
example was no exception. Moreover, with the additional
events, the state space has grown enormously and some de-
gree of automation is essential.

The properties to consider remain as before, with the ad-

dition of a variety of properties about the behaviour when
a pilot gains and loses absolute control. Again, we do not
give full details here, but as an example, we describe how
we can construct the test: if pilot 1 is in priority for more
than 30 seconds, pilot 2’s stick is not centralised, and pilot
2 depresses his/her priority button, then pilot 1 is still in
priority. We define a process which expands into a choice
between instances of the form:
£ P1; ()" F1; (¢;)™; P2; s?pil, pi2, pi3lonela,
where n + m > 30.
We consider only one stick event after the P1 (and it doesn’t
matter which one it is) because we have already shown that
stick events cannot affect the status of the priority or au-
topilot. Also, we do not constrain the occurrences of button
read or writes in the test; therefore it is important to exclude
the events rb and wb from the synchronisation list between
the test and the controller.

7 Discussion

Until recently, LOTOS has been used mainly for descrip-
tions in the OSI (open systems interconnection) context and
the telecommunications field (some other applications are
reported in [12, 6]). At first, this seemed a new application
area for LOTOS, but in hindsight, this problem has many
characteristics of a protocol and LOTOS has been ideal for
articulating many of the design decisions. It has allowed,
indeed forced us to think carefully about the interaction
between pilots and in particular, how and when priority is
gained and relinquished. This study is a preliminary inves-
tigation of the problem, and future work will consider other
possible protocols for this system.

8 Conclusions

LOTOS has allowed us to develop a constraint-oriented de-
sign description for this problem. This approach invites us
to develop and test the important details of the components,
and then to consider their interactions. The resulting design
is one which is close enough to the implementation design,
yet abstract enough to allow for rigorous reasoning using
automated tools. We are able to conclude, with some confi-
dence, that we have a good, safe design.

Acknowledgements

We thank Tom Melham for his comments.

Addresses for correspondence

M. Thomas, Dept. of Computing Science, B. Ormsby, Dept.
of Aerospace Engineering, University of Glasgow, Glasgow
G12 8QQ, Scotland.

email: muffy@dcs.gla.ac.uk, bowen@dcs.gla.ac.uk.

References
[1] L. M. Barroca and J. A. McDermid. Formal Meth-

ods: Use and Relevance for the Development of Safety-
Critical Systems. The Computer Journal, 35(6), 1992.

[2] T. Bolognesi and E. Brinksma. Introduction to the ISO
Specification Language LOTOS. In P.H.J. van Eijk,
C.A. Vissers, and M. Diaz, editors, The Formal De-
scription Technique LOTOS, pages 23-76. Elsevier Sci-
ence Publishers B.V. (North-Holland), 1989.

[3] Hubert Garavel and René-Pierre Hautbois. Ezperiment-
ing LOTOS in Aerospace Industry, chapter 11. Amast
Series in Computing. World Scientific, 1994. To appear.

[4] Fly-by-wire controls: The new airliner standard. Inter-
national Civil Aviation Authority Bulletin, pages 19-22,

March 1988.
[5] International Organisation for Standardisation. Infor-
mation Processing Systems — Open Systems Intercon-

nection — LOTOS — A Formal Description Technique
Based on the Temporal Ordering of Observational Be-
haviour, 1988.

[6] C. Kirkwood and M. Thomas. Experiences with L.O-
TOS Verification: A Report on T'wo Case Studies, 1994.
Submitted for publication.

[7] B. Littlewood. The Need for Evidence from Disparate
Sources to Evaluate Software Safety. In T. Anderson
F. Redmill, editor, Directions in Safety-Critical Sys-
tems, Safety Critical Systems Club, 1993.

[8] J. McDermid. Issues in the development of safety-
critical systems. In T. Anderson F. Redmill, editor,
Safety Critical Systems: Current issues, techniques and
standards, Safety Critical Systems Club. Chapman and
Hall, 1993.

[9] R. Milner. A Calculus of Communicating Systems.
LNCS 92. Springer-Verlag, 1980.

[10] J. Rushby. Formal Specification and Verification for
Critical Systems: Tools, Achievements, and Prospects.
Technical Report EPRI TR-100294, Electric Power Re-
search Institute, January 1992.

[11] J Rushby. Formal Methods and the Certification of
Critical Systems. Technical Report CSL-93-7, SRI In-
ternational, December 1993.

[12] M. Thomas. The Story of the Therac-25 in LOTOS.
High Integrity Systems Journal, 1(1):3-15, 1994.

[13] K. J. Turner, editor. Using Formal Description Tech-
niques: An Introduction to ESTELLE, LOTOS and

SDL. Communication and Distributed Systems. Wiley,
1993.

