Five ways to use induction and symmetry in the
verification of networks of processes by
model-checking

M. Calder and A. Miller

Department of Computing Science
University of Glasgow
Glasgow, Scotland.

The verification of networks of processes by model-checking is discussed.
Five classes of problem in which either symmetry or induction (or both) can be
used to solve problems of state-space explosion, case explosion, or generalisation
are considered. Examples are given. Recent results in the field are discussed in
relation to the proposed classification.
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1 Introduction

Model checking is a technique which allows reasoning about the temporal be-
haviour of networks of processes by checking that a finite-state model satisfies
a specification. That is, reasoning about networks involves showing

M(P) k= ¢

where M (Py) represents a finite-state concurrent system Py and ¢ is a temporal
logic formula. The system Py is the parallel composition pi||p2|| ... ||pk of pro-
cesses P1,P2, - - - , Pk, possibly with “environment” g. The p; (and ¢) may or may
not communicate, if the former, communication may be either synchronous or
asynchronous.

While model-checking is a natural technique for networks of processes, be-
cause the semantics are usually given in terms of transition systems, the appli-
cability of model-checking is limited due to:

state-space explosion, the combinatorial explosion in the number of states

— case explosion, the combinatorial explosion in the number of cases to be
checked,

— lack of inference, the inability to infer properties of a system Py,; from
properties of of Py,

— lack of generalisation, the inability to generalise properties to members of

the infinite family {P,}> .

In this paper we consider the contribution of two techniques:

— symmetry, and
— nduction



to overcome these limitations and extend the applicability of model-checking.

Our goal is to bring together numerous results in symmetry and induction in
one coherent framework and define five classes of problem in which either sym-
metry or induction (or both) can be used solve the above-mentioned limitations.
We give an example problem for each class. The classification is not exhaustive,
but represents those problem types for which we have good techniques and/or
algorithms.

The paper is organised as follows. In the remainder of this section we give an
informal overview of results for symmetry and induction. In section 2 we give
some formal definitions and background. In section 3 we define the problem
classification and give examples for each; in section 4, we survey known results
and discuss how they fit into the classification. Conclusions are presented in
section 5.

1.1 Overview of results

Symmetry One approach that has been investigated to avoid state-space prob-
lems is the use of symmetry to replace a state-graph with a quotient structure
in which states are replaced by orbit representatives (see, for example [16]).
However this approach is, in most cases, not practical, as finding orbit repre-
sentatives is hard. Indeed, the orbit problem as it is known, is as hard as the
graph isomorphism problem [17].

Symmetry can also be used to reduce the number of cases that need to be
checked when verifying a set of parameterised properties of a (parameterised)
system. This use of symmetry is very different from that described previously
— in this case we are not concerned with the number of states to be visited but
the number of cases to be checked.

Induction Model-checking alone does not allow us to generalise about results,
the problem is undecidable [4]. However, in some specific cases the problem is
solvable [8, 27,31, 10].

If the processes are terminating then, under some circumstances, with time,
a system P, will degenerate to a system P,_;. Then, a proof of (certain types
of) property of all systems of size n — 1, together with an inductive step, will
imply the proof of all systems of size n. If, on the on the hand, the individual
processes within a given system are non-terminating, then the identification of
an invariant process (or similar) [47,59] is required. An invariant process is
one which is greater (with respect to some suitable preorder relation) than any
of the systems F;. Under some circumstances, proof that the invariant process
satisfies a temporal property implies that any system P; satisfies the property.

Again, we have two very different techniques which rely on the same math-
ematical concept (induction this time), but which have a different effect, ac-
cording to the context in which they are applied.

In this paper, we attempt to formalise each of the contexts in which sym-
metry and/or induction can be applied and to survey and classify recent results
in this area.



2 Definitions

The systems of interest consist of the parallel composition of a number of pro-
cesses, thus:

Py = qllp1llp2l] - - - [|pk

for processes g and p1,p2,...,pr. The ¢ and p; are non-terminating (but finite-
state), unless otherwise stated.

More specifically, we consider networks of parameterised processes, consist-
ing of single process ¢ (an environment process) together with & instantiations
of the same, paramaterised process p, thus:

Definition 1. An m-parameterised network of processes of size k consists of a
process q in parallel with k parallel instantiations of a process p = p(Xo, X1,..., Xm)
with domains Dy, D1,..., Dy, thus:

Py = ql|p(w10, 711, - - - s Tim) [ [P(720, T21, - - - s Tom)|| - - - ||P(%kos Th1 5 - - -5 Thom)
where x;; € Dy for all 1,5, 1 <1 <k and 0 < j <m.

Note that there is often no environment process ¢, in which case it is simply
omitted from the above definition.

In many cases, we will be concerned with networks in which each of the in-
stantiations of process p are identical up to renaming (that is, they are isomor-
phic). In this framework, we represent that situation by m = 0, z;p = 7, for 1 <
i <k and so P, = qllp(D)llp2)]l ... [[p(k) (or simply Py = p(1)l[p(2)ll .. lIp(k)
if there is no process q).

Temporal specifications (or properties) are expressed in temporal logic [24].
The logic used is usually either propositional linear temporal logic (PLTL or
PTL) [52], usually referred to as simply LT L, the branching time logic Com-
putation Tree logic (CTL) or the more expressive CTL*, and its indezed form
(ICTL*) [15,14].

Definition 2. A logic formula ¢ containing free variables indexed by oy . .. oy,
written ¢layg . .. ay], is said to depend on « . .. ay,.

The semantics of a network of processes is given by a Kripke structure,
generated in the usual way from the interleaving product of the semantics of
the individual processes.

Definition 3. Let AP be a set of atomic propositions. A Kripke structure over
AP is a triple M = (S, R, L) where

- S is a finite set of states

- R C S x S is a transition relation, which must be total (i.e. for every state
s1 there exists a state sy such that (s1,$2) € R).

~ L:8 =247 js a labeling function which associates with each state a set of
atomic propositions that are true in the state.



Because the transition relation of a Kripke structure is always total, the
relation R must be extended if some state s has no successor (that is, s is a
terminal state). In this case R is modified so that R(s,s) holds.

The traditional model-checking problem can be stated as follows:

Given a Kripke Structure M = (S,R,L), a state s € S, and a
temporal specification ¢, is it true that M,s = ¢7?

The verification problem for an infinite family of networks of process can be
stated as follows:

Given an infinite family F = {P;}}°, of networks of processes
P; and a temporal specification ¢ is it true that that all the
Kripke systems representing members of the family F' satisfy

liXs

We now give some definitions which concern the underlying symmetry of
Kripke structures.

Definition 4. Given a Kripke structure M = (S, R, L),

1. The automorphism group Aut M of M is the group consisting of all permu-
tations acting on the state set S that preserve the transition relation R.

2. A symmetry group is any subgroup of Aut M.

3. Any symmetry group G acting on the state set S partitions the state set S
into equivalence classes called orbits, where the orbit containing the state s
is given by 0(s) = {t|(3o € G)(os =t)}.

Suppose we have a symmetry group acting on the states S of a Kripke structure
as defined above, then from each orbit (s) we can pick a representative which
we call repf(s). This representative can be any member of 6(s). A reduced (or
quotient) Kripke structure can then be constructed by collapsing all the states
in each orbit to a single representative state in each case.

Definition 5. Given a Kripke structure M = (S, R, L) with symmetry group
G, a quotient model Mg = (Sq, Ra, Lg) is the Kripke structure with state set
Sc ={0(s)|s € S}, the set of orbits of the states in S, transition relation Rg =
{(0(s1),0(s2))|(s1,52) € R}, and labelling function Lg given by Lg(6(s)) =
L(rep(0(s)))-

3 Scenarios and Examples

In this section we describe five scenarios in which symmetry and/or induction
can be used to aid model-checking. In each case we give an example for which
the approach is applicable.

3.1 State-space reduction

Goal: For constant k, show M (Py) = ¢, where Py consists of k identical (up to
renaming) copies of a process p, and ¢ may depend on the process identifiers



but is invariant over a given set of permutations.
Problem: the state-space is too large for traditional model-checking.

State-space reduction is achieved by model-checking over a quotient structure
Mg (see definition 5) instead of the structure M which is too large. This is
sound because if the property ¢ (and all atomic propositions contained thereof)
is invariant under G, then M,s = ¢ <= Mq,0(s) = ¢ [12].

The applicability of this approach is limited for two reasons. First, finding a
suitable symmetry group G is difficult (calculation of the entire automorphism
group is as computatationally complex as graph isomorphism [17]). However if
processes p;, ¢ = 1,2, ...,k are isomorphic then Aut M = Aut CR, where CR
is the process communication graph for Py, and Aut CR is often relatively easy
to compute.

Second, another restriction of this approach is the requirement that ¢ be
invariant under G. In many cases this severely restricts the kinds of property
that ¢ can express.

An example [30] that uses this approach is a solution to the mutual exlusion
problem for a system of k identical processes. The mutual exclusion property
states that

No two processes are ever in their critical section at the same time.

Assuming suitable propositions C; (component 7 is in critical region), this
is expressed in ICTL as

AG(Nizj=(Ci A C)).

This is a very simple case, not only are processes isomorphic but, since all pro-
cesses can communicate with each other, the associated communication graph
is the complete graph on n nodes, K,,. Since the automorphism group of K, is
the symmetric group of order n, (S,), the automorphism group of the under-
lying Kripke structure M is S,. As ¢ is invariant under S, by taking G = 5,
a quotient structure containing 2 states can be constructed. This structure is
easily model-checked.

3.2 Case reduction

Goal: For constants k and r, r < k, for all distinct values of ty,%9,...,%,,
where for all v, 1 < v < r, t, € {1,2,...,k}, show that M(Pg)¢, ts,..1, =
dlt1,ta,...,t,] where M(Pg)s ...+, consists of k parallel instantiations p;,

1 <1 <k, of the process p = p(Xy, X1, ..., Xy,) such that

- Di :p(i7):(017)§027-"7X0 )7 when 1 ¢ {t17t27"'7t7‘}7
)

m
— pi = p(i, Xp1, X2, - ., Xym) otherwise
<

for fixed Xl,j, 0<I<r,1 <7< m.



Problem: the cases generated by instantiating ¢ quickly suffer a combinato-
rial explosion.

We can often eliminate the need to consider all cases by appealing to sym-
metry. Consider the simplest case, where all processes are isomporphic and
¢ depends on process identifiers t1,to,...,t.. Thus P, = p(1)||p(2)||... ||p(k).
Then M (P)t, ts,....t, is identical to M(Pg)y 4w up to renaming of process-
es. Suppose that M (Py), ts,...t, = ¢[t1,t2,...,t:]. Any permutation o taking
t1,to,...,t, to th,th,... ¢, will preserve the transition relation of the under-
lying Kripke structure (i.e. the underlying semantics). The two models will be
bismilar and hence satisfy ¢, provided it is suitably renamed under o.

Namely, let M = M (Py)¢, ts,...t,, and let s be a state, ¢ a CT L* formula, and
o a permutation with M, os and o¢ the appropriate transformations under
o. (Hence, if ;o0 = #;, for 1 <i <r, My = M(Pg)y, 4 . ¢-) Clearly there is a
bisimulation between M and M, and so we have the following result: M,s
¢ <> M,,08 = 0. (The proof follows from the result that CTL* is adequate
with respect to bisimulation, established in [7]). This is similar to the result in
section 3.1 but in this case, because we consider (unquotiented) structures, the
formula itself can be transformed under a permutation o as well as the model
(often desirable).

This approach can be applied also when the processes p; are not all isomor-
phic. Suppose that po,ps,...,p; are isomorphic to each other, but that p; is
not isomorphic to the other processes. We therefore let ¢ be py. (Note that the
process g here should not be confused with a general environment process (see
section 2), which need bear no relation to p.)

An example of this scenario is a communications service, with asynchronous
communication [9]. Consider model-checking a system of £ — 1 basic call pro-
cesses acting concurrently together with a basic call process augmented with
additional feature behaviour. Thus Py = q(x1)||p(x2)]| ... ||p(zk) where
(21,%9,...,2k) = 0(1,2,...,k) for some permutation o.

Suppose the feature is call forward unconditionally CFU (all calls to a sub-
scriber are diverted to another user). A desirable property for all systems con-
sisting of £ — 1 basic call processes plus one process with the additional CFU
feature, (process j say, such that j forwards to [, [ # j) has the form ¢[i, 5, (],
where ¢[i, 7,1] is :

If user i rings user j then a connection between i and [ will be attempted
before user i hangs up.

Assuming suitable variables dialled and partner, in LTL this is
[|((dialled[i] == j) — ((partner[i] == chan_namell]) P (dev[i] == on)))

(where P denotes the temporal operator precedes).

We want to check property ¢ = ¢[i, j,1] for each associated model, for each
set of parameters ¢,j and /. Each model M (Py); ;; consists of ¢(j) in parallel
with the £ — 1 processes p(u), 1 < u < k, u # j. (Note that as processes i and
[ are basic call processes, the values of i and [ do not effect the model.)



When £ is only 4, potentially there are 48 cases to check (4 choices for j and
i and 3 choices for [). However, applying the approach above, there are only 3
cases to check (1 =0,j=1,1=2;i=0,j=1,l=0;andi=0,j=1,1=1)
— all other cases are just a permutation of one of these 3 cases.

3.3 Process degeneration

Goal: For all k > k', where k' is a constant, show M (Py) = ¢, where ¢ does
not depend on the process identifiers, Pj is m-parameterised with each p; of the
form p(zo, 1, - - ., Zim) and the processes p1,po2, ... px eventually terminate.

Problem: the state-space is too large for traditional model-checking.

Under certain circumstances, induction can be applied because once any pro-
cess has terminated the system behaves like a system of k — 1 processes. (By
termination we mean that the process is in a terminal state, see section 2.)

But, there are some constraints. First, ¢ cannot depend on processes identi-
fiers, so it has to be a property like “a leader is eventually elected”, or “a global
variable z has an invariant property z <= 10”. Second, the actual parameters
of the p; must fulfill certain properties, to ensure that there is a well-founded
ordering on the M (P;). We call this constraint feasability and illustrate the
concept below.

An example of this scenario is the following. During the tree identification
phase of the IEEE 1394 High Performance Series Bus (“Firewire”) protocol
[41], processes within a given network choose a leader (that is a process which
is parent to all of its neighbours) by sending a series of be my parent and be
my child messages to their neighbours. Once a process has had a be my parent
request accepted, it no longer participates in the protocol (that is it terminates).
The protocol can be modelled as a system of processes each of which is a
parameterised instance of a prescribed Node process [10]. The communication is
again asynchronous. Consider such a system Pj. In this case m = k, x;0 = 1, for
1<¢<kand Tij € {0, 1} foralll <14, < k. Wesay that X11 = z11, X120 = 219,
ooy X == xpy is a feasible assignment of parameters X1, Xy9..., Xpp if 255 =
xj; and z(4i) = 0 for all 1 < 4,5 <k, that is if the matrix A, where A(i, j) = x;;
is an adjacency matrix of a graph. Similarly such an assignment is an acyclic
feasible assignment if, further, such assignment of parameters corresponds to
the adjacency matrix of an acyclic graph (i.e. a tree). A system Py is called an
AF (acyclic feasible) system of order k if it has an acyclic feasible assignment
of parameters.

One correctness property ¢ relating to an AF system of Node processes is:
is

A leader will always be chosen.

Assuming a suitable global variable elected to denote the process id of the
elected leader, in LTL this is expressed by

[ <> (1 <elected < k).



Suppose that it is possible to check that ¢ holds for all AF systems P; (of
Node processes) of order ig < 7 < k', for a constants iy and &'. Clearly if we can
show that, for any k > k', M(Py,_1) = ¢ implies M (P;) = ¢ (that is, if we can
prove an induction step), then it will follow that M (P;) = ¢ for all AF systems
P;, i > ig. The proof of the induction step is as follows. If P, is any AF system
of order k then, as the associated communication graph is acyclic, at least one
Node process must have only one neighbour (call these processes “leaf nodes”).
One of the leaf nodes will be the first process to have its “be my parent” request
accepted, and will no longer take part in communication. The system will now
behave like an AF system of order k — 1. Thus, as M (P;_1) | ¢, ¢ holds for
Py.

3.4 Simple induction

Goal: Show Vn.M (P,) = ¢, where, each system Py, consists of a (possibly null)
process ¢ together with n identical (up to renaming) copies of a process p, (p
possibly identical to ¢) and ¢ does not depend on the process identifiers.

Problem: the problem is undecidable, using model-checking techniques. It is
solvable, with suitable preorder and invariant.

There are several different results for this case; the common idea can be sum-
marised as follows. Define a preorder < (a bisimulation in some approaches)
and invariant Z such that M (P,) < Z for all P,. The composition operator
|| must be monotonic wrt < (for structures @, @', R and R, if @ < @' and
R < R/, then Q||R X Q'||R.

The invariant rule for families of identical processes when there is no en-
vironment (i.e. ¢ is null) is: for preorder < and invariant Z, if Z > M (p) and
Z = Z||M(p) then Z = M (P,) for all n > 1. If ¢ is non-null, then the invariant
is q||Z.

The preorder preserves ¢ so that Z = ¢ = Vn.M(P,) |= ¢. It therefore re-
mains to check Inv |= ¢ using traditional model-checking techniques. The main
difficulty (assuming we have established a suitable theorem for the preservation
of ¢ wrt <) is deriving a general method for constructing the invariant, an
abstraction of the models in the infinite family.

A novel idea for constructing the invariant [19] is the following. Define a
regular language to express the state propositions in ¢ and then uses an equiva-
lence relation derived from the associated automaton to define the abstraction.
Thus, the property “determines” the form of the abstraction.

Consider the following example: each process p; has an associated bit vari-
able z; which it flips between 0 and 1. So, for any Py, each transition represents
an alternation of a variable z;, for 1 < i < k. A desirable property is that one
can always reach a state in which at least two variables are 1:

For some 1,j. it is possible that v; == z; == 1.



For any M (P;), the states we are interested can be encoded as strings z1z5 . .. z;;
so for the infinite family the language is

{0,1}*1{0, 1}*1{0, 1}*.

From the associated automaton we derive a equivalence relation which parti-
tions states into three classes: effectively, the state containing no 1’s, the state
containing one 1, and the state containing two 1s. The invariant Z therefore con-
tains these three classes, with appropriate transitions (i.e. transitions between
the first two classes, and between the second two classes). Using model-checking
we can show that the property holds for Z (from any state we can reach a state
with two 1’s) and so we conclude that it holds for all such networks.

In [19], an example is given using synchronous Moore machines, we are not
aware of any extension to asynchronous models of computation.

3.5 General induction

Goal: For all n, for fixed r,, where r, < n, for all distinct values of 1, t2,...,¢,,,
where, for all v, 1 < v < r, ¢, € {1,2,...,n}, show that M(P,)s, 1,....4,, F
dlt1,ta,...,t,,] where P, is mp-parameterised with each p; of the form p; =
p(xio, Lily--- ,(I:imn).

Problem: the problem is undecidable, using model-checking, but it may be solv-
able with suitable preorder, invariant, feasability constraints and symmetry
groups.

This general case combines the constraints and techniques of cases 3.2,3.3 and
3.4 in the following way. From case 3.2, we use symmetry groups for case explo-
sion (because ¢ has form ¢[t,t2,...,%;]), from case 3.3, we employ the notion
of feasible assignments of parameters to the processes p;, and from case 3.4, we
construct an invariant necessary for the induction.

Examples of this scenario are numerous. For example consider the generali-
sation of the communications service of section 3.2, a network of fixed size (i.e.
k = 4). Namely, we require to show that the result holds for any network of size
of size n (n > 3), provided the actual parameters of the individual processes
are restricted to feasible assignments. The feasability requirement is similar to
that of section 3.3, namely, the communication topology of each F; has to be
“similar”. In this example, the channels must be instantiated in the appropriate
way so as to ensure peer to peer communication (hence m,, is a function of n).
We have yet to define a more general notion of feasibility and to quantify the
families of processes to which it applies. This is further work.

4 Survey

A useful survey of results in symmetry and induction in model-checking (up
to 1995) is given in [20]. In the past few years there has been a wealth of
publications; we attempt to summarise the significance of some of these here.
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State-space reduction The basic idea of exploiting symmetries to reduce the
size of state-spaces is first investigated within the context of Petri Nets [40,
57]. Ip and Dill [45] apply these ideas to the automatic verification of finite-
state systems and introduce a new data type, scalarset, to the Mur¢ protocol
description language to imply symmetries within a state-space.

Clarke et al [16] and Emerson and Sistla [30] discuss symmetry reduction
for systems when the transition relation is given either explicitly in terms of
states or symbolically as a BDD. (Their results are summarised in [20]). The
complexity of the orbit problem and examples of groups where the orbit problem
is easy to solve are considered in [13].

These early results are extended to incorporate the notions of fairness [22]
and partial-order reduction [25], and an on-the-fly extension is introduced [36].
Symmetries in logical subformulas are exploited [2,50] in LTL and CTL* re-
spectively.

Symmetry reductions have been implemented within existing model-checkers.
For example the SMV system [51] includes a symmetry reduction package which
uses the scalarset approach of Ip and Dill [45]. A similar approach has been ap-
plied in the development of SymmSpin [6], a symmetry reduction package for
SPIN [38]. More recently an extension of this approach, which exploits heap
symmetries [43] have been implemented in dSPIN (a dynamic extension of
SPIN) [42]. A reduction that exploits the symmetry induced when exploring
state-spaces of concurrent software applications [34] is implemented within the
Verisoft (state-exploration) tool [33]. The SMC (symmetry-based model check-
er) [56] is a model-checker that has been specifically designed to exploit both
process symmetry and state symmetry when checking certain properties under
different fairness assumptions.

Some approaches consider the case where systems are not totally symmetric,
that is when they are nearly symmetric [23] or partially symmetric [37]. The
case in which a property is not invariant under a given symmetry is investigated

in [55].

Case Reduction While we are not aware of any examples of this applica-
tion of symmetry in model-checking, a similar phenomena is explored in the
isomorph-free model generation of Jackson, Jha and Damon [46]. They consid-
er the problem of generation (by variable assignments) of models for checking
properties of relational specifications, and reduce the number of models con-
sidered by partitioning the space into the equivalence classes of symmetrical
interpretations.

Process degeneration Induction based on process degeneration has been
investigated in [11], we are not aware of other related work.

Simple induction There are numerous results for this case. Early result-
s involve families of systems consisting of identical processes. Kurshan et al
[47] prove a a structural induction theorem for processes using the simulation
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pre-order to generate the invariant. Similar results are achieved [8,59] by es-
tablishing a bisimulation equivalence between global state graphs of systems
of different sizes. Context-free network grammars are used [53, 19] to generate
both generate suitable infinite families and to generate an invariant. In [27] it
is shown that, for rings of token-passing processes, there exists a k& such that
the correctness of a ring with k£ processes implies the correctness of rings of
arbitrary size.

Extensions to these early results, when a (non-trivial) environment process
is involved, include [18,31, 32, 5,47, 1].

In [44] techniques are presented to automate the construction of abstractions
of systems of identical components. An extension of this abstraction technique
is implemented within the Mur¢ verification system [21]. Similarly a fully au-
tomated approach for verifying parameterized networks with synchronous com-
munucation is proposed in [28,29], and a tool based on the network grammar
approach [49] is designed to help in the construction of invariants.

Lack of space prohibits description of other related results which concentrate
on the abstraction of a complex system, for example [35, 58].

General induction To our knowledge, this class of induction has not been
investigated previously in its most general form. However, a relevant result con-
cerns the verification of certain properties of families of systems comprising of
multiple heterogeneous classes of processes [26]. In this case each class is instan-
tiated by many homogeneous copies of a class template and model-checking for
systems of arbitrary size n can be reduced to model-checking systems of size
up to a small cutoff size.

5 Conclusions

Several limitations of the verification of networks of processes by model-checking
are discussed. We bring together the numerous results in symmetry and induc-
tion in one coherent framework and propose five classes of problem in which
either symmetry or induction (or both) can be used solve the limitations of
state-space explosion, case explosion, or generalisation. We give an example
problem for each class. The classification is not exhaustive, but represents those
problem types for which we have good techniques and/or algorithms. Recent
results in the field are discussed and classified according to the proposed clas-
sification. We identify the concept of feasible assignments for parameterised
processes and suggest that this is an area for further work.
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