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Abstract.
We report on a property-based approach to feature interaction analysis for

a client-server email system. The model is based upon Hall’s email model
[12] presented at FIW’00 [3], but the implementation is at a lower level of
abstraction, employing non-determinism and asynchronous communication; it
is a challenge to avoid deadlock and race conditions. Our analysis differs in
two ways: interaction analysis is fully automated, based on model-checking
the entire state-space, and the results are scalable, that is they generalise to
email systems consisting of any number of email clients.

Abstraction techniques are used to prove the general results. The key idea
is to model-check a system consisting of a constant number (�) of client pro-
cesses, in parallel with a mailer process and an “abstract” process which repre-
sents the product of any number of other (possibly featured) client processes.
We give a lower bound for the value of�.

All of the models – for any specified set of client processes and selected
features – are generated automatically using Perl scripts.

1 Introduction

We consider modelling features and analysing feature interactions in an email system. Our model is derived
from Hall’s email model [12] presented at FIW’00 [3], but our analysis differs in two significant ways:

� interaction analysis is fully automated, based on a model-checking approach,

� results generalise to email systems consisting of any number of email clients.

We adopt a property-based approach to interaction analysis [4], that is we develop an explict model of the
basic service and features which is checked against a set of more abstract, temporal properties. Interactions are
uncovered through the analysis of property violations. The (parameterised) model is developed in Promela [13],
a high-level, state-based, language for modelling (asynchronously) communicating, concurrent processes. Spin
is the bespoke model-checker for Promela. Individual models and model-checking runs are generated using Perl
scripts.

Our first goal is faithful modelling of an email system as client-server with explicit concurreny and asyn-
chronous communication; this is challenging for a property based approach because of the high degree of
concurrency and consequent state-space explosion. Nevertheless feature interaction analysis is comprehensive.

Our second goal is generalisation of interaction results. Model-checking alone is limited to reasoning about
a given number of processes. This aspect is often overlooked, and proof for a fixed number, say �, processes,
is informally assumed to scale up to imply proof for an arbitrary number of processes, i.e. for � processes, for
any �. In this paper we address the problem explicitly and show how to generalise results without resorting to
explicit induction (which is difficult in this case). Our approach is based upon a combination of abstraction and
model-checking.

The paper is divided into two parts, in the first part we consider feature interaction analysis for a fixed number
of client processes, in the second part, we consider how to generalise these results to an arbitrary number of
clients.

In section 2, we give a brief overview of Promela and Spin. In section 3 we give an overview of the
basic email service and feature behaviour, the Promela implementation, the properties for the basic service and
features and the corresponding LTL formulae. In section 4 we define feature validation and interaction analysis,
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and give corresponding results for systems of 3 or 4 client processes. We also discuss how we use Perl scripts
and the model-checker Spin for analysis. In section 5 we outline the abstraction technique and give results. We
conclude in section 6.

2 Reasoning in Spin

Promela is an imperative, C-like language with additional constructs for non determinism, asynchronous and
synchronous communication, dynamic process creation, and mobile connections, i.e. communication channels
can be passed along other communication channels. Spin is the bespoke model-checker for Promela and pro-
vides several reasoning mechanisms: assertion checking, acceptance and progress states and cycle detection,
and satisfaction of temporal properties.

In order to perform verification on a model, Spin translates each process template into a finite automaton
and then computes an asynchronous interleaving product of these automata to obtain the global behaviour of
the concurrent system. This interleaving product is referred to as the state-space.

As well as enabling a search of the state-space to check for deadlock, assertion violations etc., Spin allows
the checking of the satisfaction of an LTL formula over all execution paths. The mechanism for doing this is via
never claims – processes which describe undesirable behaviour, and Büchi automata – automata that accept a
system execution if and only if that execution forces it to pass through one or more of its accepting states infinite-
ly often [13, 11]. Checking satisfaction of a formula involves the depth-first search of the synchronous product
of the automaton corresponding to the concurrent system (model) and the Büchi automaton corresponding to
the never-claim.

If the original LTL formula � does not hold, the depth-first search will “catch” at least one execution se-
quence for which �� is true. If � has the form ���, (that is � is a safety property), this sequence will contain an
acceptance state at which �� is true. Alternatively, if � has the form ���, (that is � is a liveness property), the
sequence will contain a cycle which can be repeated infinitely often, throughout which �� is true. In this case
the never-claim is said to contain an acceptance cycle. In either case the never claim is said to be matched.

When using Spin’s LTL converter (a feature of XSpin – Spin’s graphical interface) it is possible to check
whether a given property holds for All Executions or for No Executions. A universal quantifier is implicit in
the beginning of all LTL formulas and so, to check an LTL property it is natural, therefore, to choose the All
Executions option. However, we sometimes wish to check that a given property (� say) holds for some state
along some execution path. This is not possible using LTL alone. However, Spin can be used to show that “�

holds for No Executions” is not true (via a never-claim violation), which is equivalent. Therefore, when listing
our properties (section 3.4), we use the shorthand ��, meaning for some path �, i.e. for No Executions � is not
true.

2.1 Parameters and further options used in Spin verification

When performing verification with Spin, three numeric parameters must be set. These are Physical Memory
Available, Estimated State-Space Size and Maximum Search Depth. The meaning of the first of these is clear, and
the second controls the size of the state-storage hash table. The Maximum Search Depth parameter determines
the size of the search-stack, where the states in the current search are stored. If comparisons are to be made with
other model-checkers, then the value of the Maximum Search Depth should be taken into account.

Partial order reduction (POR) [17] is based on the observation that execution sequences can be divided into
equivalence classes whose members are indistinguishable with respect to a property that is to be checked. We
apply POR in most cases.

Compression (COM) is a method by which each individual state is encoded in a more efficient way. We
apply compression in all cases.

3 Basic email service and features

The email system consists of a number of clients and one server, in this case the mailer. Each client has a unique
mail address. Clients send mail messages, addressed to other clients (or themselves) to the mailer; the mailer
delivers mail messages to clients. Communication between client and server is asynchronous. Therefore, mail
messages are not necessarily received by clients in the (global) order in which they were sent, but local temporal
ordering is maintained, i.e. if client 1 sends messages A and B to client 2, in that order, then client 2 will receive
message A before message B. We assume (like Hall) that the system does not lose or corrupt messages, because
our motivation is feature interaction analysis, not error detection and/or recovery.
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Figure 2: Client process with mailbox mbox

We assume (weak) fairness, i.e. an enabled process cannot be ignored infinitely often, when verifying
liveness properties (e.g. 3 and 8, see section 3.4). In all other cases, it is not relevant (and just increases the
state-space).

The overall system is illustrated in Figure 1. High level, abstract automata for the client and mailer processes
are given in figures 2 and 3, respectively. Note that in these figures, transitions are labelled by conditions, e.g.
in figure 2 a transition from initial to sendmail is only possible if the channel mbox is empty and the channel
network is not full. Local and global variables are updated at various points; variable assignments omitted from
the diagrams. We refer to states in these abstract automata as abstract states, these are not to be confused with
states in the Promela model.

3.1 Basic email service in Promela

The model for � client processes consists of � instantiations of the parameterised proctype Client, all in parallel
with one instance of the proctype Mailer.

A mail message consists of a sender, receiver, message body, and key. Mail messages may be sent from
clients to the mailer, and delivered to clients from the mailer (via a mailbox belonging to the receiver). All
communication between clients and the mailer is asynchronous. We chose to adopt this position because it
is closer to actual system behaviour, however we have to take care that it does not result in state explosion.
Delivery of mail takes precedence over sending, i.e. a client has to take delivery of any mail which has been
delivered by the network, before sending mail. A client can otherwise send mail at any time, provided the
channel �����	
 has capacity.

The parameter associated with a client process is the identification (a byte) of that process. A client process
can either send mail, or have mail delivered, the latter taking precedence over the former. The former can only
occur if the network is not full. If neither is possible, the client is, in effect, in busy waiting.

Communication between clients and the mailer is via asynchronous, global channels, one for each client and
one for the mailer. The sizes of the channels are set using the constants 
 for the client channels and � for the
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mailer. During most of this investigation 
 � � and � � �. � is a constant denoting the number of clients in
the given system and is often used to denote a default, or unassigned, value.

The client channels are, in effect, mailboxes. The role of the mailer is therefore to deliver mail messages to
the appropriate mailboxes; clients take delivery of message by reading from the appropriate mailbox/channel.
In figure 3, note that mbox is a free variable which must be correctly instantiated during the specify recipient
abstract state.

Mail addresses are simple integers, used to index the client processes. Initially, we implemented a more
sohpisticated addressing mechanism, with login names and hierarchical domains. However, this resulted in a
very large state vector and state-space (due in part to Promela’s poor handling of structured types). Since we
found no additional analysis benefit to this approach (apart from the aesthetic one), we have implemented a
simpler, more abstract addressing mechanism.

Mail messages themselves are of no consequence, save to observe whether or not they are encrypted. We
denote encrypted text by the value � and plain text by the value �. Keys are simple mail addresses, i.e. simple
bytes.

An important issue for any distributed system is that of atomicity. This is especially important from a model-
checking perspective as it provides a means of controlling state-space explosion and resolving race conditions.
Promela provides a facility for grouping together statements as atomic, provided only the initial statement
has the potential to block. Our model employs as much atomicity as possible within each consituent process.
Specifically, in the ����� process, each iteration from the initial state, back to the initial state, is a single atomic
step (i.e. figure 2 encapsulates a single atomic step) – with suitable guards which block if the process can neither
read nor write. This is crucial in order to avoid deadlock – since all channels are of finite size. On the other
hand, the �����	 process consists of two atomic steps: one for reading a message and the other for sending the
appropriate message. Any variable about which we may intend to reason should not be updated more than once
within any atomic statement (so that each change to the variables is visible to the never-claim), other variables
may of course be updated as required.

Another implementation issue is the size of the state vector, i.e. the number and nature of global and local
variables. We must be careful not to introduce any extraneous variables (see also 3.3) nor introduce extraneous
state values. To avoid the latter, we must be careful to reset variables when returning to so-called initial, abstract
states, to ensure that we are indeed representing the same abstract state.

The interplay between atomicity, the number and nature of variables, and faithful modelling/levels of ab-
straction is very subtle and a challenge in this domain, particularly due to the asynchronous communication. It
took considerable time and expertise to develop a tractable, deadlock free model. Fortunately, we were able to
employ some lessons learned from modelling POTS [6].

3.2 The Features

We consider here a set of five features.

� encrypt a message, using a (private) key, the intended recipient.

� decrypt a message, using a (private) key, the actual recipient.

� filter all messages from a given mail address.
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� forward all messages to another mail address.

� autorespond to incoming messages. The automatic response is only sent in response to the first message
from a given client. Any subsequent message from that client is received, but no automatic response is
issued as a result.

The features encrypt, decrypt and autorespond reside at the client side, the remaining reside at the server
side. Note that only the features encrypt and decrypt alter the actual mail message, forwarding does not affect
the message.

We have considered all the features proposed in [12]; but for brevity, we omit them here because they do not
reveal any further “interesting” behaviour paradigms for our analysis. That is not to say that they do not reveal
further interactions, and interesting aspects of email, but that they do not reveal any further aspects with respect
to generalisation.

3.3 Features in Promela

Features are implemented within the Promela model via a number of inline functions (procedures with dynamic
bindings). Most features are relatively straightforward to implement, simply involving additional transitions or
steps during one or more of the abstract states of the client or mailer processes.

The exception is autorespond, because this feature involves both reading – a message from a client channel,
and writing – a message to the network channel. Both events are potentially blocking, hence cannot take place
within one atomic step. Therefore, to implement this feature we add an additional data structure to indicate
whether or not a client requires to send an autoresponse. We enhance the initial state to include the possibility
that an autoresponse message needs to be sent, and give priority to this over any other event. This means that
it is possible for an autoresponse to never be sent, if the network channel is continuously full. We cannot avoid
this situation1.

In order to reason about feature behaviour (see section 3.4) we introduce a number of “observation” vari-
ables. These are not integral to the behaviour of the service and/or features, but exist solely for the purposes of
analysis. For this reason, these variables are included/excluded on a per model/property basis.

Examples of “observation” (process indexed) variables include:

� ���� ��� ��� �� the intended receiver of the mail message last delivered to ��������

� ���� ��� ��� �	�� the intended sender of the mail message last delivered to ��������

� ���� ��� ��� ���� the body of the mail message last delivered to ��������.

� ���� ���� �	��� �� the intended recipient of the mail message last sent from ��������.

A further variable required both for correct function and for reasoning is the array of bit vectors �����		��.
The function

� �� �������		������ �	 indicates whether �������� has already sent an autoresponse to ��������.

3.4 Feature Properties

We give a small number of illustrative properties for both the basic service and the features. The properties
are linear temporal logic (LTL) formulae over propositions about states. Temporal operators include �� (always),
��(eventually) and � (next). Propositional connectives are �� (disjunction),

 (conjunction),� (implication)
and �(negation). The path quantifier is (implicitly) �, except when explicitly given as �. Feature properties are
properties that are expected to hold when one such feature is present.

Property 1 – Basic Messages are delivered only to intented recipients.

If �������� receives a message from �����	, then the (intended) recipient of that message is ��������. Alter-
natively, Client[i] has not yet received any messages (in which case the ���� ��� ��� �� variable will remain set
to the default value � ).

�In any operational email system, buffers can become full. Although this is unlikely in reality, as model-
checking involves the exploration of all feasible behaviours, this possibility must be considered.
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LTL: �������	
� = (���� ��� ��� �� �� � )
� = (���� ��� ��� �� �� �)

Property 2 – Basic Messages can be sent between any two clients.

It is possible for Client[i] to recieve a message such that the sender of that message is Client[j].

LTL: � �� ��	
� = (���� ��� ��� �	�� �� �	

Property 3 – Basic Messages are eventually delivered correctly.

If �������� sends a message to ��������, then �������� will eventually receive a message from ��������.

LTL: �������	

���		� ���� �		
� = ����� ���� �	��� �� �� �	
� = ����� ��� ��� �	�� �� �	

Property 4 – Encryption Messages are properly encrypted.

If �������� has encryption on, then if Client[j] receives a message whose sender is Client[i], then the message
will be encrypted.

LTL: ���� � �	
� = ����� ��� ��� �	�� �� �	
� = ����� ��� ��� ���� �� �	

Property 5 – Decryption Messages are properly decrypted.

If �������� has decryption on, then all messages received by �������� will have been decrypted.

LTL: ����	
� = ����� ��� ��� ���� �� �	

Property 6 – Filtering Messages are discarded by a filter.

If Mailer filters messages from Client[i] to Client[j] then it is not possible for Client[j] to receive a message
from Client[i].

LTL:�����	
� �� ����� ��� ��� �	�� �� �	

Property 7 – Forwarding Messages are forwarded.

If Client[i] forwards messages to Client [j], then it is possible for Client[j] to receive messages not addressed
to Client[j] (or to the default value � ).

LTL: � �� �������		
� �� ���� ��� ��� �� �� �	
� �� ����� ��� ��� �� �� �	

Property 8 – Autorespond Single automatic response messages are sent out.
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If �������� has autorespond on, then if Client[j] sends a message to Client[i], and Client[j] hasn’t already
received an automatic response from Client [i], then Client[j] will eventually receive a reply from Client[i].
Alternatively, Client[i] eventually stops sending messages because network can’t be accessed.

LTL: ����	 � ��� ������ ����					
� = ������ ���� �	��� �� �� �	

�������		����� �� �� �			
� = ����� ��� ��� �	�� �� �	
	 = ������	
����� �� �� ��	

(The function �����	
����� �� �� �� determines whether there is a message at any position on the network
channel in which the sender field is �.)

4 Analysis for a constant number of clients

The basic idea of feature interaction analysis is to detect when features behave as expected in isolation, but
not in the presence of each other. So, interaction analysis involves feature validation (checking a feature in
isolation) and then analysis of tuples of features (checking for violation of expected behaviour). Fortunately,
we need only restrict our attention to pairwise analysis, as empirical evidence shows that it is extremely rare
to have a 3-way interaction which is not detected as 2-way interaction [14]. In each case we consider a model
consisting of either 3 or 4 client processes and 1 mailer. An example Promela model of a system of � Client
processes and a Mailer process in which �������� has encryption, �������� filters messages from ��������
and property 4 is to be verified for � � �, � � � can be found on our website at [5].

For all verification runs we used a PC with a 2.4GHZ Intel Xenon processor, 3GB of available main memory,
running Linux (2.4.18).

An overview of the reasoning process is given in Figure 4.

4.1 Use of Perl Scripts

For each pair of features, set of feature parameters, associated property and set of property parameters, a relevant
model needs to be individually constructed, to ensure that only relevant variables are included and set. We have
developed two Perl scripts, mailchange.pl and auto mailchange.pl for automatically configuring the model and
for generating model-checking runs. These scripts greatly reduce the time to prepare each model and the scope
for errors.

During initial investigations, mailchange.pl is used to generate a model for a given set of features, feature
parameters, property and property parameters. The resulting model is then loaded into SPIN with an appropriate
set of search parameters (MSD, POR, WF for example) and results interpreted manually. Once confidence has
been gained in the model, suitable values assertained for the value of MSD and the applicability of POR and
WF determined for successful verification in each case, auto mailchange.pl is used to iteratively select pairs of
features and parameters, set up model checking runs and interpret results. An overnight run is required to collect
all results from all pairs of features and suitable parameter sets. It is important to note that a certain amount
of simple symmetry reduction is incorporated within the Perl script to avoid repeating runs of configurations
which are identical up to renaming of processes.

The interpretation stage of auto mailchange.pl involves reading the output file from the SPIN verification
run. Firstly it is checked that the maximum search depth (MSD) has not been reached and that the total memory
available has not been exhausted. If neither of these is true, the second phase of the interpretation phase involves
checking if there are any errors - and as such, whether the associated property is true. Finally, the interpretation
stage involves determining whether a feature interaction has occurred and, if so, what type (SU or MU). All
parameter sets and corresponding results are output to a results file.

4.2 Results - single property validation

Table 1 gives the results of verification of properties 1 – 8. In each case the feature (if any) associated with the
property is given in the column labelled ‘feature’. When there is no feature present, (during the verification of
properties 1–3) the term ‘basic’ is written in this column. When a feature is present, the verification corresponds
to checking the associated property for a model consisting of a Mailer process, two basic Client processes and
a Client processes for which the given feature is ‘turned on’. (When no feature is present the associated model
simply consists of a �����	 process and three ����� processes.) In all cases we give results for verification
of the model in which �������� has the given feature (in relation to �������� if appropriate) and � (and �)
is (are) assigned the value(s) � (and �). The Prop column contains the property being checked and a
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Figure 4: The reasoning set up
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Table 1: Results of verification of the properties

Feature Prop WF? POR? MSD States Depth Mem Time
(����) (����) (Mb) (s)

basic 1 � 

 � � ����� � � �

basic 2 � 

� �� � ��� �� � � � �

basic 3

 � �� �� � ���� �� � ��

encryption 4 � 

�� � � ������ � � �

decryption 5 � 

� �� � ���� � � �

filtering 6 � 

 � � ���� � � �

forwarding 7 � 

� �� � ���  � � � �

autorespond 8

 


�� ��� ���� ��� � ���

� in the ‘WF?’ and ‘POR?’ columns indicate whether weak-fairness and partial order reduction are selected
respectively. Note that property 3 is the only property for which POR is not applied. This is due to the presence
of the next operator (�) in the property. Also, WF is only applied during the verification of liveness properties
– properties that contain the eventually operator ��. The entries in the MSD column show the value to which
the maximum search depth is set prior to verification. The remaining columns contain the number of stored
states, the depth reached, the memory required for state storage (in Mbyte) and the time taken (in seconds) for
each verification.

4.3 Results - feature interactions

Now we turn our attention to consideration of pairs of features. For each pair of features we generate a model for
each distinct set of parameters (the union of the sets of parameters for each feature) and for each appropriate set
of property parameters. This may mean that up to � client processes are required. For example, if �������� has
filtering from �������� and ������
� has filtering from ��������, (�, �, 
, � distinct), then � client processes
are required. For each suitable pair of features, ��, �� , an interaction is said to occur if the feature property
associated with �� does not hold for the model in which features are �� and �� are present. Note that we do
not consider the basic service in our analysis, as all other features interact with it in some way. This can be
determined without the need for model-checking.

We enumerate the interactions found below. In each case, we indicate whether the interaction is single user
(SU), i.e. both features reside at the same network component, or multiple user (MU), i.e. the features reside
at different network components. We also give a witness for the interaction. We do not give details of timing
or memory requirements etc. as these vary depending on the parameter set under consideration. (There are ���
feasible parameter sets after symmetry reduction. It would be impractical to give details of such requirements
for each case.) In some cases more ����� processes are required to fully check for interaction. Clearly when
more �����s are required, verification takes longer and more memory is required. In addition, when an error
is reported during verification (in most cases, excluding the verification of property 2, indicating an interaction)
a full search of the state-space is not required. This again results in far smaller time and memory requirements.

1. encryption and decryption (SU)
witness i=j=0 – �������� has encryption and decryption

2. encryption and decryption (MU)
witness i=0, j=1 – �������� has encryption, �������� has decryption

3. filter and forward (MU)
witness � � �� � � � – �������� has filter from j, �������� has forwarding to �

4. forward and forward (MU)
witness i=0,j=1,k=2 – �������� has forwarding to �, �������� has forwarding to �

5. autoresponse and filter (SU)
witness � � �� � � � –�������� has autoresponse, �������� has filter from �

6. autoresponse and filter (MU)
witness i=0,j=1 – �������� has autoresponse, �������� has filter from �
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7. autoresponse and forward (SU)
witness � � �� � � � – �������� has autoresponse, �������� has forwarding to �

8. autoresponse and forward (MU)
witness � � �� � � � – �������� has autoresponse, �������� has forwarding to �

Each of these pairs of features are listed in Hall’s results [12] but in all cases, he only reports a MU example.
While Hall explicitly states that his method is not complete, it is not clear if the SU interactions would be found
in his approach, or he stopped after the MU interaction was found. Our method is combinatorially complete.
We note that in the MU cases, our witnesses are identical to Hall’s (modulo translation).

5 Generalisation

We have shown above that a property holds (or does not hold) for a fixed number of clients, i.e. for
��������������������    ���������������	, where �� denotes parallel composition. But how can we deduce
that (if at all) a property holds for
��������������������    �����������������	, for an arbitrary n? It is not possible to demonstrate this with
straight-forward model-checking [1].

More formally, the generalisation problem is how to prove (disprove)

����������������������    �����������������		 �� !��� ��    � ��

where the left hand side is the finite-state model of the parallel composition of client and mailer processes
(the former are instances of the parameterised process �����) and !��� ��    � �� is a temporal logic formula
containing free variables indexed by �� ��    � �. The indices refer to instances of ����� (e.g. the variables �

and � in section 3.4). In general, the �������� are not isomorphic because they have different sets of features
enabled.

We offer a solution based on abstraction and model-checking. The technique and theoretical justification
are described in more detail in [8, 7], here we apply the results. Briefly, the technique involves choosing
a fixed �, such that � is constrained by � � � � � 	 �. We refer to ����������    ��������� 	 �� as
concrete processes and the ����������    ���������	�� as abstract processes. We represent the behaviour of
����������    ���������	 ��, by a new abstract process, Abstractclient. We do not assume that the (original)
abstract processes, i.e. ����������    ���������	 �� are isomorphic: they might have different combinations
of features enabled. However, we do assume that the features are all drawn from our given set and we know
how they can communicate with each other and more importantly, how they communicate with the concrete
processes.

A model of the � concrete processes, together with the abstract process, is generated automatically from a
model of the concrete processes together with a single (parameterised) �����. This is summarised by Figure 5.
The value of � depends upon the particular feature set considered. Here, because each feature involves at most
two parameters, a worst case analysis suggests that � concrete �����s are required, however further detailed
analysis shows that in this case, we require only a maximum of �. For some combinations, � will suffice.

Our approach is based upon our result:

����������������������    ����������"���	�#�#������������	�	 �� !��� ��    � ��


����������������������    ���������������		 �� !��� ��    � ��.

The process �����	� is a slightly modified version of �����	, modified to take into account communication
with Abstractclient (instead of communication with the original abstract processes).

Thus to generalise interaction analysis results, we need only consider interaction analysis of the finite (model
of) ��������������������    ����������"���	�#�#������������	� 

In the next section we outline the form of "���	�#�#����� and �����	� and give our interaction analysis
results.

5.1 Abstractclient specification and analysis results

"���	�#�#����� is defined as follows. "���	�#�#����� can only affect the behaviour of the m concrete processes
indirectly via �����	�. Therefore, communication to/from a concrete process from/to �����	� takes place
via a virtual channel. Rather than concrete processes reading/writing to this (virtual) channel and behaving
accordingly, each possible read is replaced by a non-deterministic choice over the possible contents of the
channel. In this way, all possible behaviours are explored (a write to the virtual channel is not relevant).
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Client Client

concrete processes

0 1 Clientm-1

Abstractclient

Clientm ... Clientn

represented by

abstract process

Mailer

Figure 5: Generalised Email service

As an example, when � � � "���	�#�#����� is as follows:

proctype Abstractclient(byte id)
{Mail msg;
atomic
{
msg.receiver=M;
msg.sender=M;
msg.key=M;
msg.body=0};
do
::blocked==1->blocked=0
::atomic{nfull(network)->

if
::msg.receiver=0
::msg.receiver=1
::msg.receiver=2
::msg.receiver=3
/*another client within Abs process */
fi;
msg.sender=id;
network!msg;
msg.receiver=M;
msg.sender=M}

od
}

Note that the "���	�#�#����� process can send messages to �����	� (via the �����	
 channel), but does
not receive messages. Abstractclient is also able to set the blocked variable to �. This simulates “unblocking”
�����	� when it is unable to “send” a message to a particular process within the abstract process. Note that
Abstractclient is always able to unblock �����	� but can only send messages when the �����	
 channel is not
full. This reflects the finite model. When �����	� wants to “deliver” a message to Abstractclient, it first checks
whether the relevant channel is blocked (via non-deterministic choice). If so, �����	� waits until the channel
becomes unblocked (when the blocked variable is reset to � by Abstractclient) before delivering the message.
(In fact no message is actually sent, but �����	� continues as if it has been.) Here we give the new �����	

proctype:

proctype Mailer’()
{
Mail msg;
chan deliverbox=null;
atomic{
bit myanswer=0;
msg.sender = M;
msg.receiver= M;

msg.key=M;
msg.body=0;

}
loop:
atomic{

network?msg;



12

filter_message(msg.receiver,msg.sender,myanswer);
if
:: myanswer -> /* throw away message from this sender*/

myanswer=0;
msg.sender = M;
msg.receiver= M;
msg.body = 0; msg.key = M;
deliverbox = null;goto loop

:: else -> skip
fi;
if
::msg.receiver==3->/* abstract process */

if
:: blocked=0
:: blocked=1
fi

::else->
mailbox_lookup(msg.receiver,deliverbox)

fi;
/* now pass on message */
}

atomic{

if
::((msg.receiver!=3)&&(nfull(deliverbox)))->deliverbox!msg
::((msg.receiver==3)&&(blocked==0))->skip /*delivered virtual message*/
fi;

/*reset variables to initial values*/
msg.sender = M; msg.receiver= M; msg.body = 0; msg.key = M;
deliverbox = null;
goto loop

}}

The concrete ����� processes are declared in the usual way and communication between them and Mailer
is unchanged.

It is important to note that this model is not, strictly, a conservative extension, because Abstractclient allows
additional behaviour. Namely, an (abstract) client can send mail even when there is mail to be delivered (to that
client). This is not possible in any concrete model. However, the constraint that mail delivery takes priority is
in the concrete model only to prevent deadlock (when mail buffers are full), not for any reason of functional
behaviour. Relaxing this constraint in the general model neither allows deadlock nor affects the observational
behaviour of the system. Thus the constraint is safely relaxed and our approach is sound.

The interaction analysis results reveal no new interactions, nor new witnesses. We therefore do not give
details, save to indicate that time and space complexity lie in between those for the system with � (concrete)
������ and � � � (concrete) ������. The value of � depends on the parameter set and the property to be
verified. Again, all analysis was automated through the use of Perl scripts.

An example Promela model of a system of � � ������ processes, a �����	’ process and an "���	�#�#�����

process in which �������� has encryption, �������� filters messages from �������� and property 4 is to be
verified for � � �, � � � can be found in the appendix below. It can also be found on our website at [5].

6 Conclusions

We have developed a property-based approach to feature interaction analysis for a client-server email system.
The feature set described here is not as extensive as Hall’s [12], but it is sufficient to reveal most of the interesting
behaviour (from a modelling point of view) and to validate our approach. On the other hand, our analysis is
complete and fully automated. We note that a difficult feature for our implementation was autoresponder, this is
because unlike most other features, it initiated the sending of a completely new message. This was a difficulty
because we chose to use asynchronous communication, with fixed size communication channels (thus leading
to more interleavings and potentially, more interactions).

Additionally, our results are scalable, that is they generalise to email systems consisting of any number of
����� processes.

Abstraction techniques are used to prove the general results. The key idea is to model-check a system
consisting of a constant number (�) of client processes, in parallel with an “abstract” process which represents
the product of any number of other client processes. We give a lower bound for the value of �, for our given
feature set.
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While the general results did not reveal any new interactions (and we admit it is difficult to think of situations
where they would, for fixed feature sets), it is nevertheless important to prove rigorously that results scale up.
We have achieved this.

Our results demonstrate the feasibility of the abstraction technique for this application domain – the model-
checking requirements are well within the capability of our machine. Also, the transformation to a general
model is relatively straightforward: we need only consider the communication between the abstract process
and the concrete process(es). (In this case, we need only consider communication with �����	 process, as
there is no peer-peer communication.) An alternative, an induction approach [9, 15], requires the construction
of an inductive invariant. This involves incorporating the behaviour of the entire system within the invariant;
moreover, it requires that both the concrete and abstract m �����s are isomorphic. Our abstraction approach
offers a more suitable and tractable alternative. However, at some level they are similar, future work aims to
establish this.
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Appendix: The email service with features

The following model is generated (by a Perl script from template) for features: encryption[0] and filter[1]=2 to
verify property 4 with i=0 and j=2.

/*Email model with Client processes */
/*plus Mailer process */
/*Generated from template*/
/* Assume that no more than 8 client processes */
/* Features: filter, forward, encrypt, decrypt,autorespond */
/* Muffy Calder and Alice Miller */

/* Message and Address Format */
/* a mail message consists of sender, recipient, message body, and key */
/* message bodies are either text or encrypted */
/* a mail address consists of byte */

/*With property 4 relating to Client[0] and Client[2]*/
/*If Client[0] has encryption, and Client[0] sends
a message to Client[2], the message will be encrypted on receipt.*/

typedef Mail {byte sender;
byte receiver;
byte key;
bit body};

#define BITV_8 byte
#define ALL_1s = 256
#define SET_0(bv,i) bv=bv&(˜(1<<i))
#define SET_1(bv,i) bv=bv|(1<<i)
#define SET_ALL_0(bv) bv=0
#define SET_ALL_1(bv,n) bv=ALL_1s
#define IS_0(bv,i) (!(bv&(1<<i)))
#define IS_1(bv,i) (bv&(1<<i))

#define k 1 /*size of Mailbox */
#define N 2 /* size of network channel */

/*#define no_clients 3 */

#define M 4 /* default value of variables. */
/*One more than any id*/
/* equal to no_Clients + 2*/

bit blocked=0;

chan null = [k] of {Mail}; chan zero = [k] of {Mail};
chan one = [k] of {Mail}; chan two = [k] of {Mail};
chan network = [N] of {Mail};

BITV_8 Encrypt=0;
byte Filter[M]=M;
byte last_del_to2_from=M; bit last_del_to2_body=0;

inline mailbox_lookup(login,box)
{
if
:: (login==0) -> box = zero
:: (login==1) -> box = one
:: (login==2) -> box = two
fi}

inline encrypt_message(login,answer)
{if
::(IS_1(Encrypt,login))->answer=1
::else->answer=0
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fi
/*if encryption is on, answer=1, otherwise answer=0*/
}

inline filter_message(to,from,answer)
{if

::(Filter[to]==from)->answer=1
::else->answer=0

fi
/*if appropriate filter is on, answer=1, otherwise answer=0*/
}

inline reset_vars(i)
{if
::i==2->last_del_to2_body=0;last_del_to2_from=M
::else->skip
fi
}

inline set_deliv_vars(i,from,to)
{if

::i==2->last_del_to2_from=from
::else->skip
fi
}

inline set_body(i,text)
{if
::i==2->last_del_to2_body=text
::else->skip
fi
}

proctype Client(byte id)
{chan mybox=null;
Mail msg;

atomic{
msg.sender=M; msg.receiver=M; msg.key=M; msg.body=0;
bool myanswer=0;

/*get appropriate mailbox*/
mailbox_lookup(id,mybox)};

initial:
atomic
{
(nempty(mybox) ||nfull(network));
/* wait here if cannot send or deliver */
reset_vars(id);
/* deliver mail, if mail present */
/* otherwise may send mail */
if
:: nempty(mybox) -> goto delivermail
:: empty(mybox) && nfull(network) -> goto sendmail

fi;

delivermail:
mybox?msg;
set_body(id,msg.body);
set_deliv_vars(id,msg.sender,msg.receiver);
goto endClient;

sendmail:
/*specify recipient */
if
:: msg.receiver= 0
:: msg.receiver= 1
:: msg.receiver= 2
fi;
/* specify message */
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encrypt_message(id,myanswer);
if
:: myanswer -> /* encryption is on */

myanswer=0;
/* use reciever id as key */
msg.body = 1;
msg.key = msg.receiver

:: else -> msg.body = 0; /*no encryption */
fi;
/* specify sender */
msg.sender = id;
network!msg;
/* send mail */

endClient:
/* reset other variables */
msg.sender = M; msg.receiver = M;
msg.body = 0; msg.key = M;
goto initial

}
}/*end Client proctype*/

proctype Network_Mailer()
{
Mail msg;
chan deliverbox=null;
atomic{
bit myanswer=0; msg.sender = M;
msg.receiver= M; msg.key=M; msg.body=0;}
loop:
atomic{
network?msg;
filter_message(msg.receiver,msg.sender,myanswer);
if
:: myanswer -> /* throw away message from this sender*/

myanswer=0;
msg.sender = M;
msg.receiver= M;
msg.body = 0; msg.key = M;
deliverbox = null;goto loop

:: else -> skip
fi;
if
::msg.receiver==3->

if
:: blocked=0
:: blocked=1
fi

::else-> mailbox_lookup(msg.receiver,deliverbox)
fi;
/* now pass on message */
}
atomic{
if
::((msg.receiver!=3)&&(nfull(deliverbox)))->deliverbox!msg
::((msg.receiver==3)&&(blocked==0))->skip /*delivered virtual message*/
fi;
/*reset variables to initial values*/
msg.sender = M; msg.receiver= M; msg.body = 0; msg.key = M;
deliverbox = null;
goto loop}};

/*end Network_Mailer proctype*/

proctype Abstractclient(byte id)
{Mail msg;
atomic
{msg.receiver=M;
msg.sender=M; msg.key=M; msg.body=0};
do
::blocked==1->blocked=0
::atomic{nfull(network)->

if
::msg.receiver=0
::msg.receiver=1
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::msg.receiver=2
::msg.receiver=3

/*another client within Abs process */
fi;
msg.sender=id; network!msg; msg.receiver=M; msg.sender=M}

od}
/*end Abstractclient proctype*/

#define t1 (last_del_to2_from== 0)
#define t2 (last_del_to2_body== 1)

/* []( t1 -> t2 )*/

init
{atomic{
SET_1(Encrypt,0); Filter[1]=2;
run Abstract(3);
run Network_Mailer();
run Client(0);
run Client(1);
run Client(2);
}}

/*
* Formula As Typed: [] (t1 -> t2)
* The Never Claim Below Corresponds
* To The Negated Formula !([] (t1 -> t2))
* (formalizing violations of the original)
*/ never { /* !([] (t1 -> t2)) */

T0_init:
if
:: (! ((t2)) && (t1)) -> goto accept_all
:: (1) -> goto T0_init
fi;

accept_all:skip }


