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Abstract 

 

The Mitogen Activated Protein Kinase (MAPK) pathway is one of the most important and 

intensively studied signalling pathways. It is at the heart of a molecular signalling network that 

governs the growth, proliferation, differentiation and survival of many, if not all cell types. It is 

deregulated in various diseases ranging from cancer to immunological, inflammatory and 

degenerative syndromes, and thus represents an important drug target. Over recent years, 

the computational or mathematical modelling of biological systems has become increasingly 

valuable and there is now a wide variety of mathematical models of the MAPK pathway which 

have led to some novel insights and predictions as to how this system functions. In this 

review, we give an overview of the processes involved in modelling a biological system using 

the popular approach of ordinary differential equations. Focussing on the MAPK pathway, we 

introduce the features and functions of the pathway itself before comparing the available 

models and describing what new biological insights they have led to.  
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The general structure of MAPK pathways 

 

In molecular biology the mitogen activated protein kinase (MAPK) pathway is considered to 

be a paradigm for signal transduction as it occupies a central role in key cellular processes 

and is evolutionary conserved. Various manifestations of the MAPK pathway are found in all 

eukaryotic cells so far examined and have been studied extensively in a multitude of 

organisms, ranging from yeast to man. On the basis of the substantial body of data available 

in the literature, this pathway has frequently been the system of choice for computational 

modelling of biological signal transduction over the last decade. 

 

The term “MAPK pathway” refers to a module of three kinases which are activated by 

sequentially phosphorylating each other in response to a diverse range of stimuli, such as 

cytokines, growth factors, neurotransmitters, cellular stress and cell adherence. Accordingly, 

the pathway plays a pivotal role in many key cellular processes, ranging from growth control 

in all its variations, cell differentiation and survival to cellular adaptation to chemical and 

physical stress. For reviews see [1-3]. 

 

The MAPK pathway employs one of the most generic signalling designs found in biological 

signal transduction, namely that of a cycle formed by a kinase phosphorylating a target 

protein and an opposing phosphatase, which is in charge of dephosphorylating the target 

(Figure 1). This type of protein phosphorylation presents a fundamental mechanism by which 

the activities of numerous enzymes, receptors, transporters, docking and scaffolding proteins 

are regulated.  

 

The general layout of the MAPK pathway consists of three kinase/phosphatase cycles built 

into a three-tiered cascade, consisting of a mitogen activated protein kinase (MAPK), which is 

activated via phosphorylation by a MAPK-kinase (MAPKK, MKK), which in turn is 

phosphorylated by a MAPKK-kinase (MAPKKK, MKKK) (Figure 2). MAP-kinases (MAPKs) 

are deactivated by a family of phosphatases termed mitogen activated protein kinase 

phosphatases (MKPs) [4].   

 

Most activators of the MAPK pathway initiate signalling by activating receptors in the cell 

membrane, which assemble into receptor signalling complexes and activate a MAPKKK 

typically through a small GTPase. Signal transduction within the MAPK pathway module 

appears to be fairly specific and often is perceived as a pathway with a linear structure. The 

number of known MAPK effectors, however, is very large and diverse, including mainly 

transcription factors, protein kinases and cytoskeletal proteins. Upon activation, MAPK can 

translocate from the cytoplasm to the nucleus, where it regulates gene transcription through 

affecting chromatin structure and modifying the activity of transcription factors [5]. Eukaryotic 

cells contain at least 12 different MAPKKKs, 7 MAPKKs, and 8 MAPKs, which can be 
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attributed to at least four functionally distinct MAPK modules. MAPK modules have evolved 

by gene duplication and several closely related modules, delivering specific biological 

responses, are coexpressed in a particular cell [2]. Currently, it is not entirely clear exactly to 

what extent kinases of different MAPK modules are specific within their module or whether 

they are able to crosstalk within other MAPK modules or with other targets [3, 6]. However, 

the fact that only relatively few MAPKs receive and integrate a plethora of extracellular stimuli 

to control a widely diverse range of cellular processes, implies that considerable versatility 

and specificity is built into MAPK signalling. Some of the mechanisms which explain how 

specificity is achieved in MAPK signalling have recently come to light:   

 

1) The duration and amplitude of MAPK phosphorylation is critical for the control of 

distinctive processes, such as proliferation or differentiation in PC12 cells [7] or the 

activation of c-Fos [8] 

2) Specific binding interactions, mediated by the common docking domain (CD domain) 

on MAPKs and scaffolds such as JIP, KSR or MP1, tether several components of a 

MAPK module into a protein complex [9, 10]. 

3) Crosstalk with other signalling pathways could modulate MAPK signalling, examples 

include regulation of Raf by cAMP activated protein kinase (PKA) and PDE4 by ERK 

[11]. 

 

The ERK/MAPK pathway 
 

In the following we will focus on the Raf/MEK/ERK pathway, because the majority of 

computational MAPK models address this particular MAPK module. Signal transduction along 

the Raf/MEK/ERK pathway (Figure 3) begins with the activation of the small GTPases Ras 

(and possibly Rap) by receptor tyrosine kinases, G-protein coupled receptors and/or integrins 

[12]. These membrane proteins assemble large signalling complexes upon activation, which 

recruit and activate Ras proteins by inducing the exchange of Ras-bound GDP with GTP, 

converting Ras to its activated conformation. This process is mediated by the interaction of 

Ras with GDP/GTP-exchange factors, such as SOS (son of sevenless). Deactivation of Ras, 

on the other hand, is controlled by GTPase activating proteins (GAPs), which significantly 

enhance the otherwise very low GTPase activity of Ras and thus effectively enhance the 

hydrolysis of GTP to GDP [13].  Upon activation, the small G-proteins recruit the MKKKs c-

Raf (and, if present, A and B-Raf) to the plasma membrane, where Raf is activated in a 

complex, only partially understood process that involves binding to Ras, phosphorylation and 

changes in conformation and protein interactions [12]. Raf then activates the 

MKK/extracellular signal regulated kinases MEK1/2 by phosphorylation of two serine 

residues. MEKs generally recognize only specific MAPKs as substrates. MEK1/2 

phosphorylates ERK1/2 at threonine and tyrosine residues in a “TEY” motif within its 

activation loop. This dual phosphorylation is correlated with ERK1/2 activity and can be used 
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as a measurement for the indirect quantification of ERK activation [14]. ERK is a 

serine/threonine kinase. Activated ERK can phosphorylate over 80 substrates in the 

cytoplasm and the nucleus. It can regulate gene expression by directly phosphorylating 

transcription factors such as Ets, Elk, and Myc, or indirectly by targeting substrates such as 

p90-RSK (ribosomal S6 kinase) family kinases, which can modify transcription factors and 

histones [15]. The term MAPK originally was synonymous with ERK, but increasingly is used 

to indicate the superfamily of different MAPKs. The latter usage is adopted in the text below.  

 

Computational Modelling 

 

Systems biology is concerned with the study of biological systems in terms of their underlying 

network structure rather than simply their individual molecular components. A biological 

system can be anything from a simple biochemical reaction cycle, to a gene regulatory 

network or signal transduction pathway to a cell, tissue or an entire organism. At the heart of 

systems biology is mathematical modelling - the process of translating a biological system 

into a mathematical model for subsequent computer simulation and analysis. In order to be 

useful and applicable to biological questions, models have to faithfully describe the biological 

system and be able to make predictions about its behaviour. Thus, while the basis of a model 

is the topological representation of its components and their links, it is the description of the 

biological system’s dynamic behaviour which equips the model with predictive power [16]. 

However, it is important to emphasise that a model is not a real or exact representation of the 

biological system; rather, it is a simplified description to assist in analysis and to help us to 

better understand the real world. A mathematical model can be used to generate new 

insights, make testable predictions, identify gaps in our biochemical knowledge, test 

conditions that may be difficult to study in the laboratory and help identify what is right and 

wrong with our hypotheses, for example, could the proposed mechanism give the observed 

results? Ultimately, the purpose of a model is to increase our understanding of the real 

biological system, to identify the key components and processes and to predict biological 

behaviour such as what effect will a particular drug have on the system, or which components 

need to be disturbed for the system to behave in a specific way. 

 

Ordinary Differential Equations 

 

One of the most commonly used approaches to modelling biological systems is that of 

ordinary differential equations (ODEs). The technical definition of a differential equation is an 

equation involving one or more unknown functions and their derivatives. Essentially, a 

differential equation describes how a property of interest, such as [A] -- the concentration of 

A, changes over time; this is usually expressed by describing how the rate of change of the 

concentration is related to the concentration at that moment. For example, consider the 

simple reaction below which depicts the decay (or conversion) of A to B: 



 6

 

BA k→ =2      Equation 1 

 

This reaction is a plain uncatalysed reaction that can be modelled using mass action kinetics; 

k represents the rate constant of the reaction which in this example is equal to 2 mM/s. 

Therefore, the reaction proceeds at the following rate: 

 

][2][ AAkv ==     Equation 2 

 

As can be seen, the rate of the reaction (v) is dependent on the concentration of A, the higher 

the concentration of A the faster the rate will be and therefore the faster A will be consumed 

and the faster B will be produced. From the above equations it is relatively straightforward to 

construct differential equations representing the rate of change of the concentration of A and 

B over time: 

 

][][ Ak
dt
Ad −=   ][][ Ak

dt
Bd =   Equation 3 

 

In order to simulate the above reaction we also need to know the initial (time zero) 

concentrations of A and B, which in this example are set to be equal to 5 and 0 mM, 

respectively. Simulation uses numerical methods to solve the differential equations and 

approximate the change in concentration of all the species in a system over time. One of the 

simplest methods of numerical integration is Euler’s method, the basic idea of which is to 

approximate a curve with a series of straight lines tangential to the curve. The rate of change 

is the same as the slope of a line drawn tangent to the curve at that time; therefore, a series 

of these tangent lines can be used to follow the function over time. Euler’s method is a point-

slope type method as it uses an initial concentration (the point) and a differential equation (the 

slope) to monitor a species concentration over time. In practice this method involves using 

this initial slope for a very small finite step-size (∆t) in the time direction. The method is then 

repeated for another step-size using the result from the previous step as the new starting 

point. For example, the simple reaction above (Equation 1) was simulated using Euler’s 

method over two time steps (∆t) of 0.01 seconds; the calculations used to compute the 

concentration of A at these two time points is shown below (the extension of this example to 

longer periods of times is simple): 

 



 7

802.401.09.429.4)]02.0([
9.401.0525)]01.0([

5)]0([
2
01.0

)]([)]([)]([

=−=
=−=

=
=
=∆

∆−=∆+

xxA
xxA

A
k
t

ttAktAttA

 Equation 4 

 

Euler’s method described above is a very basic method of numerical integration. However, 

there are many more advanced methods such as the Runge-Kutta, Rosenbrock and 

Richardson extrapolation; for more information on the different methods of numerical 

integration methods see [17]. Furthermore, although the above example reaction (Equation 1) 

is both small and simple, differential equations can easily be used to model large biological 

systems involving many more species and reactions as well as more complex reaction 

mechanisms such as Michaelis-Menten kinetics. It is also important to note that when 

modelling a system comprising several biochemical species, each represented by a 

differential equation, ODE methods require simultaneous solving of all the differential 

equations that represent the system. 

 

The Modelling Process 

 

One way to view the actual process of modelling the behaviour of a biological system is to 

consider it as five distinct steps (Figure 4): 

 

Step 1) System Delimitation: this step involves selecting the biological system to be 

modelled, e.g. the EGF or NGF activated ERK cascade. More importantly it also includes 

identifying the biological question the model aims to answer, e.g. how do EGF and NGF 

produce differing responses in ERK activation?  

 
Step 2) Definition: this is the key step in the modelling process and is by no means trivial. It 

involves defining the model to represent the biological system of interest. Essentially, this 

involves drawing a detailed topological chart of the system that shows all the species (e.g. 

proteins) involved, what reactions they can participate in and where. The kinetic types for 

each reaction then need to be defined and the parameter data (e.g. rate constants and initial 

concentrations) assigned to give a set of detailed kinetic reactions. This definition step can 

involve exhaustive searches of the scientific literature to see what is already known about the 

system and what parameter data are already available as well as performing laboratory 

experiments to provide data or the use of computational techniques to estimate missing 

parameters (for example: [18]). It is important to note that many biological processes are very 

complex and not fully understood. Therefore, defining a model often involves making 

simplifying assumptions that reduce complex and poorly understood processes into simpler 
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ones that can still represent the biological processes well enough to explain the observed 

data. 

 
Step 3) Simulation: after the model has been defined, the next step is to translate the kinetic 

reactions into a set of differential equations that describe how the concentration of each 

species in the system changes over time; this set of differential equations is then simulated 

(or solved) over a desired period of time. This is a relatively straightforward step as there are 

many software tools available for the generation and simulation of models of biological 

systems that are based on differential equations (see below for more details on simulation 

tools). 

 
Step 4) Validation: simulating a model typically returns a table of data or curve showing how 

each species’ concentration varies over time. This data must then be validated against 

available experimental data. If the model behaves as the experimental data suggests then the 

model can be analysed further. If it does not, then the definition step must be revisited where 

the model is checked for errors such as incorrect kinetics or parameter data, over- 

simplifications of processes and perhaps missing components. In essence, this is a 

‘debugging’ loop involving model definition, simulation and validation where the model is 

refined in order to obtain behaviour which conforms with experimental observations. 

Sometimes the refinement already reveals useful information about the system. For instance, 

refining the mathematical model of STAT5 phosphorylation in response to erythropoetin 

receptor stimulation uncovered that the model can capture the experimental kinetics of 

STAT5 phosphorylation when a time delay was introduced to account for the shuttling of 

STAT5 between the nucleus and cytosol. This indicated that STAT5 cycles between the 

nucleus and cytosol, which subsequently was proven experimentally [19].  The validation step 

is crucial if a reliable model is to be generated; if the model’s results do not match known 

biology, we cannot trust predictions about unknown biology.  

 
Step 5) Analysis: after the model has been validated it can be analysed and the simulation 

results interpreted. Analysis can come in various forms from the simple examination of the 

species’ concentration graphs to more complex statistical analyses. Sensitivity analysis is a 

commonly used approach that studies the response of system variables to changes in 

parameter values and can therefore be used to identify the key reactions and species as well 

as monitoring how robust a model is. Essentially, sensitivity analysis works by varying the 

data for a parameter by a small amount and analysing what effect it has on a specific system 

variable, such as the peak height or duration of the phosphorylated ERK signal; a small 

change to a key parameter data is likely to have a large effect on the system variable. 

Different parameters can have widely different sensitivities and the sensitivity of a specific 

parameter can also vary depending on which system variable is considered. On the other 

hand, sensitivity analysis can also be used to estimate the impact of uncertainty in 
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parameters on system variables. Robustness is a very important factor in biological systems 

as it allows a system to absorb fairly large perturbations and still function reasonably well; this 

is because the functionally important behaviour of a system has a certain degree of resilience 

to damage. If a system variable has a low sensitivity with respect to a parameter, it is robust 

to alterations in that parameter, however caused. The structural robustness of a model can 

also be analysed by monitoring how it performs when parts of it are removed; for example, 

how does the system behave if a specific specie, reaction or entire pathway is removed. This 

can be useful because there is often redundancy in biological systems where multiple 

pathways are available for the production or activation of a certain protein. Overall, the 

analysis step aims to generate new predictions and hypotheses about biological processes 

that were not known or unproven before thus increasing our overall understanding of the 

system itself. 

 

Computational Tools 
 

Currently, there a number of software tools available for the simulation and analysis of 

differential equation based models of biological systems such as Gepasi [20], E-CELL [21], 

Virtual Cell [22], GENESIS [23] combined with Kinetikit [24], Jarnac combined with JDesigner 

[25], Mathematica (Wolfram Research, http://www.wolfram.com/) and Matlab (Mathworks, 

www.mathworks.com); for a recent review of simulation tools see [26]. The majority of these 

tools have a graphical interface that permits the user to enter the biochemical reactions and 

kinetic constants which the tool then uses to automatically generate the corresponding ODEs 

and simulate the model. Some have a number of advanced features to visualise and analyse 

models, display simulation results and also estimate missing parameter data. Furthermore, 

the majority of tools now support the Systems Biology Markup Language (SBML; 

www.sbml.org) [27] which is concerned with introducing a standard representation of models 

of biological systems. This enables models to be shared, evaluated and developed 

cooperatively as well as enabling the use of multiple tools without having to rewrite models for 

each tool; a full list of SBML compatible modelling tools is available from the SBML website. A 

recommendable website for the novice is the pathway model repository of the Silicon Cell 

project (http://www.jjj.bio.vu.nl/index.html; [28]). Via an interactive webpage, pathway models 

can be viewed and the effects of changes in kinetic parameters can be simulated.  
 

ERK Models 

 

The ERK cascade is one of the most important cell signalling pathways and has been the 

subject of intensive study in the laboratory and more recently through mathematical modelling 

techniques. Early mathematical models of the ERK cascade focused on investigating the 

properties and behaviour of the core cascade itself. The first model was published in 1996 by 

Huang & Ferrell [29] and showed that the ERK cascade exhibited ultrasensitivity, i.e. a non 
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linear sigmoid activation curve, with the degree of ultrasensitivity increasing as one moves 

down the cascade. This was quickly followed by two models in 1997 [30, 31] that showed that 

the activating dual phosphorylation of ERK itself was accomplished via a two-collision, 

distributive mechanism whereby MEK phosphorylates one site, dissociates and then has to 

rebind to phosphorylate the second site. This generates a pool of largely single 

phosphorylated, i.e. inactive ERK molecules, which appears as a gentle response curve. 

When enough single phosphorylated ERK molecules have accumulated, most further 

phosphorylation events produce double phosphorylated, i.e. active ERK, causing the slope of 

the activation curve to increase sharply and steeply. This provided a mechanistic basis for the 

ultrasensitivity of ERK activation and explained how ERK can convert graded inputs into 

switch-like outputs [31]. Then in 1998, Ferrell and Machleder [32] using Xenopus oocytes 

showed that because of ultrasensitivity, ERK is activated essentially in an all-or-none fashion 

in individual cells when they are treated with increasing concentrations of progesterone. Thus, 

the apparently graded concentration dependent response curve observed when a whole cell 

population was analysed, actually was composed of increasing numbers of responders 

versus non-responders on the level of the individual cells. Over the past decade, an ever 

increasing number of models of the ERK cascade have been developed, growing in both size 

and complexity through the years. Models now routinely incorporate growth factor receptors 

and the plethora of adaptor proteins that can bind to them and subsequently activate the ERK 

cascade. Currently, there are over thirty mathematical models that in some way incorporate 

the ERK cascade (Figure 5). These models have been used to investigate various aspects of 

the biological behaviour of this system such as bistable feedback loops [24, 33], oscillations 

[34], feedback inhibition [35], autocrine loops [36, 37], scaffold proteins [38, 39], feedback 

effects [40], temperature dependence [41], receptor internalisation [42], signal specificity [43], 

receptor expression [44], robustness [45], crosstalk [46], receptor trafficking [47, 48], memory 

[49], bistability and hysteresis [50], Ras activation [51], receptor regeneration [52], receptor 

comparison [53] and temporal dynamics [54]. For a recent review of the relationships between 

some of these ERK models see [55] or for more general reviews of models of cell signalling 

pathways see [56-58]. 

 

The most common growth factor receptor that is currently incorporated into models of the 

ERK cascade is the Epidermal Growth Factor Receptor (EGFR); for a recent review of 

models of the EGFR system itself see [59]. This is because the EGFR system has been well 

studied, is present at substantial levels in various cell types, and good antibodies and 

molecular reagents are widely available enabling a range of quantitative studies to be 

performed. We have selected three popular models of the ERK cascade encompassing the 

EGFR system for discussion in detail below; we review what each model considers and more 

importantly what biological insights and predictions they have led to. Our selection of models 

is a good representation of the existing models; they are spread over the timeline, are ODE 

based and represent the same biological system and are therefore directly comparable.  
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Additional information on the models including links to simulation files is available at: 

http://www.brc.dcs.gla.ac.uk/~rorton/mapk/. 

 
Model 1: Kholodenko et al. 1999 
 
Kholodenko et al. (1999) [60] developed an ODE based mathematical model of the EGFR 

signalling network to investigate the short term pattern of cellular responses to EGF in 

isolated rat hepatocytes. The model consists of 25 reactions involving 23 different species 

(Figure 6) and includes three adaptor proteins that can directly interact with phosphotyrosine 

residues on EGFR (namely Shc, Grb2 and phospholipase C gamma [PLCγ]). The kinetic 

parameters in the model were based on the scientific literature and/or derived from basic 

physical-chemical quantities. In order to effectively validate the model before analysis, a 

number of wet laboratory experiments were performed such as time courses of EGFR 

phosphorylation and EGF-induced tyrosine phosphorylation of adaptor proteins. The 

simulation was then compared to these data to show that the model gives a good fit to the 

experimentally observed time courses.  

 

Analysis of the model showed that the rapid, and short-lived pattern of EGFR phosphorylation 

can be explained by the fact that bound adaptor proteins protect receptor phosphotyrosine 

residues against dephosphorylation by tonically active phosphatases, rather than having to 

invoke the activation of tyrosine phosphates by the receptor [61]. The protection of 

phosphotyrosines from dephosphorylation is transient as bound adaptors turn over and allow 

dephosphorylation of receptors. This kinetic model also explains why the levels of 

phosphorylated adaptors such as Shc, which becomes phosphorylated when recruited to the 

receptor, stays high even when receptor phosphorylation already has declined. Sensitivity 

analysis of the model showed that the dynamics of the EGFR signalling pathway appeared to 

be robust to significant changes in many of the rate constants of the protein interactions 

involved. Interestingly, however, the time course of phosphorylation/activation responses to 

EGF appeared to be more sensitive to variations in the relative concentrations of adaptor 

proteins than to most variations of the kinetic constants. In particular, the Shc:Grb2 ratio was 

suggested to be an important controlling factor of the kinetics of the EGFR signalling 

response. This finding can be explained by the competition between adaptor molecules 

during the formation of multiprotein signalling complexes. It also highlights that changes in the 

expression levels of adaptor proteins are potent modulators of EGF receptor signalling 

providing a rational basis for the observation that many adaptor proteins when 

overexpressed, or stabilised through mutations, can usurp the EGFR mitogenic signalling 

pathways efficiently and act as oncogenes. Obviously, this finding also has bearings for 

normal physiology because various cell types and also cells in different functional states can 

show considerable variation in the abundance of signalling proteins. 
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Technically, this model does not include the core ERK cascade of Raf, MEK and ERK in its 

description as it only goes down as far as the Ras guanine nucleotide exchange factor SOS. 

However, this model was a pacemaker for the field in several ways. It included the feedback 

between theoretical prediction and experimental validation, which now is deemed essential for 

modern systems biology. It also was one of the first models to incorporate the EGF receptor 

with its associated adaptor proteins and it does predict a transient recruitment of SOS to 

EGFR at the plasma membrane where Ras is located. This transient recruitment of SOS is 

therefore predicted to give rise to a transient activation of Ras and the ERK cascade as 

expected for an EGF response. No wonder, this model has been used as a basis for many 

other models of the EGFR system which do include the core ERK cascade (for example: [42, 

46]). 

 

Model 2: Brightman & Fell (2000) 

 

Brightman & Fell (2000) [35] developed an ODE based mathematical model of the EGF signal 

transduction pathway in PC12 cells to investigate the factors influencing the kinetics of ERK 

cascade activation. Their model consists of 30 reactions involving 29 species (Figure 7) and 

includes a self contained module of the activation and internalization of EGF receptors 

induced by EGF. Through the phosphorylation of Shc, activated receptors can then initiate an 

intracellular signal transduction pathway that results in the activation of Ras and ultimately a 

cytosolic ERK cascade comprising Raf, MEK and ERK. Feedback regulation of the pathway is 

mediated by the inhibitory phosphorylation of SOS which causes the dissociation of the 

Shc/Grb2/SOS complex. The kinetic constants of reactions and initial concentrations of 

species were largely based on a range of measured or estimated values published in the 

existing scientific literature. 

 

The analysis of this model indicated that negative feedback inhibition of the ERK cascade 

was the most important factor in determining whether the cascade activation was transient or 

sustained, and that differences in feedback regulation were likely to underlie the characteristic 

patterns of EGF and NGF induced ERK activation in PC12 cells. In the model, EGF initially 

activates Ras and the ERK cascade via formation of the Shc/Grb2/SOS signalling complex. 

This signal is rapidly terminated through the negative feedback phosphorylation of SOS, 

resulting in the dissociation of the Shc/Grb2/SOS complex. However, the analysis showed 

that the dephosphorylation of SOS (reaction number 28 in Figure 5) was one of the most 

important steps in determining the duration of the signal and that only a 40 fold increase in the 

rate of this reaction generated a time course of ERK cascade activation similar to that 

observed when PC12 cells are stimulated with NGF rather than EGF. This suggests that 

NGF, but not EGF, could enhance phosphatase activity towards phosphorylated SOS, 

resulting in sustained signalling through the Shc/Grb2/SOS complex and therefore a 

sustained activation of MEK and ERK. This model drew attention to the importance of the 
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regulation of the Ras family proteins as critical regulators of the kinetics of ERK signalling. An 

elegant and elaborate analysis confirming and significantly extending these results was 

recently presented [54], showing that the activation kinetics of Ras and its relative Rap1 can 

account for the differences in ERK activation in response to EGF versus NGF. 

 

Model 3: Schoeberl et al. (2002) 
 
Schoeberl et al. (2002) [42] developed an ODE based mathematical model describing the 

dynamics of the EGF signal transduction pathway to investigate the effects of receptor 

internalization on the ERK cascade, and also the signal-response relationship between the 

binding of EGF to its receptor at the cell surface and the activation of downstream proteins in 

the signalling cascade. Their model consists of 125 reactions involving 94 species (Figure 8) 

advancing model building by including two principal pathways of Ras activation, Shc-

dependent and Shc-independent, as well as EGFR internalisation by endocytosis. Receptor 

internalisation is comprehensively represented in the model with receptor species able to 

become internalised via two distinct routes. The majority of kinetic parameters were based on 

values published in the scientific literature and initial concentrations were either compiled from 

the literature or based on laboratory experiments. 

 

This model is one of the most comprehensive available as it includes a large range of 

dynamic processes. A main conclusion of the modelling is that it is the initial rate of change of 

receptor activation that determines the cellular response to EGF. Varying the concentration of 

EGF, analysis of the model suggested that the cell maintains a high sensitivity over a 

relatively broad EGF concentration range and that the initial velocities of EGFR activation 

rather than the peak maxima are important for signal propagation. The model was also used 

to investigate the roles of internalized and cell-surface receptors in generating a cellular 

response leading to the conclusion that EGF receptor internalization has a dual role: (1) 

signal attenuation by protection from prolonged external EGF stimulation at high EGF 

concentrations; and (2) signal amplification after internalization at low EGF concentrations. 

The analysis of sensitivity showed that the model was robust to variation in the parameters 

and initial conditions.  

 

Model Comparison 

 

It is interesting to note that although the three models discussed above are describing the 

same biochemical system, namely the EGF regulated ERK pathway, they are all different and 

yet seem all to be able to explain the observed data, and also make interesting predictions 

about the system’s behaviour. This leads to the inevitable question of how is it possible for 

different models of the same system to all be both correct and reliable? This is a very 

important question, as the implications are enormous. Does it condemn modelling into the 
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realm of reproducible artefacts, or does it demonstrate that modelling can give valid answers 

even in the light of different approaches, incompleteness and imperfect data?  We do not 

know the definite answer yet, but all indications point to the latter possibility. Although the 

three models do differ, they do not do so to a great extent and many of the differences can be 

accounted for by simplifications and where the model boundaries lie; a direct comparison of 

the size and features of the three models is presented in Table 1.  

 

One interesting aspect is that the Brightman & Fell (2000) [35] model utilises a different 

strategy of dealing with activated receptors when compared to the Kholodenko et al. (1999) 

[60] and Schoeberl et al. (2002) [42] models. In the Brightman & Fell (2000) model, activated 

receptors simply catalyse the phosphorylation of Shc. However, the other two models utilise a 

more realistic receptor complex strategy where adaptor proteins such as Shc have to bind to 

activated receptors and stay bound in order for the signal to propagate. These two different 

strategies have led to different predictions as to the basis of the transient signal response to 

EGF. In the Brightman & Fell (2000) model, Shc is phosphorylated by activated receptors 

enabling it to bind Grb2 and SOS before activating Ras and the core ERK cascade; the 

Shc/Grb2/SOS complex is a functional complex and does not need to bind to the receptor. 

The transient nature of the EGF response is in part caused by the negative feedback 

phosphorylation of SOS by activated ERK (ERKPP) resulting in the dissociation of the 

Shc/Grb2/SOS complex and therefore stopping the activation of Ras and the core ERK 

cascade. Whereas in the Kholodenko et al. (1999) model, Shc followed by Grb2 and SOS 

rapidly bind to activated receptors, which would enable the activation of the membrane bound 

Ras and the core ERK cascade. However, the receptor bound Shc/Grb2/SOS complex then 

dissociates and there is a build up of this unbound complex. As unbound receptors are 

exposed to phosphatases and are rapidly deactivated, a transient response can result without 

the need for a negative feedback loop. 

 

The boundary of a model is essentially the point or points at which the model stops; the model 

does not consider and therefore define the biological processes beyond these points. The 

decision of where the boundary lies is typically determined by what biological processes and 

questions the model is intended to investigate and answer. A good illustration of model 

boundaries is given by the comparison of the Kholodenko et al. (1999) model to the 

Schoeberl et al. (2002) model. Both models have a similar general structure as they 

essentially have the same Shc-dependent and Shc-independent pathways, and utilise a 

receptor complex strategy. However, the Kholodenko et al. (1999) model includes the PLCγ 

pathway whereas the Schoeberl et al. (2002) model includes the ERK cascade and receptor 

internalisation. This is because the Kholodenko et al. (1999) model was designed to 

investigate the short term pattern of cellular responses to EGF through EGFR and its adaptor 

proteins; therefore only the receptor proximal events were included. In contrast, the Schoeberl 

et al. (2002) model was designed to investigate the downstream effects of EGFR activation as 
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well as the effects of receptor internalization on the ERK cascade This illustrates an 

experimental design strategy for reductionism that is familiar to the biologist: depending on 

the question that is the focus of the investigation, the experimental system is simplified in the 

way most appropriate to address the question at hand. 

 

Simplifications in a model can come in many forms and typically involve the simplification of 

biological processes or events to reduce the number of reactions needed in the model whilst 

still being able to represent the biological processes well enough to explain the observed 

data. The classic example of a simplification is the activation of Raf by Ras-GTP. Ras-GTP 

recruits Raf from the cytosol to the plasma membrane, where it is activated through a still not 

completely known process that involves interaction with adaptor proteins, lipids and changes 

in phosphorylation. However, this complex process has been effectively represented in many 

models of the ERK pathway as a simple two step process: Ras-GTP + Raf <-> Ras-GTP/Raf 

-> Ras-GTP + Rafx. Other simplifications can be found when examining, for example, the 

Schoeberl et al. (2002) model: (1) Only one member of the EGFR family is considered; (2) 

EGFR dimers are considered as single molecules; (3) The binding of the adaptor proteins Shc 

and Grb2 to EGFR is assumed to be competitive; and (4) GAP must be bound to the EGFR 

before any other adaptor proteins can bind. 

 

There may also be some biological inaccuracies in the models discussed. In the Brightman & 

Fell (2000) model, single phosphorylated MEK is able to phosphorylate ERK and ERKP; this 

is probably irrelevant as single phosphorylated MEK species have not been observed 

Moreover, mutating one of the two phosphorylation sites in MEK abrogates activation 

suggesting that only double phosphorylated MEK is active [62]. In the Schoeberl et al. (2002) 

model there is an apparent inactive active form of Ras called Ras-GTP* (species 43/71 in 

Figure 8). The role of this Ras-GTP* is to limit the number of Raf molecules Ras-GTP can 

activate to one. However, this is probably an artificial and incorrect assumption as Ras is 

either active in its GTP bound state or inactive in its GDP bound state. There is no in-

between, and there is no evidence that the number of Raf molecules Ras-GTP can activate is 

limited (for a review of Raf activation, see [63]) Although, these are not major errors it could 

be viewed as a concern that models with apparent errors can still explain the observed data 

and be used to make valid predictions about the biological system. However, as robustness 

seems to be an inherent and ubiquitous property of biological systems [64] the robustness of 

the models to tolerate small errors may simply reflect the biological property. From a 

pragmatic point of view, it could be viewed as an advantage as models, despite not being 

perfect, can be used to suggest interesting new hypotheses and explanations for the 

observed data that challenge our current understanding, which is by no means complete. 

Importantly, these predictions need to be verified experimentally in the laboratory.  
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After a model has been completed it can easily be modified or expanded upon and used in 

the development of new models of the same or related biological systems. For example, the 

Kholodenko et al. (1999) model has been used as a basis for many other models of the 

EGFR system [41, 46, 48, 51]. The Brightman & Fell (2000) model has since been analysed 

further by [65] who investigated the effects of a number of MEK inhibitors in this system, and 

it was also used in the development of other models of the ERK cascade [44, 52]. The 

Schoeberl et al. (2002) model has since been analysed further in a number of studies [66-69], 

for example, [66] investigated the relevance of the Shc-dependent and Shc-independent 

pathways; it has also been combined with data on metalloprotease activation to build a model 

of autocrine signal transduction by cancer cells exposed to ionizing radiation [70]. 

 

Alternative Receptor Systems 
 

Although the EGFR is the most common growth factor receptor system modelled together 

with the ERK cascade, other growth factor receptors have also been successfully modelled. 

Bhalla et al. (2002) [33] developed an ODE based model of the Platelet Derived Growth 

Factor (PDGF) activated ERK cascade revealing novel and interesting design principles of 

this network, in particular that ERK activation can operate in different states depending on the 

history of the cell. The first application of PDGF to a naive cell induces a bistable, switchlike 

ERK activation response, where even a brief stimulus results in sustained ERK activity. As 

part of this response the expression of MKPs is induced. Thus, when the cells are 

restimulated with PDGF after the initial ERK activation has returned to baseline, there is a 

higher level of MKPs in the cell, causing ERK activation to proceed in a monostable fashion 

with the ERK activity increasing proportionally with the dose of PDGF. Qiu et al. (2004) [52] 

developed an ODE based model of the NGF activated ERK cascade and suggested that the 

sustained behaviour of the response was mainly due to a continual regeneration of NGF 

receptors. Yamada et al. (2004) [53] developed ODE based models of the EGF and 

Fibroblast Growth Factor (FGF) activated ERK cascade and proposed that the protein FRS2 

plays a key role in generating the sustained behaviour of the FGF response by recruiting 

more SOS to the plasma membrane; furthermore, they found that the negative feedback 

system in the model did not profoundly affect the time course of ERK activation. In one of the 

most recent models, Sasagawa et al. (2005) [54] developed an extensive ODE based model 

of the EGF and NGF activated ERK cascade in PC12 cells. This model is amongst the most 

comprehensive to date as it includes both the Ras and Rap1 pathways to ERK activation and 

combines theoretical predictions with experimental validation. The model was used to 

investigate how EGF and NGF encode transient and sustained dynamics of ERK activation, 

respectively. A salient finding was that the transient activation of ERK depended on the rate of 

receptor activation rather than the concentration of the growth factors. In contrast, sustained 

ERK activation by NGF depended on the final concentration of NGF, but not the temporal rate 

of increase in NGF concentration. These diverse response modes are due to differences in 
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Ras and Rap1 inactivation. Ras, which mediates transient ERK activation, is inactivated by 

the receptor induced recruitment of Ras-GAP to the membrane resulting in a stringent 

temporal regulation of Ras activity. In contrast, Rap1, which in this model is responsible for 

sustained ERK activation via stimulation of B-Raf, is inactivated by Rap-GAP, which is not 

regulated by growth factors, but functions constitutively. Thus, the activation of Rap1 

becomes a function of the NGF concentration. In this model the Ras and Rap1 pathways 

capture the temporal rate of increase and concentration of growth factors and encode these 

distinct properties into transient and sustained ERK activation, respectively.  
 

Alternative Modelling Methods 

 

Although ODEs are commonly used to model biological systems such as the ERK cascade 

they have one major drawback and that is they are reliant on high frequency sampling and 

absolute parameter data being available, such as detailed kinetic rates and absolute initial 

concentrations. However, a lot of the data generated by biologists, including data generated 

from high-throughput techniques, are not directly amenable to modelling as they often 

contains sparse time series, are qualitative rather than quantitative and show relative changes 

rather than changes in absolute concentrations. Furthermore, as there is only very little 

standardisation of measurements, data from different laboratories usually can only be 

compared in a semiquantitative or qualitative fashion [16]. However, although high frequency 

and absolute data is required if one wants to produce a near exact replica of the experimental 

system, it is often not necessary to know every single parameter with high accuracy due to 

issues such as variable sensitivity. Therefore, ODE based models can readily be used to 

assess whether the system is capable of showing specific qualitative features such as 

oscillations. In addition, there are also a number of techniques to estimate missing parameter 

data in a model (for example: [18]) which typically work by varying the missing parameters 

values until the expected behaviour is obtained. An alternative method developed by Brown et 

al. (2004) [71] used an ensemble approach to model complex signalling networks, namely the 

NGF and EGF activated ERK cascade; these models also included both the Ras and Rap1 

pathways. Instead of using kinetic parameters, which are commonly not available, the 

ensemble method was used to match the model to experimental time courses of the activities 

of signalling molecules which then generates an ensemble of weighted parameters which can 

then be used to analyse the model. This model was used to evaluate the importance of 

different regulatory loops in generating a sustained activation of ERK. Furthermore, this 

approach suggested that only a small fraction of parameter combinations are likely to be well 

constrained and that the few well-constrained parameters reveal critical focal points in the 

signalling network. Two additional approaches are Flux Balance Analysis (FBA; [72]) and 

Metabolic control analysis (MCA; [73]). FBA is an approach to constrain a metabolic network 

based on the stoichiometry of the metabolic reactions and does not require kinetic 

information. MCA is a quantitative sensitivity analysis of fluxes and concentrations; the 
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relative control exerted by each step on a system variable is measured by applying a 

perturbation to the step and measuring the effect on the variable of interest after the system 

has settled to a new steady state. It is important to note that FBA and MCA are essentially 

analyses of the steady state, and are therefore less suited to the dynamic aspects of signal 

transduction; however, MCA has recently been extended to the dynamics of signal 

transduction [74]. 

 

There are also a number of alternative approaches to ODEs that can be used to model and 

analyse biological systems. Resat et al. (2003) [48] developed one of the largest models of 

the EGFR system to date using a probability weighted-dynamic Monte Carlo stochastic 

simulation. They developed an integrated model of both the trafficking and signalling 

components of the EGFR system that consisted of hundreds of distinct endocytic 

compartments and ~13,000 reactions that occurred over a broad spatio-temporal range. The 

signalling component of this model consisted of the ODE model developed by Kholodenko et 

al. (1999) [60], highlighting that ODE based models can be utilised by other modelling 

techniques. Pi-calculus [75] has successfully been used to model biological systems, with 

molecules and their domains represented by computational processes, and reactions by 

communication and rearranging the communication channels. Further developments in this 

area include stochastic Pi-calculus [76] and the hybrid system BioSPi 

(http://www.wisdom.weizmann.ac.il/~biospi/).  

 

Petri nets are another class of innovative modelling notations used to analyse biological 

systems [77]. In this approach biological networks are represented by intuitively readable but 

strictly formalized graphical diagrams (of molecules and connecting reactions) that are directly 

subjected to algebraic analysis.  For example, Oliveira et al. (2004) [78] constructed an 

algebraic-combinatorial model of the SOS compartment of the EGFR system by using a Petri 

net approach. Extended petri net approaches that incorporate both discrete and continuous 

state transitions (hybrid function Petri nets) combine the powerful simulation capabilities of 

differential equations with the formal logical analysis available in the Petri net computations 

[79-83]. The Biochemical Abstract Machine BIOCHAM [84, 85] is a programming environment 

for modelling biochemical systems, making simulations and querying the model in temporal 

logic, which allows the behaviour of a model to be checked against biological predictions 

expressed in logical statements. The interface is based on a simple language for representing 

biochemical networks. BIOCHAM provides mechanisms to reason about the reachability of 

certain states, the existence of stable states, and some types of temporal behaviour (e.g. 

oscillations). An alternative algebraic modelling and analysis approach is proposed in [86] 

where the stochastic process algebra PEPA was used to model the ERK signalling pathway. 

The main advantage of algebraic modelling techniques such as these lies in their ability to 

systematically reason over structural properties such as the interaction of sub-networks (for 

example crosstalk) and the behavioural equivalence of different networks. 
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Future Directions 

 

Signalling pathways have traditionally been drawn as separate linear entities reflecting the 

history of how they were discovered rather than their functional context. However, signalling 

pathways are extensively interconnected and embedded in networks with common protein 

components and a multitude of links and crosstalk between pathways. Due to the complexity 

of these networks, computational methods are required in order to explain in detail how they 

function and predict possible behaviours. Over recent years, the computational or 

mathematical modelling of biological systems has becoming increasingly valuable and can 

provide useful information to understand their behaviour. The ERK cascade is currently one of 

the most popular systems to be modelled as it is one of the most intensely studied signalling 

pathways and has also been implicated in various diseases. Currently, there are many 

differential equation based models of the ERK cascade that have been used to investigate 

various aspects of its biological behaviour and have led to some novel insights and 

predictions as to how this system functions. However, no two models appear to be the same 

topologically or dynamically as they consider different biological processes and components, 

use different representations and have different kinetic properties. Over the years, models 

have increased in both size and complexity. The first model of the ERK cascade [29] only 

considered the core cascade itself, whereas the most recent model [54] considered both the 

EGF and NGF receptors, numerous adaptor proteins and both the Ras and Rap1 pathways 

leading to the activation of the ERK cascade, as well as numerous feedback loops.  

 

Coupled with the increase in the number, size and complexity of mathematical models is an 

increase in the number of techniques and software tools available to simulate and analyse 

them. Although differential equation methods are currently the most widely used, there are a 

number of good alternatives available and a number of promising alternatives in development. 

The adoption of some sort of unifying standard, such as SBML, for all published models of 

biological systems would now be a welcome development enabling models to be shared and 

evaluated with ease and thus eliminating the need to painstakingly recreate models based on 

static tables of supplementary data and compared to simulation graphs in papers. To this end, 

the BioModels database (www.ebi.ac.uk/biomodels; [87]) was recently launched and aims to 

be a curated database for the deposition of models of biological systems in an SBML format. 

Similarly, the recently founded Receptor Tyrosine Kinase (RTK) Consortium 

(http://www.rtkconsort.org) is an international research effort to advance the understanding of 

RTK signalling systems including the MAPK pathways through a combination of mathematical 

modelling and quantitative biological experimentation. Thus, with the first steps accomplished 

we now can expect quantitative biology to rapidly gain momentum. 
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Tables 

 

 Kholodenko et al., 
(1999) 

Brightman & 
Fell (2000) 

Schoeberl et al., 
(2002) 

Cell Line Rat Hepatocytes PC12 HeLa 

Reactions 25 30 125 

Species 23 29 94 

Receptor Complex Strategy YES NO YES 

Receptor Internalisation NO YES YES 

Receptor Degradation NO NO YES 

Shc-dependent Pathway YES YES YES 

Shc-independent Pathway YES NO YES 

PLCγ Pathway YES NO NO 

Core ERK Cascade NO YES YES 

Negative Feedback Loop NO YES NO 

 
Table 1: Comparison of the size and features of the selected models 
This table contains a direct comparison between the three selected models: Kholodenko et al. 

(1999) [60], Brightman & Fell (2000) [35] and Schoeberl et al. (2002) [42]. The comparison 

criteria are defined as followed (more details can be found in the text below): Cell Line: the 

cell line the model is based on; Reactions: the number of reactions in the model; Species: the 

number of biochemical species in the model; Receptor Complex Strategy: whether adaptor 

proteins have to bind to the EGF receptor for the signal to propagate; Receptor 

Internalisation: the process of internalisation of receptors from the plasma membrane; 

Receptor Degradation: the process of degradation of internalised receptor; Shc-dependent 

pathway: the pathway comprising Shc, Grb2 and SOS leading to the activation of Ras; Shc-

independent pathway: the pathway comprising Grb2 and SOS leading to the activation of Ras 

(i.e. Shc not required); PLCγ Pathway: the pathway comprising the reactions of the adaptor 

protein PLCγ; Core ERK Cascade: the Raf, MEK and ERK cascade; Negative Feedback 

Loop: the negative feedback  phosphorylation of SOS by ERKPP. 
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Figure Legends 

 

Figure 1: Kinase / Phosphatase signalling reaction 

A phospho – group is transferred from a nucleotide to a serine, threonine or tyrosine residue 

of a target protein (T). The reaction is catalysed by a kinase. The phosphorylated target 

protein (T-P) is in turn dephosphorylated by a phosphatase to complete the cycle. 

Phosphorylation of a protein often entails conformational changes that modulate the function 

of the protein. Phosphorylation of MEK, e.g. activates the kinase domain of the enzyme. MEK 

then catalyses the phosphorylation and, as a consequence thereof, activation of MAPK.  

 

Figure 2: General structure of the three tiered cascade of the MAPK pathway 

A signal is propagated along this cascade by sequential phosphorylation as described in the 

text. 

 

Figure 3: Structure of the ERK pathway 

Upon ligand binding receptor tyrosine kinases (RTK) autophosphorylate (phosphates are 

shown as red circles) on tyrosine residues, which serve as docking sites for adapter and 

signalling molecules. Ras and Rap1 are activated by the recruitment of Guanosine nucleotide 

exchange factors (SOS, C3G) via adaptor proteins (Shc and Grb2; Crk). Ras can activate 

Raf-1 and B-Raf, Rap1 presumably can activate B-Raf. Raf proteins phosphorylate and 

activate MEK-1/2, which in turn activate ERK-1/2 (indicated by black arrows). Negative 

feedback loops (indicated by red lines) include the induction of MAPK phosphatases (MKPs) 

by ERK as well as the inhibitory phosphorylation of Raf-1 and SOS. 

 

Figure 4: The Five Steps of Modelling 

This diagram depicts the five steps involved in modelling a biological system. The first step is 

identifying the biological system to model, followed by actually defining the model to represent 

the system, simulating the model and validating the simulation results. If the model is valid it 

can be analysed further, if it is not the definition step is revisited where the model is checked 

for various types of errors. For more information on each of the steps see the accompanying 

text. 

 

Figure 5: Timeline of ERK Models 

This diagram is a timeline of mathematical models that in some way incorporate the ERK 

cascade. Models are represented as ovals labelled with the name of the first author and 

located above the year they were published. White ovals represent models of the core ERK 

cascade whereas grey ovals represent larger models generally including growth factor 

receptors, adaptor proteins as well as the ERK cascade itself. Models highlighted in red are 

the models we have selected for discussion in detail below.  1996: Huang [29]; 1997: Burack 

[30], Ferrell [31]; 1998: Ferrell [32]; 1999: Bhalla [24], Kholodenko [60]; 2000: Brightman [35], 
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Kholodenko [34], Levchenko: [38]; 2001: Asthagiri [40], Gonzalez [88]; 2002: Bhalla [33], 

Moehren [41], Schoeberl [42], Shvartsman [36], Somsen [39], Swain [43]; 2003: Aksan [44], 

Hatakeyama [46], Hendriks [47], Resat [48], Bluthgen [45], Cho [89], Xiong [49]; 2004: Maly 

[37], Markevich [51], Oliveira [78], Qiu [52], Yamada [53], Chapman [90], Markevich [50]; 

2005: Aksan [91], Perez-Jimenez [92], Oney [93], Sasagawa [54]. 
 

Figure 6: Kholodenko et al. (1999) Model Diagram 
This schematic representation of the Kholodenko et al. (1999) model of EGFR signalling 

mediated by adapter and target proteins is taken from the original publication. 

 

Figure 7: Brightman & Fell (2000) Model Diagram 

This schematic representation of the Brightman & Fell (2000) model of EGF signal 

transduction is taken from the original publication. In this schema, GS represents the 

Grb2/SOS complex. 

 

Figure 8: Schoeberl et al. (2002) Model Diagram 
This schematic representation of the Schoeberl et al. (2002) model of the EGF receptor 

induced ERK kinase cascade is taken from the original publication. 



 28

Figures 

 

 

Figure 1 



 29

 

 

Figure 2 



 30

 

 
 

Figure 3 



 31

 

 
 

Figure 4 



 32

 

 
 

Figure 5 



 33

 

 
 

Figure 6 



 34

 

 
 

Figure 7 



 35

 

 
 

Figure 8 
 


