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Abstract. Differential equations are a classical approach for biochemi-
cal system modelling and have frequently been used to describe reactions
of interest in biochemical pathways. Process algebras have also been ap-
plied in a small number of cases to describe such systems. In this paper
we establish a connection between these approaches. This has the benefit
of allowing process algebra models to be validated against trusted ODEs
or, conversely, allowing ODEs derived from process algebra models to
be evaluated and compared using bisimulation or other methods. In ad-
dition the process algebra models may now be efficiently solved using
numerical differential equations procedures such as adaptive fifth-order
Runge-Kutta.

1 Introduction

In recent years there has been some interest, and success, in applying formal
system description techniques which originate in theoretical computer science
to modelling biomolecular systems [9, 10, 7]. These description formalisms come
equipped with apparatus to manipulate and reason about descriptions and for-
mally extract underlying mathematical models. Thus analysis may be carried
out in a rigorous manner. This is in contrast to mathematical models being
developed directly, based on experimental data and modeller experience, but
without formal underpinning.

In the case of one class of formalisms originating in computer science, pro-
cess algebras, work so far has been focused on deriving stochastic simulations
from the system description, based on Gillespie’s algorithm [6]. In this paper we
present an alternative use of process algebra models: to automatically generate
systems of ordinary differential equations (ODEs) for models of intracellular sig-
nalling pathways. In some circumstances this is still the mathematical model of
preference. There are several advantages to be gained by introducing a process
algebra model as an intermediary to the derivation of the ODEs.

– The formal nature of the process algebra means that it is relatively straight-
forward to write a program to automatically generate the equivalent set of
ODEs (one for each substrate), thus reducing the potential for human error.



Indeed we have already done so. Many signalling pathways have tens of sub-
strates, resulting in tens of ODEs within the model. It can be challenging to
accurately derive such a system by hand.

– Furthermore the formality of the process algebra model and its underlying
semantics allow us to derive properties of the model, such as freedom from
deadlock, before numerical analysis is carried out.

– Finally, an algebraic formulation of the model makes clear the interactions
between the biochemical entities, or substrates. This is not always apparent
in the classical ODE models. The style of modelling is descriptive, closely
related to informal graphical representations that biochemists already use.
Thus a change in the hypothesised network can often be much more readily
made in the process algebra model than in the set of ODEs, where the change
may have a pervasive impact.

The process algebra which we use is Hillston’s PEPA [8], a Markovian process
algebra which incorporates activity durations and probabilistic choices.

The most fundamental cellular processes are controlled by extracellular sig-
nalling [5]. This signalling, or communication between cells, is based upon the
release of signalling molecules, which migrate to other cells and deliver stimuli
to them (e.g. protein phosphorylation). Cell signalling is of special interest to
cancer researchers because when cell signalling pathways operate abnormally,
cells divide uncontrollably.

The remainder of the paper is structured as follows. In the following section
we introduce the process algebra which we use, PEPA and demonstrate its use to
describe a simple synthetic system. In Section 3 we explain how a system of ODEs
may be derived from suitable PEPA models. We demonstrate the technique on a
larger, realistic network in Section 4 and we conclude and offer some perspectives
on future work in Section 5.

2 PEPA

Primarily, PEPA has been used to determine performance-related problems such
as bottlenecks and hotspots in the design of information systems. As in all process
algebras, systems are represented as the composition of components or agents
which undertake actions. In PEPA the actions are assumed to have a duration,
or delay. Thus the expression (α, r).P denotes a component which can undertake
an α action, at rate r to evolve into a component P . PEPA is termed a Marko-
vian process algebra because the duration associated with an action is usually
assumed to be a random variable with a negative exponential distribution. Thus,
r is the parameter of the corresponding distribution function (F (t) = 1− e−rt).
However, as we will see in this paper, other interpretations of the rate informa-
tion are also possible.

PEPA has a small set of combinators, allowing system descriptions to be
built up as the concurrent performance and interaction of simple sequential
components. We informally introduce the syntax below. More detail can be found
in [8].



Prefix: The basic mechanism for describing the behaviour of a system with
a PEPA model is to give a component a designated first action using the prefix
combinator, denoted by a full stop, which was introduced above. As explained,
(α, r).P carries out an α action with rate r, and it subsequently behaves as P .

Choice: The component P +Q represents a system which may behave either
as P or as Q. The activities of both P and Q are enabled. The first activity to
complete distinguishes one of them: the other is discarded. The system will
behave as the derivative resulting from the evolution of the chosen component.

Constant: It is convenient to be able to assign names to patterns of be-
haviour associated with components. Constants are components whose meaning
is given by a defining equation. The notation for this is X

def= E. The name X
is in scope in the expression on the right hand side meaning that, for exam-
ple, X

def= (α, r).X performs α at rate r forever.
Hiding: The possibility to abstract away some aspects of a component’s

behaviour is provided by the hiding operator, denoted P/L. Here, the set L
identifies those activities which are to be considered internal or private to the
component and which will appear as the unknown type τ .

Cooperation: We write P ��
L

Q to denote cooperation between P and Q
over L. The set which is used as the subscript to the cooperation symbol, the
cooperation set L, determines those activities on which the cooperands are forced
to synchronise. For action types not in L, the components proceed independently
and concurrently with their enabled activities. We write P ‖ Q as an abbreviation
for P ��

L
Q when L is empty.

However, if a component enables an activity whose action type is in the
cooperation set it will not be able to proceed with that activity until the other
component also enables an activity of that type. The two components then
proceed together to complete the shared activity. The rate of the shared activity
may be altered to reflect the work carried out by both components to complete
the activity.

In some cases, when an activity is known to be carried out in cooperation with
another component, a component may be passive with respect to that activity.
This means that the rate of the activity is left unspecified (denoted >) and is
determined upon cooperation, by the rate of the activity in the other component.
All passive actions must be synchronised in the final model.

2.1 Using PEPA to model intracellular signalling pathways

In [1] we investigated the use of PEPA and Markov process analysis to study
the ERK signalling pathway. In particular we considered the issue of how to rep-
resent concentrations and presented two distinct styles of PEPA model. In the
first, each component of the PEPA model corresponds to a substrate of the path-
way. The possible range of concentrations is discretized and representative rates
chosen to span a subrange of concentrations. In [1] we take the coarsest possible
discretization considering only high and low concentrations, in which low con-
centrations are assumed to be unable to participate in any reactions. The second



style of model focuses on sub-processes within the pathway. For each substrate
known to have an initially high concentration, one PEPA component represents
its possible evolution through a number of reactions and compounds. When in-
termediate levels of concentration are required, multiple instances of pathway
components may be used. In [2] these two styles of model are shown to give rise
to equivalent underlying representations, differing only in the description style.
Moreover systematic transformations between them are specified. In this paper
we only consider the substrate models, knowing that the other representation is
equivalent and can be derived.

To illustrate our ideas we consider a small synthetic example pathway shown
in Figure 1. This is chosen because of its compact size, facilitating an accessible
comparison between the process algebra and ODE views of the pathway.

m1 m2

m3k4/k5

k1/k2

k6

k3

m5m4

A/X

A X

YB

Fig. 1. Small synthetic example network

In this network we assume that there are five reactants (two sub-pathways)
stemming from initial concentrations in substrates A and X. The diagram can
be understood as follows: substrates A and X can associate with rate constant
k1 to form compound A/X which disassociates into A and X with rate constant
k2 or forms the products B and Y with rate constant k3. B and Y become A and
X respectively with rates k4 and k6 respectively, the B −→ A reaction being
reversible at rate k5.

The reactant-based PEPA model has the following form, where the subscripts
“H” and “L” denote high and low concentrations respectively:

AH
def= (k1react, k1).AL + (k5react, k5).AL

AL
def= (k2react, k2).AH + (k4react, k4).AH

XH
def= (k1react, k1).XL

XL
def= (k2react, k2).XH + (k6react, k6).XH



A/XH
def= (k2react, k2).A/XL + (k3react, k3).A/XL

A/XL
def= (k1react, k1).A/XH

BH
def= (k4react, k4).BL

BL
def= (k5react, k5).BH + (k3react, k3).BH

YH
def= (k6react, k6).YL

YL
def= (k3react, k3).YH

The complete model of the network is the interation of these components con-
strained by cooperation to share the appropriate actions:

(((AH ��
{k1react,k2react}

XH) ��
{k1react,k2react}

A/XL) ��
{k3react,k4react,k5react}

BL) ��
{k3react,k6react}

YL

3 Automatically deriving ODEs

Even at the coarsest level of abstraction, distinguishing only high and low con-
centrations the reactant-based model provides sufficient information for deriving
an ODE representation of the same system. It is sufficent to know which reac-
tions increase concentration (low-to-high) and which decrease it (high-to-low).

For any reactant-based PEPA model with derivatives designated high and
low, it is straightforward to construct an activity graph which captures this
information.

Definition 1 (Activity Graph). An activity graph is a bipartite graph (N,A).
The nodes N are partitioned into Nr, the reactions, and Na, the reagents.
A ⊂ (Nr × Na) ∪ (Na × Nr), where a = (nr, na) ∈ A if nr is a reaction in
which the concentration of reagent na is increased, and a = (na, nr) ∈ A if nr is
a reaction in which the concentration of reagent na is decreased.

The same information can be represented in a matrix, termed the activity matrix.

Definition 2 (Activity Matrix). For a pathway with R reactions and S reagents,
the activity matrix Ma is an S×R matrix, and the entries are defined as follows.

(si, rj) =

+1 if (rj , si) ∈ A
−1 if (si, rj) ∈ A
0 if (si, rj) /∈ A ∪ (rj , si) /∈ A

In the activity matrix each row corresponds to a single reactant3. In the
representation of the pathway as a systems of ODEs there is one equation for
each reactant, detailing the impact of the rest of the system on the concentration
of that reactant. This can derived automatically from the activity matrix, when
3 The activity matrix is clearly related to the stochiometry matrix.



we associate a concentration variable mi with each row of the matrix. The entries
in the row indicate which reactions have an impact on this reactant, the sign
of the entry showing whether the effect is to increase or decrease concentration.
Thus the number of terms in the ODE will be equal to the number of non-zero
entries in the corresponding row, each term being based on the rate constant for
the reaction associated with that row. By the law of mass action, the actual rate
of change caused by each reaction will be the rate constant multiplied by the
current concentration of those reactants consumed in the reaction. The identity
of these reactants can be found in the column corresponding to the reaction, a
negative entry indicating that a reactant is consumed.

3.1 Small example revisited

The activity graph and activity matrix corresponding to the reactant-based
PEPA model of the small example network shown in Figure 1 are shown in
Figure 2.
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A −1 +1 0 +1 −1 0 m1

X −1 +1 0 0 0 +1 m2

A/X +1 −1 −1 0 0 0 m3

B 0 0 +1 −1 +1 0 m4

Y 0 0 +1 0 0 −1 m5

Fig. 2. Activity graph and activity matrix for the small example

Based on the matrix (in Figure 2) it is straightforward to derive the differ-
ential equations which are easily validated against the original system.

dm1(t)
dt

= −k1m1(t)m2(t) + k2m3(t) + k4m4(t)− k5m1(t)

dm2(t)
dt

= −k1m1(t)m2(t) + k2m3(t) + k6m5(t)

dm3(t)
dt

= k1m1(t)m2(t)− k2m3(t)− k3m3(t)

dm4(t)
dt

= k3m3(t)− k4m4(t) + k5m1(t)

dm5(t)
dt

= k3m3(t)− k6m5(t)
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Fig. 3. RKIP inhibited ERK pathway

4 Case study: the ERK intracellular signalling pathway

The Ras/Raf-1/MEK/ERK pathway (also called Ras/Raf, or ERK pathway) is
a ubiquitous pathway that conveys mitogenic and differentiation signals from the
cell membrane to the nucleus. Briefly, Ras is activated by an external stimulus,
it then binds to and activates Raf-1 (to become Raf-1*, “activated” Raf) which
in turn activates MEK and then ERK. This “cascade” of protein interaction
controls cell differentiation, the effect being dependent upon the activity of ERK.
A current area of experimental scientific investigation is the role the kinase
inhibitor protein RKIP plays in the behaviour of this pathway: the hypothesis
is that it inhibits activation of Raf and thus can “dampen” down the ERK
pathway. Certainly there is much evidence that RKIP inhibits the malignant
transformation by Ras and Raf oncogenes in cell cultures and it is reduced
in tumours. Thus good models of these pathways are required to understand
the role of RKIP and develop new therapies. Moreover, an understanding of
the functioning and structure of this pathway may lead to more general results
applicable to other pathways.

Here, we consider the RKIP inhibited ERK pathway as presented in [4],
based on the graphical representation given in Figure 3 (taken from [4], with
some additions4).

We take Figure 3 as our starting point, and explain informally, its meaning.
Each node is labelled by the protein (or substrate, we use the two interchangably)

4 Analysis of our original model(s) indicated a problem with MEK and prompted us
to contact an author of [4] who confirmed that there was an omission.



it denotes. For example, Raf-1, RKIP and Raf-1*/RKIP are proteins, the last
being a complex built up from the first two. A sufffix -P or -PP denotes a
phosyphorylated protein, for example MEK-PP and ERK-PP. Each protein has
an associated concentration, denoted by m1, m2 etc. In the figure, bi-directional
arrows denote both forward and backward reactions; uni-directional arrows de-
note disassociations. For example, Raf-1* and RKIP react (forwards) to form
Raf-1*/RKIP, and Raf-1/RKIP disassociates (a backward reaction) into Raf-1*
and RKIP. Each reaction has a rate denoted by the rate constants k1, k2, etc.
These are given in the rectangles, with kn/kn + 1 denoting that kn is the for-
ward rate and kn+1 the backward rate. So for example, Raf-1* and RKIP react
(forwards) with rate k1, and Raf-1/RKIP disassociates with rate k2. Initially,
all concentrations are unobservable, except for m1, m2, m7, m9, and m10 [4].

4.1 Modelling the ERK signalling pathway in PEPA

The model we present is a reagent-centric view, focussing on the variations in
concentrations of the reagents, fluctuating with phosphorylation and product
formation, i.e. with association and disassociation reactions. This model provides
a fine-grained, distributed view of the system. Each reaction in the pathway is
represented by a multi-way synchronisation – on the reagents of the reaction5.

Raf-1∗H
def
= (k1react , k1).Raf-1∗L + (k12react , k12).Raf-1∗L

Raf-1∗L
def
= (k5product , k5).Raf-1∗H + (k2react , k2).Raf-1∗H

+ (k13react , k13).Raf-1∗H + (k14product , k14).Raf-1∗H

RKIPH
def
= (k1react , k1).RKIPL

RKIPL
def
= (k11product , k11).RKIPH + (k2react , k2).RKIPH

ERK-PPH
def
= (k3react , k3).ERK-PPL

ERK-PPL
def
= (k8product , k8).ERK-PPH + (k4react , k4).ERK-PPH

Raf-1∗/RKIPH
def
= (k3react , k3).Raf-1∗/RKIPL + (k2react , k2).Raf-1∗/RKIPL

Raf-1∗/RKIPL
def
= (k1react , k1).Raf-1∗/RKIPH + (k4react , k4).Raf-1∗/RKIPH

Raf-1∗/RKIP/ERK-PPH
def
= (k5product , k5).Raf-1∗/RKIP/ERK-PPL

+ (k4react , k4).Raf-1∗/RKIP/ERK-PPL

Raf-1∗/RKIP/ERK-PPL
def
= (k3react , k3).Raf-1∗/RKIP/ERK-PPH

...
...

...

Fig. 4. PEPA model definitions for the reagent-centric model

5 We agree with the authors of [9] – reactions are fundamentally synchronous.



(Raf-1∗H ��
{k1react,k2react,k12react,k13react,k5product,k14product}

(RKIPH ��
{k1react,k2react,k11product}

(Raf-1∗/RKIPL ��
{k3react,k4react}

(Raf-1∗/RKIP/ERK-PPL) ��
{k3react,k4react,k5product}

(ERK-PL ��
{k5product,k6react,k7react}

(RKIP-PL ��
{k9react,k10react}

(RKIP-P/RPL ��
{k9react,k10react,k11product}

(RPH ‖
(MEKL ��

{k12react,k13react,k15product}

(MEK/Raf-1∗L ��
{k14product}

(MEK-PPH ��
{k8product,k6react,k7react}

(MEK-PP/ERKL ��
{k8product}

(ERK-PPH))))))))))))

Fig. 5. PEPA model configuration for the reagent-centric model

The model is presented in Figures 4 and 5. For brevity we present only some
of the reactant definitions. The interested reader is referred to [1] for the full
model. We distinguish between high (i.e. observable) and low (i.e. unobservable)
concentrations of reagents. The former implies that a reagent can participate (as
a producer) in a forward reaction; the latter implies that a reagent can partic-
ipate (as a consumer) in a product, or (as a producer) in a backward reaction.
Otherwise, the substrate is inert, with respect to a reaction. We define the be-
haviour of each substrate in turn, for each concentration. Thus there are 2n
equations, where n is the number of proteins. We maintain the naming conven-
tion that high concentrations have a H subscript and low concentrations have
a L subscript.

The PEPA equation in Figure 5 shows how these reactant components are
composed in order to obtain the permissible interleavings of reactions. It also de-
fines the initial state of the model. This has high concentrations of some reagents
and low concentrations of others, based on the experimental observations [4].

4.2 Deriving ODEs

From the PEPA model we can derive the activity matrix shown in Figure 6.
The component definitions (Figure 4) determine which reactants are involved in
which reactions, and the nature of the involvement (i.e. producer vs. consumer)
while the system equation (Figure 5) establishes the synchronisations. In fact in
this model all actvities of the same name are carried out in cooperation but this
need not be the case in general.

As previously stated, each row corresponds to a single reagent ; the entries in
a row indicate whether an activity (column) increases the concentration (+1),



k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

Raf-1∗ −1 +1 0 0 +1 0 0 0 0 0 0 −1 +1 +1 0

RKIP −1 +1 0 0 0 0 0 0 0 0 +1 0 0 0 0

Raf-1∗/RKIP +1 −1 −1 +1 0 0 0 0 0 0 0 0 0 0 0

Raf-1∗/RKIP/ERK-PP 0 0 +1 −1 −1 0 0 0 0 0 0 0 0 0 0

ERK-P 0 0 0 0 +1 −1 +1 0 0 0 0 0 0 0 0

RKIP-P 0 0 0 0 +1 0 0 0 −1 +1 0 0 0 0 0

MEK-PP 0 0 0 0 0 −1 +1 +1 0 0 0 0 0 +1 −1

MEK-PP/ERK 0 0 0 0 0 +1 −1 −1 0 0 0 0 0 0 0

ERK-PP 0 0 −1 +1 0 0 0 +1 0 0 0 0 0 0 0

RP 0 0 0 0 0 0 0 0 −1 +1 +1 0 0 0 0

RKIP-P/RP 0 0 0 0 0 0 0 0 +1 −1 −1 0 0 0 0

MEK 0 0 0 0 0 0 0 0 0 0 0 −1 +1 0 +1

MEK/Raf-1∗ 0 0 0 0 0 0 0 0 0 0 0 +1 −1 −1 0

Fig. 6. Activity matrix of the ERK pathway

decreases it (-1) or has no impact (0). Each column corresponds to a single
reaction; the negative entries indicate those substrates which are producers (and
therefore consumed) in the reaction. One ODE is then derived from each row of
the matrix.

For example, if we consider the compound Raf-1∗/RKIP, in the third row of
the matrix. It is involved in four reactions (indicated by the bold entries).

k1 k2 k3 k4 k5 k6 . . . conc.

Raf-1∗ -1 +1 0 0 +1 0 . . . m1

RKIP -1 +1 0 0 0 0 . . . m2

Raf-1∗/RKIP +1 -1 -1 +1 0 0 . . . m3

Raf-1∗/RKIP/ERK-PP 0 0 +1 -1 −1 0 . . . m4

ERK-P 0 0 0 0 +1 −1 . . . m5

RKIP-P 0 0 0 0 +1 0 . . . m6

MEK-PP 0 0 0 0 0 −1 . . . m7

MEK-PP/ERK 0 0 0 0 0 +1 . . . m8

ERK-PP 0 0 -1 +1 0 0 . . . m9

...
...

...
...

...
...

...
. . .

For each of those reactions the producers are indicated by the italic entries in
the corresponding column, resulting in the following differential equation for the
concentration of Raf-1∗/RKIP:

dm3(t)
dt

= k1 m1(t)m2(t)−k2 m3(t)−k3 m3(t)m9(t) +k4 m4(t)

The remaining set of automatically derived equations are shown below.



dm1(t)

dt
= −k1m1(t)m2(t) + k2m3(t) + k5m4(t)− k12m1(t)m12(t)

+ k13m13(t) + k14m13(t)

dm2(t)

dt
= −k1m1(t)m2(t) + k2m3(t) + k11m11(t)

dm4(t)

dt
= k3m3(t)− k4m4(t)− k5m4(t)

dm5(t)

dt
= k5m4(t)− k6m5(t)m7(t) + k7m8(t)

dm6(t)

dt
= k5m4(t)− k9m6(t)m10(t) + k10m11(t)

dm7(t)

dt
= −k6m5(t)m7(t) + k7m8(t) + k8m8(t) + k14m13(t)

dm8(t)

dt
= k6m5(t)m7(t)− k7m8(t)− k8m8(t)

dm9(t)

dt
= −k3m3(t)m9(t) + k4m4(t) + k8m8(t)

dm10(t)

dt
= −k9m6(t)m10(t) + k10m11(t) + k11m11(t)

dm11(t)

dt
= k9m6(t)m10(t)− k10m11(t)− k11m11(t)

dm12(t)

dt
= −k12m1(t)m12(t) + k13m13(t) + k15m7(t)

dm13(t)

dt
= k12m1(t)m12(t)− k13m13(t)− k14m13(t)

5 Conclusions

Stochastic process algebras have found new applications in modelling biochem-
ical pathways. In addition to quantified analysis, such models offer facilities
to reason about the system model and investigate its structural properties [3].
Previously quantified analysis was carried out via simulation or procedures of
numerical linear algebra, both of which are computationally expensive processes
and do not scale well to allow the representation of realistic populations of re-
actants. Analysis based on the use of differential equations has until now been
unavailable to stochastic process algebra models. The contribution of this paper
is to establish a bridge between the two approaches.

Representing the system in process algebra has several tangible benefits.
The compositional nature of the system description makes it easy to make a
change in the hypothesised role of a reagent within a network. In general this
will involve changing only the expressions representing the behaviour of this
reagent, whereas the impact on the ODEs may be pervasive. As shown in [2] the
reagent- and pathway-centric PEPA models have complementary strengths. In



particular the pathway models capture structural information which is lost in
the ODE representation.

The method presented here for the derivation of ODEs from the process
algebra model is fully automatic and has been implemented in order that we
may test the effectiveness of the method on models of larger scale. We have used
a fifth-order Runge-Kutta solver together with a tool for the PEPA language to
analyse the PEPA ERK pathway model presented in this paper.
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