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ABSTRACT
We present a stochastic process algebra designed for mod-
elling biological systems at multiple scales, called process
algebra with hooks (PAH). In PAH, processes represent dif-
ferent scales, e.g. biochemistry, cells or tissue. There are
two synchronisation operators, distinguishing interactions
within and between scales; composed actions represent events
that occur at multiple scales. A stochastic semantics is pro-
vided, based on functional rates derived from kinetic laws.
A parametric version of the algebra ensures that a model
description is compact. An example illustrates how the al-
gebra can be used to model and simulate multi-scale tissue
growth, where growth and death of tissue depend on the
local concentration of chemicals.

Categories and Subject Descriptors
F.4.3 [Mathematical Logic and Formal Languages]:
Formal Languages—Algebraic Language Theory ; G.3 [Prob-
ability and Statistics]: Stochastic Processes; J.3 [Life
and Medical Sciences]: Computational Biology
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1. INTRODUCTION
Stochastic process algebra (SPA) has shown to be well suited
for quantitative modelling and analysis of biological systems
[2, 5, 11]. The main focus has been on biochemical reac-
tions and interactions within and between compartments.
Here, we consider how SPA can be used for modelling and
quantitative analysis of biochemistry and location, as well as
higher order structures such as cells and tissue: this requires
an approach that allows modelling across multiple scales.

By scale we mean a level of abstraction. For example, at
the biochemical scale, molecules are entities and reactions
are events; at the cellular scale, cells are entities and move-
ment, proliferation, death are events. Usually, entities and
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events at a scale can be described in more detail using the
entities and events of other scales. For example, cells are
made of molecules and cell movement is the result of a large
number of molecular reactions. Our main interest is models
of tissue growth and pattern formation, for which the cur-
rent standard practice consists of partial differential equa-
tions (PDEs) and two-dimensional cellular automata (CA)
[10]. However, both PDEs and CA do not provide a formal
framework for the comparison and substitution of parts of
models, such as congruences, nor do they support composi-
tionality, concepts intrinsic to process algebra.

In this paper we focus on formalising the concept of scale,
with particular attention to modelling actions within a scale
and between scales. We propose an algebra called process al-
gebra with hooks (PAH), based on an early version published
in [6], to formalise multi-scale models. In our previous work
we followed a bottom-up approach where the biochemical
scale determines the rates and other scales are abstractions
of lower scales. Here we follow a middle-out [9] approach
where one can begin modelling at any scale, and then relate
to higher or lower scales. In particular, PAH provides:

• the concept of processes at a given scale, events that
occur within that scale and events that occur between
scales;

• a stochastic semantics based on functional rates;

• two multi-way synchronisation composition operators,
��
L

, which expresses cooperation between processes

at the same scale, and ��

L
, which expresses coopera-

tion between processes at different scales. The second

operator, ��

L
, is an improved definition of the listen

operator �
L

introduced in [6];

• relations that allow comparison between models ac-
cording to specified scales and substitution of parts
that are behaviourally congruent (not discussed here).

After a gentle introduction to the concepts and the design
choices of PAH in the next section, we move to the theoret-
ical foundations of the language, presenting syntax, seman-
tics, isomorphism and functional rate evaluation. This is
followed by a parametric form of the syntax, to make speci-
fications more compact. There follows an application of the
approach, focussing on tissue growth in a two dimensional
space. To summarise, the contributions of this paper are:

• the definition of the new operator ��

L
;
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ABSTRACT
Statistical model selection has become an essential step for
the estimation of phylogenies from DNA sequence align-
ments. The program jModelTest offers different strategies
to identify best-fit models for the data at hand, but for large
DNA alignments, this task can demand vast computational
resources.
This paper presents a High Performance Computing (HPC)

adaptation of jModelTest for shared memory multi-core sys-
tems and distributed memory cluster platforms. The perfor-
mance evaluation of this HPC version on a shared memory
system and on a cluster shows significant performance ad-
vantages, with speedups up to 39. This could represent a
reduction in the execution time of some analyses from al-
most one day to half an hour.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; J.3 [Computer Applications]:
Life and Medical Sciences

Keywords
Phylogeny, Nucleotide Substitution, High Performance Com-
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1. INTRODUCTION
In recent years, DNA sequence data has been accumulated

in databases (e.g., GenBank) at an exponential rate. These
DNA sequences can be used for example to study the his-
tory of the different species that inhabit our planet, for ex-
ample estimating phylogenetic trees from multiple sequence
alignments. All phylogenetic methods make assumptions,
whether explicit or implicit, about the process of DNA sub-
stitution [7]. It is well known that the use of one or another
probabilistic model of nucleotide substitution can change the
outcome of the analysis [2][10][3], and model selection has
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become a routinary step for the estimation of molecular phy-
logenies.

The most popular bioinformatic tool to select appropri-
ate models of DNA substitution for a given DNA sequence
alignment is jModelTest [11]. This program calculates the
likelihood score for each model and uses different model se-
lection techniques to choose the “best” one according to the
likelihood and number of parameters. The model selection
strategies implemented in jModelTest are the Akaike Infor-
mation Criterion (AIC) [1], Bayesian Information Criterion
(BIC) [13] and dynamic Likelihood Ratio Tests (dLRTs)
[12].

Table 1 shows the 88 candidate substitution models sup-
ported by jModelTest. In top of different substitution schemes
and ACGT frequencies, each of these models can assume
that some nucleotides do not change (i.e., are invariant; “+I”
parameter), or they do it at different rates (approximated
with a discrete gamma distribution “+G”). The estimation
of the α shape parameter of the gamma distribution can be
complicated, and models that include this parameter (“+G”
models) carry an extra computational burden.

jModelTest makes an extensive use of third party bioin-
formatics libraries and software, aggregating multiple tasks
in a pipeline and providing a high-level view of the analysis.
Figure 1 shows the workflow of jModelTest, where the most
time-consuming part of the process is the calculation of the
likelihood scores (carried out by the Phyml program [9]).
Because this calculation represents more than 99% of the
execution time in most cases, our parallel adaptation is fo-
cused in this part of the model selection process.

2. JAVAFORHIGHPERFORMANCECOM-
PUTING

Java Shared Memory Programming. As Java has
built-in multithreading support, the use of threads is quite
extended due to its portability and high performance, al-
though it is a rather low-level option. Nevertheless, Java
now provides concurrency utilities, such as thread pools,
tasks, blocking queues, and low-level high-performance prim-
itives (e.g., CyclicBarrier), for a higher level programming.
However, this option is limited to shared memory machines,
which generally provide less computational power than dis-
tributed memory architectures such as clusters.

Java Distributed Memory Programming. Message-
passing is the preferred programming model for distributed
memory architectures due to its portability, scalability and
usually good performance, although it generally requires
significant development efforts. Among currently available
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Figure 1: In process algebra with hooks composed
actions present layer actions that operate within the
current scale and hook actions (here a) that operate
between scales (here x).

• details of a stochastic semantics for PAH based on
functional rates and their evaluation;

• the definition of isomorphism on PAH processes;

• the definition of a parametric version of PAH, which
reduces the length of model definitions;

• the illustration of use of PAH with a multi-scale model
of tissue growth.

The paper is organised as follows. In Section 2 process alge-
bra with hooks is introduced. In Section 3 syntax, semantics,
isomorphism and functional rate evaluation are defined. A
parametric version of PAH is presented in Section 4 and used
to define a multi scale model of tissue growth in Section 5.
This is followed by discussion of related work in Section 6
and conclusions and future work in Section 7.

2. CONCEPTS OF PROCESS ALGEBRA
WITH HOOKS

In process algebra, autonomous agents called processes are
used to represent behaviour. The atomic behaviour is repre-
sented by actions and a process P can perform a sequence of
actions (P defined as a.b.c.P ′), can choose between actions
(P defined as a.P ′ + b.P ′′) or can perform actions concur-

rently (P defined as a.P ′ ��
∅
b.P ′′). Additionally, two pro-

cesses can synchronise on one action. Usually two styles of
synchronisation are considered: binary, CCS style [8], and
multi-way, CSP style [7]. In binary synchronisation, only
two processes can synchronise at a time using complemen-
tary action names. In multi-way synchronisation, any num-
ber of processes can synchronise on a single action name. In
this paper we use the second type of synchronisation, which

is performed using the cooperation operator ��
L

, where L is
a set indicating on which actions the synchronisation is pos-
sible. Our choice of multi-way over binary synchronisation
is motivated by the fact that the former allows one to model
biochemical reactions with any number of reactants with a
single action, and so atomically [5]. Moreover, a rate based
on one of a variety of kinetic laws [12] can be associated to
that action.

The main differences between PAH and a traditional process
algebra with multi-way synchronisation, such as CSP [7],
are the substitution of simple a actions with more complex
composed actions L′[L′′] and the addition of the vertical

cooperation operator ��

L
. The interpretation of these new

features is as follows:

• L′[L′′] is interpreted as “on this scale perform the ac-
tions in set L′ alltogether, while broadcasting actions
in set L′′ to the other scales”. This mechanism is de-
picted in Figure 1. We will refer to actions performed
by a process as layer actions if they belong to set L′
or hook actions if they belong to set L′′. Hook actions
synchronise with, and so “hook”, layer actions in other
scales;

• ��

L
synchronises layer actions on one side of the op-

erator with hook actions on the other side via actions
present in L. This implies that the process on the left
is on a different scale from the process on the right.
No hook with hook or layer with layer action synchro-
nisations are allowed with this operator.

The modeller should bear in mind that the set of actions A
in a composed action A[E ] has been introduced with the sole
intent of capturing multiple hook actions coming from other
scales at the same time. For examples of how composed
actions are used see [6].

2.1 Modelling Entities and Events
Consider the following example. In a cell C, there are two
molecules A and B. A can increase its concentration via
biochemical reaction Ra, B can decrease its concentration
via Rb, while A can turn into B via Rc as follows:

Ra : → A Rb : B → Rc : A → B

The cell C can have two states, C0 and C1, which depend
on the concentration of B. When C is in C0 it performs cell
action m, while when it is in C1 it performs cell action n.
Moreover, when the concentration of B in the cell is high,
then the cell is in state C1, C0 otherwise. We can model this
scenario using PAH in the following way:

AL , a.AM AM , a.AH + c.AL AH , c.AM

BL , c.BM BM , c[x].BH + b.BL BH , b[y].BM

C0 , x.C1 +m.C0 C1 , y.C0 + n.C1

The concentration of A and B is represented by three pro-
cesses for each molecule, indicating a concentration level,
from low (L) to high (H). The state of the cell is repre-
sented by two processes C0 and C1. We use hook actions x
and y to indicate that the concentration of B has passed a
threshold and that the state of C has to change at the same
time. The initial state is:

(AH ��
{c}

BM ) ��

{x,y}
C0

The vertical synchronisation operator ��

{x,y}
clearly sepa-

rates the molecular scale from the cellular scale, while indi-
cating that actions x and y are actions that operate between
scales. An example of a valid transition is:

(AH ��
{c}

BM ) ��

{x,y}
C0

{c,x}−−−→ (AM ��
{c}

BH) ��

{x,y}
C1

On the label of the transition we have both c, which indi-
cates that biochemical reaction Rc took place and x which
indicates that a threshold of concentration of B has been
crossed and that cell C changed its state from C0 to C1.
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2.2 Rating Transitions
In order to determine the rate at which the above transition
takes place, i.e. the parameter of the exponential distribu-
tion of the time necessary for the transition to happen, we
employ functional rates. The motivation for functional rates
comes from the fact that rates of biological events often de-
pend on the current state of the system. In terms of process
algebra, this means that an action is associated with a set
of processes and that these processes are associated with
variables and values that are used to evaluate functional
rates. Processes represent the concentration of species (the
variables) and the current concentration level (the values).
Functional rates based on kinetic laws are associated with
actions. When processes synchronise via a specific action,
the corresponding functional rate is evaluated according to
the information associated to the processes. We use func-
tions V ar(·) and V al(·) to associate variables and values
with processes. In the example above have:

V ar(AL) = A V ar(AM ) = A V ar(AH) = A
V al(AL) = 0 V al(AM ) = 1 V al(AH) = 2
V ar(BL) = B V ar(BM ) = B V ar(BH) = B
V al(BL) = 0 V al(BM ) = 1 V al(BH) = 2

A suitable velocity, in terms of concentration (M , molar) per
second (s), for reaction Rc is given by vc = kc[A], where kc
is a kinetic constant and [A] indicates the concentration of
molecule A. From vc we can derive a rate for the above tran-
sition, in analogy with the continuous time Markov chains
with levels of concentration approach [4]. A functional rate
is defined as:

fc = (kc ·A · h)/h

where A is the variable that indicates the current concentra-
tion level for molecule A, while h indicates how much concen-
tration is represented by a single concentration level. For de-
tails of how this rate is formulated see Appendix A. At this
point we can construct an environment Γ using variables and
values associated with the processes, and additional constant
definitions. From the initial state we obtain an environ-
ment Γ′ = {(V ar(AH), V al(AH)), (V ar(BM ), V al(BM ))}.
We add the environment to a transition. Thus:

(AH ��
{c}

BM ) ��

{x,y}
C0

({c,x},Γ′)−−−−−−→ (AM ��
{c}

BH) ��

{x,y}
C1

The pair ({c, x},Γ′) is called an activity. Combining Γ′ with
the environment Γ′′ = {(kc, 1), (h, 1)} we construct environ-
ment Γ = Γ′ ∪ Γ′′ which is used to evaluate functional rate
fc. The result is the rated transition

(AH ��
{c}

BM ) ��

{x,y}
C0

({c,x},2)−−−−−−→ (AM ��
{c}

BH) ��

{x,y}
C1

because fc evaluated with environment Γ is equal to 2.

2.3 Compositionality and Relations
A key concept in PAH is the idea of relating processes with
respect to a specified scale, hiding as much as possible of
other scales. This involves filtering action sets on a transi-
tion. For example, consider the rated transition

M
({x,c},2)−−−−−−→ M ′. If one wants to focus on the biochem-

ical scale (actions a, b, c) the result of filtering is filtered

transition M
({c},2)−−−−→ M ′. If one wants to focus on the cel-

lular scale (actions n,m) the result of filtering is filtered

transition M
({},2)−−−−→ M ′. Notice that, while there is no

action name, the transition cannot be hidden completely,
because the rate, and so the delay of the transition, is still
necessary to represent the correct timing of this and other
events in the system. The operation of filtering hides in-
formation about actions and one can define relations based
on filtered behaviour. For example, one could determine
whether two models with different actions at the biochemi-
cal scale present the same actions with the same timing at
the cellular scale. Because of the limited space, filtering and
relations between PAH processes are not discussed further
in this paper.

3. PROCESS ALGEBRA WITH HOOKS
3.1 Syntax and Semantics

D ::= nil | L′[L′′].A | D +D

M ::= A |M ��
L
M |M ��

L
M

• D is a definition process, D ∈ Pd, while M is a model
process, M ∈ Pm. Definition and model processes are
disjoint and are both processes, i.e. Pd ∪ Pm = P;

• a is an action, a ∈ Actions, with Actions the set of
actions;

• L ⊆ Actions, L′ ⊆ Actions ∧ L′ 6= ∅, L′′ ⊆ Actions ∧
|L′′| ≤ 1;

• L′[L′′] is a composed action;

• nil is the deadlock process;

• A is an agent, used to define processes, via the agent
definition A , D;

• sequential action execution L′[L′′].A is always followed
by an agent A. This ensures that at any time the
state of a model will be constituted of cooperations of
agents;

• D+D expresses the non deterministic choice between
two processes;

• M ��
L
M expresses the horizontal cooperation between

two independent processes on the same scale via the
cooperation set L, with L ⊆ Actions;

• M ��

L
M expresses the vertical cooperation between

two independent processes on different scales via the
cooperation set L, with L ⊆ Actions;

• functions V ar(A) and V al(A) must be defined for each
agent A, with V ar(A) ∈ Names, V al(A) ∈ R and
Names the set of parameter names.

Conventions for the notation of actions are as follows. Given
a composed action A[E ], if |A| = 1 or if |E| = 1 then set
delimiters can be omitted, e.g. if A = {a} then it can be
written a. If E = ∅ then the hook part of the composed
action can be omitted completely, that isA[E ] can be written
A.

The semantics for process algebra with hooks is presented in
Figure 2 as inference rules for the derivation of valid transi-

tions. In particular, the ��

L
operator works as follows. Con-

sider the inference rule Vertical Synchronisation Left.
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Prefix Choice Left Choice Right

A[E ].A
A[E]−−−→ A

D1
A[E]−−−→ A

D1 +D2
A[E]−−−→ A

D2
A[E]−−−→ A

D1 +D2
A[E]−−−→ A

Asynchronous Left Asynchronous Right

M1
(A[E],Γ)−−−−−→M ′1

M1 ��L M2
(A[E],Γ)−−−−−→M ′1 ��L M2

if A ∩ L = ∅ M2
(A[E],Γ)−−−−−→M ′2

M1 ��L M2
(A[E],Γ)−−−−−→M1 ��L M ′2

if A ∩ L = ∅

Layer Synchronisation Agent

M1
(A[E],Γ1)−−−−−−→M ′1 M2

(B[F],Γ2)−−−−−−→M ′2

M1 ��L M2
(A∪B[E∪F],Γ1∪Γ2)−−−−−−−−−−−−−→M ′1 ��L M ′2

if A ∩ B ∩ L 6= ∅ D
A[E]−−−→ A′

A
(A[E],Γ)−−−−−→ A′

if A , D
∧ Γ = {(V ar(A), V al(A))}

Vertical Asynchronous Left Vertical Asynchronous Right

M1
(A[E],Γ)−−−−−→M ′1

M1 ��

L
M2

(A[E],Γ)−−−−−→M ′1 ��

L
M2

if ¬(M2
(B[F],Γ′)−−−−−−→M ′2

with B ⊆ E ∩ L)
∧ A ∩ L = ∅

M2
(B[F],Γ)−−−−−→M ′2

M1 ��

L
M2

(B[F],Γ)−−−−−→M1 ��

L
M ′2

if ¬(M1
(A[E],Γ′)−−−−−−→M ′1

with A ⊆ F ∩ L)
∧ B ∩ L = ∅

Vertical Synchronisation Left

M1
(A[E],Γ1)−−−−−−→M ′1 M2

(B[F],Γ2)−−−−−−→M ′2

M1 ��

L
M2

(A∪B[(E\B)∪F],Γ1)−−−−−−−−−−−−−→M ′1 ��

L
M ′2

if B ⊆ E ∩ L ∧ ¬(M2
(B′[F′],Γ′

2)
−−−−−−−→M ′′2

with B′ ⊆ E ∩ L ∧ |B′| > |B|)

Vertical Synchronisation Right

M1
(A[E],Γ1)−−−−−−→M ′1 M2

(B[F],Γ2)−−−−−−→M ′2

M1 ��

L
M2

(A∪B[(F\A)∪E],Γ2)−−−−−−−−−−−−−→M ′1 ��

L
M ′2

if A ⊆ F ∩ L ∧ ¬(M1
(A′[E′],Γ′

1)
−−−−−−−→M ′′1

with A′ ⊆ F ∩ L ∧ |A′| > |A|)

Figure 2: Semantics of process algebra with hooks.

The synchronisation is between the set of hook actions on
the left hand side (E) and the set of layer actions on the
right hand side (B), via actions in the cooperation set L.
This means that some inter-scale actions in E communicate
events to another scale. It may be that more than one tran-
sition from M2 presents a set of layer actions B suitable. In
this case, as explained more in details in [6], we give priority
to transitions with largest B sets. Consider now the infer-
ence rule Vertical Asynchronous Left. In this case, we
allow a single process to transition asynchronously only if
no transitions from M2 present a set of layer actions B suit-
able for synchronisation. Moreover, the rule blocks possible
transitions if the set of layer actions A in such transitions
contains actions in L. Additional definitions are:

Definition 1. Activity. The pair (A[E ],Γ) such thatA, E ⊆
Actions and environment Γ ⊆ Names × R is called an ac-
tivity.

Definition 2. One step derivative. If M
(A[E],Γ)−−−−−→M ′ then

M is a one step derivative of M .

Definition 3. Derivative Set. The derivative set of a model
process M ∈ Pm is denoted by ds(M) and is defined as the
smallest set of model processes such that:

• M ∈ ds(M);

• if Mi ∈ ds(M) and Mi
(A[E],Γ)−−−−−→Mj then Mj ∈ ds(M).

In the following, we define activities that a process can per-
form as multi sets, since their multiplicity may be significant
to determine a correct rate for transitions (see section 3.3
and normalised transition rates).

Definition 4. Current moves of a definition process. The
multi set of moves that D ∈ Pd can perform is denoted by
Moves(D) and is defined as:

• Moves(nil) = {||};

• Moves(A[E ].A) = {|(A[E ], A)|};

• Moves(D1 +D2) = Moves(D1) ]Moves(D2).

with {||} delimiting a multi set and ] the union of multi sets.

Definition 5. Current moves of a model process. The multi
set of moves thatM ∈ Pm can perform is denoted byMoves(M)
and is defined as:

• Moves(A) = {|((A[E ],Γ), A′) | (A[E ], A′) ∈Moves(D)

∧A , D ∧ Γ = {(V ar(A), V al(A))}|};

• Moves(M1 ��L M2) = {|((A[E ],Γ),M ′1 ��L M2) |
((A[E ],Γ),M ′1) ∈Moves(M1) ∧ A ∩ L = ∅|}
]{|((A[E ],Γ),M1 ��L M ′2) |((A[E ],Γ),M ′2) ∈Moves(M2)

∧A ∩ L = ∅|}
]{|((A∪B[E∪F ],Γ1∪Γ2),M ′1 ��L M ′2) | ((A[E ],Γ1),M ′1)

∈Moves(M1) ∧ ((B[F ],Γ2),M ′2) ∈Moves(M2) ∧ A ∩
B ∩ L 6= ∅|};

• Moves(M1 ��

L
M2) = {|((A[E ],Γ),M ′1 ��

L
M2) |

((A[E ],Γ),M ′1) ∈Moves(M1) ∧
¬(∃B,F ,Γ′,M ′2 s.t. ((B[F ],Γ′),M ′2) ∈ Moves(M2)
∧B ⊆ E ∩ L) ∧ A ∩ L = ∅|}
]{|((B[F ],Γ),M1 ��

L
M ′2) | ((B[F ],Γ),M ′2) ∈Moves(M2)
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∧¬(∃A, E ,Γ′,M ′1 s.t. ((A[E ],Γ′),M ′1) ∈ Moves(M1)
∧A ⊆ F ∩ L) ∧ B ∩ L = ∅|}
]{|((A∪B[(E\B)∪F ],Γ1),M ′1 ��

L
M ′2) | ((A[E ],Γ1),M ′1)

∈Moves(M1) ∧ ((B[F ],Γ2),M ′2) ∈Moves(M2) ∧ B ⊆
E ∩ L ∧ ¬(∃B′,F ′,Γ′2,M ′′2 s.t. ((B′[F ′],Γ′2),M ′′2 ) ∈
Moves(M2) ∧ B′ ⊆ E ∩ L ∧ |B′| > |B|)|}
]{|((A∪B[(F\A)∪E ],Γ2),M ′1 ��

L
M ′2) | ((A[E ],Γ1),M ′1)

∈Moves(M1)∧ ((B[F ],Γ2),M ′2) ∈Moves(M2)∧A ⊆
F ∩ L ∧ ¬(∃A′, E ′,Γ′1,M ′′1 s.t. ((A′[E ′],Γ′1),M ′′1 ) ∈
Moves(M1) ∧ A′ ⊆ F ∩ L ∧ |A′| > |A|)|}

Definition 6. Current activities for model Processes. The
multi set of activities that M ∈ Pm can perform is denoted
by Activities(M) and is defined as:

Activities(M) = {|(A[E ],Γ) | ((A[E ],Γ),M ′) ∈Moves(M)|}

Definition 7. Activity set. The multi set of activities that
a model process M ∈ Pm and its derivatives can perform is
given by:

−−−−−−−→
Activities(M) =

⊎
Mi∈ds(M)

Activities(Mi)

Definition 8. Derivation graph. Given a model compo-
nent M ∈ Pm, the derivation graph D(M) is the labelled
directed graph with:

• set of nodes ds(M);

• multi set of transition labels
−−−−−−−→
Activities(M);

• multi set of labelled transitions →⊆ ds(M)×
−−−−−−−→
Activities(M) × ds(M). Given M ′ ∈ ds(M),

(M ′,A[E ],Γ,M ′′) ∈→ iff M ′
(A[E],Γ)−−−−−→ M ′′, with the

same multiplicity of ((A[E ],Γ),M ′′) in Moves(M ′).

3.2 Isomorphism
In this section we define isomorphism on PAH processes. In-
formally, two processes are isomorphic if they generate iso-
morphic derivation graphs. With this definition we propose
equational laws for isomorphic PAH processes and show that
isomorphism is a congruence.

Definition 9. Function apply. Given a function f : P →
P and a multi set of filtered moves MSet, function apply
applies f to MSet in the following way:

apply(f)(MSet) = {|(a, f(P )) | (a, P ) ∈MSet|}

Definition 10. Model process isomorphism. A function F :
ds(M1)→ ds(M2) is a model process isomorphism between
M1 and M2 (M1,M2 ∈ Pm), if F is injective and ∀M ′1 ∈
ds(M1),

Moves(F(M ′1)) = apply(F)(Moves(M ′1))

Definition 11. Isomorphic model processes. Two model
processes M1,M2 ∈ Pm are isomorphic, written M1 ≡ M2,
if there is a model process isomorphism F between them
such that D(F(M1)) = D(M2).

Definition 12. Isomorphic definition processes. Two def-
inition processes D1, D2 ∈ Pd are isomorphic (D1 ≡ D2) iff
there exists an injective function F : ds(D1)→ ds(D2) such
that ∀A ∈ ds(D1), A ≡ F(A) and

Moves(D2) = apply(F)(Moves(D1))

Proposition 1. Equational laws for isomorphic PAH pro-
cesses. The following laws can be proved using the stochas-
tic operational semantics and the definition of model and
definition process isomorphisms:

1. D1 +D2 ≡ D2 +D1;

2. (D1 +D2) +D3 ≡ D1 + (D2 +D3);

3. M1 ��L M2 ≡M2 ��L M1;

4. (M1 ��L M2) ��
L
M3 ≡M1 ��L (M2 ��L M3);

5. M1 ��

L
M2 ≡M2 ��

L
M1;

6. (M1 ��L M2) ��
K
M3 ≡M1 ��L (M2 ��K M3), if ∀(A[E ],Γ)

∈
−−−−−−−→
Activities(M1), ∀(N [H],Γ′′) ∈

−−−−−−−→
Activities(M3), N ∩

(L \ K) = ∅ ∧ A ∩ (K \ L) = ∅;

Proof. Appendix B.

Proposition 2. Isomorphism as a Congruence. If P1, P2 ∈
P such that P1 ≡ P2, then

1. A[E ].P1 ≡ A[E ].P2, with P1, P2 agents

2. P1 +Q ≡ P2 +Q, with P1, P2, Q ∈ Pd

3. P1 ��L Q ≡ P2 ��L Q, with P1, P2, Q ∈ Pm

4. P1 ��

L
Q ≡ P2 ��

L
Q, with P1, P2, Q ∈ Pm

Proof. Appendix B.

3.3 Functional Rates and Rate Evaluation
Functional rates are arithmetical expression which allow the
modeller to use existing kinetic laws used in biology to de-
fine the quantitative time evolution of the system. In or-
der to do so, functional rates contain parameter names, the
value of which depend on the current state of the system, or
more precisely on the environment Γ in an activity (A[E ],Γ).
Functional rates are associated with actions, so we introduce
constraints that ensure that at most one functional rate is
associated with a transition. The syntax of functional rates
is given by:

f ::= k | i | f op1 f | op2(f) | ff

op1 ::= + | − | ∗ | / op2 ::= exp | log | sin | cos

• k ∈ R and i ∈ Names, i.e. i is a parameter name;

• f is a functional rate, f ∈ F.

199



The set F contains the functional rates defined in a PAH
model, indexed by action names. For example, if fa ∈ F
then fa is the functional rate associated with action a. The
evaluation of functional rates follows the standard opera-
tional semantics of arithmetical expressions. Given an envi-
ronment Γ ⊆ Names×R and a functional rate f , f evaluates
to k ∈ R iff Γ ` f → k is valid.

In order to ensure correct and unambiguous rate evaluation
and to guarantee that congruence relations can be defined
on PAH processes, we employ the following additional con-
straints:

• each functional rate fa ∈ F is associated with a set of
participants pa ⊆ Names;

• an activity (A[E ],Γ) can be rated only if Γ contains
exactly the variables in pa and A contains exactly one
action name a such that fa ∈ F. Such activity is called
closed. An activity that is not closed is called open;

• only agents associated with variables in pa can perform
action a. This is to prevent an additional synchroni-

sation via ��
L

changing a closed activity into an open
activity, due to an increase of the size of Γ. Moreover,
at any time only one agent can be associated with each
variable;

• actions used as hook actions must not be associated
with functional rates;

• if more than one transition from a certain state is as-
sociated with the same functional rate, the evaluated
rate has to be normalised, i.e. it has to be divided by
the number of such transitions.

The above constraints are formalised by the following defi-
nitions. With these we can define a rated derivation graph.

Definition 13. Well formed process algebra with hooks model.
A process algebra with hooks model is well formed if and
only if:

1. Given a model process as a cooperation of agents of
the form

A1 ◦A2 ◦ · · · ◦An

then ∀Ai, Aj if i 6= j then V ar(Aj) 6= V ar(Aj), where
◦ is either a vertical or horizontal cooperation;

2. Given the definition of an agent A as a choice of se-
quential actions of the form

A ,
∑
i

ai.Ai

then ∀Ai V ar(A) = V ar(Ai);

3. ∀a s.t. fa ∈ F, ∀A agents

∃(A[E ],Γ) ∈
−−−−−−−→
Activities(A) s.t. a ∈ A∪E ⇔ V ar(A) ∈ pa

Moreover, whenever M1 ��L M2 then ∀a s.t. fa ∈ F

a ∈ L ⇔ ∃(A[E ],Γ) ∈
−−−−−−−→
Activities(M1),

(B[F ],Γ′) ∈
−−−−−−−→
Activities(M2) s.t. a ∈ A ∧ a ∈ B

4. hook actions are not associated with functional rates:

∀ agents A∀(A[E ],Γ) ∈
−−−−−−−→
Activities(A),

∀a s.t. fa ∈ F, a 6∈ E

5. For all agents A defined as

A ,
∑
i

Ai[Hi].Ai

for all a s.t. fa ∈ F, if a ∈ Ai then Ai = {a}.

Definition 13 ensures that whenever M
(A[H],Γ)−−−−−−→ M ′ then

either ∀a s.t. fa ∈ F, a 6∈ A or ∃!a s.t. fa ∈ F and a ∈
A. In other words, for every valid transition, the set of
layer actions contains at most one action associated with a
functional rate.

Definition 14. Function envVar. The function envV ar
extracts the set of variables in an environment Γ ⊆ Names×
R:

envV ar(Γ) = {i | (i, k) ∈ Γ}

Definition 15. Function activeActions. The function
activeActions selects actions a such that a functional rate
in the set F is associated with a, i.e. fa ∈ F, from an action
set A ⊆ Actions:

activeActions(A)F = {a | a ∈ A ∧ fa ∈ F}

Definition 16. Open activity. An open activity is an ac-
tivity (A[E ],Γ) where at least one of the following conditions
are true:

• the number of active actions in A is not 1, i.e.
|activeActions(A)F| 6= 1;

• if |activeActions(A)F| = 1 and a ∈ activeActions(A)F,
Γ does not contain the exact variables present in the
participant set pa, i.e. pa 6= envV ar(Γ).

Definition 17. Function openActivities. The function
openActivities selects open activities from a set of activi-
ties A ⊆ 2Actions × 2Actions × 2Names×R:

openActivities(A) = {|(A[E ],Γ) | (A[E ],Γ) ∈ A∧
(|activeActions(A)F| 6= 1 ∨ (activeActions(A)F = {a}∧
pa 6= envV ar(Γ)))|}

Definition 18. Current open activities. Given a model
process M ∈ Pm, the multi set of open activities that P
can perform is defined as:

OpenAct(M) = openActivities(Activities(M))

Definition 19. Open activity set. The multi set of all open
activities that a model process M ∈ Pm can perform is given
by:

−−−−−−→
OpenAct(M) = openActivities(

−−−−−−−→
Activities(M))
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Definition 20. Closed activity. A closed activity is an ac-
tivity (A[E ],Γ) where:

• |activeActions(A)F| = 1, a ∈ activeActions(A)F and
Γ contains the exact variables present in the partici-
pant set pa, i.e. pa = envV ar(Γ).

Definition 21. Function closedActivities. The function
closedActivities selects closed activities from a set of ac-
tivities A ⊆ 2Actions × 2Actions × 2Names×R:

closedActivities(A) = (A \ openActivities(A))

Definition 22. Current closed activities. Given a model
process M ∈ Pm, the multi set of closed activities that M
can perform is defined as:

ClosedAct(M) = closedActivities(Activities(M))

Definition 23. Closed activity set. The multi set of all
closed activities that a model process M ∈ Pm can perform
is given by:

−−−−−−−→
ClosedAct(M) = closedActivities(

−−−−−−−→
Activities(M))

Definition 24. Rated activity. The pair (A[E ], r) such that
A, E ⊆ Actions and r ∈ R>0 is called a rated activity.

Definition 25. Function rateActivities. Given an envi-
ronment Γ ⊆ Names × R, rateActivities converts a set of
activities A ⊆ 2Actions × 2Actions × 2Names×R into a set of
rated activities B ⊆ 2Actions × 2Actions × R:

rateActivities(Γ)(A) = {|(A[E ], r) | (A[E ],Γ′) ∈ A∧
{a} = activeActions(A)F ∧ Γ ∪ Γ′ ` fa → k∧
ra = k/π(A, (a,Γ′)) ∧ fa ∈ F|}

where π(A, (a,Γ′)) returns the number of occurrences of
(A[E ],Γ′) in the multi set A such that activeActions(A)F =
{a}.

Definition 26. Current rated activities. Given a model
process M ∈ Pm and an environment Γ ⊆ Names× R, the
multi set of rated activities that M can perform is defined
as:

RatedAct(M)Γ = rateActivities(Γ)(ClosedAct(M))

Definition 27. Rated activity set. Given an environment
Γ ⊆ Names× R, the multi set of rated activities that a
model process M ∈ Pm and its derivatives can perform is
given by:

−−−−−−→
RatedAct(M)Γ = rateActivities(Γ)(

−−−−−−−→
ClosedAct(M))

Definition 28. Rated moves of a model process. Given a
model process M ∈ Pm and an environment Γ ⊆ Names×R,
the multi set of rated moves ofM , denotedRatedMoves(M)Γ,
is defined as:

RatedMoves(M)Γ = {|((A[E ], r),M ′) | ((A[E ],Γ′),M ′) ∈
Moves(M ′) ∧ (A[E ],Γ′) ∈ ClosedAct(M) ∧ {|((A[E ], k))|}
= rateActivities(Γ)({|(A[E ],Γ′)|}) ∧ activeActions(A)F

= a ∧ r = k/π(ClosedAct(M), (a,Γ′))|}

Definition 29. Rated transitions. Given M ∈ Pm and Γ ⊆
Names× R, M

(A[E],r)−−−−−→Γ M ′ is a valid rated transition iff

M
(A[E],Γ′)−−−−−−→M ′, (A[E ],Γ′) ∈ ClosedAct(M), {|((A[E ], k))|} =

rateActivities(Γ)({|(A[E ],Γ′)|}), activeActions(A)F = {a}
and r = k/π(ClosedAct(M), (a,Γ′)).

Definition 30. Rated derivation graph. Given a model
process M ∈ Pm and an environment Γ ⊆ Names× R, the
rated derivation graphDr(M)Γ is the labelled directed graph
with:

• set of nodes ds(M);

• multi set of transition labels
−−−−−−→
RatedAct(M)Γ;

• multi set of labelled transitions →r⊆ ds(M)×
−−−−−−→
RatedAct(M)Γ × ds(M). Given M ′ ∈ ds(M),

(M ′,A[E ], ra,M
′′) ∈→r iff M ′

(A[E],ra)−−−−−−→Γ M ′′, with
the same multiplicity as ((A[E ], ra),M ′′) in
RatedMoves(M ′)Γ;

• multi set of labelled transitions →o⊆ ds(M)×
−−−−−−→
OpenAct(M) × ds(M). Given M ′ ∈ ds(M),

(M ′,A[E ],Γ′,M ′′) ∈→o iff M ′
(A[E],Γ′)−−−−−−→ M ′′ and

(A[E ],Γ′) ∈ OpenAct(M), with the same multiplicity
of ((A[E ],Γ′),M ′′) in Moves(M ′).

The definition of a rated derivation graph completes the first
part of the paper, where we present the foundations of the
theory of process algebra with hooks. From the following
section we illustrate how the algebra can be used in practice.

4. PARAMETRIC PAH
In this section we introduce the syntax of a parametric ver-
sion of PAH.

D ::= nil | L′[L′′].A(exp, . . . , exp) | D +D |
if bexp then D else D

M ::= A(k, . . . , k) |M ��
L
M |M ��

L
M

exp ::= k | i | exp+ exp | exp− exp | exp/exp | exp ∗ exp
bexp ::= exp = exp | exp < exp | bexp ∧ bexp |

bexp ∨ bexp | ¬bexp | true | false

• actions have the form a(exp, . . . , exp), where exp, . . . , exp
is a list of expressions;

• k ∈ R and i is a parameter name, i.e. i ∈ Names;

• a definition process can also be an if-then-else con-
struct: if bexp then D else D;

• agent definitions have now the form A(i1, . . . , in) , D,
where i1, . . . , in is a list of parameter names;

• the evaluation of the expressions is performed when
inference rule Agent is applied;

• the definition of functional rates is also parametric.
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The semantics of parametric PAH is reported in Appendix
C. This syntax is used in the implementation of the inter-
preter of PAH models, as it allows the modeller to define
agents parametric in, for example, their position on a grid
or which level of concentration they represent. The current
implementation derives transitions from a model process and
assigns rates according to the theory presented above. More-
over, a simple simulator produces traces of stochastic simu-
lations sampling transitions using a race condition between
the available rated transitions. More in details, the rates
are used to determine a time delay for the next transition
to occur and which state is reached after the transition. In
the next section, we use parametric PAH and the mentioned
implementation to model and analyse a multi-scale scenario
of tissue growth.

5. MODEL OF TISSUE GROWTH
In this section we propose a simple model of tissue growth.
We define it as a multi-scale model because two scales are
present, tissue and biochemistry, and the two scales need to
interact. In particular, we show how one can define a model
where growth and death of tissue depend on the local con-
centration of biochemical species. Here we give the idea of
the model, while leaving the complete specification in Ap-
pendix D. Moreover, we present preliminary results based
on simulations of the model in Figures 3 and 4.

At the tissue scale we consider an area divided into regions
of the same size and shape. We consider a grid of 10 times 10
regions, each region denoted by the parameter name R(i, j).
Each region can be empty (agent E(i, j)) or contain tissue.
There are four types of tissue: tissue that can neither grow
nor die (agent T (i, j)); tissue that can grow, but not die
(Tm(i, j)); tissue that can die but not grow (Ta(i, j)); tis-
sue that can both grow and die (Tam(i, j)). Tissue processes
change between these four agents depending on the config-
uration of the biochemical scale. The event of growth is
represented by action growth(i, j, i2, j2) which is performed
by a tissue agent in region R(i, j) in synchronisation with
an adjacent empty space E(i2, j2) in region R(i2, j2). Two
regions are considered adjacent if they share an edge. If no
adjacent region is empty, growth is inhibited. The event of
tissue death is represented by action death(i, j). We assume
that actions growth(i, j, i2, j2) and death(i, j) have constant
rates kgrowth and kdeath.

The biochemical scale consists of biochemical species A, B
and C, present in all regions. The concentration of each
species varies between a concentration level of 0 and 10
(parameter maxLevels = 10). In particular, we use agent
A(i, j, w) to denote that species A in region R(i, j) presents
concentration level w. Analogously for species B and C.
Concentration level of the three species can change because
of the following local biochemical reactions (and associated
velocities):

R1 : A + B → C v1 = k1[A][B]
R2 : → A v2 = k2 R3 : → B v3 = k3

R4 : C → v4 = k4[C] R5 : B → B’ v5 = k5[B]

Where R5 is the transport of concentration of B from a com-
partment to an adjacent compartment. The following con-
straints, which require communication between scales, must
hold:

• tissue can grow if and only if the concentration level of
A in the same region is 5 or more. Actions growthon(i, j)
and growthoff(i, j) are used as hook actions to indi-
cate that a threshold has passed at the biochemistry.
Tissue processes can synchronise with these hook ac-
tions and change accordingly;

• tissue can die if and only if the concentration level of C
in the same region is 5 or more (parameter thr = 5).
Actions deathon(i, j) and deathoff(i, j) are used as
hook actions to indicate that a threshold has passed;

• a region is empty if and only if there is no biochem-
istry. To represent the absence of biochemistry we use
processes NA(i, j), NB(i, j) and NC(i, j). Actions
bioon(i, j) and biooff(i, j) work across scales and en-
sure this is the case.

Consider for example the definition of agents C(i, j, w) and
T (i, j):

C(i, j, w) , biooff(i, j).NC(i, j)
+(

if w < maxLevels then
if w == (thr − 1) then
r1(i, j)[deathon(i, j)].C(i, j, w + 1)

else r1(i, j).C(i, j, w + 1)
else nil)

+(
if w > 0 then

if w == thr then
r4(i, j)[deathoff(i, j)].C(i, j, w − 1)

else r4(i, j).C(i, j, w − 1)
else nil)

T (i, j) , growthon(i, j).Tm(i, j) + deathon(i, j).Ta(i, j)

In a region R(i, j), if the concentration level of C (w) is
below its maximum and A and B are available then C can
participate to reaction R1, represented by action r1(i, j). In
particular, if w is equal to 4 (w == thr − 1), then action
r1(i, j) carries also hook action deathon(i, j), which in turn
could synchronise with the tissue scale, bringing T (i, j) to
Ta(i, j). Without the use of a parametric version of PAH,
100 definitions of T (i, j) and 1000 definitions of C(i, j, w)
processes would have been necessary, one for each region
and level of concentration to model.

The complete definition of the model along with parameter
values can be found in Appendix D. The initial state is a grid
composed of agents E(i, j) in all regions with the exception
of R(6, 6), where agent Tm(6, 6) is used. At the biochemical
scale, agents NA(i, j), NB(i, j) and NC(i, j) are used with
the exception of A(6, 6, 5), B(6, 6, 0) and C(6, 6, 0). In terms
of model processes, the initial state consists of a vertical
synchronisation between a model process representing the
entire biochemical scale and the model process representing

the tissue scale, Biochem ��

H
T issue, with cooperation set

H containing the list of all hook actions used in the model.

Examples of simulations of the model are shown in Figure 3.
The images of the grid are constructed processing the model
process relative to the tissue scale resulted from the simula-
tions. A region is white when an agent of the type E(i, j)
is found, black otherwise (i.e. tissue of some kind is found).

202



0s 2s 4s 6s 8s 10s

k3 = 4

k3 = 5

k3 = 6

Figure 3: Three sample runs with k3 equal to 4, 5 and 6 Molar/s. Black squares represent regions containing
tissue.
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Figure 4: Number of tissue regions with parameter k3 equal to 4, 5 and 6 Molar/s, with 100 simulations for
each configuration. In the top row, all 100 simulations are shown, while in the bottom row average and
standard deviation of the same runs.
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As an example of possible analysis of the system, we focus
on the role the production of species B has on tissue growth
and death. Although B does not regulate tissue processes
directly, it is involved along with A and C in reaction R1.
Intuitively, if the concentration of B is low, A is not con-
sumed and growth becomes likely, while C is not produced
and tissue death becomes unlikely. The parameter which
regulates the production of B is k3. Thus, we observed the
behaviour of the system using three different values for k3,
4, 5 and 6 M/s. In particular, we performed 100 simulation
runs for each configuration. The results are shown in Figure
4, where one can see that increasing the production rate of
B the growth/death ratio decreases.

We have seen that with PAH we have clearly separated pro-
cesses on different scales. This ensures that one of the two
scales, for example biochemistry, can be modified or substi-
tuted with limited or no change at the tissue scale. More-
over, the vertical synchronisation indicates which actions
work across scales. Finally, we have seen that the para-
metric syntax reduces the redundancy at model definition.

6. RELATED WORK
Other process algebras have been defined to model biolog-
ical interactions. Some of them are Bio-PEPA [5], which
focusses on modelling the biochemical scale using multi-way
synchronisation; BetaBinders [11], which models interac-
tions between entities using interfaces on boxes, which in
turn contain processes that define their internal behaviour;
Brane Calculi [3], which models changes in hierarchical com-
partmental structures. In contrast with the mentioned ap-
proaches, we do not yet support the definition of compart-
ments as hierarchical structures delimited by membranes.
In this regard, PAH is more low level and focusses on the
definition of hook actions and vertical cooperation, which al-
low the modelling of interrupt like events happening across
scales. In this sense, PAH is more similar to a process al-
gebra with priorities of actions, such as EMPA [1], with
the additional ability of dealing with multiple interrupts at
the same time using action sets. This ensures one can de-
fine dependencies between precesses in a way amenable to
multi-scale scenarios, as we have discussed in [6]. Moreover,
our approach ensures we can define equivalences on filtered
PAH models. Another related approach worth mentioning is
two-dimensional cellular automata [10], because of its abil-
ity to represent behaviour on a two dimensional grid. This
approach has been used widely to represent biological sys-
tems such as tumour growth, or pattern formation, often
with great efficiency. However, cellular automata does not
provide a formal framework for the comparison and substi-
tution of parts of models, such as congruences in process
algebra. Moreover, our approach provides compositionality
of biological scales.

7. CONCLUSIONS AND FUTURE WORK
In this paper we have discussed both theoretical and prac-
tical aspects of process algebra with hooks (PAH). We
introduced process algebra with hooks as a process alge-
bra designed for multi-scale modelling of biological systems.
The algebra presents a new vertical cooperation operator

( ��

L
), that separates processes on different scales, and com-

posed actions, that allow synchronisations on multiple ac-
tions within and between scales at the same time. More-

over, quantitative analysis is possible associating actions
with functional rates. Functional rates combined with the
use of multi-way synchronisation ensure that standard ki-
netic laws can be used to define the rates of the biochemi-
cal events. On the practical side, we defined a parametric
version of PAH, which allows the writing of more compact
model definitions and that has been used in the implemen-
tation of the interpreter of the language. This version has
been used to model a scenario of tissue growth, where growth
and death of tissue depend on the local concentration of bio-
chemical species. With this model, we have illustrated how
a large process algebra model can be written in a compact
and parametric way and how the two scales in the model
can be separated by the vertical cooperation. Finally, we
have seen examples of simulations and analysis.

Additional results, not presented in this paper, are the def-
inition of congruences between rated and filtered PAH pro-
cesses. The idea is that one could focus on a specific scale by
filtering and thus removing action names from rated transi-
tions. Only action names that represent events of a specified
scale will be kept on the transition. Finally, one can formu-
late equivalence relations which ensure that two models have
the same behaviour at a specified scale, despite other scales
might be not equivalent. What we consider the logical fol-
low up is the investigation of approximate equivalences to
estimate a distance between the behaviour of two models.
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APPENDIX
A. FORMULATING FUNCTIONAL RATES

FROM KINETIC LAWS
Consider an action a, the velocity v(x) of the biochemical
reaction Ra associated with a, Si (i = 1, ..., n) species in-
volved in the reaction and ki ∈ Z as their stoichiometry in
the reaction Ra. The vector x ∈ Rn contains the concen-
tration of the species involved in the reaction and is used to
evaluate the velocity. We use [Si] to indicate the concentra-
tion of Si, 〈Si〉 to indicate the current level of concentration
of Si, and h as the concentration represented by one level of
concentration. The variation in time of [Si] is given by the
following differential equation:

δ[Si]

δt
= kiv([S1], ..., [Sn])

Consider ∆〈Si〉 = ki as the change in number of levels that
has to be applied to the current level of concentration of Si

when a is triggered. Moreover, consider v′ Substituting δ[Si]
with ∆〈Si〉h and substituting the [Si] with their approxima-
tion 〈Si〉h we obtain:

δ[Si]

δt
≈ ∆〈Si〉h

∆t
= kiv(〈S1〉h, ..., 〈Sn〉h)

=⇒ 1

∆t
=
v(〈S1〉h, ..., 〈Sn〉h)

h

If we consider ∆t as the average of the exponential distribu-
tion of the time necessary for a to happen, then 1/∆t can
be used as the rate for such a distribution. For more details
see [4].

B. PROOFS
Proof. Proof of equational laws for isomorphic PAH pro-

cesses. We prove each law in turn:

1. Moves(D1 + D2) = Moves(D1) ] Moves(D2) =
Moves(D2 + D1) with F the identity function id :
Pm → Pm.

2. proof analogous to 1.

3. We choose model process isomorphism F as

∀M ′1 ��L M ′2 ∈ ds(M1 ��L M2),

F(M ′1 ��L M ′2) = M ′2 ��L M ′1

with M ′1 ∈ ds(M1) and M ′2 ∈ ds(M2). Clearly, because

of the symmetry of operator ��
L

,

Moves(F(M ′1 ��L M ′2)) = apply(F)(Moves(M ′1 ��L M ′2))

4. proof analogous to 3.

5. We choose model process isomorphism F as

∀M ′1 ��

L
M ′2 ∈ ds(M1 ��

L
M2),

F(M ′1 ��

L
M ′2) = M ′2 ��

L
M ′1

with M ′1 ∈ ds(M1) and M ′2 ∈ ds(M2). Clearly, because

of the symmetry of operator ��

L
,

Moves(F(M ′1 ��

L
M ′2)) = apply(F)(Moves(M ′1 ��

L
M ′2))

6. We choose model process isomorphism F as

∀(M ′1 ��L M ′2) ��
K
M ′3 ∈ ds((M1 ��L M2) ��

K
M3),

F((M ′1 ��L M ′2) ��
K
M ′3) = M ′1 ��L (M ′2 ��K M ′3)

with M ′1 ∈ ds(M1), M ′2 ∈ ds(M2) and M ′3 ∈ ds(M3).
Using the additional conditions of 6. we have

Moves(F((M ′1 ��L M ′2) ��
K
M ′3))

= apply(F)((Moves(M ′1 ��L M ′2) ��
K
M ′3))

Proof. Proof of isomorphism as congruence. We prove
each case in turn:

1. A[E ].P1 and A[E ].P2 are definition processes. Because
P1 ≡ P2 there exists model process isomorphism F
between them such that F(P1) = P2 and P1 ≡ F(P1).
Clearly, we have

Moves(A[E ].P2) = apply(F)(Moves(A[E ].P1))

2. From the assumptions we know that ∃F : ds(P1) →
ds(P2) injective such that F(P1) = P2 and ∀A ∈ ds(P1),
A ≡ F(A) and

Moves(P2) = apply(F)(Moves(P1))

Thus, we need G : ds(P1 + Q) → ds(P2 + Q) injective
such that ∀A ∈ ds(P1 +Q), A ≡ F(A) and

Moves(P2 +Q) = apply(G)(Moves(P1 +Q))

We define G as:

G(A) =

{
A, if Q

a−→ A

F(A), if P1
a−→ A

Both cases of G ensure that G(A) ≡ A. Finally:

Moves(P2 +Q) = Moves(P2) ]Moves(Q)
= apply(F)(Moves(P1)) ] apply(id)(Moves(Q))

= apply(G)(Moves(P1 +Q))

3. We know there is a model process isomorphism F be-

tween P1 and P2. Each element of ds(P1 ��L Q) has the

form P ′1 ��L Q′. We define a model process isomorphism

G as: ∀P ′1 ��L Q′ ∈ ds(P1 ��L Q), with P ′1 ∈ ds(P1) and

Q′ ∈ ds(Q),

G(P ′1 ��L Q′) = F(P ′1) ��
L
Q′
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G is a model process isomorphism because F is a model
process isomorphism. In fact:

Moves(G(P ′1 ��L Q′)) = Moves(F(P ′1) ��
L
Q′)

= {|((A[E ],Γ), R��
L
Q′) | ((A[E ],Γ), R) ∈

Moves(F(P ′1)) ∧ A ∩ L = ∅|}
]{|((A[E ],Γ),F(P ′1) ��

L
Q′′) | ((A[E ],Γ), Q′′) ∈

Moves(Q′) ∧ A ∩ L = ∅|}
]{|((A[E ],Γ), R��

L
Q′′)) | ((A1[E1],Γ1), R) ∈

Moves(F(P ′1)) ∧ ((A2[E2],Γ2), Q′′) ∈Moves(Q′)
∧A1 ∩ A2 ∩ L 6= ∅ ∧ A = A1 ∪ A2 ∧ E = E1 ∪ E2∧
Γ = Γ1 ∪ Γ2|}

= {|((A[E ],Γ),F(P ′′1 ) ��
L
Q′) | ((A[E ],Γ),F(P ′′1 )) ∈

apply(F)(Moves(P ′1)) ∧ A ∩ L = ∅|}
]{|((A[E ],Γ),F(P ′1) ��

L
Q′′) | ((A[E ],Γ), Q′′) ∈

apply(id)(Moves(Q′)) ∧ A ∩ L = ∅|}
]{|((A[E ],Γ),F(P ′′1 ) ��

L
Q′′)) |

((A1[E1],Γ1),F(P ′′1 )) ∈ apply(F)(Moves(P ′1))∧
((A2[E2],Γ2), Q′′) ∈ apply(id)(Moves(Q′))∧
A1 ∩ A2 ∩ L 6= ∅ ∧ A = A1 ∪ A2 ∧ E = E1 ∪ E2∧
Γ = Γ1 ∪ Γ2|}

= apply(G)(Moves(P ′1 ��L Q′)

4. With the same procedure used for 3, we define a model

process isomorphism G as: ∀P ′1 ��

L
Q′ ∈ ds(P1 ��

L
Q),

with P ′1 ∈ ds(P1) and Q′ ∈ ds(Q),

G(P ′1 ��

L
Q′) = F(P ′1) ��

L
Q′

G is a model process isomorphism because F is a model
process isomorphism and it can be proved in analogy
with point 3.

C. SEMANTICS OF PARAMETRIC PAH
The semantics for parametric PAH processes is presented
in Figure 5. Given an environment Γ, the evaluation of
an expression exp into a real number k is denoted by Γ `
exp → k, the evaluation of a boolean expression bexp into
b ∈ {true, false} is denoted by Γ ` bexp → b, while the
evaluation of the list of expressions of all the actions in a
set A is denoted by Γ ` A → A′, where A′ contains only
actions with evaluated expressions.

D. DETAILED DEFINITION OF THE MODEL
OF TISSUE GROWTH

Constants:

k1 = 1/(Ms) k2 = 5 M/s k3 = 5 M/s
k4 = 1/s k5 = 1/s h = 1 M
kdeath = 1 event/s kgrowth = 1 event/s maxLevels = 10
rows = 10 cols = 10 thr = 5

Functional rates and sets of participants:

fr1(i,j) = k1 ∗A(i, j) ∗ h ∗B(i, j) ∗ h/h
pr1(i,j) = {A(i, j), B(i, j), C(i, j)}

fr2(i,j) = k2/h
pr2(i,j) = {A(i, j)}
fr3(i,j) = k3/h
pr3(i,j) = {B(i, j)}
fr4(i,j) = k4 ∗ C(i, j) ∗ h/h
pr4(i,j) = {C(i, j)}
fr5(i,j,i2,j2) = k5 ∗B(i, j) ∗ h/h
pr5(i,j) = {B(i, j), B(i2, j2)}
fdeath(i,j) = kdeath
pdeath(i,j) = {R(i, j)}
fgrowth(i,j,i2,j2) = kgrowth

pgrowth(i,j,i2,j2) = {R(i, j), R(i2, j2)}

Agent definitions:

NA(i, j) , bioon(i, j).A(i, j, 0)

A(i, j, w) , biooff(i, j).NA(i, j)
+(

if w < maxLevels then
if w == (thr − 1) then
r2(i, j)[growthon(i, j)].A(i, j, w + 1)

else r2(i, j).A(i, j, w + 1)
else nil)

+(
if w > 0 then

if w == thr then
r1(i, j)[growthoff(i, j)].A(i, j, w − 1)

else r1(i, j).A(i, j, w − 1)
else nil)

NB(i, j) , bioon(i, j).B(i, j, 0)

B(i, j, w) , biooff(i, j).NB(i, j)
+(

if w < maxLevels then
r3(i, j).B(i, j, w + 1)
+(if i > 1 then
r5(i− 1, j, i, j).B(i, j, w + 1) else nil)

+(if i < rows then
r5(i+ 1, j, i, j).B(i, j, w + 1) else nil)

+(if j > 1 then
r5(i, j − 1, i, j).B(i, j, w + 1) else nil)

+(if j < cols then
r5(i, j + 1, i, j).B(i, j, w + 1) else nil)

else nil)
+(

if w > 0 then
r1(i, j).B(i, j, w − 1)
+(if i > 1 then
r5(i, j, i− 1, j).B(i, j, w − 1) else nil)

+(if i < rows then
r5(i, j, i+ 1, j).B(i, j, w − 1) else nil)

+(if j > 1 then
r5(i, j, i, j − 1).B(i, j, w − 1) else nil)

+(if j < cols then
r5(i, j, i, j + 1).B(i, j, w − 1) else nil)

else nil)

NC(i, j) , bioon(i, j).C(i, j, 0)
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Prefix

A[E ].A(exp1, . . . , expn)
A[E],true−−−−−−→ A(exp1, . . . , expn)

Choice Left Choice Right

D1
A[E],b−−−−→ A(exp1, . . . , expn)

D1 +D2
A[E],b−−−−→ A(exp1, . . . , expn)

D2
A[E],b−−−−→ A(exp1, . . . , expn)

D1 +D2
A[E],b−−−−→ A(exp1, . . . , expn)

If Then Else True

D1
A[E],b−−−−→ A(exp1, . . . , expn)

if bexp then D1 else D2
A[E],b∧bexp−−−−−−−−→ A(exp1, . . . , expn)

If Then Else False

D2
A[E],b−−−−→ A(exp1, . . . , expn)

if bexp then D1 else D2
A[E],b∧¬bexp−−−−−−−−−→ A(exp1, . . . , expn)

Agent

D
A[E],b−−−−→ A′(exp1, . . . , expn)

A(k1, . . . , kn)
(A′[E′],Γ′)−−−−−−−→ A′(k′1, . . . , k

′
n)

if A(i1, . . . , in) , D ∧ Γ = {(i1, k1), . . . , (in, kn)} ∧ Γ ` b→ true
Γ ` exp1 → k′1 ∧ · · · ∧ Γ ` expn → k′n ∧ Γ ` A → A′ ∧ Γ ` E → E ′
∧ Γ′ = {(V ar(A(k1, . . . , kn)), V al(A(k1, . . . , kn)))}

Figure 5: Semantics of parametric process algebra with hooks. Other inference rules are unchanged.

C(i, j, w) , biooff(i, j).NC(i, j)
+(

if w < maxLevels then
if w == (thr − 1) then
r1(i, j)[deathon(i, j)].C(i, j, w + 1)

else r1(i, j).C(i, j, w + 1)
else nil)

+(
if w > 0 then

if w == thr then
r4(i, j)[deathoff(i, j)].C(i, j, w − 1)

else r4(i, j).C(i, j, w − 1)
else nil)

E(i, j) ,
(if i > 1 then
growth(i− 1, j, i, j)[bioon(i, j)].T (i, j) else nil)

+(if i < rows then
growth(i+ 1, j, i, j)[bioon(i, j)].T (i, j) else nil)

+(if j > 1 then
growth(i, j − 1, i, j)[bioon(i, j)].T (i, j) else nil)

+(if j < cols then
growth(i, j + 1, i, j)[bioon(i, j)].T (i, j) else nil)

T (i, j) , growthon(i, j).Tm(i, j) + deathon(i, j).Ta(i, j)

Tm(i, j) ,
(if i > 1 then growth(i, j, i− 1, j).Tm(i, j) else nil)
+(if i < rows then growth(i, j, i+ 1, j).Tm(i, j) else nil)
+(if j > 1 then growth(i, j, i, j − 1).Tm(i, j) else nil)
+(if j < cols then growth(i, j, i, j + 1).Tm(i, j) else nil)
+growthoff(i, j).T (i, j) + deathon(i, j).Tam(i, j)
+{growthoff(i, j), deathon(i, j)}.Ta(i, j)

Ta(i, j) , death(i, j)[biooff(i, j)].E(i, j)
+apooff(i, j).T (i, j) +mitoon(i, j).Tam(i, j)
+{growthon(i, j), deathoff(i, j)}.Ta(i, j)

Tam(i, j), [R(i, j), 2] , death(i, j)[biooff(i, j)].E(i, j)
+(if i > 1 then growth(i, j, i− 1, j).Tam(i, j) else nil)
+(if i < rows then growth(i, j, i+1, j).Tam(i, j) else nil)
+(if j > 1 then growth(i, j, i, j − 1).Tam(i, j) else nil)
+(if j < cols then growth(i, j, i, j+ 1).Tam(i, j) else nil)
+growthoff(i, j).Ta(i, j) + deathoff(i, j).Tm(i, j)

Associated variables and values:

V ar(NA(i, j)) = V ar(A(i, j, w)) = A(i, j);

V al(NA(i, j)) = 0; V al(A(i, j, w)) = w;

V ar(NB(i, j)) = V ar(B(i, j, w)) = B(i, j);

V al(NB(i, j)) = 0; V al(B(i, j, w)) = w;

V ar(NC(i, j)) = V ar(C(i, j, w)) = C(i, j);

V al(NC(i, j)) = 0; V al(C(i, j, w)) = w;

V ar(E(i, j)) = V ar(T (i, j)) = V ar(Ta(i, j))
= V ar(Tm(i, j)) = V ar(Tam(i, j)) = R(i, j);

V al(E(i, j)) = 0; V al(T (i, j)) = 1; V al(Ta(i, j)) = 1;
V al(Tm(i, j)) = 1; V al(Tam(i, j)) = 1;

Model process and initial state:

((NA(1, 1) ��
L1,1

NB(1, 1) ��
L1,1

NC(1, 1)) ��
K1,1

. . . ��
K1,9

(NA(1, 10) ��
L1,10

NB(1, 10) ��
L1,10

NC(1, 10))

) ��
K1,10

(· · ·

· · · ��
K6,5

(A(6, 6, 5) ��
L6,6

B(6, 6, 0) ��
L6,6

C(6, 6, 0)) ��
K6,6
· · ·
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· · · ) ��
K9,10

(

(NA(10, 1) ��
L10,1

NB(10, 1) ��
L10,1

NC(10, 1)) ��
K10,1

. . . ��
K10,9

(NA(10, 10) ��
L10,10

NB(10, 10) ��
L10,10

NC(10, 10)))
��

H

(E(1, 1) ��
N1,1
· · · ��

N1,9
E(1, 10)) ��

N1,10
· · ·

· · · (E(6, 1) ��
N6,1
· · ·Tm(6, 6) · · · ��

N6,9
E(6, 10)) · · ·

· · · (E(10, 1) ��
N10,1

· · · ��
N10,9

E(10, 10))

L1,1 = {r1(1, 1), bioon(1, 1), biooff(1, 1)}
K1,1 = {r5(1, 1, 1, 2), r5(1, 2, 1, 1)}
K1,9 = {r5(1, 9, 1, 10), r5(1, 10, 1, 9)}
L1,10 = {r1(1, 10), bioon(1, 10), biooff(1, 10)}
K1,10 = {r5(1, 1, 2, 1), r5(2, 1, 1, 1), r5(1, 2, 2, 2), r5(2, 2, 1, 2),
r5(1, 3, 2, 3), r5(2, 3, 1, 3), r5(1, 4, 2, 4), r5(2, 4, 1, 4),
r5(1, 5, 2, 5), r5(2, 5, 1, 5), r5(1, 6, 2, 6), r5(2, 6, 1, 6),
r5(1, 7, 2, 7), r5(2, 7, 1, 7), r5(1, 8, 2, 8), r5(2, 8, 1, 8),
r5(1, 9, 2, 9), r5(2, 9, 1, 9), r5(1, 10, 2, 10), r5(2, 10, 1, 10)}
H = {bioon(1, 1), biooff(1, 1), deathon(1, 1), deathoff(1, 1),
growthon(1, 1), growthoff(1, 1), bioon(1, 2), biooff(1, 2),
deathon(1, 2), · · · , deathoff(10, 9), growthon(10, 9),
growthoff(10, 9), bioon(10, 10), biooff(10, 10), deathon(10, 10),
deathoff(10, 10), growthon(10, 10), growthoff(10, 10)}
N1,9 = {growth(1, 9, 1, 10), growth(1, 10, 1, 9)}
N1,10 = {growth(1, 1, 2, 1), growth(2, 1, 1, 1), growth(1, 2, 2, 2),
growth(2, 2, 1, 2), growth(1, 3, 2, 3), growth(2, 3, 1, 3),
growth(1, 4, 2, 4), growth(2, 4, 1, 4), growth(1, 5, 2, 5),
growth(2, 5, 1, 5), growth(1, 6, 2, 6), growth(2, 6, 1, 6),
growth(1, 7, 2, 7), growth(2, 7, 1, 7), growth(1, 8, 2, 8),
growth(2, 8, 1, 8), growth(1, 9, 2, 9), growth(2, 9, 1, 9),
growth(1, 10, 2, 10), growth(2, 10, 1, 10)}
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