A Modal Logic for Full LOTOS based

on Symbolic Transition Systems

M. CALDER', S. MAHARAJ? AND C. SHANKLAND?

! Department of Computing Science, University of Glasgow, G12 8QQ
?Department of Computing Science and Mathematics, University of Stirling, FK9 JLA

Email: ces@cs.stir.ac.uk

Symbolic transition systems separate data from process behaviour by allowing the
data to be uninstantiated. Designing a HML-like modal logic for these transition
systems is interesting because of the subtle interplay between the quantifiers for
the data and the modal operators (quantifiers on transitions). This paper presents
the syntax and semantics of such a logic and discusses the design issues involved in
its construction. The logic has been shown to be adequate with respect to strong
early bisimulation over symbolic transition systems derived from Full LOTOS. We
define what is meant by adequacy and discuss how we can reason about it with
the aid of a mechanised theorem prover.

Keywords: Modal logic, symbolic transition systems, LOTOS, bisimulation, adequacy

Received March 31, 2000; revised December 20, 2000; accepted August 23, 2000

1. INTRODUCTION

The ISO formal description technique LOTOS [1] has
been used over the last twenty years for a number of
applications, including OSI protocols, telecommunica-
tions systems and even children’s games. A particularly
useful feature of the language is that it allows descrip-
tion both of process flow of control and data passed be-
tween processes. Unfortunately, theory allowing anal-
ysis of such descriptions has been slower to develop;
most work has concentrated on a restricted version of
LOTOS without data. Our ultimate goal is to design
a framework for reasoning about Full LOTOS (that is,
processes plus data). In this paper we present a modal
logic for Full LOTOS, similar in spirit to that defined
by Hennessy and Liu [2] for value passing CCS.

The main problem to be overcome when reasoning
about Full LOTOS specifications is that the standard
semantics [1] instantiates all data, introducing the pos-
sibility of infinite branching in the transition systems.
Infinite systems are difficult to reason about and present
problems in the development of tools such as model-
checkers which work by exploring all possible states.
One method of dealing with infinite branching is to im-
pose strict limitations on all data types; in effect, re-
quiring them to be finite. This is the approach adopted
in the toolkit CADP [4], which provides a modal u-
calculus for reasoning about Full LOTOS specifications.
This logic is powerful and expressive but does not truly
address the issue of infinite branching, since types are
limited by underlying semantics. For example, the type
of natural numbers in CADP has only 256 values.

Hennessy and Liu [2] have defined a modal logic for

value-passing CCS that avoids the problem of infinite
branching by using the late semantics of value-passing
CCS. The late/early distinction relates to the binding
time of variables to values: in the early semantics an
input action g7z results in z being bound to a spe-
cific value immediately, whereas in the late semantics z
is bound to an abstraction which can be later instan-
tiated to some specific value. Therefore in the early
semantics, the action g7z gives rise to a multitude of
transitions (one for each possible value of z) whereas
in the late semantics there is only a single transition,
and therefore the transition system is finitely branch-
ing. Unfortunately, this approach is not suitable for
LOTOS because operators such as multi-way synchro-
nisation naturally give rise to an early semantics. To
retain early semantics but recover finite branching we
therefore turn to Symbolic Transition Systems.

Symbolic Transition Systems (STSs) [5] are transi-
tion systems that separate data from process behaviour
by allowing the data to be symbolic, that is, uninstan-
tiated. STSs are finitely branching because an infinite
set of concrete transitions on specific values is replaced
by a finite set of symbolic transitions on symbolic data
items. In an STS, each transition which involves data
is labelled by a gate, a symbolic data item, and a condi-
tion expressing a constraint over the data. For example,
consider the process given by g7z : S[z > 3]; P. This
process inputs a value of type S on gate g, provided
that the value is greater than 3. The corresponding
STS has a transition labelled with the gate ¢, the vari-
able, or data parameter, z, (symbolically representing
the input) and the condition z > 3.

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 0000

2 CALDER, MAHARAJ AND SHANKLAND

Previous work [6] presents a set of rules for generat-
ing STSs from Full LOTOS processes. In this paper, we
build upon our framework for reasoning about Full LO-
TOS specifications by developing a logic for describing
abstract properties of these STSs.

The paper is organised as follows. In Section 2 we re-
mind the reader of the syntax of LOTOS and present
the formal definition of symbolic transition systems.
Section 3 presents the logic. We begin with a discus-
sion of some of the issues and choices to be made when
designing a modal logic for such an STS, illustrated by
various examples in Section 3.1. The denotational se-
mantics for the logic, in terms of satisfaction by STSs
generated from Full LOTOS, is given in Section 3.2.
A desirable property is that the logic should neither
identify (distinguish) more processes than those iden-
tified (distinguished) by strong early bisimulation on
STSs, that is, it should be adequate with respect to
this bisimulation [7]. This is formally stated in Sec-
tion 4, although the importance of adequacy is stressed
throughout. In Section 5 we discuss how we have been
using the theorem prover PVS [8] to help develop this
work. Finally, we summarize and mention further work
in Section 6.

2. PRELIMINARIES
2.1. LOTOS

The reader is assumed to have some familiarity with
process algebras, therefore we give only a brief overview
here. Many authors have produced tutorials for
LOTOS, for example, Logrippo et al [9].

LOTOS is a verbose language, with many operators.
In this paper we use action prefix (denoted a; P) and
choice (denoted a; P []1 b; Q). Actions may be sim-
ple events (denoted SimpleEv) or structured events (de-
noted StructEv). Simple events come from some set
G of actions, plus the distinguished events i (like 7 in
CCS) and 0. Structured events are of the form gF where
g € G U {6} and F is an expression denoting a data of-
fer. For example, send!4 denotes the offer of the value
4 at gate send, while rec?x:Nat denotes the offer of all
values of Nat at gate rec. Variables are bound by 7.

Data offers can be thought of as input (?) or out-
put (!) events, but it is important to realise that
since LOTOS has multiway synchronisation data of-
fers can synchronise in any combination (not just as
input/output pairs as in CCS). A better model is to
think of a data offer as offering a set of values. For !
actions this set is always a singleton, whereas for 7 ac-
tions the set may range from empty to infinite. Then,
multiway synchonisation may be seen as the intersection
of the sets of values offered by all the events involved in
the synchronisation.

LOTOS also has guarded events. Guards can
precede actions ([x > 0] —> a; P, where x is free)
or be incorporated in actions as selection predicates

(rec?x:Nat[x>5], where x is not free). These also re-
strict the set of values offered by an event.

2.2. Symbolic Transition Systems

STSs are essentially labelled transition systems in which
states and transitions may be open, and transitions are
labelled with a Boolean condition in addition to the
usual gate name and data value. Although LOTOS
has multiple data offers for each action, we assume for
simplicity only one data offer.

The restrictions on free variables in our STSs are dif-
ferent from those of Hennessy and Lin [5]. This is a
consequence of the way in which our STSs are derived
from the syntax of LOTOS. In particular, in the STSs of
Hennessy and Lin [5] the Boolean condition of a transi-
tion can use only the free variables of the source of that
transition, whereas we allow this Boolean to also use the
variable (if any) bound by the transition. This reflects
selection predicates directly, and ties us to an early se-
mantics of LOTOS. This is acceptable since multiway
synchronisation implies an early semantics.

DEFINITION 2.1. Symbolic Transition Systems
A symbolic transition system consists of:

e A (nonempty) set of states. Each state T is asso-
ciated with a set of free variables, denoted fv(T).
e A distinguished initial state, Tp.

e A set of transitions written as T L% T'
such that fu(T") C fu(T)U fo(a) and
fo(b) C fo(T) U foa) and #(fo(a) — fo(T)) < 1.
b is a Boolean expression and a € SimpleEv
U StructEv.

We say that a state is closed if its set of free variables
is empty. An STS is closed if its initial state is closed.

Another consequence of multiway synchronisation is
that the distinction between ! and ? events is less
important than in the STSs defined by Hennessy and
Lin [5]. Hence the transitions of our STSs do not have
special notation for each kind of action (they are both
just data offers). However, it is always possible to tell
if a variable is being bound by examining the free vari-
ables of the associated states. So, for example, when-
ever « introduces a new variable, we know that it is a
new binding because fv(a) Z fo(T).

These differences between LOTOS and value-passing
CCS are significant, and make it non-trivial to adapt the
work of Hennessy and Lin [5] to the LOTOS setting.

2.3. Operational Semantics

Before we can present the logic over symbolic transi-
tion systems we must consider the question of how to
define substitution on STSs. It is not possible to define a
straightforward syntactic substitution on STSs because
of the presence of cycles (such as arise from recursive
processes).

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 0000

A MobpaL LogIc FOR FuLL LOTOS BASED ON SYMBOLIC TRANSITION SYSTEMS 3

This problem is solved by introducing the concept of
a “term”: a node in a symbolic transition system paired
with a substitution. Formally, a substitution is a partial
function from Var to Var U Val and a term, T, , consists
of a state in an STS, T, paired with a substitution,
o, such that domain(o) C fuo(T). The substitution is
applied step by step, when necessary, as explained in
the rules for transitions between terms (Definition 2.2).
Note that the substitution is allowed either to rename
variables or to provide an evaluation.

We use t and u to range over terms. The definition
of free variables is extended to terms in the obvious
way. Terms, rather than STSs, are used as the basis
for defining the logic. The notation f./,) is used to
mean the term ¢ with the mapping =z — e added to its
substitution.

DEFINITION 2.2. Transitions on Terms

Tt 2T implies T, 2, T,

TL 9B, 7" implies T, 22— 9f9, T,
where fv(E) C fu(T)

L9, T' implies T, telelel oz 77,

where z & fu(T) and z & fu(T,)

In all cases, o' = fu(T') < o, that is, the restriction of
o to include only domain elements in the set fu(7").

To improve readability, we shall use a somewhat in-
formal notation to express quantification over transiti-
ions, sometimes omitting some of the items over which
we are quantifying. For example, we write “for some
', t L 9E, ¢ to mean “for some t', b, E, t L9E, ¢
and “whenever t 2—9E, ¢ to mean “for all ¢, b, F
such that t 2—9E, ¢/

3. A MODAL LOGIC FOR LOTOS

Our aim is to design a logic which is expressive enough
to describe desirable (and undesirable) properties of a
system, as well as to capture the notion of strong early
bisimulation over STSs [6]. We start with the basic
concepts of HML [3] and consider how to add data.

In addition to the usual constants tt, ff and binary
operators A and V, HML has two modal operators: the
diamond (g), corresponding to existential quantifica-
tion over transitions, and the box [g], corresponding
to universal quantification over transitions. We add ex-
istential and universal quantification over data values
to these, so that modal operators can express quantifi-
cations over both transitions and data.

Informally, our understanding of these operators is as
follows, using variable y to stand for data and g for a
gate name.

(3y g) One value, one g transition.
(Vy gy Enough ¢ transitions to cover all values.
All ¢ transitions for a particular value.

[y 9]
[Vy g] All values, all g transitions.

As noted, our STSs do not make a syntactic distinc-
tion between ! and ? events; therefore neither does
our logic. This contrasts with, for example, the logic
of Hennessy and Liu [2] in which there is a one to one
correspondence between a quantifier in the logic and
a matching transition. Here, a quantifier may need to
be matched by several transitions. Recall that, due to
multiway synchronisation and selection predicates, each
data offer can be seen as a set of values. In particular,
individual transitions may be associated with a strict
subset of values for the type. Therefore when match-
ing a universal quantifier more than one transition may
be required in order to provide the complete set of val-
ues for the type, and these transitions may have been
generated from either ! or ? events.

To illustrate this point, and to show informally the
semantics of each modal operator given by the combi-
nations of [], (), 3 and V, we give several examples in
the next section.

3.1. Examples

Consider the process P (the STS is given in Figure 1).
We assume Num ranges from 1 to 10.

process P [g,h,k]: exit :=
g?x:Num [x < 5]; h; exit
[0 g!'4; k; exit
[1 g?x:Num [x = 5]; (h; exit [] k; exit)
[1 g!5; h; exit
[1 g?x:Num [x > 5]; h; exit
[1 g!'10; k; exit
endproc

FIGURE 1. process P

To illustrate the full capabilities of the logic, we have
chosen a process which has several overlapping condi-
tions, that is, there are non-deterministic choices. In
the diagrams below the highlighted branches are the
ones used in the evaluation of the modal formulae.

To start with a simple example, consider the property
that a process can possibly do an action, with data,
and it might depend on a particular Boolean condition
being satisfied. For example, P can perform a g action
with some data y which is equal to 4. This is phrased
as P = (Jy ¢)(y = 4) and a transition showing that P
satisifes the property is given in Figure 2. Only a single
path in P is required to satisfy the property.

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 0000

4 CALDER, MAHARAJ AND SHANKLAND

FIGURE 2.

Now consider composing together operators, express-
ing a chain of actions, and also the combination of V
and (). This combination is slightly counter-intuitive,
since the usual understanding of {) is that only one
g transition is required to satisfy it, while for V we re-
quire all values. For example, for all values y, P can
do a g action, and then an h action. This is phrased as
P = (Vy g)(h)tt and the transitions showing that P sat-
isfies this property are given in Figure 3. Note that all
values of the type of y must be considered when eval-
uating this property, but that this is not the same as
all transitions labelled by a ¢ action. If there was one
transition P ££—9%, P’ where z has type Num, then this
would be sufficient to satisfy the first part of the prop-
erty. There is no such transition, therefore the set Num
must be partitioned and one transition found for each
member of the partition. Thus, several paths in P are
required to satisfy the property, but only enough to pro-
vide all elements of the set Num.

FIGURE 3.

A similar property (Vy ¢)(k)tt fails to hold for P. Fig-
ure 4 shows the transitions where a ¢ action followed
by a k action is possible, but these only yield the set
{4,5,10}, which does not partition Num. Therefore, P
does not have this property. On the other hand, Fig-
ure 4 demonstrates that there are some paths where it
is possible to do a k action. Any of these paths shows
P |= (Jy g)(k)tt holds.

The combination of [] and 3 is also useful, since we
choose a single value, but pursue all paths with that
value and the given gate name. For example, the prop-
erty P = [Jy g](h)tt, that is, for some value y, no mat-
ter which g action is chosen it is possible to do an h
action subsequently. The example in Figure 5 shows

FIGURE 4.

this to be the case for the value 5. This property would
also be true for any value other than 4 and 10. As
with (Vy g) several paths are selected, but this time all
paths for a single data value are required, rather than
a combination of paths covering all values.

FIGURE 5.

In contrast, if the 3 is replaced by a V, giving
[Vy g](h)tt, then the property no longer holds for P,
as illustrated in Figure 6. In this case all g transitions,
for all values, must be considered, but it is not always
possible to do an h action after a g action (specifically,
after the actions g4 and ¢10). If the formula is extended
to [Vy ¢]((h)tt Vv (k)tt) then it does hold for process P.

FIGURE 6.

As mentioned above, a motivating design requirement
was adequacy of the logic with respect to bisimulation
on STSs. Consider the process Q as follows (the corre-
sponding STS is given in Figure 7).

process Q [g,h,k]: exit :=
g?x:Num; h; exit

[1 g?5:Num; (h; exit [] k; exit)

[1 g?x:Num [x=4 or x=10]; k; exit

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 0000

A MobpaL LogIc FOR FuLL LOTOS BASED ON SYMBOLIC TRANSITION SYSTEMS 5

endproc

FIGURE 7. process

Informally, we can see that processes P and Q exhibit
the same behaviour, that is, we expect P to be bisimilar
to Q, and that they satisfy (or fail to satisfy) the same
properties. Certainly this is true for the properties de-
scribed above.

Finally, it is illuminating to consider an example of
two processes that are not bisimilar (the STSs are given
in Figure 8).

process R[g]:exit := g!3; exit endproc
process S[gl:exit := g?y:Nat[odd(y)]; exit endproc

tt odd (y)
g3 gy

FIGURE 8. processes R and S

Process S clearly has actions which are not available
to process R. A formula distinguishing these two pro-
cesses is (Iz ¢g)(z # 3) (which S satisfies but R does
not).

The examples above demonstrate that every combi-
nation of operator is potentially useful since each cor-
responds to some informal idea about exploring paths
through the STS. Moreover, the operators seem to cap-
ture an established notion of equivalence between pro-
cesses. Therefore all the combinations are included in
the logic FULL (FUIl LOTOS Logic). The formal syn-
tax and semantics of this logic are presented next.

3.2. Syntax and Semantics

The syntax of FULL is based on a variant of HML,
as presented by Stirling [10], with data and quantifiers
added. There are two classes of formulae. The first
class, ranged over by @, applies to closed terms. The
second class, ranged over by A, applies to terms with a
single free variable, as would arise from a LOTOS pro-
cess with a single parameter. (The extension to multi-
ple free variables is straightforward but tedious and is
therefore omitted).

DEFINITION 3.1. Syntax of FULL

d = b | (I)l A\ (I)2| (I)l \Y (I)2| [G,](I) | <G,>(I)
| Gz g)® | (Vzg)® | [Fzg]® | [Vz g]®
A = dz.® | V2.

Here b is a Boolean expression, ¢« € G U {i,d},
g € GU{6} and z denotes a variable name. We have
deliberately left b unspecified, as it depends on the lan-
guage of data as described in the LOTOS specification
from which the STS is generated. We assume that it at
least includes the usual Boolean constants.

We now give the formal semantics of the logic. First
we define ¢t = @, denoting that a closed term ¢ sat-
isfies a closed modal formula ® (Definition 3.2). Note
that although some transitions may introduce new vari-
ables, the states and formulae remain closed because of
the substitutions applied. This means that when we
consider which transitions to match there are only two
cases: either the expression has the closing substitution
applied, yielding a value, or a new variable is bound.

DEFINITION 3.2. Semantics of FULL: Closed Terms

Given any closed term ¢, the semantics of ¢ |= ® is given
by:

tEb b=tt

tE®P APy = tE®; and t = Po

tE® VP, tE= @ ortlE P

tE(a)® = forsomet t® 9, t'andt' @
t E[a]® whenever ¢t 2, ¢’ then t' = ®

t = (dz g)® = for some value v, either
for some t', t £ 99, ¢/ and t' = ®[v/7]
or
for some t', t 292+ ¢ and b[v/z] = tt
and t, ., = @[v/]
t = (Vz g)® = for all values v, either
for some t', t £ 99, ¢/ and t' = ®[v/7]
or
for some t', t 292+ ¢ and b[v/z] = tt
and t, ., = @[v/z]
t = [dz g]® = for some value v,
whenever ¢t £~ 9%, ¢/ then t' = ®[v/z] and
whenever t 292+ ¢ and b[v/z] = tt
then t[’v/z] E ®v/z]
t = [Vz g]® = for all values v,
whenever ¢ £ 9%, ¢’ then t' = ®[v/z] and
whenever t 292+ " and b[v/z] = tt
then t[’v/z] E ®v/z]

The first five rules are standard. The semantics of
the new modal operators is essentially driven by the de-
sire for adequacy. For structured transitions, the logic
formula must contain a modality/quantifier pair. One

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 0000

6 CALDER, MAHARAJ AND SHANKLAND

approach is to treat the different kinds of quantifiers
(that is, over transitions or over data) separately in the
semantics. For example, in the logic of Hennessy and
Liu [2] the transition is chosen first, and the inductive
step involves an abstraction (a variable, STS pair) and
an open modal formula. This is possible because tran-
sition conditions only involve variables already bound,
and a late semantics is used.

However, this order of evaluation is not appropriate
for an early semantics. Consider the processes given in
Figure 9. Assume the set A is neither empty nor uni-
versal. T and U are clearly bisimilar. If we defined a
semantics for the logic in which the transition is chosen
first, independently of the data, then a formula distin-
guishing these two processes can be constructed (so the
logic is clearly not adequate). Specifically, T = [Vz g]tt
while U [~ [Vz g]tt. The latter fails because we are
forced to choose a single ¢ transition (and thus have to
satisfy either Vz.z in A or Vz.zin A, which cannot be
true if A is not empty or universal). Under an early in-

FIGURE 9. processes T and U

terpretation quantifiers must be treated in the reverse
order: data quantifier first, then transition quantifier.
The structure of the syntax (putting the data quanti-
fier inside the modal quantifier) means we have to treat
the quantifier pairs in a single step in the semantics of
Definition 3.2.

The rules for ¢t = A (Definition 3.3), where T is a
term with one free variable, relate this free variable to
the (single) variable quantified over by a formula A.

DEFINITION 3.3. Semantics of FULL: Open Terms
Given any term ¢ with one free variable, z, the seman-
tics of an open formula, ¢ = A, is given by:

t=3r.® = for some value v, #,,.] F ®[v/7]
tEVr.® = for all values v, f[,,.] = ®[v/z]

4. BISIMULATION OVER TERMS

An important relationship between processes is that of
bisimulation. In this section we define (strong, early)
bisimulation over terms and state the theorem that
FULL is adequate with respect to this bisimulation.

We shall assume we have a function new(t, u) which,
given two terms ¢ and wu, returns a variable which is not
among the free variables of either ¢ or w.

DEFINITION 4.1. Bisimulation on terms
Given two closed terms ¢ and wu,

1.t~0u

2. for all n > 0, t ~,, u provided that:

(a) (simple event)
whenever ¢t 2, ¢ then for some u’,
w2y and t' ~,_q W

(b) (structured event, no new variable)

whenever t £ 9¥, ¢/ then either

for some u', u &9+ ¢’ and t' ~,_; v/
or
for some u', u L= 9%+ ' and b,[v/2] = tt and

t' ~p1 u[’v/z], where z = new(t, u).

(¢) (structured event, new variable)
whenever t 29, ¢ where z = new(t,u),
then, for all v s.t. bt[v/z] = tt, either
for some u’, u 9%+ 4’ and t{ /™ 1 u
or
for some u', u L9+ ' and b,[v/2] = tt and
fujs) ~n=1 U ys)-

(d) , (e), (f) Symmetrically, the transitions of u
must be matched by t.

Given two terms ¢ and u with free variables {z} and
{y}, respectively, ¢ ~, u provided that for all values v,

Yo/a] ~n Uu/y]-

4.1. Adequacy of the Logic

As discussed previously, a desirable property of the logic
is that it is adequate with respect to bisimulation. Some
supporting examples for adequacy were given in Sec-
tion 3.1; we now state this conjecture formally. The
statement of the theorem relies on associating with each
formula of FULL a depth, n, which is defined induc-
tively on the structure of the formula.

THEOREM 4.1. For all n, for all terms ¢ and u,
t ~, u if and only if ¢ and u satisfy the same formulae,
for all formulae of depth n.

The proof is omitted for lack of space but is presented
elsewhere [7].

5. USING PVS TO PROVE ADEQUACY

The automated theorem prover PVS was used exten-
sively in developing the definitions presented in this pa-
per, and to some extent in proving adequacy. Here we
discuss the reasons for choosing to use such a tool, and
the resulting benefits and drawbacks.

The main reason for choosing to use a tool was to
facilitate experimentation with different definitions of
the logic. Many variations of the logic were considered
before the definition in this paper was selected. As there
are various constructors for formulae and many cases in
the semantics of each constructor, much work needed to
be done to analyze the consequences of each change (for
example, checking that key lemmas continued to hold
true.) On paper this was a tedious and error-prone task.
With PVS, however, a proof can be edited and re-run,

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 0000

A MobpaL LogIc FOR FuLL LOTOS BASED ON SYMBOLIC TRANSITION SYSTEMS 7

and the user can be confident that every part of the
proof has been thoroughly re-checked.

Another consequence of using PVS was that we were
forced to make all definitions and proofs fully formal.
This was both a benefit and a disadvantage.

On the positive side, the exercise of expressing all our
definitions formally in PVS improved our understanding
of many issues. For example, on paper, we had been
able to be informal about issues such as how to define
substitution on STSs. PVS forced us to scrutinise the
details of this definition, and in so doing, brought us to
a full appreciation of the reasons why substitution on
STSs could not be defined satisfactorily, and why the
concept of a “term” was required. This was a crucial
step in arriving at a correct set of definitions and in
proving the adequacy theorem.

On the other hand, once the right definitions had
been found, the need to be fully formal became more
of a hindrance. There were many simple subgoals in
the proofs which were obvious to the human user, but
were required to be proved in PVS. We judged that the
benefits of full formal proof were not worth the extra
time and effort it would require either to prove these
subgoals in PVS or to configure the tool to prove them
automatically (for example, by adding lemmas to be
used for automatic proof). PVS was therefore used only
in the initial stages of the proof; once we were confident
that we had the right definitions and proof technique,
the proof was completed on paper.

To give some idea of the amount of work done in PV'S,
the formalisation of the logic is about 150 lines long and
the formalisation of STSs and related concepts is about
200 lines long. These numbers do not include definitions
generated automatically by PVS.

6. SUMMARY AND FURTHER WORK

The standard semantics of Full LOTOS is an early se-
mantics that instantiates all data, introducing the pos-
sibility of infinite branching in the underlying transition
systems. This poses serious problems for any associated
reasoning, particularly when demonstrating the expres-
sive power of a logic or developing practical reasoning
techniques such as model-checking. Consequently, we
have developed an (early) symbolic semantics, based on
symbolic transition systems (STSs), which eliminates
infinite branching. The semantics, and (early) strong
bisimulation for Full LOTOS, are presented in detail
elsewhere [6]. Here, we have concentrated on the form
of an associated logic, called FULL.

While our logic bears some similarity to that of Hen-
nesey and Liu [2] for value-passing CCS, there are signif-
icant distinctions, arising primarily from the treatment
of multiway synchronisation and selection predicates in
Full LOTOS. These affect both the form of the STSs
and any associated logics. Our main consideration is
the possible combinations of data and event quantifiers
to form new modal operators, and matching those op-

erators with symbolic transitions in a way that corre-
sponds with our intuitions, and with bisimulation.

We have illustrated the possible choices, through a
set of examples. When making design choices, an over-
riding motivation is that the logic should be adequate
with respect to our chosen bisimulation. In considera-
tion of this, a formal syntax and semantics for FULL
are given and adequacy has been proved. An important
aspect of developing the proof, in the initial stages, was
the use of an automated theorem prover.

In future work, we aim to build upon the logic FULL
by adding useful extensions such as fixpoint operators.
Work is also in progress on the development of practical
tools to support reasoning in FULL and case studies to
demonstrate its use.

ACKNOWLEDGEMENTS

The authors would like to thank the referees for their
helpful comments, and the British Council, the Engi-
neering and Physical Sciences Research Council, and
the Nuffield Foundation for financial support.

REFERENCES

[1] ISO 8807 (1989). Information Processing Systems —
Open Systems Interconnection — LOTOS — A For-
mal Description Technique Based on the Temporal Or-
dering of Observational Behaviour. International Or-
ganisation for Standardisation.

[2] Hennessy, M. and Liu, X. (1995). A Modal Logic for
Message Passing Processes. Acta Informatica, Vol 32.

[3] Hennessy, M. and Milner, R. (1985). Algebraic Laws
for Nondeterminism and Concurrency. Journal of the
Association for Computing Machinery, Vol 32(1).

[4] Fernandez, J.-C., Garavel, H. et al (1996). CADP
(CAESAR/ALDEBARAN Development Package): A
Protocol Validation and Verification Toolbox. In Pro-
ceedings of CAV’96, LNCS 1102, Springer-Verlag.

[6] Hennessy, M. and Lin, H. (1995). Symbolic Bisimula-
tions. Theoretical Computer Science, Vol 138.

[6] Calder, M. and Shankland, C. (2000). A Symbolic Se-
mantics and Bisimulation for Full LOTOS. Technical
Report CSM-159, University of Stirling.

[7] Calder, M., Maharaj, S., and Shankland, C. (2000).
An Adequate Logic for Full LOTOS. To appear in the
proceedings of Formal Methods Europe 2001.

[8] Shankar, N., Owre, S., and Rushby, J. M. (1993). PVS
Tutorial. Technical report, Computer Science Labora-
tory, SRI International, Menlo Park, CA.

[9] Logrippo, L., Faci, M., and Haj-Hussein, M. (1992). An
Introduction to LOTOS: Learning by Examples. Com-
puter Networks and ISDN Systems, Vol 23.

[10] Stirling, C. (1989). Temporal Logics for CCS. InLinear
Time, Branching Time and Partial Order in Logics and

Models for Concurrency, LNCS 354, Springer-Verlag.

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 0000

