
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

A template-based approach for the generation
of abstractable and reducible models of featured networks

A. Miller *, M. Calder, A.F. Donaldson

Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom

Available online 22 September 2006

Responsible Editor: H. Rudin

Abstract

We investigate the relationship between symmetry reduction and inductive reasoning when applied to model checking
networks of featured components. Popular reduction techniques for combatting state space explosion in model checking,
like abstraction and symmetry reduction, can only be applied effectively when the natural symmetry of a system is not
destroyed during specification. We introduce a property which ensures this is preserved, open symmetry. We describe a
template-based approach for the construction of open symmetric Promela specifications of featured systems. For certain
systems (safely featured parameterised systems) our generated specifications are suitable for conversion to abstract speci-
fications representing any size of network. This enables feature interaction analysis to be carried out, via model checking
and induction, for systems of any number of featured components. In addition, we show how, for any balanced network of
components, by using a graphical representation of the features and the process communication structure, a group of per-
mutations of the underlying state space of the generated specification can be determined easily. Due to the open symmetry
of our Promela specifications, this group of permutations can be used directly for symmetry reduced model checking.

The main contributions of this paper are an automatic method for developing open symmetric specifications which can
be used for generic feature interaction analysis, and the novel application of symmetry detection and reduction in the
context of model checking featured networks.

We apply our techniques to a well known example of a featured network – an email system.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Model checking; Feature interaction; Induction; Abstraction; Symmetry reduction

1. Introduction

Model checking [14,36,38] is a popular automated
approach for investigating the behaviour of com-
puter networks. A system is specified using a model-

ling language, and a state space (or model) generated.
The state space is explored to check properties that
are expected to hold for the original system. In par-
ticular, model checking is a useful technique for car-
rying out feature interaction analysis on networks of
featured components. However, model checking suf-
fers from the well known state space explosion prob-
lem: the size of the state space grows exponentially
with the number of components.

1389-1286/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2006.08.009

* Corresponding author.
E-mail address: alice@dcs.gla.ac.uk (A. Miller).

Computer Networks 51 (2007) 439–455

www.elsevier.com/locate/comnet

Aut
ho

r's

pe
rs

on
al

co

py

Approaches for combatting state space explosion
often involve abstraction to replace sets of states
with state representatives. One method, induction,
is used to construct an (abstract) state space which
encapsulates the behaviour of systems of any size.
This method is useful for ensuring that properties
which hold for small, finite systems, still hold when
any number of new components are added to the sys-
tem. However, if a property does not hold for the
abstract state space, no general result can be inferred
(and no meaningful counter-example generated).

For large, finite systems, symmetry reduction is
an alternative reduction technique which can be used
to reduce the size of the state space – sometimes dra-
matically. Symmetry reduction involves finding a
group of permutations of the state space which pre-
serve the property to be checked, and using it to
build a (smaller) quotient state space. The property
will hold for the quotient state space if and only if
it holds for the original state space.

In previous work [9,37] we have used an abstrac-
tion/induction approach to model and analyse
parameterised networks of featured components,
for networks of any size. Our approach relies upon
restricting the behaviour of the components to be
open symmetric. Open symmetry requires that for any
statement in the specification that refers to a literal
component id, all symmetrically equivalent state-
ments are present in the component specification.

We have also developed an approach, for balanced
networks of unfeatured components, to detect the
symmetry present in a system using a graphical repre-
sentation of the process communication structure –
the static channel diagram (SCD) [17,19]. The SCD
is generated automatically from a Promela specifica-
tion of the system, and a suitable automorphism
group of the state space ðG � AutðMÞÞ is obtained
from the automorphism group of the SCD
(Aut(SCD)). Although Aut(SCD) can be found easily
and automatically, some elements of Aut(SCD) are
not valid: they do not belong to AutðMÞ. Thus it is
necessary to remove all invalid elements of Aut(SCD)
to obtain a suitable automorphism group G. This
involves checking the validity of the group generators
against the Promela specification itself. If the model
could be ensured to be open symmetric however, all
elements of Aut(SCD) would be valid with respect
to the model, and we would only need to check the
validity of the generators against the property to be
verified. This would be faster and in many cases
would mean that we could use G = Aut(SCD)
directly for symmetry reduced model checking.

While conducting our previous work on abstrac-
tion/induction and symmetry detection we have
been struck by strong parallels between the
approaches used. For example, in both cases the
techniques are less effective (or do not apply at all)
if components are not open symmetric. We have
become increasingly aware that the tools we have
developed for constructing models suitable for
abstraction/induction, could be used to construct
finite models of networks of featured components
to which symmetry reduction can be applied.

In this paper we show how, for any balanced
network of featured components we can use a tem-
plate-based approach to generate Promela specifica-
tions which are, by construction, open symmetric.
For safely featured parameterised systems the gener-
ated specifications are suitable for applying our
induction approach.

In addition, we introduce a new graphical
representation of the specification – a feature config-
uration diagram (FCD) and show that the automor-
phism group of the FCD induces an automorphism
group of the underlying state space, for any bal-
anced system. This allows for immediate application
of symmetry reduction methods, without the need
to check for symmetry validity. We present a tool
– the featured specification generator (FSG) to imple-
ment our approach, and we present experimental
results for an email system. This extension of our
earlier work is the first time we have applied symme-
try detection methods to networks of featured
components.

Our methods are illustrated via two example net-
works: a telephone network, in which all compo-
nents are of the same type, and an email network
in which there are two types of component – client
components and a mailer component. However, it
is important to point out that our techniques are
applicable to networks consisting of multiple
component types.

2. Background

2.1. Systems and specifications

Consider a system of communicating compo-
nents. A specification of the system consists of a
set of processes (each describing a component)
together with a set of channels. Processes can be
separated into different types according to the type
of component they represent (e.g., client component
or server component).

440 A. Miller et al. / Computer Networks 51 (2007) 439–455

Aut
ho

r's

pe
rs

on
al

co

py

Definition 1. A specification with k process types,
for some k > 0, consists of the parallel execution of
processes thus

p1;1jj . . . jjp1;n1
jjp2;1jj . . . jjp2;n2

jj . . . jjpk;1jj . . . jjpk;nk
;

where, for 1 6 i 6 k, ni is the number of components
of type i.

Channels are also classified by type according to
their length, and the type of messages they can
contain.

Definition 2. We say that a system is balanced if:

1. Every component has a single dedicated channel
for incoming messages.

2. If components i and j have the same type and
have dedicated channels i 0 and j 0 respectively,
then i 0 and j 0 have the same type.

3. If component i has type ti and can send messages
to component j, which has type tj, then compo-
nent i can send messages to all components of
type tj.

The specification of a balanced system is called a
balanced specification.

An example of a balanced system is a simple
peer-to-peer system consisting of n components
each of which send and receive the same type of
messages, and can communicate with every other
component. Similarly a system consisting of n � 1
client components (say) together with a hub compo-
nent which is responsible for relaying messages
between the components is also balanced. However,
consider a tiered system consisting of a number of
client components together with a number of server

components, in which client components send mes-
sages to a specified server component (but not to
other server components). This system is not
balanced: to be balanced, each client component
should be able to send messages to either all or none
of the server components. Features can be used to
add this type of selective behaviour to an otherwise
balanced system.

2.2. Features

System components with the same type may have
different functionality. The mechanism for structur-
ing functionality additional to a basic behaviour is
commonly called a feature. The concept originated
in telephony where features such as call forwarding,

ring back when free, etc., are added to a basic call
behaviour. Features fundamentally affect basic
behaviour in different ways, and so components
with features are not, in general, isomorphic. More-
over, the features associated with one component
can affect the behaviour of other (possibly featured)
components.

A component is said to subscribe to a feature f

(belonging to a given set of features), and a network
is featured when (at least one of) the associated com-
ponents subscribes to at least one feature. The com-
ponent that subscribes to a feature is known as the
feature host. We assume that, when features are
implemented within a specification of a system, they
are implemented via an array.

An instantiation of a feature f is an application of
f to a given component or set of components. A
configuration of feature f is a a set of instantiations
of f for a given system. For example, in a telephone
system, setting component 2 to unconditionally
forward messages to component 3 is an instantia-
tion of the call forward unconditional (CFU) feature.

A unary feature is a feature which is instantiated
with respect to a single component and a binary

feature is a feature which is instantiated with respect
to two components. For example, originating calls

only (OCO) is a unary feature and terminating call

screening (TCS) is a binary feature. We assume that
unary features are instantiated using a statement of
the form F[i] = 1 with the default instantiation
F[i] = 0. Similarly binary features are instantiated
using a statement of the form F[i][j] = 1, where i is
the feature host. In this case the default instantia-
tion is F[i][j] = 0.

A binary feature f induces a relation R(f) on the
set {1,2, . . . ,n} of component identifiers:

ði; jÞ 2 Rðf Þ if f ½i�½j� ¼ 1:

We use vR(f) to denote the characteristic function of
R(f), which maps (i, j) to 1 if (i, j) 2 R(f), and maps
(i, j) to 0 otherwise (1 6 i, j 6 n).

2.2.1. Feature interaction
Property-based feature interaction analysis

involves checking that temporal properties which
characterise a given feature are preserved (or not)
in the presence of another feature(s). The usual
notation for this is the following, assuming S is a
system updated with features f1 and f2: does S +
f1 � / imply S + f1 + f2 � /?

Assuming c is a component with no features, cf1

and cf2
are components with features f1 and f2 resp.,

A. Miller et al. / Computer Networks 51 (2007) 439–455 441

Aut
ho

r's

pe
rs

on
al

co

py

and jj is parallel composition, then an example of
interaction analysis in this context is

(i) does ðcf1
jjcÞ � / imply ðcf1

jjcf2
Þ � /?

Of course a component can subscribe to more
than one feature. For example, assuming that
cf1;f2

is a component with features f1 and f2,
then another example of feature interaction
analysis is:

(ii) does ðcf1
Þ � / imply ðcf1;f2

Þ � /?

2.3. Model checking

Model checking involves checking Kripke struc-

tures [14] to verify given temporal properties.

Definition 3. Let AP be a set of atomic propositions.
A Kripke structure over AP is a tuple M ¼
ðS; S0;R; LÞ where S is a finite set of states, S0 � S

is the set of initial states, R � S · S is a transition
relation and L : S! 2AP is a function that labels
each state with the set of atomic propositions true in
that state.

From here on we will assume that all models
have a single initial state s0.

The logic LTL is defined as a set of formulas of
the form A/ where the quantifier A is used to
denote for all paths and / is a path formula in which
the only state subformulas are atomic propositions.
The set of LTL path formulas are defined induc-
tively below where X, U, h i and [] represent the
standard nexttime, strong until, eventually and
always operators (where h i/ = trueU/ and []/
= �h i�/ respectively). Let AP be a finite set of
propositions. Then

• for all p 2 AP, p is a path formula;
• if / and w are path formulas, then so are �/, /
^ w, / _ w, X/, /Uw, h i/ and []/.

When referring to an LTL formula, one generally
omits the A operator and instead interprets the
formula / as ‘‘for all paths /’’. For a model M, if
the formula / holds for all paths in M we write
M � /.

Definition 4. Let M and M0 be Kripke structures
with associated sets of atomic propositions AP and
AP 0 respectively, where AP � AP 0. A relation
H � S · S 0 is a simulation relation between M and
M0 if and only if for all s and s 0, if H(s, s 0) then

1. L(s) \ AP 0 = L 0(s 0).
2. For every state s1 such that R(s, s1), there is a

state s01 with the property that R0ðs0; s01Þ and
Hðs1; s01Þ.

If Hðs0; s00Þ, we say that M0 simulates M and write
M �M0.

The following is derived from a well known result
[14].

Lemma 1. Suppose that M �M0. Then for every

LTL formula / with atomic propositions in AP 0, if

M0 � / then M � /.

2.3.1. Promela and SPIN

Promela is an imperative specification language
with constructs for concurrency, nondeterminism,
asynchronous and synchronous communication,
dynamic process creation, parameterised processes,
and mobile connections, i.e., communication chan-
nels can be passed along other communication
channels. SPIN is the bespoken model checker for
Promela and provides several reasoning mecha-
nisms: deadlock and assertion checking, acceptance
and progress states and cycle detection, and satisfac-
tion of LTL properties.

In order to perform verification on a Promela
specification, SPIN translates a process template for
each process type into a finite automaton and then
computes an asynchronous interleaving product of
these automata to obtain the global behaviour of
concurrent specification. This interleaving product
is referred to as the state space. We can infer prop-
erties of a concurrent system by checking properties
of the state space associated with a Promela specifi-
cation of the system. Given a Promela specification
with n processes, the associated model or Kripke
structure (which we identify with the state space),
is denoted by Mn.

2.3.2. The parameterised model checking problem

(PMCP)

We consider specifications (see Definition 1) in
which either all processes have the same type, or
there is a distinguished context process, and all
other processes have the same type. That is, our
specifications have the form

p1jjp2jj . . . jjpN ;

where the pi, for 2 6 i 6 N have the same type and
p1 may or may not have the same type as pi for
2 6 i 6 N. For each specification we can generate

442 A. Miller et al. / Computer Networks 51 (2007) 439–455

Aut
ho

r's

pe
rs

on
al

co

py

a family of specifications by successively increasing
N. As such, each specification

p1jjp2jj . . . jjpN

is called a parameterised specification and the associ-
ated system is called a parameterised system.

For a fixed N, provided N is small enough, we
can check that a property / holds for a parameter-
ised specification by building a model MN (using
SPIN) and checking that MN � /. However, what
can we infer about such a system in general?

Note that parameterised systems are not limited
to having one or two types of component. Indeed,
the parameterised model checking problem can be
extended to systems with multiple component types
where the number of components of one of the
types is unlimited. We consider only the simpler
cases here for ease of argument.

Definition 5. For a parameterised specification as
described above, the parameterised model checking

problem (PMCP) is thus: for an LTL property /,
can we show that MN � / for any N?

It is not possible to solve PMCP using model
checking alone [2]. However, one approach that
has proved successful for verifying some parameter-
ised systems involves the construction of a network
invariant [4,13,34]. The network invariant I repre-
sents an arbitrary member of the family
F ¼ fMn : n P n0g and proof of a given property
/ for I can be shown to imply that any member of
the family F satisfies /.

Some other techniques that have been used to
verify parameterised systems include those based
on theorem proving [15], on abstraction [28], or
on a combination of the two [31]. A further method
is to use explicit inductive techniques combined with
model checking [20,24,35,42].

In Section 4 we describe an invariant-based
approach which combines abstraction and induc-
tion to verify parameterised systems in which indi-
vidual components may be distinguished by way
of features. Our invariant process is constructed by
modifying a Promela specification for a network
of fixed size, and using SPIN to construct the
corresponding Kripke structure. Our approach is
an example of how an invariant processes can be
constructed in practice, to extend results proved
for small, fixed sized models, to results which hold
for models of any size. One of the major assump-
tions we make is that our models satisfy a property
known as open symmetry.

Like all network invariant approaches, this
approach is limited to systems with a regular topol-
ogy, which grow in a regular way as the number of
components increases.

2.4. Open symmetry

In this section we summarise some definitions
from group theory which we will use to define the
conditions for our abstraction approach in Section
4 and to describe symmetry reduction techniques
in Section 5.

Definition 6. Let G be a non-empty set, and let
� : G · G! G be a binary operation. We say that
(G,�) is a group if G is closed under �; � is
associative; G has an identity element 1G; and for
each element a 2 G there is an inverse element
a�1 2 G such that a � a�1 = a�1 � a = 1G.

We call the operation � multiplication in G. When
it is clear what the binary operation is, we simply
refer to a group as G rather than (G,�), and use con-
catenation to denote multiplication.

For any group G be containing elements a1,
a2, . . . ,an, the smallest subgroup of G containing
the elements a1, . . . ,an is denoted ha1,a2, . . . ,ani,
and is called the subgroup generated by a1,a2, . . . ,an.
The elements ai (1 6 i 6 n) are called generators for
this subgroup.

The set of all permutations of a set X forms a
group under composition of mappings Sym(X).
For any Promela specification P say, we can apply
a permutation (of component ids) a to the state-
ments of P by replacing every occurrence i of a
literal component id with a(i).

Definition 7. Let P be a Promela specification and V

the associated set of component ids. We say that P

is open symmetric if, for any process p of P, for any
statement w of p, a(w) is a statement of p for all
a 2 Sym(V).

An automorphism of a Kripke structure
M ¼ ðS;R; L; s0Þ is an edge-preserving permutation
of S which fixes s0.

3. Feature interaction analysis using model checking

We assume that our systems are balanced
(see Definition 2). As examples of this type of sys-
tem, we have modelled a featured telephone system
consisting of N instantiations of a user component
and a featured email system consisting of a mailer

A. Miller et al. / Computer Networks 51 (2007) 439–455 443

Aut
ho

r's

pe
rs

on
al

co

py

component and N client components. In the Pro-
mela specifications for these systems, each process
is an instantiation of a parameterised proctype pro-
cess, where the only parameter is the dedicated
channel name for the process.

3.1. Promela specifications

The basic (unfeatured) Promela process proc-
types are based on high-level abstract automata
(see [8] for full details) for the system components.
In the automata, transitions are made between
call-states (like idle and calling in the telephone
example, and sendmail and delivermail in the email
example). These call states are represented in the
specification using labels.

Features are included via global feature arrays

and implemented via feature statements of the form

atomic {(feature_prop)&& (localprop)

&& (varprop)->command_guard}

where feature_prop is a proposition which checks
whether a feature is subscribed to, and localprop is
a proposition about local variables. The proposition
varprop, which may be empty, is a proposition
about global variables. These global variables may
include elements of global feature_flag arrays which
indicate whether a feature has been instigated dur-
ing a previous call. For example, the variable may
indicate whether or not a ringback been requested.

Our specifications of featured networks are safely

featured, as defined below:

Definition 8. A specification of a balanced featured
network is said to be safely featured if the only
global variables are channels or elements of global
arrays indexed by process ids. These global arrays
are either feature arrays (which are fixed), or arrays
for which the element with index i is only set or
checked by component with pid i.

Note that the latter type of global arrays are gen-
erally only included in a specification for verifica-
tion purposes (otherwise a local variable would
suffice). We are not able to include the return when

free (RWF) feature in our telephone specification
because it requires the use of a feature_flag array
in which element with index i is set by components
other than that with pid i.

Feature configurations (see Section 2.2) are
declared within the init process. For full example

code for both the email and telephone models see
[9].

3.2. Feature interaction analysis

For every feature f, an LTL property, or set of
LTL properties is constructed describing the func-
tionality of the feature. The features are hereafter
assumed to be defined by the properties describing
them. For example, in the telephone example the
call forwarding unconditionally feature (CFU) (from
user i to user j) property is: If user k dials i then a call
attempt will be made from user k to user j before
user k’s handset is replaced. When i = 0, j = 1 and
k = 2 this is described in LTL as [](p!
(�((�r)Uq))), where p = ((dialled[2] == 0) ^ (user

[p2]@calling)), q = (dev[2] == on) and r = ((part-

ner[2] == one) ^ ((user[p2]@oalert) _ (user[p2]@ busy))).
To validate a feature for a given set of parame-

ters (i, j and k in this example) a Promela specifica-
tion is constructed for a small number of processes,
in which the feature is initiated (by setting the asso-
ciated feature array). The associated LTL property
(or a set of properties in some cases) is then checked
using SPIN. To determine whether a pair of features
interact, a specification in which both features are
initiated is checked separately against the LTL

properties for the two features.
Note that, for any feature (or pair of features)

there are many cases to be checked, depending on
the values taken by the feature parameters. For
example, to validate CFU for a specification of 6
processes there are 216 possible combinations of i,
j and k. However, this can be reduced to a much
smaller number of cases (3 in this example) by
exploiting the symmetry between the processes [10].

Full feature interaction results for both the tele-
phone and email examples are given in [8].

4. Abstraction/induction for model checking

featured networks

As we saw in Section 3.2, we can use model
checking for feature interaction analysis of a fixed
number of components. However, suppose that,
for the telephone example, we have shown that fea-
tures f1 and f2 do not interact when considered
within a specification of a system of 5 user compo-
nents, can we be sure that they do not interact
within a specification of a system containing addi-
tional, possibly featured components? That is, can
we prove generic properties of specifications of our

444 A. Miller et al. / Computer Networks 51 (2007) 439–455

Aut
ho

r's

pe
rs

on
al

co

py

telephone system? Similarly, can we prove generic
properties for the email system?

When unfeatured, our two example systems are
parameterised systems, as described in Section
2.3.2. In order to prove generic properties of our
systems in the presence of features, we will have to
extend the PMCP (see Definition 5) to featured

parameterised systems. Using our approach we can:

1. validate features for specifications consisting of
any number of processes (and for which only
one process has any features, namely the feature
being validated), and

2. identify all pairs of features (f1 and f2 say) that do
not interact, regardless of the numbers of
components.

We outline our approach in Section 4.1 below.
For a more detailed description and proofs of
results, see [9,37].

4.1. The abstraction/induction approach

We consider parameterised systems (Definition
2.3.2) with associated parameterised specifications
of the form

p1jjp2jj . . . jjpN

where p1 may, or may not, be a distinguished context
process, and may have associated features. Other-
wise, all of the processes are instantiations of the
same parameterised process and may, in addition,
have features. We refer to such specifications as fea-

tured parameterised specifications, and the corre-
sponding systems as featured parameterised systems.

For any feature f, we say that f is indexed by
If = {i1, . . . , ir} if the feature relates to components
i1. . .ir. For example, in the telephone example, if f

is ‘‘user[0] forwards calls to user[3]’’, then f is said
to be indexed by 0 and 3. Similarly we say that a
property / is indexed by a the set I/ where I/ is
the set of component ids associated with /. For a
(possibly empty) set of features F = {f1, . . . ,fs}
and property /, we define the complete index set I

of {/} [F, to be If1
[� � � [Ifs [I/.

Suppose that for features f1 and f2 and property
/, the complete index set (or complete index set
together with 1 if there is a context process in the
specification) is 1. . .m. For every N > m, and every
set of features subscribed to by components
pm+1, . . . ,pN, we can generate a specification
p1jjp2jj. . .jjpN. This gives rise to an infinite family,
A ¼ Af1;f2;/, of specifications. We call these concrete

specifications.
For each f1, f2 and / we generate a new, finite

model, abs(m) which represents any member of A,
and show that, provided our specifications (and fea-
tures) satisfy certain conditions, MðabsðmÞÞ � /
implies that MN � / for all MN 2MðAÞ, where
MðAÞ is the set of models associated with F. Note
that abs(m) is an invariant process for the system
(see Section 2.3.2).

In abs(m), all processes pm+1, . . . ,pN (which we
call abstracted processes) are represented by a single
process Abstract(m), and all processes p1, . . . ,pm

(concrete processes) are represented by modified

concrete processes p01; . . . ; p0m. The abstraction is
illustrated in Fig. 1, with the original specification
on the left hand side and the specification abs(m)
appearing on the right hand side. Our main theorem

Fig. 1. Abstraction technique.

A. Miller et al. / Computer Networks 51 (2007) 439–455 445

Aut
ho

r's

pe
rs

on
al

co

py

holds because there is a simulation relation (see
Definition 4) between the two specifications.

Theorem 1. Let MN ¼Mðp1jjp2jj . . . jjpN Þ be a

model of any featured parameterised specification in

which features F are present, and / a property. If the

total index set of F [{/} is {1,. . .,m � 1} then,

provided the specification is both open symmetric and

safely featured, MabsðmÞ � / implies that MN � /.

The full proof of Theorem 1, together with a
details of how the modified processes are derived
from the original concrete processes, and a descrip-
tion of Abstract(m) is given in [9,37].

5. Symmetry reduced model checking

In a model of a concurrent system with many
replicated processes, Kripke structure automor-
phisms (see Section 2.4) usually involve the permu-
tation of process identifiers of identical processes
throughout all states of a model. The set of all auto-
morphisms of the Kripke structure M forms a
group under composition of mappings. This group
is denoted AutðMÞ. A subgroup G of AutðMÞ
induces an equivalence relation 	G on the states of
M thus: s 	G t () s = a(t) for some a 2 G. The
equivalence class under 	G of a state s 2 S, denoted
[s], is called the orbit of s under the action of G. The
orbits can be used to construct a quotient Kripke
structure MG as follows:

Definition 9. The quotient Kripke structure MG of
M with respect to G is a tuple MG ¼ ðSG;
RG; LG; ½s0�Þ where

• SG = {[s] : s 2 S} (the set of orbits of S under the
action of G),

• RG = {([s], [t]) : (s, t) 2 R},
• LG([s]) = L(rep([s])) (where rep([s]) is a unique

representative of [s]),
• [s0] 2 SG (the orbit of the initial state s0 2 S).

In general MG is a smaller structure than M, but
MG and M are equivalent in the sense that they sat-
isfy the same set of logic properties which are invari-

ant under the group G (that is, properties which are
‘‘symmetric’’ with respect to G). For a proof of the
following theorem see [14].

Theorem 2. Let M be a Kripke structure, G a

subgroup of AutðMÞ and / an LTL formula. If / is

invariant under the group G then

M; s � /()MG; ½s� � /

Thus by choosing a suitable symmetry group G,
model checking can be performed over MG instead
of M, often resulting in considerable savings in
memory and verification time [3,12].

If automorphisms of a Kripke structure can be
identified in advance, then a quotient structure can
be incrementally constructed using an algorithm
given in [29]. This means that it may be possible
to construct the quotient structure even if the origi-
nal structure is intractable.

In [19] we show that symmetries of the Kripke
structure associated with a Promela program can
be detected by analysing a graph derived from the
associated Promela specification, namely the static

channel diagram of the specification. We summarise
this approach below. In Section 7 we show that, if
Promela specifications are generated using our tem-
plate-based approach (see Section 6), we can extend
our symmetry detection techniques to effectively
handle featured networks of components.

5.1. Detecting symmetry in Promela specifications

of unfeatured networks

Given a Promela specification P, the static chan-
nel diagram [17,18] of P, SCD is a graphical repre-
sentation of the communication structure associated
with P. The nodes of the graph represent the pro-
cesses and static channels (channels which are
declared globally within the specification, out of
the scope of any proctype definition). Nodes are col-
oured, according to component or channel type. An
edge exists between nodes associated with compo-
nent i and channel j if and only if component i

can send messages on channel j. Static channel dia-
grams extend the notion of channel diagrams intro-
duced in [43].

Generators for a group of candidate automor-
phisms for the model M derived from P are found
by analysing the SCD. These generators are checked
individually against the specification to see if they
induce valid automorphisms of M and the largest
possible subgroup of valid candidate automor-
phisms computed. Unlike previous approaches to
specifying symmetry using scalarsets [3,29], the sta-
tic channel diagram method can detect arbitrary

structural symmetries arising from the communica-
tion structure of a model.

All of our symmetry groups are computed auto-
matically using a tool: SymmExtractor, which

446 A. Miller et al. / Computer Networks 51 (2007) 439–455

Aut
ho

r's

pe
rs

on
al

co

py

makes use of the computational group theory pack-
age GAP [23]. Although this approach could handle
featured networks, the symmetry detection process
could be inefficient due to asymmetry induced by
features, which is not captured by the SCD. In
Section 7 we define a new kind of diagram, the fea-
ture configuration diagram, which allows us to
directly obtain structural symmetries of a featured
model.

6. The template-based approach

In this section we describe how we use a tem-
plate-based approach to generate a Promela specifi-
cation of a featured system, which is open
symmetric and thus amenable to both abstraction
(when the specification is parameterised and safely
featured) and symmetry reduction.

6.1. Overview of approach

The basic idea is described in Fig. 2. We have
developed a tool Featured Specification Generator

(FSG) (a Java application) to generate an open sym-
metric specification from three meta files: the proc-

type definitions file, the global definitions file and
the feature configuration file, together with a series
of proctype templates, one for each proctype speci-
fied in the process definitions file.

The proctype definitions file records, for each
proctype in the model, the name and number of

instantiations of the proctype, and the type of the
input channel for instantiations of the proctype.
The global definitions file includes user-defined
record types, as well as global variables (which must
not be channels). The feature configuration file
provides the name and configuration of each (unary
or binary) feature for the model. For each proctype
declared in the proctype definitions file there must
be exactly one proctype template. The template
for a given proctype essentially consists of the body
of the proctype, but the Promela code is restricted to
ensure that the generated model is open symmetric.
The template body can include template options—
parameterised statements which are expanded
during model generation to allow non-deterministic
choice over all component ids for a given proctype.

We describe the format of the proctype
definitions file, the feature configuration file and
the process templates and show how FSG uses them
to generate an open symmetric Promela specifica-
tion which is amenable to state space reduction by
both abstraction and symmetry. We illustrate the
approach using a featured email system adapted
from [7]. Note that the global definitions file
requires no translation by FSG (and is empty for
this example).

6.2. Proctype definitions

The proctype definitions file consists of a series of
definitions, each representing a single proctype. A

Fig. 2. The template-based approach.

A. Miller et al. / Computer Networks 51 (2007) 439–455 447

Aut
ho

r's

pe
rs

on
al

co

py

definition has the form n: name! [k] of {list of

types}, where n P 1 specifies how many copies of
the proctype name should be instantiated, k P 0 is
the length of the input channel for an instantiation
of this proctype, and list of types is a tuple of Pro-
mela types or user-defined types which specifies
the format which messages on this channel should
conform to.

The following example gives the proctype defini-
tions for an email system consisting of five client com-
ponents, and a mailer component. The client input
channels are one place buffers which accept messages
of the form {sen, rec} where sen and rec are process
ids. The mailer input channel is a five place buffer,
which accepts messages of the same form

5 : client <- [1] of {pid,pid}
1 : mailer <- [5] of {pid,pid}

From these definitions, FSG generates an initia-
lised channel for each instantiated process, a
lookup procedure, headers for each proctype and
the init process. The lookup procedure returns the
channel name associated with a given id and the
init process consists of a series of run statements
instantiating the specified number of components
for each proctype. Note that channel linki is
the channel associated with the ith instantiated
process and, to ensure that the resulting specifica-
tion is balanced, each proctype has a single channel
parameter, in.

FSG would generate the following from the proc-
type definitions file above:

chan link1 = [1] of pid,pid;

chan link2 = [1] of pid,pid;

. . .;
chan link6 = [5] of pid,pid;

inline lookup(id,link) {
if

:: id==1 -> link = link1

:: id==2 -> link = link2

. . .
:: id==6 -> link = link6

fi

}
proctype client(chan in) {

/* Body generated from template */
}
proctype mailer(chan in) {

/* Body generated from template */
}

init {
atomic {
run client(link1); run client

(link2);. . .; run client(link5);

run mailer(link6);

/* Feature configuration */
}

}

6.3. Feature configuration

The feature configuration file specifies the name,
arity and components associated with each feature
for the model. A unary feature definition has the
form name[list of component ids], indicating that
the feature name is switched on for each of the
components listed. The form of a binary feature is
similar, except that a list of pairs of ids is specified.

Continuing the email example, the following con-
figuration specifies a unary feature AUTORESP

(autorespond), which is on for client components 1
and 2, and a binary feature FILTER, such that mes-
sages from client 5 intended for client components 3
or 4 should be filtered.

AUTORESP[1,2]

FILTER[(3,5),(4,5)]

FSG generates feature initiation within the init

process and an array of size n + 1 for each unary fea-
ture, and a 2-dimensional array of size (n + 1) ·
(n + 1) for each binary feature, where n is the num-
ber of components in the system. Thus:

typedef array {
bit to[7]

};
hidden bit AUTORESP[7];

hidden array FILTER[7];

. . .
init {
atomic {

. . .
AUTORESP[1] = 1; AUTORESP[2] = 1;

FILTER[3].to[5] = 1;

FILTER[4].to[5] = 1

}
}

Note that indices of the arrays go up to n + 1
because process identifiers are assigned from 1

448 A. Miller et al. / Computer Networks 51 (2007) 439–455

Aut
ho

r's

pe
rs

on
al

co

py

upwards, but arrays in Promela are always indexed
from 0. As 2-dimensional arrays are not supported
directly by Promela they must be specified using a
new array type, as shown above.

6.4. Proctype templates

For each proctype specified in the proctype
definitions file there must be exactly one template
file, named corresponding to the proctype. Recall
that each proctype has a single parameter, in, which
is the input channel for an instantiation of the proc-
type. The template for a proctype consists of
Promela statements which must obey certain restric-
tions, and can include template options.

To ensure a fixed number of components and
channels, new components may not be instantiated
dynamically using a run statement, and channel
variables may be declared, but not initialised as
new channels (they may be assigned to names of
existing channels). To ensure that the generated
specification is open symmetric and balanced, literal
component id values and the global channel names
link1, link2, . . . ,linkn may not be referred to
explicitly: literal id values may be used via a tem-
plate option (see below), and global channel names
may be accessed using the lookup inline. Finally,
component identifiers may not be assigned to or
from variables of other types, used as operands to
arithmetic operators, or to the boolean operators
<, 6, > and P.

We now define the syntax for template options.
A template option may be used as a guard for an
if..fi or do..od statement, to allow nondetermin-
istic choice over all components of a specific proc-
type. The syntax for a template option is: for

name in proctype_name {Promela statement},
where name is a legal Promela variable name which
is not already used in the scope of the statement,
proctype_name is the name of some proctype in
the model, and Promela statement is a (simple or
compound) Promela statement which may refer
to name as if it were a literal value of type pid,
and may itself contain template options. FSG
expands choice options to include a concrete
option for every associated component identifier.
In the email example, a client component may
choose to send a message, via the mailer, to any
component of type client. In the client template,
such a message is initialised using the following
template option:

if

:: for i in client {msg.receiver = i}
fi

which FSG expands to the following non-determin-
istic choice:

if

:: msg.receiver = 1

:: msg.receiver = 2

:: msg.receiver = 3

:: msg.receiver = 4

:: msg.receiver = 5

fi

All of the code for the email example can be
found as an appendix to this paper on our website
[6]. This includes all of the definitions files, the
proctype template files and the full Promela specifi-
cation generated by FSG.

6.5. Applying abstraction/induction or symmetry

reduction to generated specifications

By construction, the specifications generated by
FSG are open symmetric. In order to apply our
abstraction/induction approach of Section 4.1 to a
parameterised specification, it is necessary to check
that it is safely featured. We can do this easily using
FSG. The email example above is safely featured, as
is the telephone example discussed in Section 3.

In order to apply symmetry detection techniques
(for symmetry reduction) no additional check is nec-
essary. (Indeed, specifications do not even need to
be parameterised (see Section 2.3.2)). In Section 7
we show that we can generate a graphical represen-
tation of the communication structure of the system
from the files used to generate the specification.
Symmetries of this graphical representation can be
used to generate automorphisms of the underlying
model.

7. Symmetry detection for featured networks

In this section, we show that if a Promela specifi-
cation has been generated using the template-based
approach, then a symmetry group of the model
underlying the specification can be derived from a
directed graph called the feature configuration

diagram for the specification. The feature configura-
tion diagram itself can be obtained efficiently from

A. Miller et al. / Computer Networks 51 (2007) 439–455 449

Aut
ho

r's

pe
rs

on
al

co

py

the feature configuration and proctype definitions
files used to generate the specification.

7.1. Feature configuration diagrams

Recall from Section 2.2 that a binary feature B

naturally induces a relation R(B) on the set of
component identifiers of a featured specification.
The feature configuration diagram for a Promela
specification is a directed graph whose vertices are
the component identifiers, coloured according to
their process type and the unary features to which
they subscribe, and whose edges are the elements
of R(B) for each binary feature with which the spec-
ification is configured. These edges are also col-
oured, according to the exact sets R(B) to which
they belong.

Formally, let F ¼ UUB be a set of features,
where U ¼ fU 1;U 2; . . . ;U xg are unary, and B ¼
fB1;B2; . . . ;Byg are binary (for some x, y P 0).

Let T be a finite set of component types and, for
a set of n components, let type : f1; 2; . . . ; ng !T
be a mapping which associates each component
with a type.

Definition 10. Let P be a Promela specification
configured with features F ¼ U [B. The feature

configuration diagram FCDðPÞ is a directed graph
with coloured vertices and coloured edges:
FCDðPÞ ¼ ðV ;E;CV ;CEÞ where

• V = {1,2, . . . ,n}
• E ¼

Sy
i¼1RðBiÞ

• CV : V ! f0; 1gx
T is defined by CV(i) =
(U1[i], U2[i], . . . ,Ux[i], type(i))

• CE : E! {0,1}y is defined by

CEðði;jÞÞ¼ðvRðB1Þðði;jÞÞ;vRðB2Þðði;jÞÞ;...;vRðBy Þðði;jÞÞÞ

Consider a configuration of the email model with
5 client components, featured as follows:

AUTORESP[1]

FILTER[(2,1)]

Let P be the Promela specification of the email
system with five client components, and features as
above. Then FCDðPÞ ¼ ðV ;E;CV ;CEÞ where
V = {1,2,3,4,5,6}; E = {(2,1)}; CV(1) = (1, client)
(indicating that client component 1 has the
autorespond feature), CV(i) = (0,client) for 2 6
i 6 5 (client components 2 to 5 have no unary fea-

tures), CV(6) = (0,mailer) (the mailer component is
unfeatured); and CE((2,1)) = 1 (component 2 sub-
scribes to the filter feature with respect to client 1).

7.2. Automorphisms of feature configuration
diagrams

For a Promela specification P which has been
generated using the template-based approach of
Section 6, we define an automorphism of the feature
configuration diagram for P thus:

Definition 11. An automorphism of FCDðPÞ is a
bijection a of {1,2, . . . ,n} such that

• (i, j) 2 E () (a(i),a(j)) 2 E.
• CV(i) = CV(a(i))"i 2 {1,2, . . . ,n}.
• CE((i, j)) = CE((a(i),a(j))) "i, j 2 {1, 2, . . . ,n}.

Consider the FCD for the email example,
described in Section 7.1. It is easy to check that
the permutation (3 4) is an automorphism of this
FCD, whereas (1 2) is not as components 1 and 2
are coloured differently. In fact if P is a Promela
specification of the email system with this feature
configuration diagram then AutðFCDðPÞÞ ¼
hð3 4Þ; ð4 5Þi.

7.3. Action of AutðFCDðPÞÞ on M

Let P be a Promela program. In order to show
how an element of AutðFCDðPÞÞ acts on states of
the Kripke structure associated with P, we must
define the set AP of atomic propositions for a Pro-
mela program. Let Loc be the set of local variables,
Glob the set of global variables, and Chan the set of
channels of P. Let D be the set of data values for
the program. To denote a local variable of a process
with process id i we write xi where x is the name of the
variable. If xi is a local variable of process i, and if
processes i and j have the same process type, then xj

is the corresponding local variable of process j.
Let APlocal = {(xi = val) : xi 2 Loc,val 2 D}, the

set of propositions relating to local variables, and
define APglobal and APchannel, the set of propositions
relating to global variables and channels respec-
tively, similarly. Then AP = APlocal [APglobal [
APchannel. The underlying Kripke structure M over
AP for the program P is generated by exploring
all possible behaviours of P. States of M are
uniquely identified by a labelling of atomic proposi-
tions. Note that each process in P has its own

450 A. Miller et al. / Computer Networks 51 (2007) 439–455

Aut
ho

r's

pe
rs

on
al

co

py

program counter variable which indicates the state-
ments which may be executed in the next transition.
Thus two states, for which all other variables are
assigned identical values, may be distinguished due
to assignments of the associated program counters.

For an element a 2 AutðFCDðPÞÞ we define a
corresponding mapping a* which is a permutation
of the Kripke structure M underlying P. If val 2 D

has type chan, i.e., val = linki for some 1 6 i 6 n,
then a(val) = linka(i). For any s 2 S, let L(a*(s)) =
{a(p) : p 2 L(s)}. For a proposition p 2 AP, the
proposition a(p) is defined as follows:

If p = (xi == val) 2 APlocal for some xi 2 Loc,
where the type of xi is pid or chan, then
a(p) = (xa(i) == a(val)), otherwise a(p) = (xa(i) ==
val). If p = (x == val) 2 APglobal for some x 2 Glob,
where the type of x is pid or chan, then a(p) =
(x == a(val)), otherwise a(p) = p. If p = (linki[j] ==
msg) 2 APchannel, i.e., msg is at position j on channel
linki, then aðpÞ ¼ ðlinkai ½j� ¼¼ aðmsgÞÞ. Here a acts
on msg by permuting the value of each field of
msg which has type pid or chan, and leaving all other
fields unchanged.

7.4. Correspondence between AutðFCDðPÞÞ
and AutðMÞ

The following theorem shows that if P is a Pro-
mela specification of a featured network, generated
by our template-based approach, we can derive a
symmetry group for the Kripke structure M under-
lying P from a symmetry group for the feature con-
figuration diagram, FCDðPÞ. We sketch the proof,
which is analogous to a similar result for automatic
symmetry detection by static channel diagram anal-
ysis [17].

Theorem 3. Let a 2 AutðFCDðPÞÞ. Then a� 2
AutðMÞ.

Proof. Without loss of generality, assume that all
statements of P have the form

guard ! update

Let (s, t) 2 R, and suppose this transition is fired by
statement g! u in P. Let a(g) be the guard
obtained from g by replacing each occurrence of a
literal pid value i or channel reference link linki, with
the value a(i) or linka(i) respectively. Define the up-
date a(u) similarly. Clearly, applying the update
a(u) to the state a*(s) leads to the state a*(t). Simi-
larly a(g) is executable in state a*(s), since it is exe-

cutable in state s and a belongs to AutðFCDðPÞÞ
and so preserves the truth of boolean expressions
over feature arrays. The statement a(g)! a(u) is
in P due to the open symmetry of P, which is guar-
anteed by the template-based approach. Thus the
statement a(g)! a(u) is enabled in state a*(s), and
fires the transition (a*(s),a*(t)). It follows that
(a*(s),a*(t)) 2 R, and hence a� 2 AutðMÞ. h

8. Implementation

For symmetry reduction, FSG uses the saucy

program [16] and the GAP system [23] to compute
AutðFCDðPÞÞ. We could not find a graph automor-
phism computation package to work directly with
graphs that have coloured edges, so in practice
AutðFCDðPÞÞ is computed (using GAP) as the inter-
section over the set of binary features of groups
Aut(R(B),CV). Here Aut(R(B),CV) is the group
which preserves the relation R(B) as well as the ver-
tex colouring CV.

We have also developed a prototype symmetry
reduction package for the SPIN model checker. The
package is based on an existing symmetry reduction
package, SymmSpin [3], but whereas SymmSpin
requires symmetries to be specified using scalarsets

(a purpose-built data type for symmetry reduction),
our system supports automatic symmetry detection
by static channel diagram analysis [19], or, in this
case, by feature configuration diagram analysis as
described above. During search, orbit representa-
tives are computed in a standard way by sorting
the vector associated with a state. This representa-
tive computation technique has been used in a
variety of approaches to symmetry reduction
[3,11,21].

9. Experimental results for symmetry reduction

In this section we demonstrate the effectiveness of
symmetry reduction using FSD for the email exam-
ple. We consider email specifications with a varying
number of client components. For each specification
size, we consider the case where components are
unfeatured, and the case where components 1 and
2 are featured as in Section 7.1. In Table 1 we show,
for each specification size, the sizes of the state
spaces associated with both unfeatured and featured
networks, together with the sizes of the correspond-
ing reduced state spaces when symmetry reduction
is applied. We give the time taken for verification

A. Miller et al. / Computer Networks 51 (2007) 439–455 451

Aut
ho

r's

pe
rs

on
al

co

py

in seconds. In each case, the size of the symmetry
group computed by FSG is given. For configura-
tions for which verification proved intractable an
estimate (denoted ‘‘(E)’’) is given for the number
of number of states and the time omitted (indicated
by ‘‘-’’). Entries marked ‘‘n/a’’ indicate that symme-
try reduction is not applicable, due to a trivial sym-
metry group.

By default, no compression was used during
search. For large models, the collapse compression
technique provided by SPIN [25] was used (indicated
by �), which results in slower verification. All exper-
iments were performed on a PC with a 2.4 GHz Intel
Xeon processor, 3Gb of available main memory,
running Red Hat Linux, with SPIN version 4.2.3.

Notice that in the unfeatured case with three
client processes, adding symmetry reduction results
in fewer states but longer verification time. Exploit-
ing symmetry carries a time overhead due to the
conversion of states to their representatives. When
the unreduced state space is small, the overhead
can result in an increase in search time when sym-
metry reduction is applied.

If jMj and jMGj are the number of states of the
unreduced and reduced models respectively, then if
jGj is the size of the associated symmetry group,
jMj 6 jMGj Æ jGj (as each state of MG represents at
most jGj states of M). In all of the experiments
where it was possible to find jMj (and where there
was a non-trivial symmetry group), it was found
to be between eighty and ninety six percent of this
upper bound. Therefore, in cases where it is
impossible to generate M, an estimate is given at
approximately the middle of this range (ninety per-
cent of the upper bound).

As expected, adding features to a specification
considerably reduces the size of the symmetry group

associated with the underlying model. Additionally,
the autorespond feature increased the size of the
state space in all cases quite dramatically. Neverthe-
less, applying symmetry reduction to featured spec-
ifications where there are several identically featured
(in this case, unfeatured) components leads to large
savings in both memory requirements and verifica-
tion time. For large examples it proved possible to
generate the reduced state space when the original
state space was intractably large.

If two features do not interact, for example mes-
sage filtering is not affected by the autorespond fea-
ture [7], then an exhaustive search of the state
space associated with a specification is required.
These experimental results show that state space
reduction by symmetry can be extremely useful in
such cases.

10. Scalability of our approach

Our abstraction/induction approach is not lim-
ited to systems with one or two component types.
We can extend the approach to any system in which
there are a small number of components types (but
potentially large numbers of components of each
type). For example we believe our approach is to
be eminently applicable to the verification of SIP
networks [33], which consist of end user devices

and different type of server components, and to
Web Services [46]. The investigation of the applica-
bility of our approach in these cases (e.g., the deter-
mination as to when such systems are balanced), is
the subject of future work.

Symmetry reduction techniques, by their nature,
allow one to apply model checking techniques to
some systems which, in unreduced form, are not
verifiable. However, even in systems which clearly

Table 1
Experimental results

#Clients Unfeatured

#States (orig.) Time (orig.) jGj #States (red.) Time (red.)

3 23,256 0.1 6 3,908 0.2
4 852,641 9 24 38,560 2
5 3.04 · 107� 3576 120 315,323 40
6 1.5 · 109 (E) – 720 2.3 · 106 576
7 6.9 · 1010 (E) – 5040 1.53 · 107 6573

Featured

3 46,151 0.2 1 n/a n/a
4 2.3 · 106 33 2 1.2 · 106 21
5 9.5 · 107 (E) – 6 1.75 · 107 1160

452 A. Miller et al. / Computer Networks 51 (2007) 439–455

Aut
ho

r's

pe
rs

on
al

co

py

contain inherent symmetry, the application of
reduction methods is usually ad hoc and time
consuming. Our template-based approach allows
us to simply and automatically apply symmetry
reduction to models of systems as they are
developed.

As new featured domains emerge, our techniques
will allow us to rapidly and systematically produce
Promela models to which both abstraction/induc-
tion and symmetry reduction can be applied for effi-
cient feature interaction analysis using model
checking.

11. Related work

Model checking for feature interaction analysis
has been investigated by others, notable approaches
are those using COSPAN [22], Caesar [45], SMV
[40], SPIN (the FeaVer project) [26,27,44] and a
bespoke tool [30]. None of these studies generalise
results to more than three or four users.

As we have discussed in Section 2.3.2, the invari-
ant approach to parameterised model checking
problem has been applied in many contexts
[4,13,34]. However, none of these address the fea-
ture interaction problem.

Symmetry reduction in model checking is a com-
mon technique. However, in most cases symmetries
of a model are either known a priori [12], or are
coded into the model through the use of special key-
words [3,29]. Both approaches require the modeller
to provide information on the presence of symmetry
in a model. Our automatic symmetry detection
method allows us to infer symmetries of the state
space underlying a model without explicitly con-
structing the state space.

Symmetry reduced model checking for feature
interaction detection is considered in [39], where
permutation symmetry is used to construct a
reduced symmetric reachability graph, which is sim-
ilar to a quotient Kripke structure. Their approach
is only applicable to cases where all of the users sub-
scribe to all of the features currently being analysed,
and as a result their unreduced models grow even
faster than ours and the automorphism group is
the group of all permutations of the user ids. For
this reason, no symmetry detection is required. We
believe that our approach is more realistic and
adaptable.

As far as we are aware, we are the first to develop
a systematic technique for the construction of spec-

ifications which are amenable to both inductive
analysis and symmetry reduction methods.

12. Conclusions

Model checking is a popular automated tech-
nique for reasoning about networks of components;
it is often applied to the problem of detecting inter-
actions between featured components. But, it suffers
from the well known problem of state space
explosion.

Abstraction is key to reducing the state space.
Two common abstraction approaches are induction

by invariant (to encapsulate the behaviour of a
system of any size) and symmetry reduction (to encap-
sulate the behaviour of a group of permutations by a
representative). While these two approaches are gen-
erally considered to be orthogonal, we have found
that they are related. In particular, they are both
applicable under similar circumstances. We encapsu-
late these circumstances by a property of the system
specification: open symmetry.

Essentially, this property constrains the way
components refer to other components in the sys-
tem. The constraints are reasonably intuitive and
not overly restrictive.

Our main result is a template for producing
components that are open symmetric, and a new
graphical representation for the entire system, called
the feature configuration diagram. Any (safely fea-
tured parameterised) specification thus produced is
immediately amenable to state reduction by induc-
tion (using the invariant method), and any gener-
ated specification is applicable for symmetry
reduction (using an automorphism group derived
from the feature configuration diagram). We believe
that this represents a novel application of symmetry
detection (and thus reduction) for featured net-
works. The template is defined for the specification
language Promela, but the approach is applicable
to other specification formalisms. Throughout, the
techniques are illustrated by application to an exam-
ple featured network: email.

Acknowledgements

The first and third authors would like to thank
the Glasgow University John Robertson Bequest
and the Carnegie Trust for funding this research.

A. Miller et al. / Computer Networks 51 (2007) 439–455 453

Aut
ho

r's

pe
rs

on
al

co

py

References

[1] D. Amyot, L. Logrippo (Eds.), Feature Interactions in
Telecommunications and Software Systems VII, Ottawa,
Canada, June, IOS Press, 2003.

[2] Krzysztof R. Apt, Dexter C. Kozen, Limits for automatic
verification of finite-state concurrent systems, Information
Processing Letters 22 (1986) 307–309.

[3] D. Bosnacki, D. Dams, L. Holenderski, Symmetric spin,
International Journal on Software Tools for Technology
Transfer 4 (1) (2002) 65–80.

[4] M. Browne, E. Clarke, O. Grumberg, Characterizing finite
Kripke structures in propositional temporal logic, Theoret-
ical Computer Science 59 (1988) 115–131.

[5] M. Calder, E. Magill (Eds.), Feature Interactions in
Telecommunications and Software Systems VI, IOS Press,
Amsterdam, 2000.

[6] M. Calder, A. Miller, Veriscope publications website. http://
www.dcs.gla.ac.uk/research/veriscope/publications.html.

[7] M. Calder, A. Miller, Generalising feature interactions in
email, in: Amyot and Logrippo [1], pp. 187–205.

[8] M. Calder, A. Miller, Detecting feature interactions: how
many components do we need? in: Mark Ryan, Dieter
Ehrich, John-Jules Meyer (Eds.), Objects, Agents and
Features, Lecture Notes in Computing Science, Springer-
Verlag, 2004, pp. 45–66.

[9] M. Calder, A. Miller, An automatic abstraction technique
for verifying featured, parameterised systems, Theoretical
Computer Science, in press.

[10] M. Calder, A. Miller, Feature interaction detection by
pairwise analysis of LTL properties – a case study, Formal
Methods in System Design 28 (3) (2006) 213–261.

[11] E. Clarke, E. Emerson, S. Jha, A. Sistla, Symmetry reduc-
tions in model-checking, in: A. Hu, M. Vardi (Eds.),
Proceedings of the 10th International Conference on Com-
puter-aided Verification (CAV’98), Vancouver, British
Columbia, Canada, June/July, Lecture Notes in Computer
Science, vol. 1427, Springer-Verlag, 1998, pp. 147–158.

[12] E. Clarke, R. Enders, T. Filkhorn, S. Jha, Exploiting
symmetry in temporal logic model checking, Formal Meth-
ods in System Design 9 (1–2) (1996) 77–104.

[13] E. Clarke, O. Grumberg, S. Jha, Verifying parameterized
networks using abstraction and regular languages, in: Insup
Lee, Scott A. Smolka (Eds.), Proceedings of the 6th Interna-
tional Conference on Concurrency Theory (CONCUR ‘95),
Philadelphia, PA., August, Lecture Notes in Computer
Science, vol. 962, Springer-Verlag, 1995, pp. 395–407.

[14] E. Clarke, O. Grumberg, D. Peled, Model Checking, The
MIT Press, Cambridge, MA, 1999.

[15] S. Creese, A. Roscoe, Formal verification of arbitrary
network topologies, in: H.R. Arabnia (Ed.), Proceedings of
the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’99), Las
Vegas, NV, USA, June–July, vol. II, CSREA Press, 1999.

[16] P. Darga, M. Liffiton, K. Sakallah, I. Markov, Exploiting
structure in symmetry detection for CNF, in: Proceedings of
the 41st Annual Conference on Design Automation, San
Diego, CA, USA, ACM Press, 2004, pp. 530–534.

[17] A. Donaldson, A. Miller, M. Calder, Finding symmetry in
models of concurrent systems by static channel diagram
analysis, Electronic Notes in Theoretical Computer Science
128 (6) (2005) 161–177.

[18] A. Donaldson, A. Miller, M. Calder, SPIN-to-GRAPE a
tool for analysing symmetry in Promela models, Electronic
Notes in Theoretical Computer Science 139 (1) (2005) 3–23.

[19] A.F. Donaldson, A. Miller, Automatic symmetry detection
for model checking using computational group theory, in:
J. Fitzgerald, I. Hayes, A. Tarlecki (Eds.), Proceedings of
the 13th International Symposium on Formal Methods
(FM 2005), Newcastle, UK, July, Lecture Notes in Com-
puter Science, vol. 3582, Springer-Verlag, 2005, pp. 481–
496.

[20] E. Emerson, V. Kahlon, Reducing model checking of the
many to the few, in: David A. McAllester (Ed.), Automated
Deduction – Proceedings of the 17th International Confer-
ence on Automated Deduction (CADE 2000), Pittsburgh,
PA, USA, June, Lecture Notes in Computer Science, vol.
1831, Springer-Verlag, 2000, pp. 236–254.

[21] E. Emerson, T. Wahl, Dynamic symmetry reduction, in: N.
Halbwachs, L. Zuck (Eds.), Proceedings of the 11th Inter-
national Conference on Tools and Algorithms for Construc-
tion and Analysis of Systems (TACAS 2005), Held as Part of
the Joint European Conference on Theory and Practice of
Software, ETAPS 2005, Edinburgh, UK, April, Lecture
Notes in Computer Science, vol. 3440, Springer-Verlag,
2005, pp. 382–396.

[22] A. Felty, K. Namjoshi, Feature specification and automatic
conflict detection. In Calder and Magill [5], pp. 179–192.

[23] Gap Group, GAP – Groups Algorithms and Programming,
Version 4.2. Aachen, St. Andrews, 1999. http://www-
gap.dcs.st-and.ac.uk/gap.

[24] Steven M. German, A. Prasad Sistla, Reasoning about
systems with many processes, Journal of the ACM 39 (3)
(1992) 675–735.

[25] G. Holzmann, State compression in Spin: recursive indexing
and compression training runs, in: R. Langerak (Ed.),
Proceedings of the 3rd SPIN Workshop (SPIN’97), Twente
University, The Netherlands, April 1997.

[26] G. Holzmann, M. Smith, A practical method for the
verification of event-driven software, in: Proceedings of the
21st International Conference on Software Engineering
(ICSE’99), Los Angeles, CA, USA, May, ACM Press,
1999, pp. 597–607.

[27] G. Holzmann, M. Smith, Software model checking –
extracting verification models from source code, in: J. Wu,
S. Chanson, Q. Gao (Eds.), Proceedings of the Joint
International Conference on Formal Description Techniques
for Distributed Systems and Communication Protocols and
Protocol Specification, Testing and Verification (FORTE/
PSTV’99), Beijing, China, October, International Federation
For Information Processing, vol. 156, Kluwer, 1999, pp.
481–497.

[28] C. Norris Ip, David L. Dill, Verifying systems with replicated
components in Mur/, Formal Methods in System Design 14
(1999) 273–310.

[29] C. Norris Ip, D. Dill, Better verification through symmetry,
Formal Methods in System Design 9 (1996) 41–75.

[30] B. Jonsson, T. Margaria, G. Naeser, J. Nystroem, B. Steffen,
Incremental requirement specification for evolving systems,
in: Calder and Magill [5], pp. 145–162.

[31] Y. Keston, A. Pnueli, E. Shahar, L. Zuck, Network
invariants in action, in: L. Brim, P. Jancar, M. Kretı́nský,
A. Kucera (Eds.), Proceedings of the 13th International
Conference on Concurrency Theory (CONCUR 2002),

454 A. Miller et al. / Computer Networks 51 (2007) 439–455

Aut
ho

r's

pe
rs

on
al

co

py

Brno, Czech Republic, August, Lecture Notes in Computer
Science, 2421, Springer-Verlag, pp. 101–115.

[32] K. Kimbler, L. Bouma (Eds.), Feature Interactions in
Telecommunications and Software Systems V, IOS Press,
Amsterdam, 1998.

[33] M. Kolberg, E.H. Magill, Detecting feature interactions
between SIP call control services, in: Reiff-Marganiec and
Ryan [41], pp. 147–162.

[34] R.P. Kurshan, K.L. McMillan, A structural induction
theorem for processes, in: Proceedings of the Eighth Annual
ACM Symposium on Principles of Distributed Computing,
ACM Press, 1989, pp. 239–247.

[35] K. McMillan, S. Qadeer, J. Saxe, Induction in compositional
model checking, in: E. Emerson, A. Sistla (Eds.), Proceed-
ings of the 12th International Conference on Computer-
aided Verification (CAV 2000), Chicago, IL, USA, July,
Lecture Notes in Computer Science, vol. 1855, Springer-
Verlag, 2000, pp. 312–327.

[36] S. Merz, Model checking: a tutorial overview, in: F. Cassez,
C. Jard, B. Rozoy, M. Ryan (Eds.), Modeling and Verifica-
tion of Parallel Processes, 4th Summer School, MOVEP
2000, Nantes, France, June, Lecture Notes in Computer
Science, vol. 2067, Springer-Verlag, 2000, pp. 3–38.

[37] A. Miller, M. Calder, A generic approach for the automatic
verification of featured, parameterised systems, in: Reiff-
Marganiec and Ryan [41], pp. 217–235.

[38] M. Müller-Olm, D. Schmidt, B. Steffen, Model-checking: a
tutorial introduction, in: A. Cortesi, G. File (Eds.), Proceed-
ings of the 6th International Static Analysis Symposium
(SAS’99), Venice, Italy, September, Lecture Notes in Com-
puter Science (LNCS), vol. 1694, Springer-Verlag, 1999, pp.
330–354.

[39] M. Nakamura, Y. Kakuda, T. Kikuno, Feature interaction
detection using permutation symmetry, in: Kimbler and
Bouma [32], pp. 187–201.

[40] M. Plath, M. Ryan, Plug-and-play features, in: Kimbler and
Bouma [32], pp. 150–164.

[41] S. Reiff-Marganiec, M. Ryan (Eds.), Proceedings of the 8th
international conference on Feature Interactions in Tele-
communications and Software Systems VIII, Leicester, UK,
June, IOS Press, Amsterdam, 2005.

[42] A. Roychoudhury, I.V. Ramakrishnan, Inductively verifying
invariant properties of parameterized systems, Automated
Software Engineering 11 (2) (2004) 101–139.

[43] P. Saffrey, Optimising communication structure for model
checking. Ph.D. thesis, Department of Computing Science,
University of Glasgow, July 2003.

[44] M. Smith, G. Holzmann, K. Etessami, Events and con-
straints: a graphical editor for capturing logic requirements
of programs, in: Proceedings of the 5th IEEE International
Symposium on Requirements Engineering, Toronto, Can-
ada, August, IEEE Computer Society, 2001, pp. 14–22.

[45] M. Thomas, Modelling and analysing user views of tele-
communications services, in: P. Dini, R. Boutaba, L.
Logrippo (Eds.), Feature Interactions in Telecommunication
Networks IV, June, IOS Press, Amsterdam, 1997, pp. 168–
182.

[46] M. Weiss, Feature interactions in web services, in: Amyot
and Logrippo [1], pp. 149–158.

Alice Miller, MIEE, CEng, is a lecturer in
the Department of Computing Science,
University of Glasgow. Her research
interests include Combinatorics and
Group Theory as well as Model Check-
ing. Recently her work has involved
developing abstraction, induction and
symmetry reduction techniques for
application to model checking, and the
formal verification of sensor networks.
She has worked at the Universities of

Western Australia, East Anglia, Stirling and Glasgow, and was
awarded a Daphne Jackson Fellowship in 1999. Alice has a BSc
and Ph.D in Mathematics from the University of East Anglia.

Muffy Calder, FIEE, FRSE, is Head of
the Department of Computing Science
and Professor of Computing Science,
University of Glasgow. Her research is in
modelling and reasoning about the
behaviour of complex software and
biochemical systems using mathematics
and automated reasoning tools. Her
research interests include concurrent
systems, process algebras and stochastic
process algebras, model checking, pro-

tocol and service description languages, protocol analysis, and
safety critical and biomedical applications. She has led numerous
externally funded research projects and co-chaired an interna-
tional conference on feature interactions. She is a member of the
Scottish Science Advisory Committee, reporting to the Scottish
Executive. She has long-standing industrial collaborations with
many world-leading IT companies and has been a research fellow
at BT Laboratories and DEC in California. She is a member of
the IEE (Institution of Electrical Engineers) research policy
group. Professor Calder has a PhD in Computational Science
from the University of St. Andrews and a BSc in Computing
Science from the University of Stirling.

Alastair Donaldson is completing a Ph.D.
in Computing Science at the University
of Glasgow, funded by the Carnegie
Trust for the Universities of Scotland.
His Ph.D. work has involved the devel-
opment of novel automatic techniques
for symmetry detection and exploitation
in model checking, with implementations
for the explicit-state model checker SPIN
and the probabilistic, symbolic model
checker PRISM. His interest in software

engineering has led to employment with Reuters and Graham
Technology. Alastair recently co-chaired an international work-
shop on symmetry in constraint satisfaction problems. When not
studying Computing Science, he plays drums for his rock band,
Latonic. Alastair graduated with a BSc in Computing Science
and Mathematics from the University of Glasgow in 2003.

A. Miller et al. / Computer Networks 51 (2007) 439–455 455

