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Abstract

We introduce Process Algebra with Hooks (PA[H]). In PA[H] processes represent different layers
of abstraction, from biochemistry to tissue, and special synchronisations via hook actions ensure
consistency between these abstractions. There is an explicit representation of geometrical space
and the algebra has a stochastic semantics based on functional rates of reactions.

Keywords: process algebra, labelled transition system, pattern formation, geometrical space

1 Introduction

Deep analogies appear to exist between software and biochemical processes,
leading to several modelling approaches based on the abstractions of molecule-
as-process, species-as-process or pathway-as-process [3]. Existing for-
malisms have been applied to the modelling of biological systems, such as
π-calculus [17,15] and PEPA [10,2], while new ones have been developed for
this specific purpose, such as Beta-Binders [14], Bio-PEPA [6], κ-calculus [8],
BIOCHAM [4]. More recently, attention has turned to spatial aspects of be-
haviour, and there are several approaches that take space into account, usually
in form of topological locations [5,16].

Following this flow of research, we consider models that include a geomet-
rical notion of space [9]. Here we present process algebra with hooks (PA[H]),
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a process algebra designed to capture essential features of models of pattern
formation. Our approach is inspired by mathematical models of pattern for-
mation that have their roots in the early work on morphogenesis of Turing [18].
Turing supported the hypothesis that, given an area with identical and uni-
formly distributed cells, patterns of different phenotypes arise due only to the
diffusion and the local reactive activity of the molecules present in the cells.
These ideas inspired new models that today are validated by increasing exper-
imental evidence [12]. Additionally, Turing introduced the term morphogen, a
special molecule whose concentration determines the phenotype of a region in
space. Today, we know that this phenotype depends usually on the absolute
concentration [11] of morphogens and in some cases on the relative concen-
tration [13].

Following these concepts, in PA[H] we use processes to represent different
layers of abstraction, e.g. from biochemistry to tissue. A bottom-up synchro-
nisation of these layers via actions called hooks ensures the consistency of the
abstractions. Moreover, an explicit notion of geometrical space is embedded in
the algebra. Other features are borrowed from Bio-PEPA, such as multi-way
synchronisation, functional rates and parsimony of the syntax.

Finally, using PA[H] we produce an un-processed labelled transition sys-
tem (un-processed LTS), where the labels on the transitions require to be
processed, to select the layer of abstraction that we are interested in. Even-
tually, we aim to use action based relations such as a probabilistic version of
bisimulation to test whether two systems with different biochemistries form
the same set of patterns.

The paper is organised as follows. In Section 2 we introduce PA[H] by
examples, before presenting the formal syntax and semantics in Section 3. In
Section 4 we show how to model the biochemical layer in PA[H], while the
stochastic semantics is in Section 5. We conclude with related work in Section
6 and conclusions and future work in Section 7. The interested reader will
find additional formal definitions in Appendix A, an example of the use of
PA[H] in Appendix B and the details of our formalisation of functional rates
in Appendix C.

2 Process Algebra with Hooks by Examples

Example 1. Consider the following graphical representation of concurrent
processes M0, M1, M2, M3, T0, T1:

Using the process as level of concentration abstraction, let Mi be the pro-
cess representing the morphogen M at a certain position in space, with concen-
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tration level i. Actions a and b represent biochemical reactions that increase
or decrease, respectively, the concentration of M. Processes T0 and T1 are a
higher layer, representing the possible states (the phenotypes) of the tissue T
at the current location. The state of T changes when the absolute concentra-
tion of M passes a threshold. In this case, the action x denotes T0 becoming
T1, when M1 becomes M2; and conversely T1 becomes T0 with a y action when
M2 becomes (by a b) M1. It is important to note that tissue layer actions x
and y synchronise only with some instances of biochemical layer actions a and
b. These instances represent a concentration threshold and are represented by
the different notation a[x] and b[y]. x and y are called hooks, because they link
actions on different layers of abstraction bottom-up. a and x are indeed the
same action, interpreted from two different layers of abstraction. They carry
different but complementary pieces of information: a means the biochemical
reaction Ra has happened, while x means a change at the tissue layer has been
triggered. Note, we do not represent the execution of a[x] as an interleaving
of the action names a and x. Instead, a[x] generates a single transition of the

form M1 �
x,y
T0

a,x[x]−−−→ M2 �
x,y
T1, which carries the entire information of what

happened. The listen operator �
x,y

composes processes on different layers of

abstraction that can synchronise on actions in the set {x, y}. This operator is
not commutative: the process on the left is at a lower layer of abstraction.

Example 2. More complex relations between biochemistry and tissue can
be described. In this example, the state change of T is triggered when the
concentration of morphogen A surpasses the concentration of morphogen B.
We define additional utility process Pi to represent the difference between the
concentration levels of A and B.

A can degrade (dA), B can be produced (pB), while both A and B can
synchronise (s) so that a level of B is converted into a level of A. Pi represents
the difference A−B, while a and b actions represent events that make this
difference increase by two and decrease by one respectively. An example of

a transition is ((A1 ��
s
B2) �

a,b
P−1) �

x,y
T0

s,a,x[a,x]−−−−−→ ((A2 ��
s
B1) �

a,b
P1) �

x,y
T1.

The parallel operator ��
s

composes processes at the same layer of abstraction
that can synchronise on actions in the set {s}.

Example 3. If a layer of abstraction triggers more than one hook, the
resulting set of hooks can be caught in sequence by multiple listeners or in
parallel by a single listener. Consider the following processes:
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Given these processes, two possible examples of transitions

are ((A0 ��
s
B1) �

x
P0) �

y
Q0

s,x,y[x,y]−−−−−→ ((A1 ��
s
B0) �

x
P1) �

y
Q1 and

(A0 ��
s
B1) �

x,y
R0

s,x,y[x,y]−−−−−→ (A1 ��
s
B0) �

x,y
R1, which represent hook syn-

chronisations in sequence and in parallel respectively.

Example 4. The positioning of
hooks on actions at the biochemical
layer simplifies the construction of util-
ity processes and is particularly useful
when geometrical space is considered
as a grid of locations. Let A

(i,j)
n de-

note the process representing a concen-
tration level n of species A at location
(i, j). Concentration can migrate to and from the current position and many
different transport actions will have the same effect of lowering or increasing
the concentration at one position in space, as shown in the diagram above.
For example, A can decrease a level of concentration, from Av

n to Av
n−1 at a

position v = (i, j), through a transport reaction of the form t:(v → s). t is
the action name, and v and s are locations. (v → s) denotes transport from
location v to location s. At position s, a process As

m will synchronise and
become As

m+1. Simply substituting t:(v → s) with t:(v → s)[b] we can add
these actions to Example 2 and Pi, without modifications, will synchronise
with them.

3 Syntax and Semantics

We now define PA[H] formally.

Syntax of PA[H]. The syntax of PA[H] is defined as:

Sv ::= nil | L′[L′′].Cv | Sv + Sv P ::= P ��
L
P | P �

L
Cv | Cv

L ::= ø | L′ L′ ::= a:m | a:m,L′ L′′ ::= ø | a:m

m ::= v | (v → v) v ::= (z, z, z) Cv , Sv

where:

• Sv and P are respectively the sequential component, used to represent the
concentration of biochemical species or the behaviour at higher layers of
abstraction, and the model component, that combines the sequential com-
ponents into the final process algebra model. Sequential and model compo-
nents are in general referred to as components or processes and form the
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set of processes P;

• a ∈ A, A = {a, b, c, ...}, is an action name belonging to A;

• a:m ∈ Act, Act = {a:m1, b:m2, c:m3, ...}, is an action belonging to the set
of actions Act. A set of actions A ⊆ Act is also called an activity;

• m is either the position v used to identify the spatial position in three
Cartesian coordinates (z, z, z), z ∈ Z, of a process or an action, or the
sequence of positions (v → v) of transport actions;

• nil is the deadlock process. L,L′,L′′ are sets of actions (L,L′,L′′ ⊆ Act),
L′ is a non empty set and L′′ is either empty or a singleton set;

• L′[L′′] ∈ Ext, Ext = {A[H] | A,H ⊆ Act}, is an extensible activity belong-
ing to the set of extensible activities Ext. Given A[H] ∈ Ext, A is a set of
regular actions and H is a set of hooks.

• A[H].Cv is the prefix of an extensible activity to a sequential component;

• Sv + Sv is the choice between sequential components;

• P ��
L
P is the cooperation of model components, synchronising on the ac-

tions in L;

• P �
L
Cv is the cooperation of model components synchronising between

layers of abstraction on the actions in L. Process Cv is a listener of actions
in P , which it can synchronise with or ignore;

• Cv is a constant defined as Cv , Sv: every time Sv is found in a derivation,
it can be substituted by the constant Cv.

Given A[H] ∈ Ext, two short hand notations are: if H = ø, A[H] can be
written A and if A = {a:m} it can be written simply a:m.

Semantics of PA[H]. The semantics of PA[H] is given by an un-
processed LTS Lu = (P, Act,→u), where P is the set of Processes, Act is the
set of actions and →u is a transition relation such that →u⊆ P×Ext×P. Lu

is defined by the following derivation rules:

Prefix Constant

A[H].Cv
A[H]−−−→ Cv

, A[H] ∈ Ext Sv
1

A[H]−−−→ Cv
2

Cv
1

A[H]−−−→ Cv
2

, Cv
1 , Sv

1

Choice Left Choice Right

Sv
1

A[H]−−−→ Cv
3

Sv
1 + Sv

2

A[H]−−−→ Cv
3

Sv
2

A[H]−−−→ Cv
3

Sv
1 + Sv

2

A[H]−−−→ Cv
3
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Cooperation Left Cooperation Right

P1
A[H]−−−→ P3

P1 ��
L
P2

A[H]−−−→ P3 ��
L
P2

, A ∩ L=ø
P2

A[H]−−−→ P4

P1 ��
L
P2

A[H]−−−→ P1 ��
L
P4

, A ∩ L=ø

Regular Cooperation Hook Ignore

P1
A[E]−−→ P3 P2

B[F ]−−→ P4

P1 ��
L
P2

A∪B[E∪F ]−−−−−−→ P3 ��
L
P4

,
A∩B⊆L

∧A∩B6=ø

P1
A[H]−−−→ P2

P1 �
L
Cv

A[H]−−−→ P2 �
L
Cv

, H ∩ L=ø

Hook Synchronisation

P1
A[E]−−→ P2 Cv

′
B[F ]−−→ Cv

′′

P1 �
L
Cv
′
A∪B[E∪F ]−−−−−−→ P2 �

L
Cv
′′

, B[F ] cond

B[F ] cond: given Cv
′ , B1[F1].Cv

1 + B2[F2].Cv
2 + ... + Bn[Fn].Cv

n, let B be
a Bi in B1,B2, ...,Bn such that Bi ⊆ E and Bi ⊆ L (i.e. Bi ⊆ E ∩L) and there
is no Bj in B1,B2, ...,Bn with larger cardinality than Bi such that Bj ⊆ E ∩L.
We define this formally in Definition A.1.

As an example of hook synchronisation, consider the following sequential
components:

A , x[a].A B , x[b].B C , x[c].C

Q0 , a.Q1 + a, b.Q2 + a, b, d.Q3

The transition (A ��
x
B ��

x
C) �

a,b,c
Q0

x,a,b[a,b,c]−−−−−−→ (A ��
x
B ��

x
C) �

a,b,c
Q2, is

performed because, although {a} 6= {x} and {a} ⊆ {a, b, c} ∩ {a, b, c}, Q0

cannot become Q1 because {a, b} 6= {x}, {a, b} ⊆ {a, b, c} ∩ {a, b, c}
and |{a, b}| > |{a}|. Then Q0 can become Q2, because although
|{a, b, d}| > |{a, b}|, we also have that {a, b, d} * {a, b, c} ∩ {a, b, c}.

Well-formed PA[H] model. We now introduce additional definitions,
necessary to define a well-formed PA[H] model.

Definition 3.1 Biochemical Species. The set Species is the set of biochemical
species. Every biochemical species S ∈ Species is associated with one or
more processes, the biochemical processes, which represent different levels of
concentration for S.

Definition 3.2 Functions species and level. “species: P → Species” is the
function that given a process P returns the species S it is associated with. If P
is not associated with a biochemical species, species(P ) returns ⊥. Similarly,
“level: P→ N”, is the function that converts processes in their corresponding

6



Degasperi, Calder

level of concentration. In analogy with the species function, level(P ) returns
⊥ if P is not associated with a biochemical species.

Definition 3.3 Biochemical Actions. The set BioAct ⊆ Act is the set of
biochemical actions.

Definition 3.4 Well formed PA[H] model. A PA[H] model is well formed if
the following conditions are met:

• when defining sequential components, sets of regular actions that contain
biochemical actions can only be singletons;

• species consistency, i.e. if a constant Cv
1 changes to Cv

2 after executing an
extensible activity A[H], then species(Cv

1 )=species(Cv
2 );

• hooks never contain biochemical actions;

• the lowest layer of abstraction contains biochemical processes and there is
only one process for each species in the model.

We define this formally in Definition A.2.

Processed LTS. The LTS Lu is called un-processed because it is not

intended to be used directly. Given a transition P
A[H]−−−→ Q, the label A[H] has

to be processed, removing the hooks and filtering the set of regular actions
A. In particular, A contains several actions, but they might be just the same
action, seen from different layers of abstraction. In the processed system,
depending on which layer of abstraction is to be considered, only those actions
belonging to that layer will be kept on the label.

The following curried function is used to process the un-processed LTS:

proc : 2Act −→ (2P×Ext×P −→ 2P×2Act×P)

Given a set of actions T , which contains actions relative to a specific layer
of abstraction, the function proc(T ) replaces each transition (P,A[H], Q) with
a transition (P,B, Q), where B is the set intersection of T and A. If such
intersection is empty, B is equal to {τ}, where τ is the hidden action. Function
proc is defined formally in Definition A.3.

Definition 3.5 Processed LTS. Given an un-processed LTS Lu = (P, Act,→u

) and a set of actions T , the processed LTS Lp = (P, Act,→p), with →p⊆
P× 2Act × P, is given by (P, Act, proc(T )(→u)).

An example of LTS processing is shown in Figure 1.

4 Abstraction of Biochemistry

PA[H] has been designed to model biochemical interactions localised in space,
using the processes as levels of concentration abstraction. The concentration of
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Fig. 1. An un-processed labelled transition system (left) is processed, removing hooks and labels
that are not in the set {x, y} (right).

each molecule S is divided in NS levels (NS+1 with 0), with a common step size
or granularity h. S has a maximum concentrationMS, with h = MS/NS. Given
two consecutive levels n and n+1, a concentration in the range (h·n, h·(n+1)]
is represented by the discrete level n+1. As a consequence, 0 is not considered
a level, but it represents the absence of concentration.

Geometrical space is divided into slots of the same size and volume, in a
grid-like manner, where each slot is identified by a position v = (i, j, k), with
(i, j, k) ∈ Z3. Slots are rectangular parallelepipeds with edges of length ∆x,
∆y and ∆z. Given an origin of Cartesian axes (0,0,0), the Cartesian position
of a corner of a slot is given by (i · ∆x, j · ∆y, k · ∆z). For example, with
respect to the dimension x, boundaries of slot i are at positions i · ∆x and
(i+ 1) ·∆x. Each species S is identified by a position v of the slot where it is
located, written as Sv. The concentration of a species is considered uniformly
distributed within a slot.

Biochemical reactions are identified by a name a ∈ A and by a position
v where it takes place, or a transition between positions v → v′ if it is a
transport reaction.

We formalise the concentration of a species Sv using NS + 1 processes (se-
quential components) Sv

0 , S
v
1 , ..., S

v
NS

, which represent different levels of con-
centration of Sv and from which the concentration can be computed simply
by level(Sv

n)·h.

Example. Consider the following reaction:

Av + Bv →prodC:v Cv

A and B combine to produce C at location v. Initially there is no C and
equal amounts of A and B. Let prod:v be the indentifier of the reaction. In
a PA[H] model there is one process for each species, the level of each species
denoting the initial conditions.

Let NAv = NBv = NCv = 1 and A = {prodC} and Act = {prodC:v}. The
corresponding sequential and model components are:

Av
0 , nil Bv

0 , nil Cv
0 , prodC:v.Cv

1

Av
1 , prodC:v.Av

0 Bv
1 , prodC:v.Bv

0 Cv
1 , nil

Av
1

��
prodC:v

Bv
1

��
prodC:v

Cv
0
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5 Stochastic Semantics

To define a stochastic version of PA[H], we need to associate a rate with each
transition of the un-processed LTS. The rate is a positive real number that
is the parameter of the exponential distribution of the time necessary for a
transition, i.e. an action, to happen.

Since the rates of biochemical reactions are usually functions of the con-
centration of species, we employ functional rates. Every biochemical action
a:m ∈ BioAct is associated with a functional rate fa:m. We define as F the
set of functional rates such that fa:m ∈ F.

The details of how a functional rate is evaluated are in Appendix C. Here, it
is sufficient to say that a rate ra:m is evaluated from a functional rate fa:m ∈ F
and an environment Γ, which is a function that associates variable names with
values. We define it as “Γ: Names → R”, with Names = C ∪ Species, C ⊆
Names the set of constant names, Species ⊆ Names the set of biochemical
species and C ∩ Species = ø.

We now introduce the stochastic semantics of PA[H]. With respect to the
original semantics, derivation rules Prefix, Choice Left and Choice Right
are unaltered. These are the modified rules:

Constant

Sv
1

A[H]−−−→ Cv
2

Cv
1

(A[H],Γ)−−−−−→ Cv
2

,
Cv

1 , Sv
1 ∧ if species(Cv

1 ) ∈ Species then

Γ = {(species(Cv
1 ), levels(Cv

1 ) · h)} else Γ = ø

Cooperation Left

P1
(A[H],Γ)−−−−−→ P3

P1 ��
L
P2

(A[H],Γ)−−−−−→ P3 ��
L
P2

, A ∩ L=ø

Cooperation Right

P2
(A[H],Γ)−−−−−→ P4

P1 ��
L
P2

(A[H],Γ)−−−−−→ P1 ��
L
P4

, A ∩ L=ø

Regular Cooperation

P1
(A[E],Γ1)−−−−−→ P3 P2

(B[F ],Γ2)−−−−−→ P4

P1 ��
L
P2

(A∪B[E∪F ],Γ1∪Γ2)−−−−−−−−−−−→ P3 ��
L
P4

, A ∩ B ⊆ L ∧A ∩ B 6= ø

Hook Ignore

P1
(A[H],Γ)−−−−−→ P2

P1 �
L
Cv

(A[H],Γ)−−−−−→ P2 �
L
Cv

, H ∩ L = ø
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Hook Synchronisation

P1
(A[E],Γ1)−−−−−→ P2 Cv

1

(B[F ],Γ2)−−−−−→ Cv
2

P1 �
L
Cv

1

(A∪B[E∪F ],Γ1∪Γ2)−−−−−−−−−−−→ P2 �
L
Cv

2

, B[F ] cond

The side condition B[F ] cond is unaltered. Notice that Cv
1 is on an higher

layer of abstraction, so, if the model is well-formed, species(Cv
1 ) = ⊥ and

Γ2 = ø.

A stochastic un-processed LTS is defined as Ls,u = (P, Act,→s,u), where
the transition relation →s,u⊆ P×Ext× 2Species×R× P is the minimal relation
that satisfies the stochastic semantics of PA[H].

Stochastic processed LTS. The processing of a stochastic un-processed
LTS is used both to select the actions on the labels relative to a layer of
abstraction of interest, and to compute the rate of the transitions. In analogy
with the non stochastic case, we use the following curried function:

procs : 2C×R −→ (2Act −→ (2P×Ext×2Species×R×P −→ 2P×2Act×R×P))

Given an environment Γ ⊆ C × R and a set of actions T , which contains
actions relative to a specific layer of abstraction, the function procs(Γ)(T )
replaces each transition (P,A[H],Γ′, Q), with a transition (P,B, r, Q), where B
is the set intersection of T and A and r is the rate of the transition. Assuming
a well-formed PA[H] model, A contains exactly one biochemical action a:m,
with associated functional rate fa:m. Rate r is computed from fa:m and the
union of the environments Γ and Γ′. As in the non stochastic case, if the
intersection of T and A is empty, B is equal to {τ}. Function procs is defined
formally in Definition A.4.

Definition 5.1 Stochastic Processed LTS. Given a stochastic un-processed
LTS Ls,u = (P, Act,→s,u), an environment Γ ⊆ C × R and a set of actions
T ⊆ Act, the corresponding stochastic processed LTS Ls,p = (P, Act,→s,p),
with →s,p⊆ P× 2Act × R× P, is given by (P, Act, procs(Γ)(T )(→s,u)).

6 Related Work

As we have already mentioned, this work is related to other process algebras,
PEPA [10] and Bio-PEPA [6]. An alternative way to implement hook syn-
chronisation might be using priority of actions in PEPA. Biochemical actions
would have the lowest priority, while actions with higher priority could be used
to keep higher layers consistent with the biochemistry. There are two disad-
vantages with this approach. First, actions with high priority would interleave
with biochemical actions or with actions with even higher priority generating
extra intermediate states that could be avoided a priori using hook synchro-
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nisation. Second, removing these extra states would result in removing all
actions with the exception of the biochemical ones. Although the processes
representing higher layers of abstraction would be consistent, we would lose
the capability of performing action based equality checking between models,
with respect to selected layers of abstraction.

The concept of using processes to “listen” to actions in a process alge-
bra model was first introduced with Probes [1,7]. In this setting, processes
(probes) are constructed using regular expressions and are used to query a
model. Special start and stop labels are added to certain actions to indi-
cate entering and leaving states that satisfy the query. Although there are
analogies, our approach does not aim to query the system, but to formalise
and characterise the way we can observe its behaviour from different layers of
abstraction. Moreover, regular expressions might in some cases not be pow-
erful enough to construct the processes that we need to listen to biochemical
actions.

7 Conclusions and Future Work

A novel process algebra, PA[H], that aims to formalise models of pattern
formation has been presented, along with its stochastic semantics. Its main
feature is the ability to model different layers of abstractions, by an action syn-
chronisation that works bottom-up. It also includes an explicit representation
of geometrical space and transport between locations.

In PA[H], the lowest layer of abstraction is the biochemistry, where pro-
cesses denote levels of concentration of species. Processes at higher layers
denote tissue or any other layer of abstraction. At all levels there is an ex-
plicit notion of location in geometrical space. The semantics is given by a
labelled transition system, which is the then processed to provide a more con-
cise form, without hooks, tailored to a given layer of abstraction. A stochastic
semantics is also defined, based on functional rates associated with biochemi-
cal reactions.

We have demonstrated, through examples, how biochemical reactions at
a lower layer can trigger behaviour at a higher layer when a concentration
threshold is crossed, or when the difference between two concentrations reaches
a threshold, and when sets of hooks can trigger behaviour in sequence or in
parallel.

Future work includes defining equivalences between models so we can de-
termine, for example, when two different biochemistries lead to the same pat-
terns.
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A Formal definitions

Definition A.1 B[F ] cond. In the derivation rule “Hook synchronisation”,
we define formally B[F ] cond by: B ⊆ E ∩ L ∧

⋃
i>|B|Φi(C

v
1 )(E ∩ L) = ø,

where |B| is the cardinality of B and Φk is defined as:

Φk(A[H].Cv) = λX.{A[H]} if |A| = k ∧ A ⊆ X

Φk(Sv
1 + Sv

2 ) = λX.(Φk(Sv
1 )(X) ∪ Φk(Sv

2 )(X))

Φk(nil) = λX.ø

Definition A.2 Well formed PA[H] model. A PA[H] model is well formed if
the following conditions are met:

• when defining sequential components, sets of regular actions that contain
biochemical actions can only be singletons, i.e. given A[H].Cv, if ∃a:m ∈
BioAct s.t. a:m ∈ A then A = {a:m};

• species consistency, i.e. if Cv 6= nil, Ψ(Cv)=species(Cv), with Ψ defined as:
Ψ(A[H].Cv

1 ) = {species(Cv
1 )},

Ψ(Sv
1 + Sv

2 ) = Ψ(Sv
1 )∪Ψ(Sv

2 ).

• hooks never contain biochemical actions, i.e. given A[H].Cv then H ∩
BioAct = ø,

• biochemical processes offer only biochemical actions, i.e. if species(Cv)∈
Species and a:m[H].Cv a:m[H]−−−−→ Cv then a:m ∈ BioAct. Moreover, if

species(Cv)= ⊥ and A[H].Cv A[H]−−−→ Cv then A ∩BioAct = ø.

• the lowest layer of abstraction contains biochemical processes and there is
only one process for each species in the model, i.e. χ(P ) = (A,B,C) and
A ⊆ Species, B = ø and C ∩ Species = ø, with χ defined as:
χ(Cv) = ({species(Cv)}, ø, ø),
χ(P1 ��

L
P2) = (A∪X,B∪Y ∪(A∩X), C∪Z), where χ(P1) = (A,B,C)

and χ(P2) = (X, Y, Z),
χ(P �

L
Cv) = (A,B, {species(Cv)} ∪ C), where χ(P ) = (A,B,C).

Definition A.3 proc function.

proc : 2Act −→ (2P×Ext×P −→ 2P×2Act×P) =

λY.(λX.( { proclab(Y )(α) | α ∈ X} ))

proc lab : 2Act −→ (P× Ext× P −→ P× 2Act × P) =

λY.(λX.( (P, procset(Y )(A), Q), where X = (P,A[H], Q) ))

procset : 2Act −→ (2Act −→ 2Act) =

λY.(λX.( if S = ø then τ else S, where S = {a:m | a:m ∈ X ∩ Y } ))

Definition A.4 procs function. Given (P,A[H],Γ, Q) ∈→s,u, we know that
A ∩ BioAct = {a:m}. This is because, if a PA[H] model is well-formed then

13
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there is exactly one biochemical action for each transition. We use this ob-
servation in the following curried functions, defined to produce the stochastic
processed LTS.

procs : 2C×R −→ (2Act −→ (2P×Ext×2Species×R×P −→ 2P×2Act×R×P)) =

λZ.(λY.(λX.( { procs,lab(Z)(Y )(α) | α ∈ X} )))

procs,lab :
2C×R −→ (2Act −→ (P× Ext× 2Species×R × P −→ P× 2Act × R× P)) =

λZ.

λY.
λX.


(P, procset(Y )(A), eval(fa:m,Γ ∪ Z), Q),

where X = (P,A[H],Γ, Q) and

{a:m} = A ∩BioAct





Function “eval” is defined in Definition C.1.

B A more detailed example

In the slot in position j ∈ {v, s}, two species A and B can be produced or can
degrade, A can turn into B and B into A. Moreover, A and B can migrate freely
between the two slots. In chemical form, the reactions are, with i, j ∈ {v, s},
i 6= j:

Reaction Chemical form Action Reaction Chemical form Action

R1: → A r1 R5: A → B r5

R2: A → r2 R6: B → A r6

R3: → B r3 R7: Ai → Aj tA

R4: B → r4 R8: Bi → Bj tB

We use process M j
i to indicate that a species M ∈ {A,B} at position j

has a concentration level i ∈ {0, 1, 2}. In this example we want to express
that an action happens at the tissue layer, when both A and B reach level
2. We use an utility process P j

i (j ∈ {v, s}, i ∈ {0, 1, 2}), which counts how
many A or B are at level 2 in position j. P j

0 denotes none of them, P j
1 denotes

one of them and P j
2 means both. Finally, we use a process T j

i to represent
the state of the slot (tissue layer) in position j, which can be inactive (T j

0 )
or active (T j

1 ). For i, j ∈ {v, s}, i 6= j, the PA[H] model is defined by:

Ai
0 , r1:i.Ai

1 + r6:i.Ai
1 + tA:(j → i).Ai

1

Ai
1 , r1:i[p:i].Ai

2 + r6:i[p:i].Ai
2 + r2:i.Ai

0 + r5:i.Ai
0+ tA:(j → i).Ai

2 +
tA:(i→ j).Ai

0

Ai
2 , r2:i[q:i].Ai

1 + r5:i[q:i].Ai
1 + tA:(i→ j).Ai

1

14
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Fig. B.1. Graphical representation of the processes.

Bi
0 , r3:i.Bi

1 + r5:i.Bi
1 + tB:(j → i).Bi

1

Bi
1 , r3:i[p:i].Bi

2 + r5:i[p:i].Bi
2 + r4:i.Bi

0 + r6:i.Bi
0+ tB:(j → i).Bi

2+
tB:(i→ j).Bi

0

Bi
2 , r4:i[q:i].Bi

1 + r6:i[q:i].Bi
1 + tB:(i→ j).Bi

1

P i
0 , p:i.P i

1 P i
2 , q:i[y:i].P i

0

P i
1 , q:i.P i

0 + q:i, p:i[ø].P i
1 + p:i[x:i].P v

2

T i
0 , x:i.T i

1 T i
1 , y:i.T i

0

(((Av
0

��
r5:v,r6:v

Bv
0) �

p:v,q:v
P v

0 ) �
x:v,y:v

T v
0 ) ��

tA:(i→j),tB:(i→j)

(((As
0

��
r5:s,r6:s

Bs
0) �

p:s,q:s
P s

0 ) �
x:s,y:s

T s
0 )

A graphical representation of these processes is depicted in Figure B.1
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C Details about functional rates

Each biochemical reaction is associated with a velocity, also called a kinetic
law, which determines the amount of concentration (e.g. Molars) converted
by the reaction per time unit (e.g. seconds). A rate ra:m can be derived using
the velocity of the reaction associated to a:m. First, the velocity is formalised
as a functional rate. Second, when required, the functional rate is evaluated
based on the concentration of the species at a particular state.

Derivation of rates in a CTMC with levels model. Given an action
a:m, a velocity v of the biochemical reaction associated with a:m, Si (i =
1, ..., n) species involved in the reaction, [Si] to indicate the concentration of
Si, 〈Si〉 to indicate the current level of concentration of Si, ki ∈ Z to indicate
their stoichiometry in the reaction and h as the step size, the variation in time
of [Si] is given by:

δ[Si]

δt
= ki · v

We introduce ∆〈Si〉 = ki as the change in number of levels that has to be
applied to Si when a:m is triggered. Substituting δ[Si] with ∆〈Si〉 · h:

δ[Si]

δt
≈ ∆[Si] · h

∆t
= ki · v =⇒ 1

∆t
=
v

h
If we consider ∆t as the average of the exponential distribution of the

time necessary for a:m to happen, then 1/∆t can be used as a rate for such
a distribution. We then formalise v as a functional rate and we divide the
evaluation of v by h, to produce the correct rate.

Derivation of mass action velocities from diffusion constants. The
models of pattern formation we intend to formalise are defined by partial
differential equations that have two components: the diffusion and the local
reactions:

δ[S]

δt
= DS∇2[S]± React

If we divide the space into a grid as described in Section 4, we can derive
approximate mass action rates to move from a slot to the adjacent ones of
equal volume, using the finite difference method. For example, in the case
of one-dimensional Cartesian coordinates, the velocity vi,i+1, used to move
concentration of S from position i to i+ 1, is equal to DS/∆x

2 · [Si].

Formalisation of functional rates. A functional rate can be described
as a mathematical expression where the basic elements are real numbers, con-
stants and biochemical species. We define functional rates using the following
syntax:

f rate = real | name | f rate op1 f rate | op2(f rate) | f ratef rate

op1 = + | − | ∗ | / op2 = exp | log | sin | cos

16



Degasperi, Calder

• real ∈ R
• name is the name of a variable that can be either a constant or a species.

In order to evaluate the function we define an environment Γ, that is a
function that associates variable names with real values. We define it as “Γ:
Names→ R”, with Names = C∪Species, C ⊆ Names the set of constant
names, Species ⊆ Names the set of biochemical species and C∩Species =
ø. We assume that constants are declared before the functional rates in the
form of the assignment “name = real”. Each assignment can be regarded as
a pair (name,real)∈ C × R. Consequently we can update the environment
to Γ = Γ∪{(name,real)}. Species and their concentration, in the form of
pairs (S,real)∈ Species× R, will be gathered during the application of the
stochastic semantics and added to the environment before the evaluation of
a rate (see Section 5).

• op1 is a binary operator with associativity always to the left and with ∗ and
/ having priority over + and −. op2 is a unary operator.

We use the following semantics to evaluate the functional rates:

Constant Variable

Γ ` n→ n
, n ∈ R

Γ ` name→ n
, Γ(name) = n

Unary operator

Γ ` exp→ n1

Γ ` op2(exp)→ n2

, n2 = op2(n1)

Binary operator

Γ ` exp1 → n1 Γ ` exp2 → n2

Γ ` exp1 op1 exp2 → n3

, n3 = n1 op1 n2

Exponential operator

Γ ` exp1 → n1 Γ ` exp2 → n2

Γ ` expexp2

1 → n3

, n3 = nn2
1

Definition C.1 Evaluation of a functional rate. Given an environment Γ ⊆
Names×R, a functional rate fa:m ∈ F is evaluated to a rate ra:m = x/h, with
x ∈ R, written eval(fa:m,Γ) = ra:m, iff Γ ` fa:m → x.

Example. Let Γ = {(B,2)}, f = 5 + 4/B and h = 0.5. It follows that
Γ ` f → 7, and so eval(f,Γ) = 7/0.5 = 14, with the following derivation:

{(B, 2)} ` 5→ 5

{(B, 2)} ` B→ 2 {(B, 2)} ` 4→ 4

{(B, 2)} ` 4/B→ 2

{(B, 2)} ` 5 + 4/B→ 7
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