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Abstract

We present the derivation of a CTMC with levels model of diffusion in cylindrical coordinates
from the partial differential equation for Fick’s law. The resulting model abstracts both molar
concentration, by discrete levels, and spatial location, by discrete compartments. We apply the
results to the diffusion of nitric oxide in human vessels and illustrate with simulations in the PRISM
tool.
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1 Introduction

Formalisms such as process algebras and other calculi [15,19,11,6], rewriting
rules [12,5] or languages [8,18], can be used to improve modelling and anal-
ysis of systems of biochemical reactions. Usually a model defined with these
approaches uses mathematical techniques such as ordinary differential equa-
tions (ODEs), continuous time Markov chains (CTMCs), CTMC with levels
[9] or monte carlo simulations as the underlying concrete semantics. In some
cases, more than one mathematical semantics can be derived from the same
formalism, e.g. Bio-PEPA [11], and they can be related to one another for a
more robust interpretation of the result [9].

Recently, increasing interest has been given to the integration of location
and movement in space within such formalisms. Spatial location and the
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diffusion of biochemical species can be represented in many ways. For example,
space can be topological, i.e. hierarchical locations, or geometrical, i.e. a
coordinate system of spatial positions [13]. The diffusion of molecules can be
described at a microscopic level by random walks, or at a macroscopic level
by Fick’s law of diffusion [16,4].

In such scenarios, mathematical models are usually highly specific, incor-
porating assumptions that simplify the set of equations used. An example of
this is the variety of mathematical models of nitric oxide (NO) transport and
availability in blood vessels (see [20] for a complete review). These models all
use sets of partial differential equations (PDEs), representing diffusion with
Fick’s law in one dimensional cylindrical coordinates.

Our goal is to derive models of NO transport and availability in blood
vessels in terms of CTMC with levels, from a set of PDEs. CTMC with levels
are CTMCs whose states are characterised by the concentration of each species
expressed in discrete levels. The motivation for this is the additional analysis
available, e.g. testing of robustness under different degrees of stochasticity.
An approximation of PDEs in terms of such semantics ensures that we can
use state-based tools, such as the PRISM [3] model checker, to simulate and
analyse this scenario. Before we can do so, the missing piece of the puzzle is
a derivation of diffusion in one dimensional cylindrical coordinates in terms of
CTMC with levels. In this paper we present such a derivation, whose main
novelties are:

• the rates of the resulting CTMC with levels are derived directly from the
diffusion constant of the diffusing biochemical species. This derivation,
trivial in case of Cartesian coordinates, requires additional assumptions in
the case of cylindrical coordinates;

• the rates of the CTMC with levels depend not only on the concentration of
the species and the volumes of the compartments, but also on the spatial
position.

The paper is organised as follows. In Section 2 we present the derivation
of the PDEs to CTMC with levels. In Section 3 we present an example. In
Section 4 we mention related work, while conclusions and future work are in
Section 5.

2 Diffusion in a one-dimensional cylindrical vessel: re-
lating PDEs, ODEs and CTMC models

The derivations in this section refer to a one-dimensional model in cylindrical
coordinates. Although the only dimension considered is the radius, it is es-
sential to note that the concentration at each point distant r from the centre
represents the concentration at each point along the circumference of the circle
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with radius r. The length of the cylinder can be neglected, as it is an invari-
ant for our derivations. For this reason we use the terms area and volume as
synonymous.

Before we give the details of the derivation, we give a brief overview. First
we introduce the PDE and we derive a numerical approximation in terms of
ODEs. This is obtained by dividing the space in segments and computing nu-
merical approximations of first and second derivatives with respect to radial
position. Second, we describe the diffusion in terms of ODEs with compart-
ments, where the velocities of the transport reactions are in terms of mass
action kinetic law. Third, we demonstrate that if we choose appropriately
the kinetic constants for the mass action equations, the resulting equations
are identical to the approximation of the PDE. Fourth, we derive the CTMC
with levels from the ODEs with compartments. We know from [10] that this
is possible.

2.1 Partial Differential Equations

Modelling diffusions of species S is defined at a macroscopic level by Fick’s
equation, a Partial Differential Equation (PDE) of the form:

δ[S]

δt
= DS∇2[S] (1)

where DS is the diffusion coefficient of species S, [S] is the concentration
of S (in molar, M) and ∇2 is the Laplacian operator, which can be inter-
preted in different ways, depending on the coordinate system. Since we con-
sider diffusion along with local biochemical interactions, we use the following
reaction-diffusion equation [16,4]:

δ[S]

δt
= DS∇2[S]± React (2)

where React represents other reactions involving species S.

We assume cylindrical coordinates and that the concentration changes only
with respect to radial position and only because of diffusion or biochemical
reactions. As a consequence Equation (2) can be simplified to a one dimen-
sional form in cylindrical coordinates, where the only dimension considered is
the radius:

δ[S](r)

δt
= DS ·

(δ2[S]

δr2
+

1

r
· δ[S]

δr

)
± React (3)

Boundary conditions are:

δ[S]

δr r=0
= 0

δ[S]

δr r=R
= 0 (4)

where r = 0 represents the centre of the coordinate system while R is the
radius of the circular region considered. At each moment t in time we can
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compute the concentration of S at any point r along the radius, starting from
an initial concentration profile f(r).

Consider now how to solve Equation (3) numerically. First, we divide
the radius in K segments of length ∆r = R/K. Each segment i is related
to a variable [Si], i = 1, ..., K, that represents the average concentration in
that segment. Second, we compute approximations of first and second order
derivatives of [S] at radial positions using the [Si]. These approximations
represent derivatives at the middle point of the ith segment, at a distance
r = ∆r(2i − 1)/2 from the centre of the coordinate system. Derivatives are
computed using the central finite difference method :

δ[S](r)

δr
≈ δ[Si]

δr
=

[Si+1]− [Si−1]

2∆r

δ2[S](r)

δr2
≈ δ2[Si]

δr2
=

[Si+1]− 2[Si] + [Si−1]

(∆r)2

(5)

We can now rewrite Equation (3) using the approximations in Equation
(5):

δ[S](r)

δt
≈ δ[Si]

δt
= DS ·

( [Si+1]− 2[Si] + [Si−1]

(∆r)2
+

1

∆r(2i− 1)/2

· [Si+1]− [Si−1]

2∆r

)
± React

=
DS

(∆r)2
·
((

1 +
1

(2i− 1)

)
[Si+1]− 2[Si] +

(
1− 1

(2i− 1)

)
[Si−1]

)
± React

And rewriting the last equation we obtain the final numerical approxima-
tion:

δ[Si]

δt
=

DS

(∆r)2
·
( 2i

(2i− 1)
[Si+1]− 2[Si] +

(2i− 2)

(2i− 1)
[Si−1]

)
± React

i = 2, ..., (K − 1)

(6)

In order to write Equation (6) also for i = 1 and i = K we need to employ
the boundary conditions (Equation (4)), from which we obtain:

[S1]− [S0]

∆r
= 0

[SK+1]− [SK ]

∆r
= 0

As a consequence, approximations in Equation (5) become:

δ[S1]

δr
=

[S2]− [S1]

2∆r

δ2[S1]

δr2
=

[S2]− [S1]

(∆r)2

δ[SK ]

δr
=

[SK ]− [SK−1]

2∆r

δ2[SK ]

δr2
=

[SK−1]− [SK ]

(∆r)2

(7)
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Employing Equation (7) we derive the two additional equations:

δ[S1]

δt
=

2DS

(∆r)2
·
(

[S2]− [S1]
)
± React

δ[SK ]

δt
=

2K − 2

2K − 1
· DS

(∆r)2
·
(

[SK−1]− [SK ]
)
± React

(8)

As a final step, we derive the value of the [Si] at time t = 0, using the initial
condition f(r), r ∈ [0, R]. Notice that every point of the circumference with
radius r has concentration f(r). This means that each point in the ith segment
has a different weight when we compute [Si], the average concentration of
the segment. Since Vi=π(∆r)2(2i − 1) is the area of the ring whose average
concentration is represented by [Si], such average concentration at time t = 0
is given by:

[Si](t = 0) =
1

Vi

∫ ∆r(i)

∆r(i−1)

2πr · f(r)dr (9)

We have just derived an approximation of PDEs in terms of ODEs. We
now demonstrate that, if the kinetic constant used for the mass action law
of the transport is chosen appropriately, the set of equations for the PDEs
approximation is identical to the set of equations for the same system described
with ODEs and compartments.

2.2 Ordinary Differential Equations

In this section we derive an approximation of Equation (3) in terms of
ODEs, where we discretise the space into K compartments Ci with volume Vi
(i = 1, ..., K). In order to represent a species S in the presence of compart-
ments we need a variable Si for each compartment Ci. We identify the average
concentration of the species S in a compartment Ci by [Si]. Concentration [Si]
can migrate from a compartment Ci to an adjacent compartment, i.e. either
Ci−1 or Ci+1, and the migration happens at a velocity given by the Mass Action
law with kinetic constant ki,i−1 (i = 2, ..., K) or ki,i+1 (i = 1, ..., (K − 1)) re-
spectively (see Figure 1). In particular, we show that the kinetic constants
can be derived from the diffusion constant DS and the numerical solu-
tions for the PDEs and ODEs are equivalent for a given K.

The ODE system described above is composed of the following equations:

V1 ·
δ[S1]

δt
= k2,1[S2]− k1,2[S1]± V1 · React

Vi ·
δ[Si]

δt
= ki+1,i[Si+1]− ki,i+1[Si]− ki,i−1[Si] + ki−1,i[Si−1]± Vi · React

i = 2, ..., (K − 1)
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i-2 i-1 i i + 1 i + 2
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k ( i+1) , ( i+2)

k ( i+2) , ( i+1)

S(i-2) S(i-1) Si S( i+1) S( i+2)

r

Fig. 1. Division of space in compartments.

VK ·
δ[SK ]

δt
= kK−1,K [SK−1]− kK,K−1[SK ]± VK · React

where volume Vi=π(∆r)2(2i− 1). We can then rearrange the above equa-
tions:

δ[S1]

δt
=
k2,1

V1

[S2]− k1,2

V1

[S1]± React (10)

δ[Si]

δt
=
ki+1,i

Vi
[Si+1]− ki,i+1

Vi
[Si]−

ki,i−1

Vi
[Si] +

ki−1,i

Vi
[Si−1]± React

i = 2, ..., (K − 1)
(11)

δ[SK ]

δt
=
kK−1,K

VK
[SK−1]− kK,K−1

VK
[SK ]± React (12)

At this point, we choose the kinetic constants, parametric in DS, that
substituted in Equations (10), (11) and (12) yield Equations (6) and (8). We
derive these constants from inspection of Equation (6):

ki,i+1 = Vi
DS

(∆r)2

2i

(2i− 1)
= 2iπDS i = 1, ..., (K − 1) (13)

ki,i−1 = Vi
DS

(∆r)2

(2i− 2)

(2i− 1)
= (2i− 2)πDS i = 2, ..., K (14)

Note that ki,i+1 = ki+1,i. We can then substitute Equations (13) and (14)
in Equation (11):

δ[Si]

δt
=

(2(i+ 1)− 2)πDS

π(∆r)2(2i− 1)
[Si+1]− 2iπDS

π(∆r)2(2i− 1)
[Si]

− (2i− 2)πDS

π(∆r)2(2i− 1)
[Si] +

(2(i− 1))πDS

π(∆r)2(2i− 1)
[Si−1]± React

=
DS

(∆r)2
·
( 2i

(2i− 1)
[Si+1]− (2i+ 2i− 2)

(2i− 1)
[Si] +

(2i− 2)

(2i− 1)
[Si−1]

)
± React
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And with a final rearrangement:

δ[Si]

δt
=

DS

(∆r)2
·
( 2i

(2i− 1)
[Si+1]− 2[Si] +

(2i− 2)

(2i− 1)
[Si−1]

)
± React

i = 2, ..., (K − 1)

which is identical to Equation (6). In a similar way we can derive the two
additional equations, starting from Equations (10) and (12):

δ[S1]

δt
=

2DS

(∆r)2
·
(

[S2]− [S1]
)
± React

δ[SK ]

δt
=

2K − 2

2K − 1
· DS

(∆r)2
·
(

[SK−1]− [SK ]
)
± React

which are identical to Equation (8). Initial conditions are derived exactly
as showed for the PDEs.

Thus we have shown that we can derive ODEs with compartments from
PDEs in cylindrical coordinates. This is possible because of the correspon-
dence we have found between the diffusion constant DS in the PDE and the
kinetic constants ki,j of mass action transport reactions in the ODEs.

2.3 Continuous Time Markov Chains with Levels of Concentration

In the previous two sections we related a continuous space PDEs model with a
discrete space ODE model. Now we consider further discretisation: we relate
the continuous concentration of the latter to the discrete concentration of a
CTMC with levels model [9,10].

The organisation of the model is similar to the one just presented: space is
divided in compartments Ci, with volumes Vi=π(∆r)2(2i− 1), each of which
represents a ring where the average concentration of a species S is given by [Si]
(i = 1, ..., K). However, this concentration is not expressed in a continuous
form like in the ODE model, but by a discrete level 〈Si〉 = 0, ...,Ni, with Ni

the maximum level. The amount of concentration can be evaluated at any
time using the relationship [Si]= 〈Si〉 · hi, where hi is called step size and is
the amount of concentration represented by one level.

We shall now define states and transitions of a CTMC with levels derived
from the models presented in the previous sections. A state of a CTMC with
levels is defined by a vector of levels σ = (〈S1〉, ..., 〈SK〉).

In order for the state space of the CTMC to be finite, a maximum con-
centration Mi is fixed for each variable Si, to be divided in Ni intervals repre-
senting hi molar of concentration, with hi =Mi/Ni and i = 1, ..., K.

Transitions of the CTMC with levels and their activation in time are de-
rived from the ODE model, using biochemical reactions and their velocities.
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We use the following additional notation:

Ri,i+1 : Si → Si+1 vi,i+1 = ki,i+1[Si] i = 1, ..., (K − 1)

Ri,i−1 : Si → Si−1 vi,i−1 = ki,i−1[Si] i = 2, ..., K

where the reaction Ri,j represents the transformation of Si into Sj (i.e.
the migration of S from Ci to Cj), while vi,j is the velocity of the reaction
Ri,j expressed in molar/s, j ∈ {i + 1, i − 1}. Moreover, we assume that
when a reaction Ri,i+1 or Ri,i−1 takes place, the CTMC will transit from a
state σ = (〈S1〉, ..., 〈Si−1〉, 〈Si〉, 〈Si+1〉, ..., 〈SK〉) to a state σ′ = (〈S1〉, ..., 〈Si〉 −
1, 〈Si+1〉+1, ..., 〈SK〉) or σ′′ = (〈S1〉, ..., 〈Si−1〉+1, 〈Si〉−1, ..., 〈SK〉) respectively.
Reaction Ri,j cannot take place if 〈Si〉 = 0 or if 〈Sj〉 = Nj.

Now consider the ODE of a single reaction Ri,i+1. It is composed by two
complementary equations:

Vi ·
δ[Si]

δt
= −ki,i+1[Si] Vi+1 ·

δ[Si+1]

δt
= ki,i+1[Si] i = 1, ..., (K − 1)

(15)

Furthermore, Equation (15) can be written in the following difference form:

Vi ·
δ[Si]

δt
≈ Vi ·

∆〈Si〉 · hi
∆t

= −ki,i+1 · 〈Si〉 · hi

Vi+1 ·
δ[Si+1]

δt
≈ Vi+1 ·

∆〈Si+1〉 · hi+1

∆t
= ki,i+1 · 〈Si〉 · hi

(16)

Our assumptions about the transitions on the CTMC state are that when
reaction Ri,i+1 takes place, one level of Si is consumed and one level of Si+1 is
produced. This implies that in Equation (16) ∆〈Si〉 = −1 and ∆〈Si+1〉 = 1.
Notice now that the only unknown term in Equation (16) is ∆t, which can be
regarded as the average time required to convert a level of Si into a level of
Si+1. So we have:

∆t =
Vi · hi

ki,i+1 · 〈Si〉 · hi
=

Vi+1 · hi+1

ki,i+1 · 〈Si〉 · hi
i = 1, ..., (K − 1) (17)

Rearranging Equation (17) we obtain the following equality:

hi =
hi+1 · Vi+1

Vi
= hi+1 ·

(2i+ 1)

(2i− 1)
i = 1, ..., (K − 1)

As a main consequence, we have that once a step size hi is chosen, the other
step sizes are derived automatically. We suggest to compute h1 first, though
it is possible to begin from other compartments. In particular, beginning from
C1 will ensure that all the other hi (i = 2, ..., K) will be smaller than h1.
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We can then use ri,i+1 = 1/∆t as the parameter of the exponential dis-
tribution of the time required for reaction Ri,i+1. Through manipulation of
Equation (17) we have:

ri,i+1 =
ki,i+1〈Si〉

Vi
i = 1, ..., (K − 1)

ri,i−1 =
ki,i−1〈Si〉

Vi
i = 2, ..., K

(18)

2.4 Additional Notes

Although we have shown that the numerical solution for the PDE and the ODE
model of diffusion are equivalent, a few further considerations are necessary.
In the case of the PDEs, K will be hidden to the modeller and in general is
quite large, in order to obtain an output that is as close as possible to the
analytical solution. When translating to ODEs, a lower K is advisable, as the
modeller has to deal with compartments directly and a large amount of them
would be difficult to manage.

Passing from the ODEs to the CTMC with levels, we notice that the state
space of the CTMC depends on K and, additionally, on the maximum number
of levels Ni. Intuitively, larger K and Ni yield Markov chains whose output
tends more and more to the output of the original PDEs.

Finally we note the tension between complexity, ability of the CTMC to
reproduce PDE output, and stochastic effects due to concentration discretisa-
tion. Managing this tension is the job of the modeller.

3 Example

We now turn our attention to an example, inspired by a series of publications
about Nitric Oxide (NO) diffusion in human blood vessels. In particular, in
[17] a vessel with a radius R of 138 µm is defined; we consider NO having a
diffusion constant DNO = 3300 µm2s−1.

As the initial concentration function f(x) at t = 0 we choose:

f(r, α, β) =
Γ(α + β)

Γ(α) · Γ(β)
·
( r
R

)α−1

·
(
R− r
R

)β−1

· 10

with α = 1 and β = 3, defined in [0, R], with unit measure µmolar. This
choice is based on our experience of the concentration of NO in literature, as
a result of measurements or as observed in other mathematical models. It
is parametric in α and β, to allow the generation of a full range of initial
conditions starting from the same function.
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Fig. 2. PDE output (left) and ODE output (right) for the first 3 seconds of diffusion. Lines
are the concentration at sample points along the radius (left) and the average concentration of
compartments Ci (i = 1, ..., 10) (right).

Notice that the information so far is enough to solve Equation (1) in one
dimensional cylindrical coordinates. We used the simulator FlexPDE [2] (Fig-
ure 2 on the left). By defining the number of compartments to be K = 10,
we can compute the ODE solution as well. For this task we used the simu-
lator Copasi [1] (Figure 2 on the right, where a line is drawn for the average
concentration of each compartment).

The implementation of the CTMC model requires little additional informa-
tion as well. We define a maximum number of levels N1=10 and a maximum
concentration Mi=40 µmolar, i = 1, ..., K. Here we used the PRISM model
checker [3]. The result was a CTMC with 1.4 · 1013 states and 2.4 · 1014 tran-
sitions.

As a first exploration of the properties of the chain, we used stochastic
simulations, taking average and standard deviation of model output from 100
runs. Some simulation results are shown in Figure 3.

4 Related Work

Translation from ODEs to CTMC with levels of concentration finds its roots
in [7]. This has been then investigated further in [9], where a more solid
theoretical link between the two approaches is introduced. Transport between
compartments is considered in [10], where rates for transitions in the CTMC
with levels between compartments with different volumes are derived.

Our starting point for the translation of diffusion equations from PDEs to
ODEs with compartments has been [14], which considers stochastic simula-
tions of reaction-diffusion processes. However, only Cartesian coordinates are
considered.
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Fig. 3. CTMC stochastic simulations, average and standard deviation over 100 runs. S1, S5 and
S10 are the average concentrations of compartments C1, C5 and C10. Standard deviation over the
100 runs is shown.

5 Conclusions and Future Work

We presented a derivation of Fick’s law of diffusion in one-dimensional cylin-
drical coordinates from partial differential equations to CTMC with levels.
As an intermediate step, we converted the PDEs to ordinary differential equa-
tions with compartments, where transport velocities are implemented with
mass action kinetic law. The novelties of this derivation are the kinetic con-
stants derived directly from the diffusion constant and their dependency on
the radial position. We then illustrated the result with an example, where we
showed the consistency between simulations of PDEs, ODEs and CTMC.

In the future, we plan to develop a CTMC with levels model of NO trans-
port and bioavailability in blood vessels, where diffusion is implemented using
the derivation presented here.
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