
Feature Interaction Detection by Pairwise

Analysis of LTL Properties - a case study

Muffy Calder and Alice Miller

Department of Computing Science
University of Glasgow
Glasgow, Scotland.

muffy,alice@dcs.gla.ac.uk

Abstract A Promela specification and a set of temporal properties are developed
for a basic call service with a number of features. The properties are expressed
in the logic LTL.

Interactions between features are detected by pairwise analysis of features
and properties. The analysis quickly results in both state-space and property
case explosion. To overcome this state-spaces are minimised, model checking re-
sults generalised through symmetry and bisimulation, and analysis performed
automatically using scripts. The result is a more extensive feature interaction
analysis than others in the field.

Keywords communicating processes, distributed systems, model checking,
feature interaction, communications services.

1 Introduction

In software development a feature is a component of additional functionality – ad-
ditional to the main body of code. Typically, features are added incrementally, at
various stages in the life-cycle, by different developers. A consequence of adding
features in this way is feature interaction, where the behaviour of one feature
modifies the behaviour of another, often leading to unpredicted and/or unde-
sirable results. The problem is a long standing one within the communications
services domain [37, 3] and exhibits in many other component-based domains.
Detection of interactions is crucial to any solution (whether system redesign or
a run-time solution), but in complex systems, especially when there is a prolif-
eration of features, detection by manual inspection is not feasible. Automated
techniques are therefore essential. In this paper we use a combination of model
checking, symmetry and scripting for detecting interactions.

After introducing the preliminaries in Section 2, the paper has two parts.
First, in Sections 3 to 6, we develop a specification in Promela [26, 30] for

a basic call service. Promela is an appropriate language because the service is
inherently concurrent, with asynchronous communication. We develop a set of
temporal properties in order to validate the specification. We discuss how to
express the properties in the linear temporal logic LTL, and how to verify them

using the model checker SPIN1 [27], paying particular attention to state-space
reduction.

Second, in Sections 7 to 10, we develop a feature set and perform pairwise
interaction analysis. The analysis is completely automated, making extensive use
of Perl scripts to generate the model checking runs. In section 11 we introduce
a method based on abstraction and induction whereby we show how some of
our results can be generalised for systems consisting of any number of users, in
which at most two users have features.

We compare our results with others in the field in Section 12 and present our
conclusions in Section 13. Some preliminary results have been presented earlier
[4]; our analysis here is more extensive because we consider 9 features whereas
previously 6, less complex, features were considered. We also employ symmetry,
generalisation and include greater implementation detail.

2 Background

2.1 Communications Services and Feature Interactions

Our concern is the control of calls between two parties, the actual data exchanged
(e.g. audio or digital) is not of interest. Control is provided by a service, in classi-
cal telecommunications, this is provided by a (stored program control) exchange.
The service responds to events such as handset on or off hook, as well as sending
control signals to devices and lines such as ringing tone or line engaged. A feature
is additional functionality, for example, a call forwarding capability, or ring back
when free; a user is said to subscribe to a feature. An interaction is a behavioural
modification between two or more features and/or a service.

As an example, consider a user who subscribes to call waiting (CW) and
call forward when busy (CFB) and is engaged in a call. What will happen when
there is a further incoming call? (Full details of all features mentioned here
are given in section 7.) If the call is forwarded, then the CW feature is clearly
compromised. If, on the other hand, call waiting is activated, then the CFB
feature is compromised. Clearly both features cannot proceed as they would in
isolation. This interaction is relatively simple (e.g. it can be seen as inconsistent
requirements) because both features are subscribed to by a single user. We refer
to this situation as a single user (SU) interaction. More subtle interactions can
occur when more than one user/subscriber are involved, these are referred to as
multiple user, (MU) interactions. For example, consider the scenario where user
A subscribes to originating call screening (OCS), with user C on the screening
list, and user B subscribes to CFB to user C. If A calls B, and the call is forwarded
to C (as required by B’s feature CFB), then A’s feature OCS is compromised. On
the other hand, if the call is not forwarded, then B’s CFB feature is compromised.
These kind of interactions (i.e. MU) can be very difficult to detect (and resolve),
particularly since different features may be activated at different stages of a the
call cycle.
1 Unless stated otherwise, we use SPIN version 4.07 throughout this paper.

2

Interactions may be characterised informally as type I or type II [24]. Interac-
tions which arise from inconsistent specifications, e.g. inconsistent state changes
or inconsistent events, are called type I. These interactions are usually the result
of a “shared trigger”, for example, in the case of CW and CFB above, both
features are triggered by an incoming call. Type II interactions do not involve
a shared trigger but still result in inconsistent user intentions, as demonstrated
by the interaction above between OCS and CFB. Type II interactions can only
be detected with reference to user intentions, i.e. properties of features; they are
the primary concern of this paper.

2.2 Call Control and Feature Reference Models

There are numerous call models and feature sets in the literature. Since our
motivation is detecting type II interactions, we take a user perspective, following
the IN (Intelligent Networks) model, distributed functional plane [34]. Our basic
call model is adapted from this standard, as follows.

Basic Call We implement the IN BCSM (basic call state model) with minor
amendments:

– We unify the two null states (originating and terminating) O Null and
T Null into the state O/T Null.

– Since routing is not our concern (we assume a single network), we merge
the states Auth Orig Att, Collect Info, Analyse Info, Select Route and
Auth Call Setup into the single state Auth Orig Att.

– We separate the O Exception state into two states, depending on the trigger
events noanswer and busy, thus the states are O No Answer and O Busy.

– We make call tear down asymmetric. This reflects the behaviour of the UK
PSTN and results in behaviour which is potentially more interesting than a
symmetric tear down.

The BCSM is only a state model, there are no intentions, or explicit proper-
ties given in this standard. We therefore introduce a set of properties based on
practical experience and properties presented in the feature interaction literature
[37, 3].

Features It is more difficult to select a standard feature set. Although the
IN Capability Set 1 (CS-1) [34] enumerates a number of features, behaviour is
not defined. Most detailed descriptions of commercial features are proprietary.
We have therefore chosen a feature set which is based on published literature,
namely the feature set used in an SMV-based study [48]. Details of the feature
set are given in section 7; comparison of this work with the SMV study is given
in section 12.

3

2.3 Promela and SPIN

Promela, Process meta language [26, 27, 30], is a high-level, state-based, lan-
guage for modelling communicating, concurrent processes. It is an imperative,
C-like language with additional constructs for non-determinism, asynchronous
and rendezvous (synchronizing) communication, dynamic process creation, and
mobile connections, i.e. communication channels can be passed along other com-
munication channels. The language is very expressive, and has intuitive Kripke
structure semantics.

Definition 1. Let AP be a set of atomic propositions. A Kripke structure over
AP is a tuple M = (S, S0, R, L) where S is a finite set of states, S0 ⊆ S is the
set of initial states, R ⊆ S × S is a transition relation and L : S → 2AP is a
function that labels each state with the set of atomic propositions true in that
state.

From here on we assume that |S0| = 1, i.e. there is a single initial state, s0 say.

SPIN is a bespoke model checker for Promela and provides several reasoning
mechanisms: assertion checking, acceptance/progress states and cycle detection
and satisfaction of temporal properties. These properties are expressed in tem-
poral logic [41, 17, 16]. The logic used is linear temporal logic LTL [49]. When
performing verification, we use XSPIN, the graphical interface for SPIN.

We note that in the context of model checking the terms “model”, “speci-
fication” and “system” are easily confused. Here we try to adopt the following
convention: a model is Kripke structure, a specification is a Promela description
(from which a Kripke structure is derived), and a system is a commonly under-
stood physical implementation or abstraction thereof. We note that there are
further uses of these terms, e.g. the basic call model.

Other popular model checkers include SMV [45], Murphi [13], FDR [50] and
the Java PathFinder model checker JPF [55]. We choose to work with Promela
and SPIN primarily because of the rich, expressive power of Promela, in partic-
ular, asynchronous communication. SPIN has been widely used to model check
protocols associated with software-controlled systems, for example, in commu-
nications systems [5, 4, 32] and in railway interlocking systems [8].

2.4 Reasoning in SPIN

In order to perform verification on a specification, SPIN translates each process
template into a finite automaton and then computes an asynchronous interleav-
ing product of these automata to obtain the global behaviour of the concurrent
system. This interleaving product is referred to as the state-space.

As well as enabling a search of the state-space to check for deadlock, assertion
violations etc., SPIN allows the checking of the satisfaction of an LTL formula
over all execution paths. The mechanism for doing this is via never claims – pro-
cesses which describe undesirable behaviour, and Büchi automata – automata
that accept a system execution if and only if that execution forces it to pass

4

through one or more of its accepting states infinitely often [27, 22, 44]. Checking
satisfaction of a formula involves the depth-first search of the synchronous prod-
uct of the automaton corresponding to the concurrent system (model) and the
Büchi automaton corresponding to the never-claim.

Note that Büchi automata are more expressive than LTL itself (there are
behaviours that can be expressed directly as Büchi automata that can not be
expressed as LTL formulae). However, we find LTL to be quite adequate to
describe the behaviour of our system, and prefer to allow SPIN’s excellent LTL
converter to create the Büchi automata for us. Other formalisms exist to express
behaviour (e.g. timelines [53], or Message sequence charts [43]). We do not use
either of these methods here. We do use the MSC illustration of counterexamples
provided by SPIN however.

If the original LTL formula f does not hold, the depth-first search will “catch”
at least one execution sequence for which ¬f is true. If f has the form []p, (that is
f is a safety property), this sequence will contain an acceptance state at which ¬p
is true. Alternatively, if f has the form 〈〉p, (that is f is a liveness property), the
sequence will contain a cycle which can be repeated infinitely often, throughout
which ¬p is true. In this case the never-claim is said to contain an acceptance
cycle. In either case the never claim is said to be matched.

When using XSPIN’s LTL converter it is possible to check whether a given
property holds for All Executions or for No Executions. A universal quantifier is
implicit in the beginning of all LTL formulas and so, to check an LTL property it
is natural, therefore, to choose the All Executions option. However, we sometimes
wish to check that a given property (p say) holds along some execution path. This
is not possible using LTL alone. However, SPIN can be used to show that “p holds
for No Executions” is not true (via a never-claim violation), which is equivalent.
Therefore, when listing our properties (section 5.2), we use the shorthand E〈〉p
(meaning for some path 〈〉p) to mean “(〈〉p for No Executions) is not true”.

2.5 Parameters and Further Options used in SPIN Verification

When performing verification with SPIN three numeric parameters must be set.
These are Physical Memory Available, Estimated State-Space Size and Maximum
Search Depth. The meaning of the first of these is clear, and the second controls
the size of the state-storage hash table. The Maximum Search Depth parameter
determines the size of the search-stack, where the states in the current search
are stored. If comparisons are to be made with other model checkers, then the
value of the Maximum Search Depth should be taken into account because its
value determines the size of the stack provided for state storage, and so affects
the total memory used. For this reason, in our verification results (see section
6.3 for example) we give only the memory required for state storage, and not
the total memory required.

Partial order reduction (POR) [47, 46] is based on the observation that ex-
ecution sequences (or “traces”) can be divided into equivalence classes whose
members are indistinguishable with respect to a property that is to be checked.
We apply POR in most cases.

5

Compression (COM) [28] is a method by which each individual state is en-
coded in a more efficient way. We apply compression in all cases.

Weak Fairness (WF) is a constraint which ensures that the only paths con-
sidered are those in which any process that has has an enabled transition will
eventually do so. The use of WF is expensive, as it involves several copies of
the state space being maintained, and so we avoid its use whenever possible (see
section 9).

This concludes the background material, we are now ready to begin the first
phase of the approach: a description of the basic call service.

3 Basic Call Service

In the next section we give an overview of the Promela specification. The spec-
ification is quite detailed and so by way of introduction, in this section we give
a more abstract behaviour description.

Figure 1 gives a diagrammatic representation of the automaton for the basic
call service. States to the left of the O/T Null state represent terminating be-
haviour, states to the right represent originating behaviour. Events observable by
service subscribers label transitions: user-initiated events at the terminal device,
such as (handset) on and (handset) off, are given in plain font, network-initiated
events such as O/T Disconnect and engaged are given in italics. Note that there
are two “ring” events, oring and tring, for originating and terminating ring tone,
respectively. This reflects the fact that the ringing tone is indeed generated at
each terminal device. Not all transitions are labelled. For example, there is an
unlabelled transition from the (originating) state Call Sent to O Alerting, simply
because there is no observable event associated with this transition.

O/T_Null

Auth_Orig_Att

O_Busy

O_No_Answer

on

terminating originating

on

unobt

on

off dial on

off
on

T_Active

tring

tring

Present_Call

disconnect

dial

off
on engaged

on

dial
dial

O/T_Disconnect

disconnect dial

Call_Sent O_Alerting

dial

oring

O_Active

connect

oring

T_Alerting

Figure1. Basic call - states and events

6

The automata must communicate with each other; the behaviour of one call
process, as originating party, influences the behaviour of another call process, as
terminating party. Since our motivation here is explanation rather than rigorous
specification (that is the role of the Promela specification), we do not extend
the automata to include a communication mechanism, rather we describe the
communication informally.

A communication channel is associated with each call process. Each channel
has capacity for at most one message: a pair consisting of a channel name (that
associated with itself or the other party in the call) and a status bit (the status of
the connection). When it is not confusing, we refer to the communication channel
associated with call process A as channel A. When a communication channel
is empty, then its associated call process is not connected to, or attempting
to connect to, any other call process. When a communication channel is not
empty, then the associated call process is engaged in a call, but not necessarily
connected to another user. The interpretation of messages is described more
comprehensively in Figure 2.

The communication channels are used to coordinate call set up and clear
down. The basic protocol for call set up from A to B is as follows, assuming
neither are engaged in a call. When A goes off hook, the message (A,0) is placed
on channel A. After dialing B, the message (A,0) is sent to channel B. When B
receives this message, the message (B,1) is sent to channel A and the status bit
in the message on channel B is changed to 1; the connection is then established.
To clear down, A can close down one side of the connection by going on hook:
the message is removed from its communication channel and the status bit of
the message in channel B is changed to 0. Then, since both A and B have status
bit 0, neither process is in a connected state, and A is free to close down the
connection. On the other hand, channel B cannot close down the connection
(reflecting the real-life situation). So, if B goes on hook, while A and B are
connected, then the connection status remains unchanged for both A and B.

Contents of Channel InterpretationA

A is free

A is engaged, but not connected

B is attempting connection

If channel B contains (A,1) then A and

empty

(B,1)

(A,0)

A is engaged, but not connected(B,0)

B are connected

B is terminating party

Figure2. States of a communication channel in the protocol

7

4 Basic Call Service in Promela

Each call process (see figure 1) is described in Promela as an instantiation of the
(parameterised) proctype User declared thus:

proctype User (byte selfid;chan self)

Promela is a state-based formalism, therefore, we represent events by (their
effect on) event variables (e.g. event[i] or network event[i]) and call states (e.g.
Call Sent, Auth Orig Att, etc.) by labels. Since each transition is implemented by
several (possibly compound) statements, we group these together as an atomic
statement, concluding with the appropriate goto.

An example of the Promela code associated with the O/T Null, Auth Orig Att,
Call Sent and O Active states and their outgoing transitions is given below.
The global/local variables and parameters include the self-explanatory selfid
and partnerid, the communication channel associated with the specific process
self, the partner array, recording the channel name of the current partner of
each process, the arrays connect.to, recording the presence of a connection be-
tween two users, the local variable dev recording the current status of the device
(on or off), the dialed array recording the most recent number dialed (since
leaving the O/T Null state) for each process, and the event and network event
events recording the most recent user-initiated and network-initiated events of
each process, respectively. In addition messchan and messbit are local variables
used for reading messages. The channel null allows a default value for any of the
partner variables when the corresponding call process is not engaged in a call.
This value is not strictly necessary for modelling purposes, but can be valuable
for reasoning. Note that we use 6 as a default value (for the partnerid variable
for example) of variables which can take the value of any process id.

Any variable about which we may intend to reason should not be updated
more than once within any atomic statement (so that each change to the vari-
ables is visible to the never-claim), other variables may of course be updated as
required. For this reason we have introduced a new state, O Close so that we
can monitor when a connection has been made successfully. Thus the connec-
tion is established within the O Active state, via the setting of the array element
connect[selfid].to[partnerid] to 1, and the remaining behaviour usually associ-
ated with the O Active state is contained within O Close. (The full code for
the O Close state may be found in Appendix 1.) Finally, we note that there are
numerous in-line assertions within the code, particularly at points when entering
a new (call) state, and when reading and writing to communication channels.

O/T_Null:
atomic{

assert(dev == on);
assert(partner[selfid]==null);

/* either attempt a call, or receive one */
if
:: empty(self)->event[selfid]=off;

dev[selfid]=off;
self!self,0;goto Auth_Orig_Att

/* no connection is being attempted, go offhook */
/* and become originating party */

8

:: full(self)-> self?<partner[selfid],messbit>;
/* an incoming call */

if
::full(partner[selfid])->
partner[selfid]?<messchan,messbit>;
if
:: messchan == self /* call attempt still there */

->messchan=null;messbit=0;goto Present_Call
:: else -> self?messchan,messbit;

/* call attempt cancelled */
partner[selfid]=null;partnerid=6;
messchan=null;messbit=0;goto O/T_Null

fi
::empty(partner[selfid])->
self?messchan,messbit;

/* call attempt cancelled */
partner[selfid]=null;partnerid=6;
messchan=null; messbit=0;
goto O/T_Null

fi
fi};

Auth_Orig_Att:
atomic{

assert(dev == off);
assert(full(self));
assert(partner[selfid]==null);

/* dial or go onhook */
if
:: event[selfid]=dial;

/* dial and then nondeterministic choice of called party */
if

:: partner[selfid] = zero; dialed[selfid] = 0;partnerid=0
:: partner[selfid] = one; dialed[selfid] = 1; partnerid=1
:: partner[selfid] = two; dialed[selfid] = 2; partnerid=2
:: partner[selfid] = three; dialed[selfid]= 3; partnerid=3
:: partnerid= 7;

fi

:: event[selfid]=on; dev[selfid]=on;
self?messchan,messbit;assert(messchan==self);
messchan=null;messbit=0;

goto O/T_Null
/*go onhook, without dialing */

fi};

Call_Sent:/* check number called and process */
atomic{

event[selfid]=call;
assert(dev == off);
assert(full(self));
if
:: partnerid==7->goto O/T_Disconnect
:: partner[selfid] == self -> goto O_Busy

/* invalid partner */
:: ((partner[selfid]!=self)&&(partnerid!=7)) ->

if
:: empty(partner[selfid])->partner[selfid]!self,0;

self?messchan,messbit;
self!partner[selfid],0;
goto O_Alerting

/* valid partner, write token to partner’s channel*/
:: full(partner[selfid]) -> goto O_Busy

/* valid partner but engaged */
fi

fi};

9

O_Active:
atomic{

assert(full(self));
assert(full(partner[selfid]));

/* connection established */
connect[selfid].to[partnerid] = 1;
goto O_Close};

Any number of call processes can be run concurrently. For example, assum-
ing the global communication channels zero, one, etc. a network of four call
processes is given by:

atomic{
run User(0,zero);run User(1,one);
run User(2,two);run User(3,three)}

5 Basic Call Service Properties

In this section we give our set of temporal properties for the basic call service, in
English, and their implementation as LTL formulae. Before doing so, we explain
the form of the propositions.

5.1 Propositions

Propositions in SPIN’s version of LTL may refer to values of (global) variables
or to process “counters”. Examples of the former are x == 0 and x >= y.
An example of the latter is user[proci]@O/T Null, meaning the incarnation
of the process user with process identifier proci is at label O/T Null. Process
identifiers are simply global variables, initialised when a process is instantiated
(and captured by assignment within the Promela run command).

The variables referred to in our propositions include those described in section
4. Note that in addition proci and chan name[i] are the process identifier and
the channel name associated with user process i, respectively.

5.2 Basic Call Service Temporal Properties

In [4] we showed how a relativised next operator (that is the next state relative
to a particular constituent process) can be implemented in SPIN. This was done
by judicious use of the built-in global variable last (a variable holding the value
of the (internal) process number of the process that last made a transition)
and the (LTL) next operator ◦. The availability of such an operator is helpful
in allowing us to express a greater number of properties. However, since the
use of the last variable within a property precludes the use of partial order
reduction, the usefulness of the relativised next operator is restricted. Therefore
we no longer use this operator and rely instead on the operators W (weak until)
and P (precedes), defined as follows:

fWg = []f ∨ (fUg)

10

and

fPg = ¬(¬fUg).

As described in section 2.4 we use the shorthand notation E〈〉p (for some
path p) to mean “(〈〉p for No Executions) is not true”.

The LTL is given here alongside each property. This involves referring to
variables (e.g. dialed and connect.to) contained within the Promela code (an
extract of which is given in section 4). We use symbols to denote propositions,
and give our properties in terms of these symbols. An example might be “[]p
where p is dialed[i] == i”. This provides a neater representation, and the LTL
converter requires properties to be given in this way.

It is often necessary to refer to the particular point in the service reached by
a process. For the basic call properties it is particularly important to monitor
when an attempted call is completed, for example, and a process returns to the
O/T Null state. We do this via a statement of the form user[proci]@O/T Null.
In a similar way we can identify the position that process[i] has reached in the
service by the value of one of its corresponding event variables (that is event[i]
or network event[i]). In some cases it is necessary to use the program position
(via a suitable @ statement) and in others it is more suitable to refer to the
value of an event variable. The particular property dictates which to use. For
the basic call properties it is very straightforward which type of statement to
use. However, in section 9 we show how, in more complicated properties, the
choice can be less obvious.

Property 1 A connection between two users is possible.

LTL: E〈〉p

p = (connect[i].to[j] == 1), for i �= j.

Property 2 If you dial yourself, then you receive the engaged tone before re-
turning to the O/T Null state.

LTL: [](p → ((¬r)Wq))

p = (dialed[i] == i), q = (network event[i] == engaged),
r = (user[proci]@O/T Null).

Property 3 Busy tone or ringing tone will follow calling.

[](p → ((pWq) ∨ (pWr)))

p = (event[i] == call), q = (network event[i] == engaged),
r= (network event[i] == oring).

11

Property 4 The dialed number is the same as the number of the connection
attempt.

LTL: [](p → q)

p = (dialed[i] == j), q = (partner[i] == chan name[j]).

Property 5 If you dial a busy number then either the busy line clears before
a call is attempted, or you will hear the engaged tone before returning to the
O/T Null state.

LTL: []((p ∧ v ∧ t) → (((¬s)W(w)) ∨ ((¬r)Wq)))

p = (dialed[i] == j), v = (event[i] == dial), t =(full(chan name[j])),
s = event[i] == call, w =(len(chan name[i]) == 0),
r = user[proci]@O/T Null, q = (network event[i] == engaged), for i �= j.

Note that the operator len is used to define w in preference to the function
empty (or nfull). This is because SPIN disallows the use of the negation of these
functions (and ¬w arises within the never-claim). The reason that SPIN prevents
the negation of empty and nfull is that they are statically determined as safe
operations with respect to partial order reduction [31]. As len is not marked
statically as safe, no such restriction arises.

Property 6 You cannot make a call without having just (that is, the last time
that the process was active) dialed a number.

LTL: [](p → q)

p = (user[proci]@Call Sent), q = (event[i] == dial).

Note that property 1 would not hold for all sequences because a connection may
not always be possible, for example, because the other line is out of service, or
constantly engaged, or the originator goes on-hook before a connection is made.

5.3 Property Refinement and Specification Patterns

There are two common problems which may arise due to the improper use of
LTL, namely that invalid results may be obtained or that an unwarranted in-
crease in the complexity of a verification run may result [29]. Great care has
therefore been taken to ensure that each temporal formula not only expresses
a property precisely, but that the formula will enable us to reason about our
model in the most efficient way. It may therefore be necessary to take a series
of refinement steps to ensure that our property is expressed correctly. For ex-
ample, it would be tempting to express Property 2 as [](p → 〈〉q), where p is

12

(dialed[i] == i) and q is (network event[i] == engaged) (see [5]). This formula
would be problematic in two ways. On the one hand it could be satisfied in a sit-
uation where a caller dialed his/her own number but failed to hear the engaged
tone as a result (but heard the engaged tone ultimately, during a different call).
This would result in no error being reported when most likely the intention was
that the scope of the 〈〉 operator should extend only to the point at which the
handset is replaced. On the other hand, this formula would cause an error to
be reported if a caller dialed his/her number and then simply failed to progress
infinitely often. To avoid this unwanted scenario, the weak-fairness option would
be required, which involves a multiplication in the size of the state-space by a
factor of N , where N is the number of processes, so causing a huge increase in the
search depth/time. The use of the W operator in this situation is therefore cru-
cial to limit the scope of the property. Note that the dialed and network event
elements associated with User[i] are reset to their default values when User[i]
returns to the idle state. Therefore they only record events that have occurred
within the current call.

Refinement involves checking suspicious results (by performing simulation
runs, and closely examining error trails for example) and modifying the proper-
ties if necessary. It is also vitally important to examine the never claim (Büchi
automaton) generated for the LTL formula. Sometimes examination of the never
claim alone can illustrate that the LTL formula does not express the desired be-
haviour. (See section 6.2 for a further discussion of never claims.)

Some of our properties (especially the feature properties, see section 9) are
highly complex and have taken many refinement steps to produce. The specifica-
tion patterns of Dwyer et al [14] provide a useful way of creating LTL formulae
from short template descriptions. As our properties have been developed over
a number of years, we did not use the pattern specification system to a large
degree for their formulation although it was this work that first alerted us to
the fact that problems of scope are common. Some of the patterns that appear
in our properties clearly adhere to the patterns described in [14] which provides
both reassurance, and an easier way to construct properties in the future.

6 Basic Call Service Validation

For all verification runs described in this and subsequent sections, we used a PC
with a 2.4GHz Intel Xenon processor, 3Gb of available main memory, running
Linux (2.4.18).

Initial attempts to validate the properties against a network of four call pro-
cesses fail because of state-space explosion. In this section we examine the causes
of state-space explosion, the applicability of standard solutions involving config-
uring SPIN and how the Promela code itself can be transformed to optimise the
state-space. The fully optimised code (including features) is given in Appendix
1.

13

6.1 SPIN Options

The most obvious, standard optimisation to apply is POR. When applied, it does
reduce the size of the state-space of our model (see section 6.3), but could our
model be adapted to take further advantage of POR? Closer examination shows
this to not be the case. The only statements statically defined as safe by SPIN

are assignments to local variables or exclusive channel read/send operations.
The former are not only rare, but they are embedded in atomic statements that
are themselves only safe if all component statements are safe. The latter do
not appear at all: there are a few channel instances which could be declared to
be xs, but none xr. Moreover, while we could declare further dedicated channels
between pairs of processes, and annotate them appropriately, we are still left with
the problem that even a non-destructive read or test of the length of a channel
violates the xr property. Such a test is crucial: often behaviour depends on the
exact contents of a channel. Thus, while some small gains can be made, they
are minimal. Moreover, many such statements are embedded in unsafe atomic
statements; it would clearly be a retrograde step to reduce the atomicity.

States can be compressed using minimised automaton encoding (MA) or com-
pression (COM). We choose to use only COM. Although MA and COM combined
give a significant memory reduction, the trade-off in terms of time was simply
unacceptable. For example, during initial attempts to verify property 2 using
COM and MA, after 65 hours the depth reached was only of the order of 106.

6.2 State-space Management

There are several well-known strategies for reducing the size of the state-space of
a model, one of these is the resetting of local variables. In our model this involves
ensuring that each visit to a call state is indeed a visit to the same underlying
Promela state. As many variables as possible should be initialised and then re-
set to their initial value (reinitialised) within Promela loops. For example, in
virtually every call state it is possible to return to O/T Null. An admirable re-
duction is made if variables such as messchan and messbit are initialised before
the first visit to this label (call state), and then reinitialised before subsequent
visits. This is so that global states that were previously distinguished (due to
different values of these variables at different visits to the O/T Null call state)
are now identified. The largest reduction is to be found when such variables are
routinely reset before progressing to the next call state. Unfortunately, this is
not always possible, as it would result in a variable (about which we wish to
reason) being updated more than once within an atomic statement (as discussed
in section 4). However, there is a solution: add a further state where variables are
reinitialised. For example, we have added a new state Preidle, where the vari-
ables network event and event are reinitialised, before progression to O/T Null.
Therefore every occurrence of goto O/T Null (within a state in which either of
these variables are modified) becomes goto Preidle.

We note that although the (default) data-flow optimisation option available
with SPIN attempts to reinitialise variables automatically, we have found that

14

this option actually increases the size of the state-space of our model. This is
due to the initial values of our variables often being non-zero (when they are of
type mtype for example). SPIN’s data-flow optimisation always resets variables
to zero. Therefore we must switch this option off, and reinitialise our variables
manually.

By merely commenting in/out any reference to (update of) all of the event
variables when any such variable is needed for verification (see for example Prop-
erty 3), the size of the state-space can be increased by an unnecessarily large
amount. For example, to prove that Property 3 holds for user[i], we are only
interested in the value of event[i], not of event[j] where i �= j. The latter do
not need to be updated. To overcome this problem, we use an inline function.
In SPIN an inline function is a parameterised procedure with dynamic bindings.
The body of an inline is expanded within the body of the User proctype at each
point of invocation. Here the event action(eventq) inline has been introduced to
enable the update of specific variables. That is, it allows us to update the value
of event[i] to the value eventq, and leave the other event variables set to their
default value. So, for example, if i = 0, the event action inline becomes:

inline event_action (eventq)
{
if
::selfid==0->event[selfid]=eventq
::selfid!=0->skip
fi

}

Any reference to event action is merely commented out when no event vari-
ables are needed for verification. (Another inline function is included to handle
the network event variables in the same way.) Notice that this reduction is only
possible because the event (and similarly the network event) variables are in-
dependent of each other – a change to the value of event[i] say, does not effect
(either directly or indirectly) the value of event[j] where i �= j.

We also note that an automatic (but conservative) application of this reduc-
tion is achieved via slicing (see for example [15]), which has been included as
an integral part of the more recent versions of SPIN (since version 3.4.1). The
slicing algorithm alerts the (SPIN) user to portions of the model (processes, state-
ments, and data objects) that can be omitted without risk, and with a potential
reduction in verification complexity.

These transformations not only lead to a dramatic reduction of the underlying
state-space, the search depth required is reduced to 10 percent of the initial
value, but they do not involve abstraction away from the original model. On the
contrary, if anything, they could be said to reduce the level of abstraction.

Unlike other abstraction methods (see for example [10], [23] and [25]) these
techniques are simple, and merely involve making simple checks that unnecessary
states have not been unintentionally introduced. All SPIN users should be aware
that they may be introducing spurious states when coding their problem in
Promela. In [52] convenient “recipes” are provided to optimise both modelling
and verification when using SPIN. Although some of the techniques described in
[52] equate to our methods described above, we have not fully exploited other

15

useful suggestions contained therein. For example, see section 8 for a discussion
on the use of bitvectors.

6.3 Verification Results

Using XSPIN it was possible to verify all six properties for four users fairly
quickly and well within our 1.5 Gbyte memory limit. State compression was
used throughout.

In property 1 the No Executions option was selected and for all other prop-
erties, the All Executions option was selected. The validity of each property was
reported via a never-claim violation message in the case of property 1 and via a
errors:0 message for all other properties.

For the verification of property 1, a path containing the expected never-claim
violation was found within a search depth of 10, 000 in each case.

For each of the properties 2, 3, 4, 5 and 6, when partial-order reduction was
applied each search was completed within a maximum search depth of 3 million
and there are at most 1.3 million stored states in each case. Failure to apply
partial-order reduction resulted in an increase in the maximum search depth
reached of between 19% and 24% and a corresponding increase in the number of
stored states of about 23%. In table 1 below we give details of the verification of
properties 2, 3, 4, 5 and 6 (with POR) for the case i = 0 and j = 1 (if appropriate)
where:

Depth describes the length of the longest path explored during the search
States is the number of states stored
Mem is the memory used (in Mbytes) for state-storage (with compression)
Time is the time taken (in seconds) = user time + system time and
state-vector is the size, in bytes, of the state-vector.

Notice that the size of the state-vector gives an indication of the number of
variables that are required to be included within the model for the proof of the
property.

Table1. Verification Results – basic call properties

Property Depth (×106) States (×105) Mem Time state-vector

2 2.8 16 64.5 85 128
3 3.0 17 67.6 94 124
4 1.3 7.9 31.7 37 120
5 3.6 17 66.4 93 132
6 1.7 9.7 38.6 49 124

16

7 Features

Now that the state-space is tractable, we can commence the second phase: adding
a number of features to the basic service.

7.1 Features

The set of features that we have added to the basic call include:

– CFU – call forward unconditional All calls to the subscriber are diverted
to another user.

– CFB – call forward when busy All calls to the subscriber are diverted
to another user, if and when the subscriber is busy.

– OCS – originating call screening All calls by the subscriber to numbers
on a predefined list are prohibited. Assume that the list for user x does not
contain x.

– ODS – originating dial screening. The dialing of numbers on a predefined
list by the subscriber is prohibited. Assume that the list for user x does not
contain x.

– TCS – terminating call screening Calls to the subscriber from any num-
ber on a predefined list are prohibited. Assume that the list for user x does
not contain x.

– RBWF – ring back when free If the subscriber is the originating party
in a call to a busy line, a connection (from the subscriber to the other party)
is reattempted when the terminating party becomes available. Assume that
the subscriber is not both the originating and terminating party.

– RWF – return when free If the subscriber is the terminating party in a
call to a busy line, a connection from the subscriber to the other party is
attempted when the terminating party becomes available. Assume that the
subscriber is not both the originating and terminating party.

– OCO – originating calls only The subscriber is only able to be the orig-
inating party of a call.

– TCO – terminating calls only The subscriber is only able to be the
terminating party of a call.

As discussed earlier, we base our feature on the set given in [48]. The features
CFU, CFB, RBWF, TCS, and OCS, and the associated properties, are well
known and appear in [48]. We omit three features from [48]: CW (call waiting),
because we restrict to one “leg” calls, CFNR (call forward no reply), because
with respect to interaction analysis there is little difference between CFNR and
CFB, and ACB (automatic call back) because it results in no interactions [48].
We add four further features, and associated properties: ODS, OCO, TCO, and
RWF. ODS is based on informal discussions with telecomms providers – this is
the feature that many people want when they invoke OCS, they don’t care if a
connection is made to a number, they just don’t want to be billed for it. Hence
there is a block on dialling the number, not on the connection. OCO and TCO

17

are features for a pay phone and (a form of) teen line. TCO is popular in the UK
where calls are billed per connection time. RWF is a form of RBWF situated at
the terminating side, it has also been called AR (automatic recall) [7].

We do not give automata for all the features, but give only one example.
Figure 3 illustrates the change in user-perceived behaviour when the user sub-
scribes to the ring back when free feature (RBWF). Note that the set ringback
and unset ringback events correspond to the storing of the number of the sub-
scriber’s current partner (within an array) so that a ringback to that number
can subsequently be initiated. The automaton associated with RWF is similar,
although the subscriber does not set (or unset) an array in the same way. In fact
it is set by the originator of the call.

on

ring_back

off

unset_ringback

dial Call_Sent

O_Ringback

O/T_Null

Auth_Orig_Attoff

on
O_Busy

set_ringback

engaged

Figure3. Finite State Automaton for RBWF

8 The Features in Promela

We do not give all the details of the implementation of features in Promela, but
draw attention to some of the more important aspects:

– To implement the features we have included a “feature lookup” function (see
below) that implements the features and computes the transitive closure of
the forwarding relations (when such features apply to the same call state).

– New feature arrays are included, namely CFU , CFB etc. These are initialised
within the init process according to which features are present within a
given configuration. Note that the arrays associated with the RBWF , RWF ,
OCO and TCO features contain 0s and 1s only. As SPIN does not support
bit arrays, these arrays are stored as arrays of bytes, using far more memory
than necessary. Thus we could have saved valuable space by using bitvectors
[52] rather than arrays in this case. However, for simplicity (in describing
the feature lookup below, for example) and consistency (with respect to the
other features) we have used byte arrays.

18

– We distinguish between call and dial screening; the former means a call
between user A and B is prohibited, regardless of whether or not A actually
dialed B, the latter means that if A dials B, then the call cannot proceed, but
they might become connected by some other means. The latter case might
be desirable if screening is motivated by billing. For example, if user A dials
C (a local leg) and C forwards calls to B (a trunk leg) then A would only
pay for the local leg.

– Currently we restrict the size of the lists of screened callers (relating to the
OCS, ODS and TCS features) to one. That is, we assume that it is impossible
for a single user to subscribe to two of the same screening feature. This is
sufficient to demonstrate some feature interactions, and limits the size of the
state-space.

– The addition of either of the ringback features, RBWF or RWF, while
straightforward, significantly increases the complexity of the underlying state-
space. The reason for this is that an entirely new call state (O Ringback) must
be included in each case. In addition an array, rgbknum and retnum respec-
tively, must be included to record the last process to whom a ringback has
been initiated. The issue is not just that there is a new global variable, but
that call states that were previously identified are now distinguished by the
contents of these arrays (c.f. discussion above about variable reinitialisation).

– To ensure that all variables are initialised, we again use 6 as a default value
(assuming that the total number of users is 4). This is particularly useful
when a user does not subscribe to a particular feature. The value 7 is used
to denote both an unobtainable number (e.g. an incorrect number) and to
denote “cancel ringback” in RBWF. We do not use an additional value for
the latter, so as not to increase the size of the state-space.

8.1 Implementation of Features: the feature lookup inline

In order to enable us to add features easily, all of the code relating to feature
behaviour is now included within an inline definition, as follows.

inline feature_lookup(q1,id1,st)
{
do
::((id1!=7)&&(st==st_dial)&&(CFU[id1]!=6))

-> id1=CFU[id1];q1=chan_name[id1]
::((id1!=7)&&(st==st_dial)&&(CFB[id1]!=6)&&(len(q1)>0))

-> id1=CFB[id1];q1=chan_name[id1]
::((st==st_dial)&&(ODS[selfid]==id1))

-> st=st_unobt
::((st==st_call2)&&(OCS[selfid]==id1))

-> st=st_unobt
::((st==st_call2)&&(TCS[id1]==selfid))

-> st=st_unobt
::((st==st_dial)&&(RBWF[selfid]==1)&&(id1==7)&&(rgbknum[selfid]!=6))

-> rgbknum[selfid]=6;st=st_redial
::((st==st_idle)&&(RBWF[selfid]==1)&&(rgbknum[selfid]!=6)&&

(len(chan_name[rgbknum[selfid]])==0))
-> st=st_rback1

::((st==st_rback2)&&(RBWF[selfid]==1)&&(rgbknum[selfid]!=6))
->
if

19

::dev=off;id1=rgbknum[selfid];q1=chan_name[id1];
rgbknum[selfid]=6;st=st_call1

::/*fail to respond to ringback tone*/
self?messchan,messbit; assert(messchan==self);
messchan=null; messbit=0;rgbknum[selfid]=6;st=st_preidle

fi
::((st==st_busy)&&(RBWF[selfid]==1)&&(rback_flag==0)&&(id1!=selfid))

->
if
::rgbknum[selfid]=id1
::skip
fi;

rback_flag=1
::((st==st_idle)&&(RWF[selfid]==1)&&(retnum[selfid]!=6)&&

(len(chan_name[retnum[selfid]])==0))
-> st=st_rback1

::((st==st_rback2)&&(RWF[selfid]==1)&&(retnum[selfid]!=6))
->
if
::dev=off;id1=retnum[selfid];q1=chan_name[id1];

retnum[selfid]=6;st=st_call1
::/*fail to respond to ringback tone*/

self?messchan,messbit; assert(messchan==self);
messchan=null; messbit=0;retnum[selfid]=6;st=st_preidle

fi
::((st==st_busy)&&(RWF[id1]==1)&&(ret_flag==0)&&(id1!=selfid))

-> retnum[id1]=selfid; network_ev_action(ret_alert); ret_flag=1
::((st==st_call2)&&(OCO[id1]==1))

-> st=st_unobt
::((st==st_idle)&&(TCO[selfid]==1))

-> st=st_blocked
:: else

->break
od
}

The parameters q1, id1, and st take the values of the current partner, partnerid
and state of a user when a call to the feature lookup inline is made. Notice, for
example, that st can take two values relating to the Call Sent state, st call1
and st call2. This is to differentiate between the state to which the process is to
be directed on leaving the inline function and the state from which the process
has entered the inline function respectively. As there is no redirection necessary
from the O Busy state when either of the ringback features are present, the
rback flag and ret f lag variables have been introduced to prevent the relevant
guards from remaining true after the corresponding transitions have taken place
(that is, to prevent an infinite loop). Statements within feature lookup pertaining
to features that are not currently active are automatically commented out (see
section 10.2).

feature lookup encapsulates centralised intelligence about the state of calls
i.e. it encapsulates what is known as single point call control. (IN supports both
single and multiple point call control.) This greatly simplifies the detection of MU
feature interactions. Although MU interactions can be detected in a distributed
architecture, i.e. in a multiple point call control, the negotiation required between
switches creates a huge and irrelevant (for our purposes) overhead. We therefore
have single point call control.

We note that type I interaction detection is greatly facilitated by the form
of feature lookup: the majority of such interactions can be found by examining

20

the nondeterminism of the guards. For example, we can immediately see that
the first two guards overlap if the state is st dial and the process subscribes to
both CFU and CFB.

8.2 Incorporating Features within the Promela Specification

In order to illustrate how combinations of features are incorporated into the
specification, we use a specific example. Suppose that there are four users and
two active features, namely CFU and TCS, where user 0 forwards to user 1 and
user 2 screens calls from user 0.

Consider a specification of the basic call model (see section 3) to which the
f eature lookup inline, feature arrays, the rgbk num and ret num arrays and the
O Ringback state have been added.

Firstly the f eature lookup inline is adapted so that all lines of code that do
not correspond to either CFU or TCS are removed. Thus the f eature lookup
inline becomes:

inline feature_lookup(q1,id1,st)
{
do
::((id1!=7)&&(st==st_dial)&&(CFU[id1]!=6))

->id1=CFU[id1];q1=chan_name[id1]
::((st==st_call2)&&(TCS[id1]==selfid))->st=st_unobt
::else->break

od
}

Secondly the CFU and TCS arrays are initialised thus:

CFU[0]=1;
CFU[1]=6;
CFU[2]=6;
CFU[3]=6;

TCS[0]=6;
TCS[1]=6;
TCS[2]=0;
TCS[3]=6;

All references to other feature arrays are removed. Finally the entire O Ringback
state is removed, together with the rgbk num and ret num arrays and all refer-
ences thereof, as neither ringback feature is present.

In fact, for any combination of features, such changes are made automatically
using a Perl script to create a specification from a template file (see section 10.2).

9 Temporal Properties for Features

The properties for features are more difficult to express than those for the ba-
sic service. In order to reflect accurately the behaviour of each feature, great
attention must be paid to the scope of each property within the corresponding
LTL formula, as described in section 5.3 (see for example [14]). For example,
in property 8, it is essential that (for the CFB feature to be invoked) the for-
warding party has a full communication channel whilst the dialing party is in

21

the Auth Orig Att state. This can only be expressed by stating that the forward-
ing party must have a full channel continuously between two states, the first of
which must occur before the dialing party enters the Auth Orig Att state, and
the second after the dialing party emerges from the Auth Orig Att state.

The properties are designed to reflect the expected behaviour of our particu-
lar specification. For example, we expect the forwarding features to be initiated
immediately upon dialing. Thus we do not anticipate a user being able to hang
up before a (redirected) connection is attempted. Property 7 reflects this expec-
tation.

For the forwarding features, we want to capture the notion of a call attempt
being made from user i to user j. We can not insist that a connection is achieved
as the line may be busy. In previous work [4] it was deemed sufficient that
partner[i] is set to chan name[j]. But, this does not completely capture the no-
tion, with the consequence that we may miss some interactions (see section 10.4).
Here we use the proposition below to represent the statement: a call attempt is
made from user i to user j

(partner[i] == chan name[j])
&& ((User[proci]@O Busy)||(User[proci]@O Alerting)).

We use the shorthand att(i, j) to represent this proposition.
In some of the properties, propositions relate to the value of a variable

(dialed[i] say). It is often necessary to refer to the value of a variable at a particu-
lar point in the service. For example, in property 7 we are interested in cases when
the value of the variable dialed[i] is j when process i is at the Call Sent state.
(The value of dialed[i] may be equal to j at a later state, O No Answer say, by
which time it is too late to determine whether process[i] subsequently attempts
a call to the new partner.) Hence we enhance the proposition dialed[i] == j
with the extra condition that (User[proci]@Call Sent).

In section 5.2 we discuss the use of @ statements and event variables to track
the progress of a process. The particular property dictates which of these to use.
However, sometimes great caution must be exercised. For example, it is tempting
to replace proposition att(i, j) with the proposition new att(i, j) below:

(partner[i] == chan name[j])
&& ((network event[i] == engaged)||(network event[i] == oring)).

However, network event[i] only takes the value engaged (or, at least, it is only
visible to the never-claim as such) after process[i] leaves the O Busy state and
proceeds to the Preidle state, by which time partner[i] has been reset to the
default value of null. Thus it is essential that an @ statement is used here. As far
as possible the properties either use @ statements throughout or event variables.
This is because the use of both would increase the number of variables that
would be required, which would increase the size of the resulting state-space
unnecessarily. Unfortunately, for the properties associated with the ringback
features it is necessary to use both types of statement in order to fully express
the desired behaviour.

22

Some of the properties below refer to the status of the device associated with
a process. That is they refer to the device being on or off . In order to make this
visible to the never-claim, the local variable dev must be replaced throughout
the corresponding model by a global array of dev variables.

We have been especially careful to avoid the 〈〉 and X (next-time) operators in
our properties. Both of these operators carry an increase in the cost of verification
(due to the necessity of adding the weak fairness constraint and the prohibition
of the use of partial order reduction respectively, see section 2.5). Sometimes the
use of these operators is essential. However, we have managed to avoid their use
in this instance, via judicious use of the U operator.

In each property the values of the variables i, j and k depend on the particular
pair of features and the corresponding property that is being analysed. These
variables are therefore updated prior to each verification either manually (by
editing the Promela code directly), or automatically during the running of a
specification-generating script (see section 10.2).

Property 7 – CFU Assume that user j forwards to k.
If user i rings user j then a connection between i and k will be attempted before
user i hangs up.

LTL: [](p → (rPq))

p = ((dialed[i] == j)&&(User[proci]@Call Sent)), r = att(i, k),
q = (dev[i] == on).

Property 8(a) – CFB Assume that user j forwards to k.
If user i rings user j when j is busy then a connection between i and k will be
attempted before user i hangs up.

LTL: [](((u ∧ t) ∧ ((u ∧ t)U((¬u) ∧ t ∧ p))) → (rPq))

p = ((dialed[i] == j)&&(User[proci]@Call Sent)), t = (full(chan name[j])), r
= att(i, k), u = (User[proci]@Auth Orig Att),
q = (dev[i] == on).

Property 8(b) – CFB Assume that user j forwards to k.
If user i rings user j when j is not busy then a connection between i and j will
be attempted before user i hangs up.

LTL: [](((u ∧ t) ∧ ((u ∧ t)U((¬u) ∧ t ∧ p))) → (rPq))

p = ((dialed[i] == j)&&(User[proci]@Call Sent)), t = (empty(chan name[j])),
r = att(i, j), u = (User[proci]@Auth Orig Att), q = (dev[i] == on).

Property 9 – OCS Assume that user i has user j on its screening list, i �= j.

23

No connection from user i to user j is possible.

LTL: [](¬p)

p = (connect[i].to[j] == 1).

Property 10 – ODS Assume that user i has user j on its screening list, i �= j.
User i may not dial user j.

LTL: [](¬p)

p = (dialed[i] == j).

Property 11 – TCS Assume that user i has user j on its screening list, i �= j.
No connection from user j to user i is possible.

LTL: [](¬p)

p = (connect[j].to[i] == 1).

Property 12 – RBWF Assume that user i has RBWF.
If user i has requested a ringback to user j (i �= j) (and not subsequently requested
a ringback to another user) and subsequently user i is at O/T Null when users i
and j are both free, (and they are still free when user i is no longer at O/T Null)
then user i will hear the ringback tone.

LTL: []¬((p&&q&&r&&s)&&((p&&q&&r&&s)U((p&&(¬q)&&r)&&((¬t)Uq))))

p = (rgbknum[i] == j), s = (len(chan name[i]) == 0),
q = (User[proci]@O/T Null), r = (len(chan name[j]) == 0),
t = (network event[i] == ringbackev).

Property 13 – OCO Assume that user j has OCO.
No connection from user i to user j is possible.

LTL: [](¬p)

p = (connect[i].to[j] == 1).

Property 14 – TCO Assume that user j has TCO.
No connection from user j to user i is possible.

LTL: [](¬p)

p = (connect[j].to[i] == 1).

24

Property 15(a) – RWF Assume that user j has RWF.
If user i calls user j when user j is busy (i �= j), then user i will hear the ret alert
tone and retnum[i] will be set to j (before user i returns to the O/T Null state).

LTL: []¬((p&&q&&v)&&((p&&q&&v)U(p&&v&&(¬q)))&&((¬(r&&s))U(t)))

p = (len(chan name[j]) > 0), q = (User[proci]@O Busy),
v = (partner[i] == chan name[j]), t =(User[proci]@O/T Null),
r = (retnum[j] == i),
s = (network event[i] == ret alert).

Property 15(b) – RWF Assume that user j has RWF.
If user i has requested a ringback from user j (i �= j) (and subsequently no other
user has requested a ringback from user j), and user j is at O/T Null and and
users i and j are both free, then user j will hear the ringback tone.

LTL: []¬((p&&q&&r&&s)&&((p&&q&&r&&s)U((p&&(¬q)&&r)&&((¬t)Uq))))

p = (retnum[j] == i), s = (len(chan name[i]) == 0),
q = (User[procj]@O/T Null), r = (len(chan name[j]) == 0),
t = (network event[j] == ringbackev).

10 Feature Interaction

In this section we consider only systems of 4 processes. Generalisation is discussed
in section 11.

A property based approach to feature interaction detection assumes a formal
model of the entire system and a given set of properties (usually temporal)
associated with the features. In our case the formal model is the underlying
Kripke structure associated with the Promela specification (see section 2.3).

Two features are said to interact if a property that holds for the system when
only one of the features is present, does not hold when both features are present.
For features f1 and f2 we define feature interaction as follows:

Definition 2. Let M be the model of a system of N components in which no
features are present and let M(f1), M(f2) and M(f1 ∩ f2) be models in which
only f1, only f2 and both f1 and f2 have been added respectively. If φ1 and φ2 are
properties that define f1 and f2 respectively then f1 and f2 are said to interact
if

M(f1) |= φ1 but M(f1 ∩ f2) �|= φ1, or
M(f2) |= φ2 but M(f1 ∩ f2) �|= φ2.

Note that this definition is relatively high-level, it does not contain details of
the configuration. Thus it does not distinguish between SC (single component)
and MC (multiple component) interactions. When we report on results later

25

(section 10.3) we will make this distinction. Note also that this analysis will only
reveal interactions that exist with respect to the particular properties φ1 and
φ2. For complete analysis it may be necessary to perform analysis for a suite of
properties for each feature, or to conjoin properties.

10.1 Feature Validation

Before we can perform pairwise analysis of features, we must ensure that, for
any feature, the model containing that feature in isolation satisfies the associated
feature property. That is, using the notation above, we must show that for any
feature f with associated property φ, M(f) |= φ.

Features and properties are labelled according to table 2. Each property must
be checked for all relevant values of i and j (and k if appropriate).

Table2. Features and properties

Feature Property φ

CFU property 7
CFB (property 8a) && (property 8b)
OCS property 9
ODS property 10
TCS property 11

RBWF property 12
OCO property 13
TCO property 14
RWF (property 15a) && (property 15b)

Exploiting Symmetry A brute force approach quickly suffers a combinatorial
explosion. For example, to verify property 7 (for all suitable networks of pro-
cesses) with only four users, we need to check 48 cases (4 choices for i and j and
3 choices for k). We can eliminate the need to consider all cases by appealing to
symmetry.

Consider the simplest case, where i, j, and k are distinct. Any permutation
σ taking i, j and k to distinct i′, j′ and k′ will preserve the transition relation
of the underlying Kripke structure. The two models will be bisimilar and hence
satisfy the same LTL formula, provided the formula is suitably renamed under
σ. More formally, let M be a Kripke structure, s a state and φ an LTL formula
involving only i, j, and k-indexed propositions, and σ a permutation with Mσ,
σs and σφ the appropriate transformations under σ. There is a bisimulation
between M and Mσ and so we have:

M, s |= φ ↔ Mσ, σs |= σφ.

26

The proof follows from the result that CTL* is adequate with respect to bisimu-
lation [2]. This result relating permutations is similar, yet different to the result
for symmetry groups and CTL* formulae [11]. The formulae, besides being in
LTL (rather than CTL*), must be transformed under σ, unlike the symmetry
group result where it may not be transformed and must be invariant under
all permutations. This is because the symmetry group result is over the quo-
tient structure, rather than individual (unquotiented) structures. We consider
the individual structures and the permuted properties because our motivation
is different: we require to reduce the number of cases to model check, not the
state-space.

Application of this result allows us to exclude from consideration permuta-
tions of most of the relevant properties. For example, for property 7 we need
consider only 3 cases (i = 0, j = 0, k = 1; i = 1, j = 0, k = 1; i = 2, j = 0, k = 1).
All other cases are just a permutation of one of these.

Feature Validation Results For every feature f , associated property φ and
choice of parameters, a Promela specification was constructed and verified. In
each case the property was satisfied.

Clearly it is not possible to give detailed results for each relevant pair of
features and properties. However in table 3 we give detailed verification results
for each property for an example configuration of (distinct) parameters i, j (and
k), when checked against a suitable network of processes.

Table3. Verification Results – feature properties

Property Depth (×106) States (×105) Mem Time state-vector

7 0.6 3.0 12.6 15 116
8a 1.4 9.4 36.8 43 116
8b 1.4 7.9 32.7 40 116
9 1.2 6.1 23.8 29 124
10 1.1 6.4 25.4 30 136
11 1.1 6.3 25.1 29 136
12 11.2 59.5 263.7 385 132
13 0.6 3.1 13.0 16 136
14 0.5 3.2 12.9 16 136

15(a) 12.4 67 296.3 438 132
15(b) 12.3 70.2 308.7 476 132

10.2 Interaction Analysis

We now consider the case where two features are present. That is, we consider
networks of 4 processes in which features f1 and f2 are present and determine

27

whether an interaction exists, according to definition 2. For any (distinct) pair of
features f1 and f2 we need to determine whether the model M(f1 ∩ f2) satisfies
properties φ1 and φ2, associated with f1 and f2 respectively (see table 2). If
not then if the two features are associated with the same process we have a SU
interaction, otherwise we have a MU interaction.

Not that the analysis is pairwise, known as 2-way interaction analysis. While
at first sight this may seem limiting, empirical evidence suggests there is little
motivation to generalise: 3-way interactions that are not detectable as a 2-way
interaction are exceedingly rare [38]. A similar approach to dynamic analysis is
taken, for example, by [48].

Automatic Specification Generation and Feature Interaction Before
features were added to the basic call model, global variables could be “turned
off” manually (i.e. commented out) or replaced by local variables when they are
not needed for verification. The addition of features requires even more variables
to be selectively turned on and off, or set to different values (see section 8.2).

This is both time-consuming and error prone. Therefore, we employ a Perl
script to generate, for any combination of features and properties, a specifica-
tion from a template file. Each generated specification also includes a header
containing information about which features and properties have been chosen in
that particular case, making it easier to monitor model checking runs.

The interaction analysis itself is combinatorially explosive: we must consider
all pairs of features and combinations of suitable instantiations of the free vari-
ables i,j and k occurring in the properties. For example, to check for SU interac-
tion in the CFB, ODS case alone, there are potentially 192 cases to investigate.
Clearly we can again employ symmetry to reduce the number of cases. In the
CFB, ODS case discussed above for example, it is only necessary to check scenar-
ios in which CFU [0] = 1, ODS[0] = m, for all m �= 0. Further use of symmetry is
also possible. However, it is far more difficult to generalise when such further re-
duction can be made when two features are involved, than when just one feature
is active (see section 10.1). For example, the amount of reduction that is possible
depends on whether the two features considered are the same, whether we are
looking for SU or MU interaction, and the particular property under consider-
ation. For this reason, for most combinations of features, it is simpler to apply
only the broad symmetry reduction described above. This enables the analysis
to be fully automated (see below), without the need to consider each case indi-
vidually. It is necessary, for cases where two ringback features are involved, to
further reduce the number of cases using symmetry, as each verification takes
approximately 90 minutes. However, we do not discuss this in detail here. The
generalisation of symmetry reductions in the two feature case is the subject of
further work.

Despite symmetry reduction, there are still a large number of cases to check.
To ease this burden and to speed up the process, a further Perl script is used to
enable

28

– systematic selection of pairs of features and parameters i,j and k, and gen-
eration of corresponding specification/model,

– automatic SPIN verification of model and recording of feature interaction
results.

Scenarios leading to feature interactions are recorded. A report of 1 error
indicates an interaction. Once (if) an SU interaction is found, or, if no SU inter-
actions exist, after it has been shown that no SU interaction exists, the search for
MU interactions commences. If an MU interaction is found the next pair of fea-
tures is considered. The following example of output demonstrates the complete
results for CFU and CFB with property 7.

/*The features are 1 and 2 */

/*New combination of features:CFU[0]=1 and CFB[0]=0 */
feature 2 is meaningless

/*New combination of features:CFU[0]=1 and CFB[0]=1 */
with property 7
with parameters 0,0 and 1 errors: 0

with parameters 1,0 and 1 errors: 0

with parameters 2,0 and 1 errors: 0

with parameters 3,0 and 1 errors: 0

/*New combination of features:CFU[0]=1 and CFB[0]=2 */
with property 7
with parameters 0,0 and 1 errors: 1 FEATURE INTERACTION: SU

/*New combination of features:CFU[0]=1 and CFB[1]=0 */
potential loop, test seperately

/*New combination of features:CFU[0]=1 and CFB[1]=1 */
feature 2 is meaningless

/*New combination of features:CFU[0]=1 and CFB[1]=2 */
with property 7
with parameters 0,0 and 1 errors: 1 FEATURE INTERACTION: MU

10.3 Feature Interaction Results

The tables in figure 4 give the interactions found (using automated specification
generation and analysis) for pairs of features in both the SU case and the MU
case. A

√
in the row labelled by feature f means that the property φ associated

with f is violated whereas a × indicates that no such violation has occurred.
Two features fi and fj (that is, the features associated with rows i and j in the
table) interact if and only if there is a

√
in position (i, j) and/or a

√
in position

(j, i).
The tables are not symmetric. For example, there is an (ODS ,CFU) MU in-

teraction, but not a (CFU ,ODS) MU interaction. To understand why, consider
the witness scenario generated: an (ODS ,CFU) MU interaction, under the as-
signment ODS[0] = 1, and CFU [1] = 2. Observe also the relevant guards in the
inline feature lookup. There are two choices, call them the “ODS choice” and the

29

CFU CFB OCS ODS TCO RWF

CFU

CFB

OCS

ODS

TCS

OCO

TCO

RWF

CFU CFB OCS TCO RWF

CFU

CFB

OCS

ODS

TCS

OCO

TCO

RWF

(a) SU (b) MU

RBWF RBWF

TCS ODS TCS RBWF OCORBWF OCO

Figure4. Feature Interaction Results - four users

“CFU choice”. When feature lookup takes the former, there is no interaction:
both property 7 and property 10 are satisfied. One can understand this as ODS
having precedence. However, there is a computation sequence where the latter
choice is taken; in this case CFU has precedence and property 10 is violated be-
cause user 0 has dialed user 1 – before the call is forwarded to user 2 (although
clearly property 7 is satisfied).

We note that often, understanding why and how a property is violated will
give the designer strong hints as to how to resolve an interaction. In particular,
a precedence is often implied. Precedence is just one technique for resolving
interactions; we do not pursue it further here.

Altogether, 11 interactions are uncovered. These are interactions between:
CFU and CFU, CFU and CFB, CFU and OCS, CFU and TCS, CFB and CFU,
CFB and CFB, CFB and OCS, CFB and TCS, ODS and CFU, ODS and CFB,
and TCO and RWF. It is clear that the majority arise from a forwarding type
of feature.

10.4 Discussion

Type II interactions (see section 2.1) depend very much on the properties ex-
pressing user intentions. We believe our properties to be more detailed than most
other analyses, but still they are not complete. In particular they do not state
what should not happen (i.e. the frame problem).

The particular implementation detail of features also influences the interac-
tion results. For example, had we chosen to implement the OCO feature from
within the Auth Orig Att state (rather than in the Call Sent state), different
interactions would have exhibited. For example, there would be a (MU) interac-
tion between CFU and OCO.

Since our analysis technique is based on property violation, and reasoning by
model checking always provides a counter-example, we can gain a good under-
standing of why an interaction occurs. When analysis results are not symmetric,
this strongly suggests a precedence between features.

30

11 Generalisation of Results

We have analysed networks of four user processes. However, is this sufficient for
full pairwise interaction analysis? In this section we investigate the conditions
under which we can extend our results to networks of arbitrary size.

11.1 The Parameterised Model Checking Problem

An obvious limitation of the model checking approach is that only finite-state
models can be checked for correctness. Sometimes however we wish to prove
correctness (or otherwise) of families of (finite-state) models. That is to show
that, if MN = M(p0||p1|| . . . ||pN−1) is the model of a specification consisting
of N concurrent instantiations of a parameterised component p, then MN |= φ
for all N ≥ n0, for some (small) value of n0. In our case the pi are the User
processes, characterised by their process ids together with the list of features
subscribed to by that user.

This is an example of the Parameterised Model Checking Problem which is,
in general, undecidable [1]. The verification of parameterized networks is often
accomplished via theorem proving [51], or by synthesising network invariants [9,
39, 56]. Both of these approaches require a large degree of ingenuity.

In some cases it is possible to identify subclasses of parameterised networks
for which verification is decidable. Examples of the latter mainly consist of net-
works of N identical components communicating within a ring topology [19, 21]
or networks consisting of a family of N identical user components together with
a control component, communicating within a star topology [40, 21, 35]. A more
general approach [18] considers a general parameterised network consisting of
several different classes of components.

One of the limitations of both the network invariant approach and the sub-
class approach is that it can only be applied to networks in which each component
(contained in the set of size N) is completely independent of the overall struc-
ture: adding an extra component (to this set) does not change the semantics of
the existing components. A generalisation of data independence is used to verify
arbitrary network topologies [12] by lifting results obtained for limited-branching
networks to ones with arbitrary branching.

All of these methods fail when applied to asynchronously communicating
components like ours, where components communicate asynchronously via shared
variables.

We have developed an approach [6] based on abstraction and induction from
which we can

1. validate the features for specifications consisting of any number of processes
(and for which only one process has any features, namely the feature being
validated), and

2. identify all pairs of features (f1 and f2 say) that do not interact, regardless
of the numbers of processes, provided that f1 and f2 are the only features
present.

We outline this approach in section 11.2 below.

31

11.2 The Abstraction Approach

For any feature f , we say that f is indexed by If = {i1, . . . ir} if the feature
relates to User[i1], . . . , User[ir]. For example if f is “User[0] forwards calls to
User[3]”, then f is said to be indexed by 0 and 3. Similarly we say that a
property φ is indexed by a the set Iφ where Iφ is the set of User ids associated
with φ. For a (possibly empty) set of features F = {f1, . . . , fs} and property φ,
we define the complete index set I of {φ} ∪ F , to be If1 ∪ . . . ∪ Ifs ∪ Iφ.

Suppose that we have a specification p0||p1|| . . . ||pN−1 of N telephone pro-
cesses (with or without features) with associated model MN . For any m < N
we partition the User processes into two classes: p0 . . . pm−1 are concrete and
pm . . . pN−1 are abstracted. We define a new process Abstract(m) which encap-
sulates the (externally) observable behaviour of the abstracted processes. Observ-
able behaviour includes updates to global variables and communication channels,
but excludes updates to local variables. Specifically, the process Abstract(m) has
id = m and an associated channel named out channel. Since Abstract(m) en-
capsulates observable behaviour, we will use it to replace the behaviour of the
abstracted processes. Call initiation from an abstracted process to a concrete pro-
cess is replaced by a message of the form (out channel, 0) from Abstract(m) to
the relevant channel (zero, one etc.) which is always possible, provided the chan-
nel is empty. For example, the Promela proctype associated with the Abstract(m)
process, when m = 4 is given below. Note that the value of the parameter self
is passed via the command run Abstract(out channel).

proctype Abstract (chan self)
{do
:: zero!self,0
:: one!self,0
:: two!self,0
:: three!self,0
od}

Notice that Abstract(m) is very simple: it only includes behaviour for call
initiation from an abstracted process to a concrete process (e.g. :: zero!self, 0
represents an abstracted process initiating a call to User 0). Any other message
passing from the abstracted processes is now represented implicitly, by the non-
deterministic choice available to the modified (concrete) processes, as described
below.

To accommodate the fact that the concrete processes now communicate with
Abstract(m) instead of an individual abstracted process, each concrete process
p0 . . . pm−1 is modified to p′i, for 0 ≤ i ≤ m− 1, such that the modified processes
behave exactly the same as the original (concrete) processes, except that, for
0 ≤ i ≤ m − 1:

1. process p′i no longer writes to (the associated channels of) any of the pro-
cesses pm, pm+1, . . . , pN−1 (the abstracted processes), instead there is a non-
deterministic choice whenever such a write would have occurred as to whether

32

the associated channel is empty or full (thus, whether the write is enabled
or not).

2. An initial call request from any abstracted process to p′i now takes the form
out channel!m, 0 regardless of which abstracted process initiated the call.
When such a message arrives on p′i’s channel, p′i may read it. Henceforth p′i
no longer reads from (the associated channels of) any of the abstracted pro-
cesses. Instead, p′i makes a non-deterministic choice over the set of possible
messages (if any) that could be present on such a channel.

Now we define a new abstract specification abs(m) where

abs(m) = p′0||p′1|| . . . ||p′m−1||Abstract(m).

We define Mabs(m) to be the associated model.
Suppose that in our specification of telephone processes the feature set and

associated property φ have complete index set {0, 1, . . . , m − 1}. We claim that
if φ holds for the model associated with abs(m) (namely Mabs(m)), then it holds
for MN . The abstraction is illustrated in figure 5, with the original specification
on the left hand side and the specification abs(m) appearing on the right hand
side. Our main theorem holds because there is a simulation relation between the
two specifications.

Figure5. Abstraction technique for an N-User telephone model

Theorem 1. Let MN = M(p0||p1|| . . . ||pN−1) be a model of a specification of
telephone processes in which only the features F are present, and φ a property.

33

If the total index set of F ∪ {φ} is {0, 1, . . . , m − 1} then Mabs(m) |= φ implies
that MN |= φ.

The full proof of Theorem 1, together with appropriate definitions, is given
in Appendix 2. Here we provide a sketch of the proof. There are two steps. We
may regard the first step as a data abstraction, and the second as behavioural
abstraction.

The first step is to use data abstraction [10] to construct a (data) reduced
model Mm

r . The reduction involves abstracting the domains of all variables that
can take the value of any process id to the set {0, 1, . . . , m}. Each value i < m
is mapped to itself and all other values are mapped to m. The domains of all
local variables of the abstracted processes and of all channels to and from the
abstracted processes, are abstracted to the trivial set {true}. By data abstraction
Mm

r |= φ implies that MN |= φ.
The second step establishes the fact that there is a simulation preorder [11]

between Mm
r and Mabs(m), and thus properties are preserved.

Notice that Mabs(m) does not depend on N , i.e. for a fixed m, the abstracted
model Mabs(m) is the same for a model of size N as it is for a model MN+1

in which an additional unfeatured process has been added. Thus our approach
is similar to that of the invariant approach [9] but we have extended it to a
featured paradigm.

Application of this theorem, for example, allows us to validate the CFU
feature by model checking the abstract models corresponding to the three cases
identified in section 10.1. (Note that we use symmetry to ensure that our total
index set is always {0, 1, . . . , m − 1} for some m.) Thus we check that

1. Mabs(2) |= φ, where φ is property 7, the feature is CFU [0] = 1, and the
property parameters are i = 0, j = 0 and k = 1,

2. Mabs(2) |= φ, where φ is property 7, the feature is CFU [0] = 1, and the
property parameters are i = 1, j = 0 and k = 1 and

3. Mabs(3) |= φ, where φ is property 7, the feature is CFU [0] = 1, and the
property parameters are i = 2, j = 0 and k = 1.

In this way it is possible to validate all of the features using an abstract
model Mabs(m) where m ≤ 3 in all cases.

If there are two features, f1 and f2 say, in our feature set F then if φ is
the property associated with one of the features, it follows that the complete
index of F ∪ φ is at most 4 when the features relate to the same user, and is at
most 5 otherwise. For example, in order to show that a model with the features
CFU [0] = 1 and OCS [0] = 2 satisfy property 7 with i = 3, j = 0 and k = 1 it is
necessary to use an abstract model Mabs(4) but if the features are CFU [0] = 1
and OCS [2] = 3 and the parameters are i = 4, j = 0 and k = 1 it is necessary
to use an abstract model Mabs(5). Note that, since m ≤ 5 in all cases, and the
id of the Abstract process is equal to m, it is still safe to use 6 as the default
value of variables whose domains (otherwise) consist of the set of process ids.

34

11.3 Feature Interaction Results – any number of users

This method can only be used to find pairs of features that do not interact for
any size of network (when they are the only features present). The only pairs
of features that qualify therefore, are those which do not interact in the 4 user
case. That is, pairs for which there is a × in the relevant position in the tables
in figure 4.

Using our abstract model we are able to show that the results for the SU
case for 4 users given in figure 4 hold for all number of user processes. However,
in the MU case our results are less complete. In all cases it was possible to verify
the abstract models for all values of m less than the maximum value. However,
in some instances, for the maximum value of m the search depth became so big
that the necessary search stack required too much memory for a full verification
to be feasible. We give our results for any number of users in figure 6 below.
Note that

√
indicates that an interaction exists for some number of users, ×

that there is no interaction for any number of users, and • that it is not possible
to verify the associated abstract model for all values of m.

(b) MU

CFU CFB OCS ODS TCO

CFU

CFB

OCS

ODS

TCS

OCO

TCO

RWF

(a) SU

RBWF

TCS RBWF OCO CFU CFB OCS TCO RWF

CFU

CFB

OCS

ODS

TCS

OCO

TCO

RWF

ODS TCS RBWF OCO

RBWF

RWF

.

.....

Figure6. MU Feature Interaction Results - any number of users

We note that while these tables report both the presence and absence of in-
teractions, we cannot use the abstraction method to detect interactions. This is
because detection involves reasoning about invalidity. Specifically, the relations
between the (original) models and the reduced and abstracted models are simu-
lations (not bisimulations), thus invalidity of a formula for the abstracted model
does not necessarily imply invalidity of the formula for the original model. How-
ever, due to the nature of our abstraction, for our set of features and properties,
invalidity is often preserved.

12 Related Work and Comparison with Other Results

In this section we consider how our approach to feature interaction relates to
other model checking approaches, and how our results compare. It is not straight-
forward to compare interaction analysis results, as even when researchers model

35

the (apparently) same features, actual implementation detail can profoundly af-
fect the result. Nonetheless, we compare this work with other approaches, and
with two sets of results.

12.1 Other Approaches

Model checking for feature interaction analysis has been investigated by others,
notable approaches are those using COSPAN [20], Caesar [54], SMV [48], SPIN

(the FeaVer project) [33, 32, 53] and a bespoke tool [36].
In [20], features and the basic service are described at only one level of ab-

straction, in a “sugared” form of LTL. The motivation for this single tiered
approach (i.e. only logic, not logic and a form of state machine), is to exclude
interactions which might be implementation dependent. It is difficult to com-
pare results since we consider a different set of features (e.g. [20] does not in-
clude ring back features) and we deliberately chose to specify our system at
a greater level of detail. In order to avoid state-space explosion, some “preci-
sion” of predicates is sacrificed in [20]. For example, they include the predicate
busy(x) (x is busy) rather than the more detailed busy(x, y) (x is busy en-
gaged in a call to y). Our specifications already include this level of detail (e.g.
partner[x] == chan name[y]), hence we have the ability to reason about more
detailed behaviour. For example, we have included detail about the point in
a call when features are initiated. The point of call can profoundly affect be-
haviour, especially the race conditions that may arise in an implementation. We
can reflect this aspect by the nondeterminism in feature lookup. For example,
in the case of forwarding, we explicitly assume the feature is initiated immedi-
ately upon dialling, but as we discussed earlier (section 10.4) if we change this
assumption to another point in the call, the result would be a different set of
interactions. We conjecture that the predicates of the COSPAN approach could
be extended to the same level of detail; it would be interesting to see if state-
explosion would be a problem, as we have found of number of aspects of SPIN

optimisations and property refinements extremely useful. We note that our ap-
proach is motivated by our earlier work [54], where Caesar was used to check
process algebra and μ-calculus. This too suffered from limitations imposed by
state-explosion and the lack of (explicit) implementation detail afforded by state
variables and asynchronous communication. Thus we adopted SPIN.

In [48], the authors present a similar two tiered approach using SMV (CTL
and synchronous state machines). But similar to [20] the approach is less detailed,
in order to make verification tractable, and because the SMV language is not
very expressive. As a consequence, the authors note that they were forced to
be more abstract than they wanted to be, for example, they restrict attention
to two subscribers of the service with full functionality (plus two users with
half functionality), due to state-space explosion problems. Call control is not
independent, and because SMV is the underlying formalism, there is no explicit
communication. Nevertheless, we regard this as a benchmark paper and we are
able to demonstrate at least a similar set of properties and results; detailed
comparison is given in section 12.2.

36

In [33, 32], the Promela model is extracted mechanically from call processing
software code. A control-flow skeleton is created using a simple parser, and this
skeleton is then populated with all message-passing operations from the original
code. The motivation here is different from ours: theirs is a top down approach
whereas ours is bottom up. We start with an abstract representation of a system
and they with the full software code. Our approach is very much targeted at the
design stage of system development, whereas theirs relies upon the existence of
functioning code. It could be highly beneficial to apply the two techniques at
both end of the development process. However, this would require access to the
full call processing software code. As neither details of full pairwise interaction
analysis nor of the model itself are provided, we cannot compare results.

In [53] a tool is described in which a subset of LTL properties can be specified
using timelines via a simple graphical editor. The tool is useful when a large set
of properties (with a similar structure) are to be verified. We have only a small
set of properties, and we were primarily interested in their expression in LTL.
Therefore we did not use this tool.

Motivation for the last paper [36] is detection and then resolution of inter-
actions through predicate refinement, with respect to an underlying predicate
taxonomy. Detection is by model-checking LTL formulae. The general approach
and many of our interaction results are therefore similar, though we did not find
that our properties fall into the same (two) suggested patterns. Model-checking
details are not given, except to indicate that only given scenarios were explored.
Thus we assume there was no complete pairwise analysis.

In summary, our approach is similar to the approach of Plath and Ryan
[48]. Our main contribution is that in this case study we have presented a much
more detailed specification, reflecting implementation detail such as explicit (and
asynchronous) communication, yet verification is still tractable. Another contri-
bution is generalisation, none of the above mentioned studies generalise results
to more than three or four users.

12.2 Comparison with Other Results

The SMV study[48] We detected the same interactions between our common
features CFU, CFB, RBWF, TCS, and OCS. In addition, we detected inter-
actions between CFU and OCS, and between CFU and TCS. Plath and Ryan
indicate that they missed these classical interactions, because aspects of SMV
forced them to develop a model which was too abstract.

The FIW 2000 Contest[3] Another interesting benchmark for results is the
feature interaction detection contest run in conjunction with FIW 2000 (Feature
Interaction Workshop 2000). There is no definitive answer concerning which
interactions should be detected, but results are given for analysis results from
four research groups. Since three of our features: CFB, TCS and RBWF are
included in the contest feature set, it is interesting to compare results.

CFB and TCS. Three out of four contestants detected this interaction, we
also detect this interaction.

37

RBWF and TCS. All four contestants detected an interaction, but we did
not. Why, is best illustrated by considering the following scenario. User i has
RBWF and TCS with j on the screening list. i calls j, j is busy and i selects
ringback. i will receive the ringback tone, when j is free (thus property 12 is
satisfied). But, when i picks up the handset, they will hear the unobtainable
tone (because the caller is on the screening list). Thus, strictly speaking, there
is no interaction.

RBWF and CFB. Again, all four contestants detected an interaction, but we
did not. Again, the reason is best illustrated by an example. User i has RBWF
and j has CFB, i calls j, and j is busy. Calls are forwarded in the Auth Orig Att
state, while ringback is set in the Call Sent state. The call is forwarded imme-
diately and no ringback is requested. Hence, there is no interaction.

These examples illustrate the importance of implementation details, in par-
ticular, at which point in the call a feature should be activated. This detail is
often ambiguous in feature descriptions. We have made design choices which re-
flect our understanding of operational networks, and our decision to benchmark
against the features given in [48]. Our results concerning the RBWF feature
accord with the results of [48], but not with the FIW 2000 contest.

13 Conclusions

We have developed a Promela specification of a basic call service with nine fea-
tures and performed pairwise feature interaction analysis on networks involving
four users with full functionality. The analysis involves model checking with SPIN

and is completely automated, making extensive use of Perl scripts to generate
the SPIN runs, and symmetry to reduce case explosion.

The application area is a challenging one for model checking because formu-
lating the right temporal properties for distributed systems is difficult, and the
state-spaces for any realistic model quickly become intractable.

We have explained in some detail the difficulties of formulating temporal
properties in LTL. The problems do not stem from the (lack of) path quantifiers,
but rather from the complexity of the underlying distributed system.

We have demonstrated how a Promela specification can be optimised, without
losing operational detail, by reinitialising variables in the appropriate way. Thus,
we overcome classic state-explosion problems and our interaction analysis results
are considerably more extensive than others (for example, [48]).

Since interactions are property violations, discovering these interactions by
model checking always provides a counter-example. We thus gain a good under-
standing of why an interaction occurs, and this can help the redesign process.

When analysis results are not symmetric, this strongly suggests a precedence
between features.

We have compared our results with others, and pointed out how some differ-
ences arise from implementation detail, in particular the points at which features
are activated.

38

Finally, we have outlined a method for generalising results to networks of any
size, when at most two features are present. The method is based on defining two
further models, a reduced model and an abstract model, and simulation preorders
between them. This allows us to infer general results about features which do
not interact. We are currently investigating ways to extend our approach to the
case where abstracted processes can have features.

Acknowledegments This work has been supported by a Daphne Jackson Fel-
lowship, the EPSRC, and Microsoft Research. We would like to thank the anony-
mous referees for their valuable suggestions.

References

1. Krzysztof R. Apt and Dexter C. Kozen. Limits for automatic verification of finite-
state concurrent systems. Information Processing Letters, 22:307–309, 1986.

2. M. Browne, E. Clarke, and O. Grumberg. Characterizing finite Kripke structures
in propositional temporal logic. Theoretical Computer Science, 59:115–131, 1988.

3. M. Calder and E. Magill, editors. Feature Interactions in Telecommunications and
Software Systems VI. IOS Press (Amsterdam), 2000.

4. M. Calder and A. Miller. Using SPIN for feature interaction analysis - a case study.
In M.B. Dwyer, editor, Proceedings of the 8th International SPIN Workshop (SPIN
2001), volume 2057 of Lecture Notes in Computer Science, pages 143–162, Toronto,
Canada, May 2001. Springer-Verlag.

5. Muffy Calder and Alice Miller. Analysing a basic call protocol using
Promela/XSpin. In Gerard Holzmann, Elie Najm, and Ahmed Serhrouchni, edi-
tors, Proceedings of the 4th Workshop on Automata Theoretic Verification with the
SPIN Model Checker (SPIN ‘98), pages 169–181, Paris, France, November 1998.

6. Muffy Calder and Alice Miller. Automatic verification of any number of concurrent,
communicating processes. In Proceedings of the 17th IEEE International Confer-
ence on Automated Software Engineering (ASE 2002), pages 227–230, Edinburgh,
UK, September 2002. IEEE Computer Society Press.

7. E. J. Cameron, N. Griffeth, Y.-J. Lin, M. E. Nilson, and W. K. Schnure. A feature
interaction benchmark for IN and beyond. In L. G. Bouma and H. Velthuijsen, ed-
itors, Feature Interactions in Telecommunications Systems, pages 1–23. IOS Press
(Amsterdam), May 1994.

8. Alessandro Cimatti, Fausto Giunchiglia, Giorgio Mingardi, Dario Romano, Fer-
nando Torielli, and Paolo Traverso. Model checking safety critical software with
SPIN: an application to a railway interlocking system. In Langerak [42], pages
5–17.

9. E. Clarke, O. Grumberg, and S. Jha. Verifying parameterized networks using ab-
straction and regular languages. In Insup Lee and Scott A. Smolka, editors, Pro-
ceedings of the 6th International Conference on Concurrency Theory (CONCUR
‘95), volume 962 of Lecture Notes in Computer Science, pages 395–407, Philadel-
phia, PA., August 1995. Springer-Verlag.

10. E. Clarke, O. Grumberg, and D Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

11. E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, Cam-
bridge, Masachusetts, 1999.

39

12. S.J. Creese and A.W. Roscoe. Data independent induction over structured net-
works. In Proceedings of the International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA’00), volume II, Las Ve-
gas, Nevada, USA, June 2000. CSREA Press.

13. D. Dill, A. Drexler, A. Hu, and C. H. Yang. Protocol verification as a hard-
ware design aid. In Proceedings 1992 IEEE International Conference on Computer
Design: VLSI in Computer & Processors (ICCD’92), pages 522–525, Cambridge,
Massachusetts, USA, October 1992. IEEE Computer Society.

14. Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property specifica-
tion patterns for finite-state verification. In Proceedings of the Second International
Workshop on Formal Methods in Software Practice (FMSP ’98), pages 7–15. ACM
Press, March 1998.

15. Matthew B. Dwyer and John Hatcliff. Slicing software for model construction.
In Olivier Danvy, editor, Proceedings of ACM SIGPLAN Workshop on Partial
Evaluation and Semantics-Based Program Manipulation (PEPM’99), pages 105–
118, San Antonio, Texas, January 1999. University of Aarhus. Technical report
BRICS-NS-99-1.

16. E. Emerson. Temporal and modal logic. In J. Van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, chapter 16, pages 995–1072. MIT Press,
Cambridge, MA, USA, 1990.

17. E. Emerson and J. Halpern. “sometimes” and “not never” revisited: On branching
time versus linear time. Journal of the ACM, 33:151–178, 1986.

18. E. Emerson and V. Kahlon. Reducing model checking of the many to the few.
In David A. McAllester, editor, Automated Deduction - Proceedings of the 17th
International Conference on Automated Deduction (CADE 2000), volume 1831 of
Lecture Notes in Computer Science, pages 236–254, Pittsburgh, PA, USA, June
2000. Springer-Verlag.

19. E. Emerson and K. Namjoshi. Reasoning about rings. In Conference Record of the
22nd Annual ACM Symposium on Principles of Programming Languages (POPL
‘95), pages 85–94, San Francisco, California, January 1995. ACM Press.

20. A. Felty and K. Namjoshi. Feature specification and automatic conflict detection.
In Calder and Magill [3], pages 179–192.

21. Steven M. German and A. Prasad Sistla. Reasoning about systems with many
processes. Journal of the ACM, 39(3):675–735, July 1992.

22. R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic verifica-
tion of linear temporal logic. In Proceedings of the 15th international Conference on
Protocol Specification Testing and Verification (PSTV ‘95), pages 3–18. Chapman
& Hall, Warsaw, Poland, 1995.

23. Orna Grumberg and David E. Long. Model checking and modular verification. In
Jos C. M. Baeten and Jan Frisco Groote, editors, Proceedings of the 2nd Interna-
tional Conference on Concurrency Theory (CONCUR ‘91), volume 527 of Lecture
Notes in Computer Science, pages 250–265, Amsterdam, The Netherlands, August
1991. Springer-Verlag.

24. R.J. Hall. Feature combination and interaction detection via fore-
ground/background models. In Kimbler and Bouma [37], pages 232–246.

25. Constance L. Heitmeyer, James Jr. Kirby, Bruce Labaw, Myla Archer, and Ramesh
Bharadwaj. Using abstraction and model checking to detect safety violations
in requirements specifications. IEEE Transactions on Software Engineering,
24(11):927–948, November 1998.

26. G. Holzmann. Design and validation of protocols: a tutorial. Computer Networks
and ISDN Systems, 25:981–1017, 1993.

40

27. G. Holzmann. The model checker Spin. IEEE Transactions on Software Engineer-
ing, 23(5):279–295, 1997.

28. G. Holzmann. State compression in Spin: Recursive indexing and compression
training runs. In Langerak [42].

29. G. Holzmann. The engineering of a model checker: The Gnu i-protocol case study
revisited. In D. Dams, R. Gerth, S. Leue, and M. Massink, editors, Proceedings
of the 5th and 6th International Spin Workshops, volume 1680 of Lecture Notes
in Computer Science, pages 232–244, Trento, Italy and Toulouse, France, 1999.
Springer-Verlag.

30. G. Holzmann. The SPIN model checker: primer and reference manual. Addison
Wesley, Boston, 2003.

31. G. Holzmann and D. Peled. An improvement in formal verification. In D. Hogrefe
and S. Leue, editors, Proceedings of the 7th WG6.1 International Conference on
Formal Description Techniques (FORTE ‘94), volume 6 of International Federation
For Information Processing, pages 197–211, Berne, Switzerland, October 1994.
Chapman and Hall.

32. G. Holzmann and M. Smith. A practical method for the verification of event-
driven software. In Proceedings of the 21st international conference on on Software
engineering (ICSE’99), pages 597–607, Los Angeles, California, USA, May 1999.
ACM Press.

33. G. Holzmann and M. Smith. Software model checking - extracting verification
models from source code. In J. Wu, S. Chanson, and Q. Gao, editors, Proceedings
of the Joint International Conference on Formal Description Techniques for Dis-
tributed Systems and Communication Protocols and Protocol Specification, Testing
and Verification (FORTE/PSTV ’99), volume 156 of International Federation For
Information Processing, pages 481–497, Beijing, China, October 1999. Kluwer.

34. IN Distributed Functional Plane Architecture, recommmendation q.1204, ITU-T
edition, March 1992.

35. C. Norris Ip and David L. Dill. Verifying systems with replicated components in
Murφ. Formal Methods in System Design, 14:273–310, 1999.

36. Bengt Jonsson, Tiziana Margaria, Gustaf Naeser, Jan Nystroem, and Bernhard.
Steffen. Incremental requirement specification for evolving systems. In Calder and
Magill [3], pages 145–162.

37. K. Kimbler and L.G. Bouma, editors. Feature Interactions in Telecommunications
and Software Systems V. IOS Press (Amsterdam), September 1998.

38. M. Kolberg, E. H. Magill, D. Marples, and S. Reiff. Results of the second feature
interaction contest. In Calder and Magill [3], pages 311–325.

39. R. P. Kurshan and K.L. McMillan. A structural induction theorem for processes.
In Proceedings of the eighth Annual ACM Symposium on Principles of Distrubuted
Computing, pages 239–247. ACM Press, 1989.

40. Robert P. Kurshan, M. Merritt, A. Orda, and S.R. Sachs. A structural linearization
principle for processes. Formal Methods in System Design, 5(3):227–244, December
1994.

41. Leslie Lamport. What good is temporal logic? Information Processing, 83:657–668,
1983.

42. R. Langerak, editor. Proceedings of the 3rd SPIN Workshop (SPIN‘97), Twente
University, The Netherlands, April 1997.

43. S. Leue and P. Ladkin. Implementing and verifying msc specifications using
promela/Xspin. In J.-Ch. Gregoire, G.J. Holzmann, and D. Peled, editors, Proceed-
ings of the 2nd Workshop on the SPIN verification System, volume 32 of DIMACS

41

Series in Discrete Mathematics and Theoretical Computer Science, pages 65–89,
Rutgers University, New Jersey, USA, August 1996. American Mathematical So-
ciety.

44. Z. Manna and A. Pnueli. Tools and rules for the practicing verifier. Technical
Report STAN-CS-90-1321, Stanford University, June 1990.

45. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston,
Massachusetts, USA, 1993.

46. D. Peled. Combining partial order reductions with on-the-fly model checking.
Formal Methods in System Design, 8:39–64, 1996.

47. Doron Peled. Partial order reduction: Linear and branching temporal logics and
process algebras. In D. Peled, V. Pratt, and G. Holzmann, editors, Proceedings of
the DIMACS Workshop on Partial-Order Methods in Verification (POMIV ’96),
volume 29 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 233–257, Princeton, New Jersey, USA, 1996. American Mathemat-
ical Society.

48. M. Plath and M. Ryan. Plug-and-play features. In Kimbler and Bouma [37], pages
150–164.

49. A. Pnuelli. The temporal semantics of concurrent programs. Theoretical Computer
Science, 13:45–60, 1981.

50. A.W. Roscoe. Model-checking CSP. In A.W. Roscoe, editor, A Classical Mind:
Essays in Honour of C.A.R. Hoare, chapter 21, pages 353–378. Prentice-Hall In-
ternational, Englewood Cliffs, NJ, 1994.

51. A. Roychoudhury and I.V. Ramakrishnan. Automated inductive verification of pa-
rameterized protocols. In Gérard Berry, Hubert Comon, and Alain Finkel, editors,
Proceedings of the 13th International Conference on Computer-aided Verification
(CAV 2001), volume 2102 of Lecture Notes in Computer Science, pages 25–37,
Paris, France, July 2001. Springer-Verlag. preliminary version of rora2.

52. Theo C. Ruys. Low-fat recipes for Spin. In Klaus Havelund, John Penix, and
Willem Visser, editors, Proceedings of the 7th SPIN Workshop (SPIN 2000), vol-
ume 1885 of Lecture Notes in Computer Science, pages 287–321, Stanford, Califor-
nia, USA, September 2000. Springer-Verlag.

53. M. Smith, G. Holzmann, and K. Etessami. Events and constraints: A graphi-
cal editor for capturing logic requirements of programs. In Proceedings of the
5th IEEE International symposium on Requirements Engineering, pages 14–22,
Toronto, Canada, August 2001. IEEE Computer Society.

54. M. Thomas. Modelling and analysing user views of telecommunications services.
In P. Dini, R. Boutaba, and L. Logrippo, editors, Feature Interactions in Telecom-
munication Networks IV, pages 168–182. IOS Press (Amsterdam), June 1997.

55. Willem Visser, Klaus Havelund, Guillaume Brat, and SeungJoon Park. Model
checking programs. In P. Alexander and P. Flener, editors, Proceedings of the 15th
IEEE Conference on Automated Software Engineering (ASE-2000), pages 3–12,
Grenoble, France, September 2000. IEEE Computer Society Press.

56. Pierre Wolper and Vinciane Lovinfosse. Properties of large sets of processes with
network invariants (extended abstract). In J. Sifakis, editor, Proceedings of the In-
ternational Workshop in Automatic Verification Methods for Finite State Systems,
volume 407 of Lecture Notes in Computer Science, pages 68–80, Grenoble, France,
June 1989. Springer-Verlag.

42

Appendix 1: The Basic Service with features

We give here the optimised code for the basic service plus features. All code
pertaining to feature behaviour (and to variables necessary only during property
verification) is commented out.

mtype={on,off,dial,call,oring,tring,unobt,engaged,connected,disconnect,ringbackev,ret_alert,st_idle,
st_blocked,st_unobt,st_rback1,st_rback2,st_dial,st_call1,st_call2,st_preidle,st_redial,st_busy};

chan null = [1] of {chan,bit};
chan zero = [1] of {chan,bit};
chan one = [1] of {chan,bit};
chan two = [1] of {chan,bit};
chan three = [1] of {chan,bit};
chan chan_name[4]; /* convert from number to channel name */
chan partner[4];

/*byte CFU[4];*/ /*the ith member of these arrays switched to */
/*byte CFB[4]; */ /*default value of 6 if user[i]*/
/*byte OCS[4];*/ /*does not have this feature,*/
/*byte ODS[4];*/ /* and to identity of user that */
/*byte TCS[4];*/ /*user[i] forwards to or screens otherwise*/
/*byte RBWF[4];*/ /*set to 0 or 1*/
/*byte OCO[4];*/ /*set to 0 or 1*/
/*byte TCO[4];*/ /*set to 0 or 1*/
/*byte RWF[4];*/ /*set to 0 or 1*/

/*mtype dev[4] = on;*/
/*byte dialed[4] = 6;*/
/*mtype network_event[4] = on;*/
/*mtype event[4] = on;*/
/*byte rgbknum[4] = 6; */
/*byte retnum[4] = 6; */

/*typedef array { byte to[4] }
array connect[4]; */

/* 16 bytes in total */

/*short p0=-1,p1=-1,p2=-1,p3=-1;*/

/* The simple basic call protocol: A rings B*/
/* A goes offhook, put A,0 on channel A*/
/* A dials B and B is free,*/
/* then A puts A,0 on channel B; B,0 on channel A.*/
/* B goes offhook and then put B,1 on channel A*/
/* A and B are now connected*/
/* To disconnect: A removes token from own channel,*/
/* B removes token from own channel*/

/*inline feature_lookup (q1,id1,st)

{
do
::((id1!=7)&&(st==st_dial)&&(CFU[id1]!=6))

->id1=CFU[id1];q1=chan_name[id1]
::((id1!=7)&&(st==st_dial)&&(CFB[id1]!=6)&&(len(q1)>0))

->id1=CFB[id1];q1=chan_name[id1]
::((st==st_dial)&&(ODS[selfid]==id1))->st=st_unobt
::((st==st_call2)&&(OCS[selfid]==id1))->st=st_unobt
::((st==st_call2)&&(TCS[id1]==selfid))->st=st_unobt
::((st==st_dial)&&(RBWF[selfid]==1)&&(id1==7)&&(rgbknum[selfid]!=6))

->rgbknum[selfid]=6;st=st_redial
::((st==st_idle)&&(RBWF[selfid]==1)&&(rgbknum[selfid]!=6)&&

(len(chan_name[rgbknum[selfid]])==0))
->st=st_rback1

::((st==st_rback2)&&(RBWF[selfid]==1)&&(rgbknum[selfid]!=6))->

43

if
::dev=off;id1=rgbknum[selfid];q1=chan_name[id1];
rgbknum[selfid]=6;st=st_call1

::/*fail to respond to ringback tone*/
self?messchan,messbit; assert(messchan==self);
messchan=null; messbit=0;rgbknum[selfid]=6;st=st_preidle

fi
::((st==st_busy)&&(RBWF[selfid]==1)&&(rback_flag==0)&&(id1!=selfid))->

if
::rgbknum[selfid]=id1
::skip
fi;
rback_flag=1

::((st==st_idle)&&(RWF[selfid]==1)&&(retnum[selfid]!=6)&&
(len(chan_name[retnum[selfid]])==0))
->st=st_rback1

::((st==st_rback2)&&(RWF[selfid]==1)&&(retnum[selfid]!=6))->
if
::dev=off;id1=retnum[selfid];q1=chan_name[id1];
retnum[selfid]=6;st=st_call1

::/*fail to respond to ringback tone*/
self?messchan,messbit; assert(messchan==self);
messchan=null; messbit=0;retnum[selfid]=6;st=st_preidle

fi
::((st==st_busy)&&(RWF[id1]==1)&&(ret_flag==0)&&(id1!=selfid))->

retnum[id1]=selfid; network_ev_action(ret_alert);
ret_flag=1

::((st==st_call2)&&(OCO[id1]==1))
->st=st_unobt

::((st==st_idle)&&(TCO[selfid]==1))
->st=st_blocked

::else->break
od
}*/

/*inline event_action (eventq)

{
if
::selfid==0->event[selfid]=eventq
::selfid!=0->skip
fi

}*/

/*inline network_ev_action (neteventq)

{
if
::selfid==0->network_event[selfid]=neteventq
::selfid!=0->skip
fi

}*/

proctype User (byte selfid;chan self)

{/* start User */
chan messchan=null;
bit messbit=0;
mtype state=on;
mtype dev=on;
byte partnerid=6;

O/T_Null:
atomic
{assert(dev == on);
assert(partner[selfid]==null);
/* either attempt a call, or receive one */
if

44

:: empty(self)->state=st_idle;
/*feature_lookup(partner[selfid],partnerid,state);*/
if
:: state==st_blocked->state=on;goto O/T_Null

/*::state==st_rback1->
self!self,0;state=on;goto ringback*/

:: else->state=on
fi;
/*event_action(off);*/
dev=off; self!self,0;goto Auth_Orig_Att
/* no connection is being attempted, go offhook */
/* and become originating party */

:: full(self)-> self?<partner[selfid],messbit>;
/* an incoming call */
if
::full(partner[selfid])->
partner[selfid]?<messchan,messbit>;
if
:: messchan == self /* call attempt still there */

->messchan=null;messbit=0;goto Present_Call
:: else -> self?messchan,messbit; /* call attempt cancelled */

partner[selfid]=null;partnerid=6;messchan=null;messbit=0;
goto Preidle

fi
::empty(partner[selfid])->
self?messchan,messbit; /* call attempt cancelled */
partner[selfid]=null;partnerid=6;messchan=null;messbit=0;
goto Preidle

fi
fi};

Auth_Orig_Att:
atomic
{assert(dev == off);
assert(full(self));
assert(partner[selfid]==null);
/* dialing or go onhook */
if
:: /*event_action(dial);*/

/* dial and then nondeterministic choice of called party */
if
:: partner[selfid] = zero;

/*dialed[selfid] = 0;*/
partnerid=0

:: partner[selfid] = one;
/*dialed[selfid] = 1;*/
partnerid=1

:: partner[selfid] = two ;
/*dialed[selfid] = 2;*/
partnerid=2

:: partner[selfid] = three;
/*dialed[selfid] = 3;*/
partnerid=3

:: partnerid= 7;
fi;
state=st_dial;
/* feature_lookup(partner[selfid],partnerid,state);*/
if
::state==st_unobt-> state=on;partner[selfid]=null;partnerid=6;

/*dialed[selfid]=6;*/
goto O/T_Disconnect

::(state==st_dial&&partnerid!=7)-> state=on;goto Call_Sent
::(state==st_dial&&partnerid==7)->

state=on;partner[selfid]=null;partnerid=6;
/*dialed[selfid]=6;*/
goto O/T\Disconnect

::(state==st_redial)->state=on;partnerid=6;
/*dialed[selfid]=6;*/

45

goto Auth_Orig_Att
fi
::/*event_action(on);*/

dev=on; self?messchan,messbit;assert(messchan==self);
messchan=null;messbit=0;goto Preidle
/*go onhook, without dialing */

fi};

Call_Sent: /* check number called and process */
atomic
{/*event_action(call);*/
assert(dev == off);
assert(full(self));
state=st_call2;
/*feature_lookup(partner[selfid],partnerid,state);*/
if
::state==st_unobt->state=on;partner[selfid]=null;partnerid=6;

/*dialed[selfid]=6;*/
goto O/T_Disconnect

::state==st_call2->state=on;skip
fi;
if
:: partner[selfid] == self -> goto O_Busy /* invalid partner */
:: partner[selfid]!=self ->

if
:: empty(partner[selfid])->

partner[selfid]!self,0; self?messchan,messbit;
self!partner[selfid],0; messchan=null;messbit=0; goto O_Alerting
/* valid partner, write token to partner’s channel*/

:: full(partner[selfid]) -> goto O_Busy
/* valid partner but engaged */

fi
fi};

O_Busy: /* number called is engaged, go onhook or trivial dial */
atomic
{assert(full(self));
/*network_ev_action(engaged);*/
if
::state=st_busy;

/*rback_flag=0;*/
/*ret_flag=0;*/
/*feature_lookup(partner[selfid],partnerid,state);*/
state=on;
/*rback_flag=0; ret_flag=0;event_action (on);*/
dev = on; self?messchan,messbit;assert(messchan==self);
partner[selfid]=null;partnerid=6;messchan=null;
/*dialed[selfid]=6;*/
messbit=0; goto Preidle
/*go onhook, cancel connection attempt */

/*:: event_action(dial); goto O_Busy*/ /* trivial dial */
fi};

/*comment out entire ringback state when neither ring back
feature switched on */

/*ringback:
atomic
{state=st_rback2;
feature_lookup(partner[selfid],partnerid,state);
if
::state==st_call1->state=on;goto Call_Sent
::state==st_preidle->state=on;goto Preidle
fi

};*/

46

O/T_Disconnect: /* number called is unobtainable, go onhook or trivial dial */
atomic
{assert(full(self));
assert(partner[selfid]==null);assert(partnerid==6);
/*network_ev_action(unobt);*/
if
::/*event_action(on);*/

dev = on; self?messchan,messbit; assert (messchan==self);
messchan=null; messbit=0;goto Preidle
/*go onhook, cancel connection attempt */

/*::event_action(dial);goto O_Busy*/
/* trivial dial */

fi};

O_Alerting: /* called party is ringing */
atomic
{assert(full(partner[selfid]));
assert(full(self)); assert(dev == off);
/*network_ev_action(oring);*/
self?<messchan,messbit>;assert(messchan==partner[selfid]); messchan=null;
/* check channel */
if
::messbit== 1->messbit=0;goto O_Active

/* correct token */
::messbit==0->goto O_Alerting

/* wrong token, not connected yet, try again */
::messbit==0->goto O_No_Answer

/* give up */
/*:: event_action(dial);messbit=0;goto O_Alerting*/

/* trivial dial */
fi};

O_No_Answer: /*abandon call attempt*/
atomic
{assert(full(partner[selfid]));assert(full(self));
assert(dev == off);
/*event_action(on);*/
dev=on; self?messchan,messbit;
partner[selfid]?messchan,messbit; partner[selfid]!messchan,0;
partner[selfid]=null;partnerid=6;
/*dialed[selfid]=6;*/
messchan=null;messbit=0; goto Preidle;
/* give up, go onhook */

};

O_Active:
atomic
{assert(full(self)); assert(full(partner[selfid]));
/* connection established */
/*connect[selfid].to[partnerid] = 1;*/
goto O_Close};

O_Close: /* disconnect call */
atomic
{assert(full(self)); assert(full(partner[selfid]));
/*event_action(on);*/
dev = on; self?messchan,messbit; /* empty own channel */
assert(messchan== partner[selfid]); assert(messbit==1);
partner[selfid]?messchan,messbit; /* empty partner’s channel */
assert(messchan==self); assert(messbit==1);
/* and disconnect partner */
partner[selfid]!messchan,0;
/* connect[selfid].to[partnerid] = 0 ;*/
partner[selfid]=null;
/*dialed[selfid]=6;*/

47

partnerid=6;messchan=null;messbit=0;
goto Preidle};

Present_Call:
atomic
{assert((dev == on)&&(full(self)));
/* either device rings or*/
/* connection attempt is cancelled and then empty channel */
partner[selfid]?<messchan,messbit>;
if
:: messchan==self->

/*network_ev_action(tring);*/
messchan=null;messbit=0; goto T_Alerting

:: else->skip /* attempt has been cancelled */
fi;
/*network_ev_action(disconnect);*/
self?messchan,messbit;
partner[selfid]=null;partnerid=6; messchan=null;messbit=0;
/*dialed[selfid]=6;*/
goto Preidle

};

T_Alerting: /* proceed with connection or connect attempt cancelled */
atomic
{assert(full(self));
if
:: full(partner[selfid]) -> partner[selfid]?<messchan,messbit>;

if
:: messchan==self -> /*connection proceeding */

assert(messbit ==0);
self?messchan,messbit;
assert(messchan==partner[selfid]); assert(messbit==0);
/*event_action(off);*/
dev = off; partner[selfid]?messchan,messbit;
partner[selfid]!self,1; /* establish connection */
self!partner[selfid],1; messchan=null;messbit=0; goto T_Active

:: else ->/* wrong message, connection cancelled */
/*network_ev_action(disconnect);*/
self?messchan,messbit;
/*event_action(on);*/
dev=on; partner[selfid]=null;partnerid=6;messchan=null;messbit=0;
/*dialed[selfid]=6;*/
goto Preidle

fi
:: empty(partner[selfid])-> /* connection cancelled */

/*network_ev_action(disconnect);*/
self?messchan,messbit;
/*event_action(on);*/
dev=on; partner[selfid]=null;partnerid=6;
/*dialed[selfid]=6;*/
messchan=null;messbit=0; goto Preidle

fi
};

T_Active: /* check if originator has terminated call */
atomic
{self?<messchan,messbit>;
if
::(messbit == 1 && dev == off) -> /* trivial handset down */

/*event_action(on);*/
dev = on; messchan=null;messbit=0;goto T_Active

::(messbit == 1 && dev == on) -> /* trivial handset up */
/*event_action(off);*/
dev = off; messchan=null;messbit=0;goto T_Active

::(messbit == 0 && dev == on) -> /* connection is terminated */

48

self?messchan,messbit;
partner[selfid]=null;partnerid=6;messchan=null;messbit=0;
/*dialed[selfid]=6;*/
goto Preidle

::(messbit == 0 && dev == off) ->
/*network_ev_action(disconnect);*/
/* disconnect tone */
/*event_action(on);*/
dev=on; /* connection is terminated */
self?messchan,messbit;partner[selfid]=null;
partnerid=6;messchan=null;messbit=0;
/*dialed[selfid]=6;*/
goto Preidle

fi
};

Preidle:
atomic
{/*network_ev_action(on);*/
/*event_action(on);*/
goto O/T_Null

}

} /* end User */

init
{
atomic
{partner[0]=null; partner[1]=null; partner[2]=null; partner[3]=null;
chan_name[0]=zero; chan_name[1]=one; chan_name[2]=two; chan_name[3]=three;

/*switch on features here*/
/*default value 6, */
/*if user i has feature, set to id of user to be forwarded to, or screened */

/*CFB[0]=6; CFB[1]=6; CFB[2]=6; CFB[3]=6;*/

/*CFU[0]=6; CFU[1]=6; CFU[2]=6; CFU[3]=6;*/

/*ODS[0]=6; ODS[1]=6; ODS[2]=6; ODS[3]=6;*/

/*OCS[0]=6; OCS[1]=6; OCS[2]=6; OCS[3]=6;*/

/*TCS[0]=6; TCS[1]=6; TCS[2]=6; TCS[3]=6;*/

/*RBWF[0]=0; RBWF[1]=0; RBWF[2]=0; RBWF[3]=0;*/

/*if user i has feature, set to 1, otherwise set to 0*/

/*OCO[0]=0; OCO[1]=0; OCO[2]=0; OCO[3]=0;*/

/*TCO[0]=0; TCO[1]=0; TCO[2]=0; TCO[3]=0;*/

/*RWF[0]=0; RWF[1]=0; RWF[2]=0; RWF[3]=0;*/

/*p0=*/run User(0,zero);
/*p1=*/run User(1,one);
/*p2=*/run User(2,two);
/*p3=*/ run User(3,three);
}
}

49

Appendix 2: Proof of Theorem 1

We will assume throughout that the components p0, p1, . . . , pm−1 do not have
any features other than those contained in the set F . The first stage of the proof
of correctness of Theorem 1 involves the construction of a reduced model Mm

r

via data abstraction [10] for any m ≤ N . First we give some definitions:

Definition 3. Let X = {x0, x1, . . . , xl−1} denote a set of variables such that
each variable xi ranges over a set Di. Then D = D0 ×D1 × · · · ×Dl−1 is called
the domain of X. A set of abstract values D′ = D′

0 × D′
1 × · · · × D′

l−1 is called
an abstract domain of X if there exist surjections h0, h1, h2, . . . , hl−1 such that
hi : Di → D′

i for all 0 ≤ i ≤ l − 1. If such surjections exist they induce a
surjection h : D → D′ defined by

h((x0, x1, . . . , xl−1)) = (h0(x0), h1(x1), . . . , hl−1(xl−1)).

In the following definition (taken from [11]) data abstraction is used to define
a reduced structure whose variables are defined over an abstract domain. See
definition 1, section 2.3 for a definition of Kripke structure (assuming a single
initial state s0).

Definition 4. Let M = (S, R, s0, L) be a Kripke structure with set of atomic
propositions AP and set of variables X with domain D. If D′ is an abstract
domain of X and h the corresponding surjection from D to D′ then h determines
a set of abstract atomic propositions AP ′. Let M′ denote the structure identical
to M but with set of labels L′ where L′ labels each state with a set of abstract
atomic propositions from AP ′. The structure M′ can be collapsed into a reduced
structure Mr = (Sr, Rr, s

r
0, L

′
r) where

1. Sr = {L′(s)|s ∈ S}, the set of abstract labels.
2. sr

0 = L′(s0).
3. APr = AP ′.
4. As each sr is a set of atomic propositions, Lr(sr) = sr.
5. Rr(sr, tr) if and only if there exist s and t such that sr = L′(s), tr = L′(t),

and R(s, t).

The following lemma (which is a restriction of a result proved in [10]) shows
how we may use a reduced structure Mr to deduce properties of a structure M.

Lemma 1. If M and Mr are a Kripke structure and a reduced Kripke structure
as defined in definition 4 then for any LTL property φ, Mr |= φ implies that
M |= φ.

Our reduced model Mm
r is defined via the following abstract domains and

corresponding surjections:

1. The domains of local variables of components p0, p1, . . . , pm−1 are unchanged.
The abstract domains of local variables of components pm, pm+1, . . . , pN−1

are the trivial set {true}, and the associated surjections g, where g(x) = true
for all x in the original domain.

50

2. In MN all other variables, apart from those associated with channel names
or contents, have domains equal to the set {0, 1, . . . , N − 1} (the set of
component ids). Each of these variables have abstract domains equal to the
set {0, 1, . . . , m − 1} and a surjection from the original domain D to the
abstract domain D′ is given by h1 : D → D′ where

h1(x) =
{

x if x < m,
m otherwise

for all x ∈ D.
3. In MN , the domains of channel variables such as self and partner, con-

sist of the set of channel names name[0], name[1], . . . , name[N − 1] (where
name[0], name[1], etc. represent the channel names zero, one, etc.). The
abstract domains for such variables is name[0], name[1], . . . , name[m] and
the surjection h2 is an obvious extension of h1 above.

4. Similarly abstract domains for channel contents (a channel name and a status
bit in each case) can be defined, and a surjection given in each case. The
abstract domains for the variables of contents of channels associated with
components m, m + 1, . . . , N − 1 are the trivial set.

From Lemma 1 it follows that for any LTL property φ, Mm
r |= φ implies

that MN |= φ.
The next stage of our proof involves showing that, for all m ≤ N , Mabs(m)

simulates Mm
r . Again we provide some useful definitions:

Definition 5. Given two structures M and M′ with AP ⊇ AP ′, a relation
H ⊆ S × S′ is a simulation relation between M and M′ if and only if for all s
and s′, if H(s, s′) then

1. L(s) ∩ AP ′ = L′(s′)
2. For every state s1 such that R(s, s1), there is a state s′1 with the property

that R′(s′, s′1) and H(s1, s
′
1).

If H(s0, s
′
0) we say that M′ simulates M and denote this by M � M ′.

Lemma 2. Suppose that M � M′. Then for every LTL formula φ with atomic
propositions in AP ′, M ′ |= φ implies M |= φ.

To prove that, for all m ≤ N , Mabs(m) simulates Mm
r , it is first necessary,

for all m ≤ N , to define a relation between the set of states of Mm
r (Sm

r say)
and the set of states of Mabs(m) (Sm

abs say). We note that there is only one local
state associated with the abstract component Abs (see section 11.2), and so we
can ignore this aspect of (elements of) Sm

abs.
Suppose V is the set of variables associated with MN and Vr a reduced set of

variables, such that Vr is identical to V except that the local and global variables
associated with components pm, pm+1, . . . , pN−1 have been removed. The atomic
propositions relating to MN is the set AP = {x = y : x ∈ V and y ∈ D(x)},
where D(x) is the domain of x. Let us consider the alternative set of atomic

51

propositions AP ′ = {x = y : x ∈ Vr and y ∈ D′(x)}, where D′(x) is the abstract
domain of x. If we let Lr denote the labelling function associated with AP ′, then
we can define a relation H between Sm

r and Sm
abs as follows: For s ∈ Sm

r and
s′ ∈ Sm

abs, H(s, s′) if and only if Lr(s) = Lr(s′).
To show that H is a simulation relation, it is necessary to show that for all

(s, s′) ∈ H , every transition from (s, s1) in Mm
r is matched by a corresponding

transition (s′, s′1) in Mabs(m), where (s1, s
′
1) ∈ H .

Every transition in Mm
r either only involves a change to the global variables

or involves a change to the value of the local variables of one of the (concrete)
components. If the former is true, then the transition involves an initial message
being placed on the channel of one of the (concrete) components p0, p1, . . . , pm−1

by one of the components pm, pm+1, . . . , pN−1. This transition is reflected in
Mabs(m) by a transition involving the Abstract component in which a message
is placed on the channel of the concrete component. If t is a transition in Mm

r

involving concrete component pi then either t does not involve any component
other than pi or t involves only component pi plus another concrete component
or one or more of the following holds:

1. Component pi is not currently in communication with another component
and t involves a read from the channel of pi as a result of the initiation of
communication by one of the components pm, pm+1, . . . , pN−1, or

2. component pi is currently in communication with one of the components
pm, pm+1, . . . , pN−1 and t involves pi reading a message from this component,
or

3. component pi is currently in communication with one of the components
pm, pm+1, . . . , pN−1 and t involves a call to the feature lookup function.

(Notice that a write to one of the components pm, pm+1, . . . , pN−1 does not
involve a change of state, as the abstract domains associated with the channel
contents of each of these components is trivial.)

Let t = (s, s1) and suppose that H(s, s′) for s′ ∈ Sm
abs. If t = (s, s1) does

not involve any component other than pi, or t involves pi and another concrete
component, there is clearly an identical transition (s′, s′1) ∈ Mabs(m) such that
H(s, s′).

If t involves a read from pi’s channel of an initial message sent by one of the
components pm, pm+1, . . . , pN−1 then t is reflected by a transition in Mabs(m)

(pi will still read such a message). However, if t involves any other read from
one of the components pm, pm+1, . . . , pN−1, non-deterministic choice in p′i (the
corresponding component in abs(m)) ensures that an equivalent transition in
Mabs(m) exists.

Suppose that pi is currently involved in communication with one of the com-
ponents pm, pm+1, . . . , pN−1 and t involves a call from pi to the feature lookup
function. As components pm, pm+1, . . . , pN−1 have no associated features, any
guard g within the feature lookup function that holds for a state in MN (from
which feature lookup is called) will hold at the associated state in Mm

r . If s is
such a state and s′ a state in Mabs(m) such that H(s, s′) then g holds at s′ and
it is clear that any transition t in Mm

r from s is reflected in Mabs(m).

52

Since clearly H(s0, s
′
0), where s0 and s′0 are the initial states of Mm

r and
Mabs(m) respectively, Mabs(m) simulates Mm

r . From Lemma 2 we can conclude
that, for any LTL property φ, if Mabs(m) |= φ then Mm

r |= φ. Theorem 1 follows
from Lemma 1.

53

