
A SYMBOLIC SEMANTICS AND BISIMULATION
FOR FULL LOTOS

Muffy Calder
Department of Computing Science,

University of Glasgow, Glasgow G12 8QQ

muffy@dcs.gla.ac.uk

Carron Shankland
Department of Computing Science and Mathematics,

University of Stirling, Stirling FK9 4LA

carron@cs.stir.ac.uk

Abstract
A symbolic semantics for Full LOTOS in terms of symbolic transition sys-

tems is defined; the semantics extends the (infinitely branching) standard seman-
tics by giving meaning to data parameterised behaviours, and provides a finitely
branching representation for behaviours. Symbolic bisimulation is defined.

This extends our previous work [14], making the definitions more amenable
to automated reasoning and processes with recursion.

Keywords: LOTOS, symbolic transition systems, symbolic bisimulation.

1. Introduction

LOTOS [11] is a message passing process algebra which combines two or-
thogonal languages: a process language, known as Basic LOTOS, with features
from both CSP and CCS, and the equational abstract data type language ACT
ONE. LOTOS is an ISO standard [11] whose given semantics is in terms of
structured labelled transition systems. In this semantics (referred to here as the
standard semantics), each data variable in a process is instantiated by every
possible value of its corresponding type, resulting in infinite transition systems
(both in breadth and in depth).

This approach has several drawbacks. First, it is impossible to use standard
(finite state) model-checking techniques over infinite transition systems; the
usual solution is to restrict the underlying datatypes. Indeed, any kind of auto-

1

2

mated reasoning becomes difficult, if not impossible. Second, because the data
values are embedded in the transitions, any uniformities in the actions of the
processes are lost. For example, the process description may make it clear that
a particular action happens when the value of some variable lies between � and
�� (say), but that information is much harder to extract from the labelled tran-
sition system directly, especially if there are an infinite number of branches.
Finally, as a consequence of this approach it is not possible to reason about
partial, or data parameterised, behaviour expressions. Our experiences with
LOTOS applications (e.g. [15, 16]) indicate that this is highly desirable.

The advantage of the standard approach is that it easily accommodates multi-
way synchronisation, i.e. associative synchronisation between two or more
processes. Multi-way synchronisation has led to a particular constraint-oriented
style of specification in the LOTOS community which is particularly useful
when building a system by layering behaviour on a simple building block.

The problem we address here and in [14] is how to reason over potentially
infinite LOTOS processes while retaining multi-way synchronisation and with-
out restricting the datatypes. Since the addition of data to the language is the
reason for the problem, some sort of separation of the concerns of data and
processes seems appropriate. There are three kinds of solution to this prob-
lem. The first is to get rid of data altogether in a brute force manner [1] which
changes the behaviour of the process. The second is to construct a process
representation of the data type [2, 9]. This approach only converts data op-
erations into process operations; the data values are still present therefore the
process remains infinite branching. The third solution is to adopt a symbolic
approach such as the symbolic semantics for message passing CCS in [10].
We drew on this approach for our earlier work [14] in defining a symbolic se-
mantics and bisimulation for LOTOS. That definition did not deal effectively
with recursive processes, and could not be easily implemented (since it re-
quired an infinite stock of new names). These problems are addressed here and
the definitions considerably revised. The symbolic approach is also taken by
Eertink [8]. While Eertink's semantics achieves a separation of the concerns of
data and process, without losing information, it is rather operational, concen-
trating on using the semantics in a simulation tool. There are no equivalences
or preorder relations associated with the semantics.

Our motivation is to define an entire symbolic framework for reasoning
about LOTOS specifications including a symbolic semantics, appropriate log-
ics, relations and tools. It is important that this new framework preserves the
distinguishing features of LOTOS (presented in Section 2). In this paper we
present the foundation of the framework: symbolic transition systems (STSs)
and the axioms and rules for generating an STS from a (possibly open) LOTOS
behaviour expression (Section 3). In order to define relations over STSs we
must first define the notion of substitution over STSs (Section 4). We fol-

A Symbolic Semantics and Bisimulation for Full LOTOS 3

low this with the definition of symbolic bisimulation (Section 5). Symbolic
bisimulation should not lead to processes being distinguished which are not
in the standard semantics; similarly processes which are distinguished under
the standard semantics are not identified in the symbolic semantics. We have
proven this to hold for unparameterised processes, but the proof is the sub-
ject of a different paper. Broadly, we follow the approach taken in [10] for
symbolic transition graphs and message passing CCS, but our approach differs
in several significant ways to accommodate the particular features of LOTOS.
Finally, we draw our conclusions and discuss future directions.

2. Distinguishing Features of LOTOS

We assume the reader is familiar with the standard LOTOS syntax and se-
mantics [11]. An accessible tutorial to LOTOS is [12]. Here we present three
related features distinguishing LOTOS from most of the standard process al-
gebras, particularly message passing CCS: multi-way (broadcast) synchroni-
sation, value negotiation, and selection predicates. These make it non-trivial
to directly apply the notion of symbolic transition and bisimulation of [10].

Multi-way synchronisation means that when two actions synchronise, with
possibly some data exchange taking place, the resulting action may be involved
in further synchronisation. As a result of multi-way synchronisation, it makes
less sense in LOTOS to refer to“input” events and “output” events. In LOTOS
an event offers a single value or a set of values drawn from a particular sort;
these two cases are distinguished by the use of � or � respectively.

Multiway synchronisation is achieved in the underlying transition system by
encoding data into transitions in both ! and ? events. This can be seen clearly
by referring to the rules from the standard [11] for generating a transition sys-
tem from action prefix events. The rule for ! events is straightforward:

g �E � P gv
� P

where E is a data expression (with no variables in the case of the standard
LOTOS semantics) and v � �E � (i.e. the equivalence class of E). Perhaps less
obvious is the rule for � events:

g�x �S � P gv
� P �v�x �

where v is a ground term of sort S , and P �v�x � denotes the substitution of v
for x in P . This rule gives us an axiom schema for each �x event. For example,
see Fig. 1; each possible value of Nat results in a transition.

Thus, � event offers correspond to a (possibly infinite) choice over all values
of the data type. The binding of x is defined at this point, i.e. the semantics is
early. A late semantics (where binding of variables to values is delayed as long
as possible) has no counterpart in the (standard) concrete semantics. This is in
constrast to value-passing CCS where both kinds of semantics are possible.

4

g0
g1 g2

gn
... ...

g?x:Nat;P

Figure 1. Standard semantics of g?x:Nat event offer

Encoding of values in the transitions affects the rules for synchronised par-
allelism. Consider a rule for CCS style two-way synchronisation. We use
LOTOS syntax here for comparison:

g �E � P�
gv
� P� g�x �S � P�

gx
� P�

g �E � P�j �g � j g�x �S � P�

i
� P�j �g � jP��v�x �

There is a single transition associated with the � offer (labelled with x) and
a clear indication that value passing is occurring: x gets bound to the value
v . However, this approach is clearly limited to two-way synchronisation be-
cause the transition label becomes the unobservable i action which may not
synchronise with any other action.

Contrast this with the LOTOS approach to synchronisation:

g �E � P�
gv
� P� g�x �S � P�

gv
� P�

g �E � P�j �g � j g�x �S � P�
gv
� P� j �g � jP�

Here, one of the transitions generated by the axiom schema for � offers is cho-
sen to match the transition generated by the � offer (where v � �E �). That
is, there may be lots of other potential transitions from the state g�x 	 S
 P�
labelled with g and some value, but only one which is labelled with the exact
value v . In fact, this is only one case of the rule for parallelism. In particular,
the processes in the premise may be a further parallel combination, yielding
multi-way synchronisation. Different combinations of offers are also permit-
ted, i.e. � and � offers can synchronise in any combination. The most unusual
case is value negotiation, which arises when g�x 	S and g�y 	S synchronise,
the result being that for every possible value, x and y are bound to the same
value thereafter. Both values must have the same type.

Selection predicates may restrict data further. For example, transitions where
x � �� are denied by g�x 	 S �x � ���. If the selection predicate evaluates to
false, the event itself is prevented from occurring. In the case of value negoti-
ation if both � offers are qualified by selection predicates, then the value must
satisfy both predicates. An important distinction from other process algebras
is that selection predicates can refer to data in the current event (typically the
guards found in other process algebras refer to data from previous events).

A Symbolic Semantics and Bisimulation for Full LOTOS 5

So, to preserve multi-way synchronisation and selection predicates in LOTOS,
we cannot simply employ the CCS approach to � offers. We therefore define a
new semantics based on symbolic transition systems.

3. Symbolic Transition Systems for LOTOS

3.1. Preliminaries

We assume a countable set of variables, Var, ranged over by x, y, etc., and
a (possibly infinite) set of values, Val, ranged over by v . We also assume a
set of data expressions, Exp, which includes Var and Val and is ranged over
by E , and a set of Boolean expressions, BoolExp, ranged over by b, including
the constants tt (true) and � (false). We also assume that we have a set of
gates, G , ranged over by g . The set of events, denoted Act, ranged over by �,
comprises SimpleEv and StructEv. The set of simple events, SimpleEv, ranged
over by a , is defined as G � fi, �g. (Recall that in LOTOS i is the internal
event and � is the exit event.) The set of structured events, StructEv, contains
all gate-expression combinations gE , as well as all combinations �E .

We assume the existence of the flattening function of the standard seman-
tics [11]. The flattening function ensures that the given specification adheres to
the LOTOS syntax, but also removes all hierarchical structure, ensures unique-
ness of variable names, and that all names and types used are previously de-
fined. The resulting object is called a canonical LOTOS specification.

We follow several naming conventions of the standard, including the use of
a variable name to stand for a more complex structure including information
not just about the name of a variable, but also its type and scope.

Variables and Substitutions. Variables and substitutions are over data, and
typed, although we do not make this explicit, as noted above.

We assume a set new-var of fresh variable names. Strictly speaking, any
reference to this set requires a context, i.e. the variable names occuring so far.
For simplicity, we will assume that this context can be inferred, as required.

A substitution is a partial function from Var to Var�Val, written as �z�x �
where z is substituted for x . A substitution is denoted �, and the composition
of two substitutions �� and �� is denoted ����, where �� has precedence.

Structured Events. Multiple data offers at a gate, e.g. g �x �y�n 	 Nat
 P ,
are allowed by LOTOS syntax. For simplicity in the following we will assume
that only one event offer can occur at a gate. The obvious generalisation to lists
of event offers can be easily made. The function name() : Act � f�� ig �
G � f�� ig extracts the gate name from a structured event and is defined in [11].

6

Free and Bound Variables. The variables occurring in a data expression
E are given by vars�E
. A behaviour expression may contain free and bound
data variables. The free variables of behaviour expressions, denoted fv�P
, are
defined in Definition 5 of the Appendix.

Informally, free variables arise through usage in an expression where the
variable name has been previously bound in one of several ways: as a formal
process parameter, by a � event, a let clause, or an enable (��) with accept
clause. For example, in g�x
 g �x
 exit , all occurrences of x are bound, but in
g �x
 exit , x is free.

3.2. Symbolic Transition Systems

Following [10], symbolic transition systems (STS) are transition systems
separating data from process behaviour by making the data symbolic. We de-
fine an STS to be a labelled transition system with variables, both in states and
transitions, and conditions which determine the validity of a transition.

Definition 1 (Symbolic Transition Systems)
A symbolic transition system consists of:

A (nonempty) set of states.
Each state T is associated with a set of free variables, denoted fv�T
.

A distinguished initial state, T�.

A set of transitions T b �
� T � such that fv�T �
 � fv�T
 � fv��
 and

fv�b
 � fv�T
 � fv��
 and ��fv��
� fv�T

 � �.

Following convention, we shall often identify an STS with its initial state.
Since one possible interpretation of states is to view them as labelled by be-
haviour expressions, the set of free variables of an STS T , fv�T
, can be de-
fined as fv�P
, where P is the behaviour expression labelling T .

3.3. Intuition

We give a symbolic semantics for LOTOS by associating a symbolic transi-
tion system with each LOTOS behaviour expression P , written STS�P
. Be-
fore giving the axioms and rules for the symbolic semantics, we give an ex-
ample illustrating the concrete (Fig. 2) and symbolic (Fig. 3) semantics for the
behaviour expression

g�x 	Nat�x � ���
 h�y 	Nat
 h�x
 stop

In the standard semantics, query offers are instantiated by explicit data of-
fers. Therefore, in Fig. 2, the � offers correspond to either many or an infinite
number of transitions, each labelled by a concrete offer.

A Symbolic Semantics and Bisimulation for Full LOTOS 7

h!0;stop

h!0;stop

g0 h0
h1

g9

h0

h0
stop

stop

h?y:Nat;
h!0;stop

.
.
.

stop

h!9;stop

h!9;stop
h1

h0 h9

h9

stoph?y:Nat;
h!9;stop

g?x:Nat[x<10];
h?y:Nat;h!x;stop

.
.
.

.
.
.

Figure 2. Standard “Concrete” Transition System

In the symbolic semantics, open behaviour expressions label states (e.g.
h�x
 stop), and transitions offer variables. The range of permissible values
for the variables is determined by the Boolean conditions. Whereas the system
in Fig. 2 has infinite branching, the system in Fig. 3 has only finite branching.

tt
stop

x<10 gx hy hxtt
h!x;stop

g?x:Nat[x<10];
h?y:Nat;h!x;stop

h?y:Nat;
h!x;stop

Figure 3. Symbolic Transition System

3.4. Key Features

Many of the rules given in the following section are very similar to those in
the LOTOS standard; only a simple notational change to make the transition a
symbolic one is required. We note here the main departures from the standard
semantics, and differences from [10] and [14]).

The syntactic distinction between the two kinds of data offer, i.e. be-
tween � and �, has been lost. That is, both are represented by a transi-
tion labelled by a gate, an expression (possibly a simple variable) and
a Boolean condition. Each offer is a set of values constrained in some
way – expressed both by the form of the expression and by the condition
of the transition. The type of offer can be determined by examining the
free variables of the associated states, i.e. if fv�E
 � fv�T
 then this is a
free variable (in a � offer, introduced previously), and if fv�E
 �	 fv�T

then this is a new variable (in a � offer, introduced in this transition).

8

Guarding, prefix and parallelism are the only rules which alter transition
conditions, but unlike the LOTOS standard we do not evaluate those
conditions while constructing the STS.

Transitions associated with � events may introduce new variables, in
order to avoid variable name capture. For example, the query variable
in g�x 	 S
 P jjj g �x
 Q needs to be renamed in order avoid capturing
the free variable in the right hand side. New variables may be necessary
even when every � variable in a specification is unique. For example,
when a process is invoked more than once, e.g. P �g � jjj P �g � where
P �g � � g�x 	 S
 P �, then one of the x variables must be assigned a
unique name to avoid confusion. We assume that we may perform alpha
conversion (renaming of free variables) whenever necessary.

This is a major difference from our previous work [14], in which new
variables were introduced at every data offer and synchronisation. This
style of semantics gave a very clear distinction between information
about a value (in the Boolean condition) and the value itself (denoted
by a variable name), but would be difficult to implement since so many
new names are required. Hence our revised version presented here.

Transitions may have conditions which are not satisfiable, and may arise
through unsatifiable guards in the LOTOS description, or through unsat-
isfiable combinations obtained through synchronisation.

3.5. Axioms and Rules of Transition

In this section we give the rules to generate STS�P
, the symbolic semantics
of behaviour P , from a given canonical LOTOS behaviour expression P . Fol-
lowing the LOTOS standard the rules are grouped according to syntactic struc-
tures (shown in the boxes). Axioms show the transition and resulting state
from a given portion of LOTOS syntax (on the left of the transition). Rules
show the same, but with some preconditions given above the line. Note that
relabelling is not part of standard LOTOS syntax, but is introduced in order to
define process instantiation (as in the LOTOS standard).

We give here a complete set of rules for deriving a symbolic semantics for
a LOTOS expression; however, the most interesting rules are those for prefix,
exit, guard, and parallelism.

prefix axioms

a� P
tt a

� P

g d � P tt gE �

� P

E � �

�
E if d � �E
x if d � �x �S

A Symbolic Semantics and Bisimulation for Full LOTOS 9

g d �SP�� P SP gE �

� P

E � �

�
E if d � �E
x if d � �x �S

exit axioms

exit tt �
� stop

exit�ep	 tt �E �

� stop

E � �

�
E if ep � E

z if E � any S where z � new-var�

let rule

P �E�x � b �
� P �

let x � S � E in P b �
� P �

choice range rules

P �gi�g �
b �
� P �

choice g in �g�� � � � � gn � [] P b �
� P �

for each gi � fg�� � � � � gng

P b �
� P �

choice x � S [] P b �
� P �

par rule

P �g��g � op � � � op P �gn�g �
b �
� P �

par g in �g�� � � � � gn � op P b �
� P �

where op is one of the parallel operators, k , jjj , or j �h�� � � � � hm � j ,

for some gate names h�� � � � � hm .

hide rules

P b �
� P �

hide g�� � � � � gn in P
b i
� hide g�� � � � � gn in P �

if name��	 � fg�� � � � � gng

P b �
� P �

hide g�� � � � � gn in P b �
� hide g�� � � � � gn in P �

if name��	 �� fg�� � � � � gng

10

accept rules

P�
b �
� P �

�

P� � accept x �S in P�
b �
� P �

� � accept x �S in P�

if name��	 �� �

P�
b �E
� P �

�

P� � accept x �S in P�
b i
� P��E�x �

Similarly for � with no data.

disable rules

P�
b �
� P �

�

P� �� P�

b �
� P �

� �� P�

if name��	 �� �

P�
b �
� P �

�

P� �� P�
b �
� P �

�

if name��	 � �

P�

b �
� P �

�

P� �� P�
b �
� P �

�

general parallelism rules (synchronising)

P�
b� g
� P �

� P�
b� g
� P �

�

P�j �g�� � � � � gn � jP�
b� � b� g

� P �

�j �g�� � � � � gn � jP
�

�

where g � fg�� � � � � gn � �g

P�
b� gE�� P �

� P�
b� gE�� P �

�

P�j �g�� � � � � gn � jP�
b� � b� � E� � E� gE�� P �

�j �g�� � � � � gn � jP
�

�

when vars�b� � E�	 � vars�b� � E�	 � �.

general parallelism rules (not synchronising)

P�
b �
� P �

�

P�j �g�� � � � � gn � jP�
b� ��
� P �

��j �g�� � � � � gn � jP�

name��	 �� fg�� � � � � gn � �g

� �

�
�z�x � if � � gx and x � vars�P�	 where z � new-var�
� � otherwise

Similarly for P�.

A Symbolic Semantics and Bisimulation for Full LOTOS 11

choice rules

P�
b �
� P �

�

P� [] P�
b �
� P �

�

P�

b �
� P �

�

P� [] P�
b �
� P �

�

guard rule

P b �
� P �

��SP� �� P	 b � SP �
� P �

stop rule

stop generates no rules.

instantiation rule

P �g��h�� � � � � gn�hn ��E��x�� � � � �Em�xm � b �
� P �

p�g�� � � � � gn ��E�� � � � �Em	 b �
� P �

where p�h�� � � � � hn ��x�� � � � � xm	 �� P is a process definition

parenthesis rule

P b �
� P �

�P	 b �
� P �

relabel rule

P b �
� P �

�P	�g��h�� � � � � gn�hn �
b ��

� �P �	�g��h�� � � � � gn�hn �

�� �

�
hi if � � gi and gi � fg�� � � � � gng
hiE if � � giE and gi � fg�� � � � � gng
� otherwise

4. State Equivalence and Substitution in STSs

When constructing STSs from behaviour expressions, straightforward syn-
tactic substitution on behaviour expressions was employed. Thus, state equiv-
alence is defined purely by syntactic equivalence of LOTOS behaviours. How-
ever, in order to define equivalence relations, preorders, or logics over STSs
and to ensure that cycles (such as might arise from recursive processes) are
handled correctly, we must define substitution on STSs. This is new from [14].

In [10], this problem is solved by introducing the concept of a “term”: a
node in a symbolic transition system paired with a substitution. The same
solution can be adapted for LOTOS.

12

Formally, a term consists of an STS, T , paired with a substitution, � such
that domain��
 � fv�T
. We write this as T� to indicate that the substitution
is not applied directly to T , and use t and u to range over terms.

Definition 2 gives the rules for transitions on terms, given the corresponding
transitions on STSs. Only three cases are required: dataless transitions, tran-
sitions arising from � offers, and transitions arising from � offers. In all cases,
�� � fv�T �
 C �, that is, the restriction of � to include only domain elements
in the set fv�T �
. The definition of free variables is extended to terms in the
obvious way. Terms, rather than STSs, are used as the basis for defining the
bisimulation in the next section, and the logic in [5, 6].

Definition 2 (Transitions between terms)

T b a
� T � implies T�

b� a
� T �

��

T b gE
� T � implies T�

b� gE�
� T �

�� where fv�E
 � fv�T

T b gx
� T � implies T�

b��z�x � gz
� T �

���z�x � where x �	 fv�T
� z �	 fv�T�

We note that while the vast majority of LOTOS specifications give rise to
finite STSs, infinite (depth) STSs are still possible, for (data) parameterised
processes. For example, P(x) = g!x; P(x+1) has an infinite (depth) STS. We
do not consider the possibility of infinite depth a major drawback for our ap-
proach, but are beginning to investigate ways of dealing with it.

5. Symbolic Bisimulations

Standard bisimulation on transitions without data requires only the gate
names to be the same. The obvious extension to transitions with data requires
both gate and value to be matched exactly. In the symbolic world this is not
appropriate. Consider, a symbolic transition stands for a set of concrete transi-
tions. There are many ways to split this set into subsets; each characterisation
yields a different symbolic representation. Therefore, in symbolic bisimula-
tion, all gate names have to match exactly, but there need not be a one to
one correspondence between values. A single transition in one process can be
matched by one or more transitions in the other.

For example, consider the processes in Figure 4. The processes are clearly
bisimilar, subject to the bisimilarity of T� with U � and U �, but one transition
in T , x 	 A � �A, matches two transitions in U , x 	 A or x �	 A.

This idea of partitioning data into different sets, according to some Boolean
expressions, is the crux of the following definition of symbolic bisimulation.
The use of the partition means that each bisimulation is a parameterised family
of relations, where the parameters are the predicates. Whereas Hennessy and
Lin [10] define both an early and a late bisimulation equivalence, only an early
bisimulation is meaningful in our context (as explained in Section 2).

A Symbolic Semantics and Bisimulation for Full LOTOS 13

tt
gx

T

T’

gx gx

U

U1 U2

x in A x in A

Figure 4. Bisimulation example

We give a definition of “layered” symbolic bisimulation, written
bi , where
i is the depth of bisimulation and b is the initial context (usually simply tt).

We assume a function new�t � u
 which, given two terms t and u , returns a
variable which is not among the free variables of either t or u .

Definition 3 (Symbolic Bisimulation on terms)
For all b, a Boolean expression, t and u , terms:

1 t
b
� u .

2 For all n � �, t
b
n�� u iff

(a) (dataless case)
if t has a transition t bt �

� t � then there is a finite set of Boolean
conditions B over fv�t
 such that �b � bt
�

W
B and for each

b � 	 B there is a transition u bu �
� u � such that b� � bu and t �
b�

n u �.

(b) (data case, no new variable)
if t has a transition t bt gEt� t �, where fv�Et
 � fv�t
, then there
is a finite set of Boolean conditions B over fv�t
 � fzg such that
�b � bt � z � Et
�

W
B , where z � new�t � u
, and for each

b � 	 B either
there is a transition u bu gEu� u �, where fv�Eu
 � fv�u
,
and b� � bu and b� � Et � Eu and t �
b�

n u �

or
there is a transition u bu gz

� u � such that b� � bu and t �
b�

n u �

(c) (data case, new variable)
if t has a transition t bt gz

� t �, where z � new�t � u
, then there
is a finite set of Boolean conditions B over fv�t
 � fzg such that
�b � bt
�

W
B and for each b� 	 B either

there is a transition u bu gEu� u �, where fv�Eu
 � fv�u
,
and b� � bu and b� � z � Eu and t �
b�

n u �

or
there is a transition u bu gz

� u � and b� � bu and t �
b�

n u �

(d), (e), (f) Symmetrically, the transitions of u must be matched by t .

14

We may be relating processes that are parameterised. Therefore, the free
variable (parameter) must be matched accordingly.

Definition 4 (
b for parameterised processes)
If fv�t
 � fxg, fv�u
 � fyg, and z � new�t � u
 then

t
b u iff
 z �t�z�x �

b�z�x �z�y� u�z�y�,

We use
b to denote the largest symbolic bisimulation, for a given b.
The role of the partition is to provide a step between the Boolean conditions

of term t and those of term u . This can be clearly seen in case (a). The intuition
for cases (b) and (c) of Definition 3 is as follows. For case (b) we assume that
the data of the t transition is a value (expression). The role of the new variable
z is to provide a common language for matching transitions. In the context of
b �, a member of the partition, the expression Et can either be matched by a u
transition with an equivalent value Eu , or a u transition with a new variable z .
The rules for transitions between terms (Definition 2) allow the new variable z
to be used without explicit renaming at this point. The conditions for matching
vary depending on what sort of u transition is matched. Essentially, if a new
variable is matched then conditions relating to the data are captured exactly by
the condition bu . If a data expression is matched then information about data
is given both by bu and the expression Eu . Case (c) considers the situation in
which the data of the t transition is a new variable z .

The resulting bisimulation is a Boolean condition-indexed relation. So, in
most cases, when t
b u , and t evolves to t�, and u evolves to u�, and t �
b�

u �,
then b� is a different condition to b, i.e. different states in the symbolic tran-
sition systems will be related by different members of the family of relations.
This is because, in a typical symbolic transition system, restrictions on data
increase with depth.

We have no space here to include an example; see [7].

6. Conclusions and Further Work

We have defined a symbolic semantics for LOTOS in terms of symbolic
transition systems, and symbolic bisimulation over those transition systems.
Broadly speaking, we have adopted the approach of [10]; however, the features
of LOTOS, especially the need to accomodate multi-way synchronisation and
the resulting model of value passing, mean that this is not a straightforward
adaptation of the theory presented in [10].

Our symbolic approach eliminates infinite branching which has been a ma-
jor source of difficulty in reasoning about LOTOS specifications. The inference
rules for the semantics are relatively simple and intuitive, and the meaning of
unparameterised processes is the same as in the standard semantics (although
we did not show that here).

A Symbolic Semantics and Bisimulation for Full LOTOS 15

We have only considered strong bisimulation here, though clearly other
forms of equivalence (e.g. weak bisimulation) can be defined. While we have a
means of checking whether a given relation is a symbolic bisimulation we have
not given here an effective method of constructing that relation. However, it
is fairly easy to see that the partition has to be derived from (the cross product
of) the conditions in each transition system; an algorithm has been developed
and implemented in Haskell. Worst case complexity is exponential, but early
recognition of zeros (in the Boolean expressions) can lessen the pain some-
what. A further interesting case is infinite (depth) transition systems. In this
case we have to add a notion of state (in the imperative sense) to each (STS)
state, which is beyond the scope of this paper.

Related work includes the definition of a modal logic FULL [5] which is
adequate with respect to a version of the bisimulation defined here [6]. That
is, it distinguishes and identifies exactly the same processes as that bisimu-
lation. Tools to support model checking of FULL with respect to LOTOS
specifications (or STSs) are also being developed based on several different
implementation paradigms [3, 4, 13].

Acknowledgments

The authors would like to thank Savi Maharaj for useful input on the defini-
tion of bisimulation, and Ed Brinksma for many fruitful discussions on reason-
ing about LOTOS. Carron Shankland thanks the British Council, the Nuffield
Foundation and the Engineering and Physical Sciences Research Council (un-
der the project “Developing Implementation and Extending Theory: A Sym-
bolic Approach to Reasoning about LOTOS”) for their support.

Appendix: Auxiliary Definitions

Definition 5 (Free Variables)
Let vars�E	 be the variables occurring in expression E . The set of free variables occurring in
an expression is fv�E	 � vars�E	. The set of free variables of behaviour expression P, fv(P), is
defined by

fv(stop) = fg
fv(exit) = fg
fv(exit(x)) = fxg
fv(P �g �) = fg
fv(P �g ��x�� � � � � xn) = fx�� � � � � xng
fv(g � P) = fv(P)
fv(g�x �S �SP�� P) = �vars�SP	 � fv�P		 n fxg
fv(g �x �SP�� P) = fxg � vars�SP	 � fv�P	
fv(�SP���P) = vars�SP	 � fv�P	
fv(let x � E in P) = vars�E 	 � �fv�P	 n fxg	
fv(hide g in P) = fv(P)

16

fv(P� � P�) = fv�P�	 � fv�P�	,
where * = [] ,�� , � , j �g�� � � � � gn � j , k , jjj

fv(P� � accept x � S in P�) = fv�P�	 � �fv�P�	 n fxg	
fv(choice g in �g�� � � � � gn � [] P) = fv�P	
fv(choice x � T [] P) = fv�P	 n fxg
fv(par g in �g�� � � � � gn � op P) = fv�P	 where op is one of the parallel operators

Similarly for the set of free variables of an action �, fv��	.

References
[1] T. Bolognesi, editor. Catalogue of LOTOS Correctness Preserving Transformations. Tech-

nical Report Lo/WP1/T1.2/N0045, The LOTOSPHERE Esprit Project, 1992.
[2] E. Brinksma. From Data Structure to Process Structure. In K.G. Larsen and A. Skou,

editors, Proceedings of CAV 91, LNCS 575, pages 244–254, 1992.
[3] J. Bryans and C. Shankland. Implementing a modal logic over data and processes using

XTL. In this volume. Kluwer, 2001.
[4] J. Bryans, A. Verdejo, and C. Shankland. Using Rewriting Logic to implement the modal

logic FULL. In D. Nowak, editor, AVoCS'01: Workshop on Automated Verification of
Critical Systems, 2001. Oxford University Computing Laboratory technical report PRG-
RR-01-07.

[5] M. Calder, S. Maharaj, and C. Shankland. A Modal Logic for Full LOTOS based on
Symbolic Transition Systems. The Computer Journal, 2001. In press.

[6] M. Calder, S. Maharaj, and C. Shankland. An Adequate Logic for Full LOTOS. In
J. Oliveira and P. Zave, editors, Formal Methods Europe'01, LNCS 2021, pages 384–395.
Springer-Verlag, 2001.

[7] M. Calder and C. Shankland. A Symbolic Semantics and Bisimulation for Full LOTOS.
Technical Report TR-2001-77, University of Glasgow, 2001. Extended version.

[8] H. Eertink. Simulation Techniques for the Validation of LOTOS Specifications. PhD thesis,
University of Twente, 1994.

[9] R. Gotzhein. Specifying Abstract Data Types with LOTOS. In B. Sarikaya and G.V.
Bochmann, editors, Protocol Specification, Testing, and Verification, VI, pages 15–26. El-
sevier Science Publishers B.V. (North-Holland), 1987.

[10] M. Hennessy and H. Lin. Symbolic Bisimulations. Theoretical Computer Science,
138:353–389, 1995.

[11] International Organisation for Standardisation. Information Processing Systems — Open
Systems Interconnection — LOTOS — A Formal Description Technique Based on the Tem-
poral Ordering of Observational Behaviour, 1988.

[12] L. Logrippo, M. Faci, and M. Haj-Hussein. An Introduction to LOTOS: Learning by
Examples. Computer Networks and ISDN Systems, 23:325–342, 1992.

[13] P. Robinson and C. Shankland. Implementing the modal logic FULL using Ergo. In
D. Nowak, editor, AVoCS'01: Workshop on Automated Verification of Critical Systems,
2001. Oxford University Computing Laboratory technical report PRG-RR-01-07.

[14] C. Shankland and M. Thomas. Symbolic Bisimulation for Full LOTOS. In M. John-
son, editor, Algebraic Methodology and Software Technology, Proceedings of AMAST 97,
LNCS 1349, pages 479–493. Springer-Verlag, 1997.

[15] M. Thomas. The Story of the Therac-25 in LOTOS. High Integrity Systems Journal,
1(1):3–15, 1994.

[16] M. Thomas. Modelling and Analysing User Views of Telecommunications Services. In
Feature Interactions in Telecommunications Systems, pages 168–183. IOS Press, 1997.

