A SYMBOLIC SEMANTICSAND BISIMULATION
FOR FULL LOTOS

Muffy Calder

Department of Computing Science,
University of Glasgow, Glasgow G12 8QQ
muffy@dcs.gla.ac.uk

Carron Shankland

Department of Computing Science and Mathematics,
University of Stirling, Stirling FK9 4LA
carron@cs.stir.ac.uk

Abstract
A symbolic semantics for Full LOTOS in terms of symbolic transition sys-
tems is defined; the semantics extends the (infinitely branching) standard seman-
tics by giving meaning to data parameterised behaviours, and provides afinitely
branching representation for behaviours. Symbolic bisimulation is defined.
This extends our previous work [14], making the definitions more amenable
to automated reasoning and processes with recursion.

Keywords: LOTOS, symbolic transition systems, symbolic bisimulation.

1. Introduction

LOTOS[11] is amessage passing process agebra which combines two or-
thogonal languages. aprocess language, known as Basic LOTOS, with features
from both CSP and CCS, and the equational abstract data type language ACT
ONE. LOTOS is an ISO standard [11] whose given semantics is in terms of
structured labelled transition systems. In this semantics (referred to here asthe
standard semantics), each data variable in a process is instantiated by every
possible value of its corresponding type, resulting in infinite transition systems
(both in breadth and in depth).

This approach has severa drawbacks. First, it isimpossible to use standard
(finite state) model-checking techniques over infinite transition systems; the
usua solution isto restrict the underlying datatypes. Indeed, any kind of auto-

2

mated reasoning becomes difficult, if not impossible. Second, because the data
values are embedded in the transitions, any uniformities in the actions of the
processes are lost. For example, the process description may make it clear that
aparticular action happens when the value of some variable lies between 3 and
42 (say), but that information is much harder to extract from the labelled tran-
sition system directly, especialy if there are an infinite number of branches.
Finally, as a consequence of this approach it is not possible to reason about
partial, or data parameterised, behaviour expressions. Our experiences with
LOTOS applications (e.g. [15, 16]) indicate that thisis highly desirable.

The advantage of the standard approach isthat it easily accommodates multi-
way synchronisation, i.e. associative synchronisation between two or more
processes. Multi-way synchronisation hasled to aparticular constraint-oriented
style of specification in the LOTOS community which is particularly useful
when building a system by layering behaviour on a simple building block.

The problem we address here and in [14] is how to reason over potentially
infinite LOTOS processes while retaining multi-way synchronisation and with-
out restricting the datatypes. Since the addition of data to the language is the
reason for the problem, some sort of separation of the concerns of data and
processes seems appropriate. There are three kinds of solution to this prob-
lem. Thefirst isto get rid of data altogether in a brute force manner [1] which
changes the behaviour of the process. The second is to construct a process
representation of the data type [2, 9]. This approach only converts data op-
erations into process operations; the data values are still present therefore the
process remains infinite branching. The third solution is to adopt a symbolic
approach such as the symbolic semantics for message passing CCS in [10].
We drew on this approach for our earlier work [14] in defining a symbolic se-
mantics and bisimulation for LOTOS. That definition did not deal effectively
with recursive processes, and could not be easily implemented (since it re-
quired an infinite stock of new names). These problems are addressed here and
the definitions considerably revised. The symbolic approach is also taken by
Eertink [8]. While Eertink's semantics achieves a separation of the concerns of
data and process, without losing information, it is rather operational, concen-
trating on using the semantics in a simulation tool. There are no equivalences
or preorder relations associated with the semantics.

Our motivation is to define an entire symbolic framework for reasoning
about LOTOS specifications including a symbolic semantics, appropriate log-
ics, relations and tools. It isimportant that this new framework preserves the
distinguishing features of LOTOS (presented in Section 2). In this paper we
present the foundation of the framework: symbolic transition systems (STSs)
and the axioms and rules for generating an STSfrom a (possibly open) LOTOS
behaviour expression (Section 3). In order to define relations over STSs we
must first define the notion of substitution over STSs (Section 4). We fol-

A Symbolic Semantics and Bisimulation for Full LOTOS 3

low this with the definition of symbolic bisimulation (Section 5). Symbolic
bisimulation should not lead to processes being distinguished which are not
in the standard semantics; similarly processes which are distinguished under
the standard semantics are not identified in the symbolic semantics. We have
proven this to hold for unparameterised processes, but the proof is the sub-
ject of a different paper. Broadly, we follow the approach taken in [10] for
symbolic transition graphs and message passing CCS, but our approach differs
in severa significant ways to accommodate the particular features of LOTOS.
Finally, we draw our conclusions and discuss future directions.

2. Distinguishing Featuresof LOTOS

We assume the reader is familiar with the standard LOTOS syntax and se-
mantics [11]. An accessible tutorial to LOTOSis[12]. Here we present three
related features distinguishing LOTOS from most of the standard process al-
gebras, particularly message passing CCS. multi-way (broadcast) synchroni-
sation, value negotiation, and selection predicates. These make it non-trivial
to directly apply the notion of symbolic transition and bisimulation of [10].

Multi-way synchronisation means that when two actions synchronise, with
possibly some data exchange taking place, the resulting action may beinvolved
in further synchronisation. As aresult of multi-way synchronisation, it makes
less sense in LOTOS to refer to"input” events and “output” events. In LOTOS
an event offers a single value or a set of values drawn from a particular sort;
these two cases are distinguished by the use of ! or 7 respectively.

Multiway synchronisation isachieved in the underlying transition system by
encoding data into transitions in both ! and ? events. This can be seen clearly
by referring to the rules from the standard [11] for generating a transition sys-
tem from action prefix events. Therulefor ! eventsis straightforward:

g\l P gv, p

where F is a data expression (with no variables in the case of the standard
LOTOS semantics) and v = [F] (i.e. the equivalence class of E). Perhaps less
obviousisthe rule for 7 events:

g?z:S; P 9 Plv/x]

where v is aground term of sort S, and P[v/z] denotes the substitution of v
for z in P. Thisrule gives us an axiom schema for each 7z event. For example,
see Fig. 1; each possible value of Nat resultsin atransition.

Thus, 7 event offers correspond to a (possibly infinite) choice over all values
of the data type. The binding of z is defined at this point, i.e. the semanticsis
early. A late semantics (where binding of variablesto valuesis delayed aslong
as possible) has no counterpart in the (standard) concrete semantics. Thisisin
constrast to value-passing CCS where both kinds of semantics are possible.

go gn

Figurel. Standard semantics of g?x:Nat event offer

Encoding of values in the transitions affects the rules for synchronised par-
alelism. Consider a rule for CCS style two-way synchronisation. We use
LOTOS syntax here for comparison:

g'E; Py gv, p, g?x:8S; P» 9T, p,
9'E; Pi|lg]]| g7w:S; Po ——— Pi|[g]| P2[v/x]

Thereis asingle transition associated with the 7 offer (labelled with z) and
a clear indication that value passing is occurring: = gets bound to the value
v. However, this approach is clearly limited to two-way synchronisation be-
cause the transition label becomes the unobservable i action which may not
synchronise with any other action.

Contrast this with the LOTOS approach to synchronisation:

g'E; Py v, p; g?z:S; P2 9Y, Py
9'E; Pi|[g]] g7z:S; Po Py |[g]] P2

Here, one of the transitions generated by the axiom schemafor 7 offersis cho-
sen to match the transition generated by the ! offer (where v = [E]). That
is, there may be lots of other potentia transitions from the state g7z : S; B
labelled with ¢ and some value, but only one which is labelled with the exact
value v. In fact, thisis only one case of the rule for paralelism. In particular,
the processes in the premise may be a further parallel combination, yielding
multi-way synchronisation. Different combinations of offers are also permit-
ted, i.e. ! and ? offers can synchronise in any combination. The most unusual
case is value negotiation, which ariseswhen g7z : S and g7y : .S synchronise,
the result being that for every possible value, z and y are bound to the same
value thereafter. Both values must have the same type.

Selection predicates may restrict datafurther. For example, transitions where
z > 42 aredenied by g7z : S[z < 42]. If the selection predicate evaluates to
false, the event itself is prevented from occurring. In the case of value negoti-
ation if both ? offers are qualified by selection predicates, then the value must
satisfy both predicates. An important distinction from other process algebras
is that selection predicates can refer to data in the current event (typically the
guards found in other process algebras refer to data from previous events).

A Symbolic Semantics and Bisimulation for Full LOTOS 5

So, to preserve multi-way synchronisation and selection predicatesin LOTOS,
we cannot simply employ the CCS approach to ? offers. We therefore define a
new semantics based on symbolic transition systems.

3. Symbolic Transition Systemsfor LOTOS
3.1 Preliminaries

We assume a countable set of variables, Var, ranged over by x, y, etc., and
a (possibly infinite) set of values, Val, ranged over by v. We also assume a
set of data expressions, Exp, which includes Var and Val and is ranged over
by E, and a set of Boolean expressions, BoolExp, ranged over by b, including
the constants tt (true) and ff (false). We also assume that we have a set of
gates, GG, ranged over by ¢g. The set of events, denoted Act, ranged over by «,
comprises SmpleEv and SructEv. The set of simple events, SmpleEv, ranged
over by a, isdefined as G U {i, 6}. (Recall that in LOTOS i is the interna
event and § isthe exit event.) The set of structured events, StructEv, contains
al gate-expression combinations gF, aswell as all combinations 6 E.

We assume the existence of the flattening function of the standard seman-
tics[11]. Theflattening function ensures that the given specification adheresto
the LOTOS syntax, but also removes al hierarchical structure, ensures unique-
ness of variable names, and that all names and types used are previously de-
fined. The resulting object is called a canonical LOTOS specification.

We follow several naming conventions of the standard, including the use of
a variable name to stand for a more complex structure including information
not just about the name of avariable, but also its type and scope.

Variablesand Substitutions. Variables and substitutions are over data, and
typed, although we do not make this explicit, as noted above.

We assume a set new-var of fresh variable names. Strictly speaking, any
reference to this set requires a context, i.e. the variable names occuring so far.
For simplicity, we will assume that this context can be inferred, as required.

A substitution is a partial function from Var to Var U Val, written as [z /z]
where z is substituted for z. A substitution is denoted o, and the composition
of two substitutions o; and o5, is denoted o0, Where o5 has precedence.

Structured Events. Multiple data offers at a gate, e.g. ¢!z!y7n : Nat; P,
are alowed by LOTOS syntax. For simplicity in the following we will assume
that only one event offer can occur at agate. The obvious generalisation to lists
of event offers can be easily made. The function name() : Act U {4,i} —
G U {4, 1} extractsthe gate name from astructured event and isdefined in [11].

6

Free and Bound Variables. The variables occurring in a data expression
E are given by vars(E). A behaviour expression may contain free and bound
data variables. The free variables of behaviour expressions, denoted fv(P), are
defined in Definition 5 of the Appendix.

Informally, free variables arise through usage in an expression where the
variable name has been previously bound in one of several ways. as aformal
process parameter, by a ? event, alet clause, or an enable (>>) with accept
clause. For example, in g7z; g'x; exit, al occurrences of x are bound, but in
glx; exit, z isfree.

3.2. Symbolic Transition Systems

Following [10], symbolic transition systems (STS) are transition systems
separating data from process behaviour by making the data symbolic. We de-
finean STSto be alabelled transition system with variables, both in states and
transitions, and conditions which determine the validity of atransition.

Definition 1 (Symbolic Transition Systems)
A symbolic transition system consists of:

= A (nonempty) set of states.
Each state T' is associated with a set of free variables, denoted fv(7T').

= Adistinguished initial state, 7.

» A setof transitions 72—, 7" such that fv(T
)

C v(T)Ufv(a) and
fv(b) € v(T) Utv(a) and #(fo(a) — fo(T)) < 1.

")
<

Following convention, we shall often identify an STS with its initial state.
Since one possible interpretation of states is to view them as labelled by be-

haviour expressions, the set of free variables of an STS T, fv(T'), can be de-
fined as fv(P), where P is the behaviour expression labelling 7.

3.3. [ntuition

We give a symbolic semantics for LOTOS by associating a symbolic transi-
tion system with each LOTOS behaviour expression P, written STS(P). Be-
fore giving the axioms and rules for the symbolic semantics, we give an ex-
ampleillustrating the concrete (Fig. 2) and symbolic (Fig. 3) semantics for the
behaviour expression

g?xz:Nat[z < 10]; h?y:Nat; hlz; stop

In the standard semantics, query offers are instantiated by explicit data of-
fers. Therefore, in Fig. 2, the ? offers correspond to either many or an infinite
number of transitions, each labelled by a concrete offer.

A Symbolic Semantics and Bisimulation for Full LOTOS 7

_ h9
h?y:Nat; 0 hig:stop %@
h!9;stop

hO
h G
ho ho

Figure2. Standard “Concrete” Transition System

g?x:Nat[x<10];
h?y:Nat;h!x;stop

In the symbolic semantics, open behaviour expressions label states (e.g.
hlz; stop), and transitions offer variables. The range of permissible values
for the variables is determined by the Boolean conditions. Whereas the system
in Fig. 2 has infinite branching, the system in Fig. 3 has only finite branching.

)) 10 gx NaN\ tth tt hx
g2:Nat[x<10]; <19 9% o Nat: y ‘
h?y:Nat;h!x;stop h;;‘))(/;siop @

Figure3. Symbolic Transition System
3.4. Key Features

Many of the rules given in the following section are very similar to those in
the LOTOS standard; only a simple notational change to make the transition a
symbolic oneis required. We note here the main departures from the standard
semantics, and differences from [10] and [14]).

m The syntactic distinction between the two kinds of data offer, i.e. be-
tween 7 and !, has been lost. That is, both are represented by a transi-
tion labelled by a gate, an expression (possibly a simple variable) and
a Boolean condition. Each offer is a set of values constrained in some
way — expressed both by the form of the expression and by the condition
of the transition. The type of offer can be determined by examining the
free variables of the associated states, i.e. if fv(E) C fv(T) then thisisa
free variable (in a! offer, introduced previously), and if fv(E) & fv(T)
then thisis anew variable (in a7 offer, introduced in this transition).

m Guarding, prefix and parallelism are the only rules which alter transition
conditions, but unlike the LOTOS standard we do not evaluate those
conditions while constructing the STS.

m Transitions associated with 7 events may introduce new variables, in
order to avoid variable name capture. For example, the query variable
ing?z : S; P|| g'z; @ needsto berenamed in order avoid capturing
the free variable in the right hand side. New variables may be necessary
even when every 7 variable in a specification is unique. For example,
when a process is invoked more than once, e.g. Plg] ||| P[g] where
Plg] = g7z : S; P’, then one of the z variables must be assigned a
unigue nameto avoid confusion. We assume that we may perform alpha
conversion (renaming of free variables) whenever necessary.

This is a mgjor difference from our previous work [14], in which new
variables were introduced at every data offer and synchronisation. This
style of semantics gave a very clear distinction between information
about a value (in the Boolean condition) and the value itself (denoted
by avariable name), but would be difficult to implement since so many
new names are required. Hence our revised version presented here.

= Transitions may have conditions which are not satisfiable, and may arise
through unsatifiable guardsin the LOTOS description, or through unsat-
isfiable combinations obtained through synchronisation.

3.5. Axioms and Rules of Transition

In this section we give the rulesto generate STS(P), the symbolic semantics
of behaviour P, from a given canonical LOTOS behaviour expression P. Fol-
lowing the LOTOS standard the rules are grouped according to syntactic struc-
tures (shown in the boxes). Axioms show the transition and resulting state
from a given portion of LOTOS syntax (on the left of the transition). Rules
show the same, but with some preconditions given above the line. Note that
relabelling is not part of standard LOTOS syntax, but is introduced in order to
define process instantiation (as in the LOTOS standard).

We give here a complete set of rules for deriving a symbolic semantics for
aLOTOS expression; however, the most interesting rules are those for prefix,
exit, guard, and parallelism.

prefix axioms

a;Ptt ¢, P

gd; P 9E p

B if d=F
E_{x if d=7z:8

A Symbolic Semantics and Bisimulation for Full LOTOS

g d[sPl; PE— 98 p
, [E if d=1E
E_{x if d=7z:5
exit® 4, gop
exit(ep) 2 9E, stop
5= E ifep=F
z iIfEF = anyS wherez € new-var.

letz:S=Eim Pl o, p

choicerangerules‘
Plgi/ 9] 2~ P’
choice g in [gl,...,gn][]Pb * . p
foreach g; € {g1,...,9x}
P b « P’
b « P’

choicez : S[] P

Plgi/glop ... op Plg./g] ==~ P’
pargin[gl,...,g,,,]opr & !
where op is one of the parallel operators, ||, |||, or | [h1, - .., hm]],
-7hm,-

for some gate names Ay, . .

P b « P
, Gn N P’

hide g1, ..., gn inpt hide g1, ...
if name(a) € {g1,...,9n}
P b « P’
hide g1,...,gn in P2 hide g1,. .., gn in P’
e gn}

if name(a) & {g1, -

10

ptao.pl

P1> accept x:5 in P> b« P{ > accept z:S in Ps
if name(a) # §

P, b OF P{
Py > accept z:S in P b i Py[E /]

Similarly for > with no data.

disablerules
pb o, p!
P[> Pyt s P[> P,

if name(«) # 6

pt o, p
Pi[>P, b2, p

if name(a) = 4§

Pt o, pl
P[>P, bt <. P

general parallelism rules (synchronising) ‘

P9, p P29, pl
b b
Pil[gi,- -y gn]| P2 202290 Pli[gr, ..., g.]| P
whereg € {g1,...,9n,0}

py b 9By pr P,z 983 pr

Pil[gr,... go]| Py 22002 A1 =B 9By plilg, . g,]| P}

when vars(b1 U E1) Nwvars(bs U E») = 2.

‘ general parallelism rules (not synchronising) ‘
p bt o, p
Pil[g1, .., gn]| P2 2222w Pio|[g1, ..., gn]| P2
name(a) € {gi,...,9n,0}

) [#/z] ifa = gzandz € vars(Pz) wherez € new-var.
VI otherwise

Similarly for Ps.

A Symbolic Semantics and Bisimulation for Full LOTOS 11

choicerules

pb o, pl
P[] P,t—2s P

p,bt a, p!
P[] P22, P}

P b « p’
([SD] N P) bASP a, p’

stop generates no rules.

| ingtantiation ruIe|
Plgi/ha,. .. gn/hal[Br)ar,. .., B /5] 2—2 P’

b
p[glv'"79"](E17'~~7Em,) & !
whereplhy, ..., hy](z1, ..., zm) := P isaprocess definition

parenthesisrule

P b « P

(P) b « P’
relabel rule

P b « ’

(P)gr/hts- -, go/ha] 2= (P)g1 /b1, -, gu/hu]

h; ifa = giandgi € {g1,...,0n}
o = hE fa=g¢gFEadg €{g,...,gn}
«@ otherwise

4, State Equivalence and Substitution in ST Ss

When constructing STSs from behaviour expressions, straightforward syn-
tactic substitution on behaviour expressions was employed. Thus, state equiv-
alence is defined purely by syntactic equivalence of LOTOS behaviours. How-
ever, in order to define equivalence relations, preorders, or logics over STSs
and to ensure that cycles (such as might arise from recursive processes) are
handled correctly, we must define substitution on STSs. Thisis new from [14].

In [10], this problem is solved by introducing the concept of a “term”: a
node in a symbolic transition system paired with a substitution. The same
solution can be adapted for LOTOS.

12

Formally, aterm consists of an STS, T', paired with a substitution, o such
that domain(o) C fv(T). We writethis as T, to indicate that the substitution
isnot applied directly to 7', and use ¢ and u to range over terms.

Definition 2 givestherulesfor transitions on terms, given the corresponding
transitions on STSs. Only three cases are required: dataless transitions, tran-
sitions arising from ! offers, and transitions arising from ? offers. In all cases,
o' =f(T') <0, that is, the restriction of o to include only domain elements
in the set fv(T"). The definition of free variables is extended to terms in the
obvious way. Terms, rather than STSs, are used as the basis for defining the
bismulation in the next section, and the logic in [5, 6].

Definition 2 (Transitions between terms)

Tt e.T implies T, . T,
TL <. T implies T,tr—<f9, T' wherefv(E) C fv(T)
Tie. T implies T, tellel e T/, wheres & \v(T), 2 & v(T,)

We note that while the vast majority of LOTOS specifications give rise to
finite STSs, infinite (depth) STSs are till possible, for (data) parameterised
processes. For example, P(X) = g'x; P(x+1) has an infinite (depth) STS. We
do not consider the possibility of infinite depth a major drawback for our ap-
proach, but are beginning to investigate ways of dealing with it.

5. Symbolic Bismulations

Standard bisimulation on transitions without data requires only the gate
names to be the same. The obvious extension to transitions with data requires
both gate and value to be matched exactly. In the symbolic world this is not
appropriate. Consider, asymbolic transition stands for a set of concrete transi-
tions. There are many ways to split this set into subsets; each characterisation
yields a different symbolic representation. Therefore, in symbolic bisimula-
tion, al gate names have to match exactly, but there need not be a one to
one correspondence between values. A single transition in one process can be
matched by one or more transitions in the other.

For example, consider the processes in Figure 4. The processes are clearly
bisimilar, subject to the bisimilarity of 7" with U1 and U2, but one transition
inT,z € AU A, matches two transitionsin U,z € Aorz & A.

Thisidea of partitioning data into different sets, according to some Boolean
expressions, is the crux of the following definition of symbolic bisimulation.
The use of the partition means that each bisimulation is a parameterised family
of relations, where the parameters are the predicates. Whereas Hennessy and
Lin [10] define both an early and alate bisimulation equivalence, only an early
bisimulation is meaningful in our context (as explained in Section 2).

A Symbolic Semantics and Bisimulation for Full LOTOS 13

©
tt x in A x #h A
agx 9 gx
@ @

Figure4. Bisimulation example

We give a definition of “layered” symbolic bisimulation, written ~?, where
i isthe depth of bisimulation and b istheinitial context (usually simply tt).

We assume a function new(¢, «) which, given two terms ¢ and w, returns a
variable which is not among the free variables of either ¢ or «.

Definition 3 (Symbolic Bisimulation on terms)
For all b, a Boolean expression, ¢ and u, terms:

1t NS u.
2 For all n>0,t~fl+1 w iff
() (dataless case)
if ¢ hasatransition ¢ 22 ¢’ then there is a finite set of Boolean
conditions B over fv(t) suchthat (b A b) = \/ B and for each
b’ € B thereisatransition u 2= . 4/ suchthat ¥’ = b, and t’ ~% u'.
(b) (data case, no new variable)
if ¢ hasatransition ¢ 292, ¢/ where fv(E;) C fv(t), then there
isafinite set of Boolean conditions B over fv(¢) U {z} such that
(b A by AN z=E;)=\ B,wherez = new(t,), and for each
b € B either
thereisatransition u t=22, o/ wherefv(E,) C fv(u),
and b’ = b, and b’ = E, = E, and t' ~ o/
or
thereisa transition u 2«92+ v/ such that b’ = b, and t’ ~! «’
(c) (datacase, new variable)
if t hasatrandition ¢ b=, ¢/ where » = new(t, u), then there
isa finite set of Boolean conditions B over fv(¢) U {z} such that
(b A by) =V B andfor each b/ € B either
thereisatransition u t=2E=, o/ wherefv(E,) C fv(u),
and b’ = b,and b’ = z = E,and t' ~¥ o/
or
thereisa transition u 2=+ v/ and b’ = b, and t' ~¥" o’
(d), (e), () Symmetrically, the transitions of « must be matched by ¢.

14

We may be relating processes that are parameterised. Therefore, the free
variable (parameter) must be matched accordingly.
Definition 4 (~" for parameterised processes)
Iffv(t) = {z}, fv(u) = {y}, and z = new(t, u) then

t~b o iff V2.4, /0 ~ble/wz /Y] ULz /y]s

We use ~* to denote the largest symbolic bisimulation, for agiven b.

Therole of the partition isto provide a step between the Boolean conditions
of term ¢ and those of term «. Thiscan be clearly seenin case(a). Theintuition
for cases (b) and (c) of Definition 3 is asfollows. For case (b) we assume that
the data of the ¢ transition isavalue (expression). Therole of the new variable
z isto provide a common language for matching transitions. In the context of
b’, amember of the partition, the expression F; can either be matched by a «
transition with an equivaent value E,, or a transition with anew variable 2.
Therulesfor transitions between terms (Definition 2) alow the new variable z
to be used without explicit renaming at this point. The conditions for matching
vary depending on what sort of « transition is matched. Essentialy, if a new
variable is matched then conditions relating to the data are captured exactly by
the condition b,,. If adata expression is matched then information about data
is given both by b, and the expression £, . Case (€) considers the situation in
which the data of the ¢ transition isanew variable z.

The resulting bisimulation is a Boolean condition-indexed relation. So, in
most cases, when ¢ ~° u, and ¢ evolvesto ¢, and u evolvesto «/, and ' ~?" w/,
then b’ is a different condition to b, i.e. different states in the symbolic tran-
sition systems will be related by different members of the family of relations.
This is because, in atypica symbolic transition system, restrictions on data
increase with depth.

We have no space here to include an example; see[7].

6. Conclusions and Further Work

We have defined a symbolic semantics for LOTOS in terms of symbolic
transition systems, and symbolic bismulation over those transition systems.
Broadly speaking, we have adopted the approach of [10]; however, the features
of LOTOS, especialy the need to accomodate multi-way synchronisation and
the resulting model of value passing, mean that this is not a straightforward
adaptation of the theory presented in [10].

Our symbolic approach eliminates infinite branching which has been a ma-
jor source of difficulty in reasoning about L OTOS specifications. Theinference
rules for the semantics are relatively simple and intuitive, and the meaning of
unparameterised processes is the same as in the standard semantics (although
we did not show that here).

A Symbolic Semantics and Bisimulation for Full LOTOS 15

We have only considered strong bisimulation here, though clearly other
forms of equivalence (e.g. weak bisimulation) can be defined. While we have a
means of checking whether agiven relation isasymbolic bisimulation we have
not given here an effective method of constructing that relation. However, it
isfairly easy to see that the partition has to be derived from (the cross product
of) the conditions in each transition system; an algorithm has been developed
and implemented in Haskell. Worst case complexity is exponential, but early
recognition of zeros (in the Boolean expressions) can lessen the pain some-
what. A further interesting case is infinite (depth) transition systems. In this
case we have to add a notion of state (in the imperative sense) to each (STS)
state, which is beyond the scope of this paper.

Related work includes the definition of a modal logic FULL [5] which is
adequate with respect to a version of the bisimulation defined here [6]. That
is, it distinguishes and identifies exactly the same processes as that bisimu-
lation. Tools to support model checking of FULL with respect to LOTOS
specifications (or STSs) are also being developed based on severa different
implementation paradigms [3, 4, 13].

Acknowledgments

The authors would like to thank Savi Maharg] for useful input on the defini-
tion of bisimulation, and Ed Brinksmafor many fruitful discussions on reason-
ing about LOTOS. Carron Shankland thanks the British Council, the Nuffield
Foundation and the Engineering and Physical Sciences Research Council (un-
der the project “Developing Implementation and Extending Theory: A Sym-
bolic Approach to Reasoning about LOTOS”) for their support.

Appendix: Auxiliary Definitions

Definition 5 (Free Variables)
Let vars(£) be the variables occurring in expression E. The set of free variables occurring in
an expression isfv(E) = vars(E). The set of free variables of behaviour expression P, f/(P), is

defined by
fv(stop) = {}
fv(exit) = {}
fu(exit(x)) = {x
v(P[g]) = {}
fV(P[g](:l:l,...,l'n,)) = {551,---71'71}
v(g; P) = (P)
W(g?2:S[SP]; P) = (vars(SP) U fv(P))\ {z}
fv(g!z[SP]; P) = {z} U vars(SP) U fv(P)
fu([SP]—> P) = vars(SP) U fv(P)
fvletz=EinP) = vas(B) U (W(P)\{z})
fu(hide g in P) = fu(P)

16

fV(Pl * Pz)

fV(Pl) U fV(P2)y

where* = [1.,[>,>,|lg1,---, g0, I, 1]l
fv(Pr) U ((P2) \ {z})

fv(P)

fv(P1 > accept z : S in Ps)

fv(choice g in [g1,...,¢9.] [] P)

fv(choice z : T[] P) fv(P)\ {z}

fv(par g in [g1,..., gn] op P) fv(P) where op is one of the parallel operators
Smilarly for the set of free variables of an action «, fv(a).

References

[1] T.Bolognesi, editor. Catalogue of LOTOS Correctness Preserving Transformations. Tech-
nical Report Lo/WP1/T1.2/N0045, The LOTOSPHERE Esprit Project, 1992.

[2] E. Brinksma. From Data Structure to Process Structure. In K.G. Larsen and A. Skou,
editors, Proceedings of CAV 91, LNCS 575, pages 244-254, 1992.

[3] J. Bryansand C. Shankland. Implementing a modal logic over data and processes using
XTL. Inthisvolume. Kluwer, 2001.

[4] J.Bryans, A. Verdegjo, and C. Shankland. Using Rewriting Logic to implement the modal
logic FULL. In D. Nowak, editor, AVoCS01: Workshop on Automated Verification of
Critical Systems, 2001. Oxford University Computing Laboratory technical report PRG-
RR-01-07.

[5] M. Cdder, S. Mahargj, and C. Shankland. A Moda Logic for Full LOTOS based on
Symboalic Transition Systems. The Computer Journal, 2001. In press.

[6] M. Calder, S. Maharg), and C. Shankland. An Adequate Logic for Full LOTOS. In
J. Oliveiraand P. Zave, editors, Formal Methods Europe'01, LNCS 2021, pages 384-395.
Springer-Verlag, 2001.

[7] M. Calder and C. Shankland. A Symbolic Semantics and Bisimulation for Full LOTOS.
Technical Report TR-2001-77, University of Glasgow, 2001. Extended version.

[8] H. Eertink. Smulation Techniques for the Validation of LOTOS Specifications. PhD thesis,
University of Twente, 1994.

[9] R. Gotzhein. Specifying Abstract Data Types with LOTOS. In B. Sarikaya and G.V.
Bochmann, editors, Protocol Specification, Testing, and \erification, VI, pages 15-26. El-
sevier Science Publishers B.V. (North-Holland), 1987.

[10] M. Hennessy and H. Lin. Symbolic Bisimulations. Theoretical Computer Science,
138:353-389, 1995.

[11] International Organisation for Standardisation. Information Processing Systems — Open
Systems | nterconnection —LOTOS— A Formal Description Technique Based on the Tem-
poral Ordering of Observational Behaviour, 1988.

[12] L. Logrippo, M. Faci, and M. Haj-Hussein. An Introduction to LOTOS: Learning by
Examples. Computer Networks and ISDN Systems, 23:325-342, 1992.

[13] P. Robinson and C. Shankland. Implementing the modal logic FULL using Ergo. In
D. Nowak, editor, AVoCS01: Workshop on Automated Verification of Critical Systems,
2001. Oxford University Computing Laboratory technical report PRG-RR-01-07.

[14] C. Shankland and M. Thomas. Symbolic Bisimulation for Full LOTOS. In M. John-
son, editor, Algebraic Methodology and Software Technology, Proceedings of AMAST 97,
LNCS 1349, pages 479-493. Springer-Verlag, 1997.

[15] M. Thomas. The Story of the Therac-25 in LOTOS. High Integrity Systems Journal,
1(1):3-15, 1994.

[16] M. Thomas. Modelling and Analysing User Views of Telecommunications Services. In
Feature Interactions in Telecommunications Systems, pages 168-183. 10S Press, 1997.

