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Abstract

The model checker SPIN is applied to the analysis of feature interactions in the
design of telecommunications services. The application area is a challenging one for
model-checking because formulating the right temporal properties in a distributed
system is difficult and the state spaces quickly become intractable. We demonstrate
how to express the properties in LTL and give minimal abstraction techniques that
can greatly reduce the cost of model-checking. We also show how analysis can be
performed automatically using scripts.
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1 Introduction

In software development a feature is a component of additional functionality
— additional to the main body of code. Typically, features are added incre-
mentally, at various stages in the life-cycle, usually by different developers. A
consequence of adding features in this way is feature interaction, when one fea-
ture affects, or modifies, the behaviour of another feature. Although in many
cases feature interaction is quite acceptable, even desirable, in other cases in-
teractions lead to unpredictable and undesirable results. The problem is well
known within the telecommunications services domain (for example, see [3]),
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though it exhibits in many other well-known domains such as email and elec-
tronic point of sales. We expect interactions to be an issue in next generation
systems as well, for example in Grid technologies [21]. It is therefore important
to have a range of techniques for dealing with them.

Techniques to deal with feature interactions can be characterised as design
time or run time, interaction detection and/or resolution. Here, we concentrate
on the detection of interactions at design time, with resolution through re-
design.

When there is a proliferation of features, as in telecommunications services,
then automated detection techniques are essential. In this paper, we investi-
gate the feasibility of our specification and modelling approach, and the use of
model-checking techniques, for feature interaction detection in POTS (plain
old telephony) services. Much is known about the POTS domain, we therefore
believe it to be an ideal domain to test the feasibility of our approach. We
choose the model-checker SPIN [27], because of the suitability of the associ-
ated high level description language, Promela, for specifying software systems.
Preliminary results for a system involving no features were reported in [6].

Model-checking involves constructing a finite model of a system and checking
that a desired property holds in that model by exploring the state-space of
the model. Theorem proving, on the other hand, involves deriving theorems
from a given set of axioms. The former is ideally suited to our domain be-
cause telecommunications services are inherently concurrent and each model
(essentially a labelled transition system) can be generated automatically from
a high level description of a service. Consequently, the high level Promela
descriptions can be modified with very little cost, seldom the case in a theo-
rem proving approach where theorems have to be reproved, as the underlying
theory changes.

Our approach involves considering a given service (and features) at two differ-
ent levels of abstraction: communicating finite state automata and temporal
logic formulae, represented by Promela specifications, labelled transition sys-
tems and Biichi automata. We make contributions in several ways, including

e a low level call service model in Promela that permits truly independent
call control processes with asynchronous communication, asymmetric call
control and a facility for adding features in a structured way,

e state-space reduction techniques for Promela which result in tractable state-
spaces, thus overcoming classic state-explosion problems,

e a technique for implementing a relativised temporal operator, that is one
which depends on constituent processes, in the linear temporal logic of
SPIN,

e interaction analysis of a basic call service with six features, involving four



users with full functionality. There are two types of analysis, static and
dynamic, the latter is completely automated, making extensive use of Perl
scripts to generate the model-checking runs.

Additionally, our results may serve to provide useful guidance for model-
checking in this, and other, application domains.

The paper is organised as follows. Our overall approach to interaction detec-
tion, and the role of SPIN; is given in section 2. Following this, we give a short
overview of telecommunications services, the language Promela, and then in
some detail, how SPIN’s search and verification algorithms work.

Sections 4 and 5 give an overview of the finite state automata and temporal
properties for the basic service. In section 6 we give the Promela implemen-
tation of the basic call service, and optimisations to reduce the state space;
in Section 7 we validate the basic service. Sections 8, 9 and 10 give similar
descriptions and implementation of the features. Static and dynamic interac-
tion analysis, respectively, are introduced in Sections 11 and 12. In Section 13
we automate the (dynamic) analysis and model generation and give results.
In Section 14 we discuss the role of static and dynamic analysis. Conclusions
and directions for further work are given in section 15.

Some of the results contained in this paper have been presented in [5]. However
here we include greater implementation detail and provide more background
material relating to SPIN. In addition, our analysis concerns 8 features whereas
in [5] only 6 were considered.

1.1 Related Work

Model-checking for feature interaction analysis has been investigated by oth-
ers, for example, using SMV [39], Caesar [41], COSPAN [17] and SPIN in [29].
In the last, the Promela model is extracted mechanically from call process-
ing software code; no details of the model are given and so it is difficult to
compare results. In [39], the authors are restricted to two subscribers of the
service with full functionality (plus two users with half functionality), due to
state-space explosion problems. For similar reasons, call control is not inde-
pendent. Nevertheless, we regard this as a benchmark paper and aim at least
to demonstrate a similar set of properties within our context. In [17], features
and the basic service are described at only one level of abstraction, by tem-
poral descriptions. State-space explosion is avoided, but interactions arising
from implementation detail, such as race conditions, cannot be detected. Our
layered approach permits detection of interactions arising from implementa-
tion detail, building upon earlier work by the first author (of this paper) in
[41], where process algebra was employed. This too suffered from limitations
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imposed by state-explosion and the lack of (explicit) asynchronous communi-
cation; indeed these limitations motivated the current investigation of Promela
and SPIN.

2 Approach

Our approach has two phases; in the first phase we consider only the basic
call service, as depicted in Figure 1. The aim of the first phase is to develop
the right level of abstraction of the basic service and to ensure that we have
effective reasoning techniques, before proceeding to add features.

Our starting point is the top and left hand side of figure 1: the automata
and properties. Neither need be complete specifications; this is a virtue of the
approach and, for example, allows us to avoid the frame problem. The Promela
description in the middle of Figure 1 is regarded as the implementation; a
crucial step is therefore validation of the implementation. This is done by
checking satisfaction of the properties, using SPIN. Initial attempts fail, due
to state-space explosion, however, an examination of the underlying state-
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space (far right of Figure 1) leads us to discover simple, but very effective
optimisations.

The second phase, when we add features, is depicted in Figure 2. Again, the
starting point is finite state automata and properties. The Promela implemen-
tation is augmented with the new feature behaviour, primarily through the
use of “in-line” functions (see Section 10.1); again, the Promela has to be val-
idated, this time against the feature properties. This leads us to our ultimate
goal, interaction analysis, which takes two forms: static analysis, involving
(syntactic) inspection of the Promela “code”, and dynamic analysis, involving
reasoning over combinations of sets of logical formulae and configurations of
the feature subscribers, using SPIN. Both of these forms of analysis are indi-
cated in Figure 2. The results of (either) analysis is interaction detection, often
with a clear indication of possible resolution(s). The relationship between the
two types of analysis is discussed in Section 14.



3 Background

3.1 Telecommunications Services

Control of the progress of calls is provided by a service at an exchange (a stored
program control exchange). The service responds to events such as handset on
or off hook, as well as sending control signals to devices and lines such as
ringing tone or line engaged. A service is a collection of functionality that is
usually self-sustaining. A feature is additional functionality, for example, a call
forwarding capability, or ring back when free; a user is said to subscribe to a
feature. When features are added to a basic service, there may be interactions
(i.e. behavioural modifications) between both the features offered within that
service, as well as with features offered in another service.

For example, if a user who subscribes to call waiting (CW) and call forward
when busy (CFB) is engaged in a call, then what will happen when there is
a further incoming call? (Full details of all features mentioned here are given
in section 8.) If the call is forwarded, then the CW feature is clearly compro-
mised, and vice versa. In either case, the subscriber will not have his/her ex-
pectations met. This is an example of a single user, single component (SUSC)
[7] interaction — the conflicting features are subscribed to by a single user.
More subtle interactions can occur when more than one user/subscriber are
involved, these are referred to as multiple user, multiple component (MUMC)
interactions. For example, consider the scenario where user A subscribes to
originating call screening (OCS), with user C on the screening list, and user
B subscribes to CFB to user C. If A calls B, and the call is forwarded to C, as
prescribed by B’s feature CFB, then A’s feature OCS is compromised. Clearly,
if the call is not forwarded, then the CFB feature is compromised. These kind
of interactions can be very difficult to detect (and resolve), particularly since
different features may be activated at different stages of a the call cycle.

Ideally, interactions are detected and resolved at service creation time, though
this may not always be possible when third-party or legacy services are in-
volved (for example, see [4]).

As with all distributed systems, there are many perspectives of a telecomms
network, with varying levels of abstraction. Here, we have chosen to examine
the user perspective of the basic call service, following the IN (Intelligent
Networks) model, distributed functional plane [30].



3.2 Promela and SPIN

This section is intended to give an overview of Promela and SPIN. A more
detailed description of the search algorithms and parameters used by the latter
is included for the interest of the non SPIN expert, and as such can be omitted
by those readers already familiar with Promela and SPIN.

Promela, Process meta language [26,27], is a high-level, state based, language
for modelling communicating, concurrent processes. It is an imperative, C-
like language with additional constructs for non-determinism, asynchronous
and synchronous communication, dynamic process creation, and mobile con-
nections, i.e. communication channels can contain other communication chan-
nels. Thus, the language is very powerful and expressive. SPIN is a bespoke
model-checker for Promela and provides several reasoning mechanisms: asser-
tion checking, acceptance/progress states and cycle detection and satisfaction
of linear temporal logic (LTL) formulae.

Other high-quality model-checkers include SMV, Murphi and FDR [34,12,40].
We choose to work with SPIN primarily because of the rich expressive power
of Promela, and its suitability for modelling software processes. We do not
choose SMV, for example, because the modelling languages: extended SMV
and synchronous Verilog, were designed with hardware in mind. These lan-
guages do not allow one to model software as naturally and do not include
asynchronous communication or explicit concurrency as primitives.

3.2.1  On-the-fly Depth-first Search

In order to perform verification on a model, SPIN converts a Promela speci-
fication into a labelled transition system (LTS). An LTS is defined as a triple
F = (S, fo,T) where S is a finite set of states, fo is a distinguished initial
state in S, and T a finite set of transitions, that is a set of pairs (sy, s5), where
s1, 82 € S. Each transition of the LTS corresponds to the execution of a spe-
cific atomic statement within one of the (concurrent) processes. An LTS can
be represented by a graph (a state-graph) in which the nodes correspond to
the states in S and directed edges correspond to the transitions in 7.

A basic depth-first search (to check for deadlock, assertion violations etc.)
explores the state-graph associated with F', starting from the initial state fq,
successively progressing along the edges of the graph and back-tracking when
a previously visited state is reached, until an error is found — or until the entire
search space has been explored.



3.2.2 Partial Order Reduction

Partial order reduction (POR) (see [36] and [35]) is a technique that is used to
diminish the time and memory requirements when model-checking concurrent
processes. It is based on the observation that execution sequences (or “traces”)
of a concurrent program can be divided into equivalence classes whose mem-
bers are indistinguishable with respect to a property that is to be checked.
By ensuring that at least one trace from each equivalence class is executed
during a reduced search, the use of POR ensures that redundant work is not
performed and that the truth (or otherwise) of a property is preserved.

A traditional, exhaustive, depth-first search of the state-space of a concurrent
system involves the exploration of all of the transitions enabled at any state
encountered during the search. The crux of the POR algorithm (described in
[35]) is the fact that, in some cases, it is sufficient to explore a subset of the
enabled transitions of a state (and hence reduce the total number of execution
paths to be explored). Such a subset is called an ample set, and only exists
for some states — when certain conditions are satisfied.

The implementation of POR used in SPIN (see [28]), involves the identifica-
tion of various categories of Promela statement that can be statically marked
as “safe” (or “conditionally safe”) transitions. A subset of transitions enabled
from a given state can only be ample if it consists entirely of safe transitions
(and no successor of the state arising from any of these transitions has already
been encountered during the current execution). The statements (transitions)
that are marked as safe are essentially assignments to local variables or exclu-
sive channel read/send operation. A channel is said to be ezclusive read-access
within a process, annotated zr, if no other process can read from the channel.
Similarly, a channel is said to be ezclusive send-access and annotated zs.

3.2.83  Parameters and Further Options used in SPIN Verification

One important parameter that needs to be set for any verification run is
the mazimum search depth M. This value determines the maximum distance
along any path (starting from the initial state) that the depth-first search will
explore. If M is set to a value that is less than the length of the greatest path
from the initial state in a full search, the search will be truncated. In this case,
whenever the search reaches depth M, the error message “maximum search
depth too small” is reported, and the search will back-track until it reaches
a previously unvisited state as before. This means that any state that is not
reachable from the initial state along a path of length at most M, will not be
explored.

For debugging purposes, a truncated search is suitable. Once an error has been
reported, successive runs should be performed to determine the smallest value



of M for which the error will be “caught”. If the search is truncated, the error
will occur at or near the maximum search-depth. Following a verification with
this maximum search-depth with a guided simulation will provide a description
of the shortest path to the error.

If, on the other hand, after strenuous debugging, there are no errors believed
to be present in the model, a full search-space search must be performed to
show that there are no errors at any depth. In this case a truncated search
is not suitable and M must be set to a value greater than the length of
the greatest execution sequence. However (especially when conservation of
memory is crucial), it is important that care is taken to set the maximum
depth to as small a size as possible — to avoid the provision of an unnecessarily
large (current search state storage) search stack.

For every reachable state, the corresponding state-vector is a unique charac-
terisation of the state consisting of a sequence of bits in memory. During a
depth-first search these states are usually stored in a hash-table. The size of
the hash-table is determined via the Estimated State-Space Size parameter. If
this is set too high, the memory required for the hash-table will be too great
and verification will not be possible. If however this value is set too low the
hash-table will not be large enough to accommodate all of the reached states.
In general, it is advisable to leave this parameter set to the default value
unless the Minimised Automaton Encoding (combined with Compression) or
Supertrace options are selected. Compression is a method by which each indi-
vidual state is encoded in a more efficient way. The memory required for each
individual stored state is thus reduced, although the memory required for the
hash-table itself remains unchanged. If MA-encoding is used without COM
a hash-table is not used, and so the value of the Estimated State-Space Size
parameter is irrelevant. However, if MA-encoding and COM are combined, a
(small) hash-table is still required for the compression of the individual states.
It is therefore prudent to set the FEstimated State-Space Size parameter to a
low value. Since we did not employ Supertrace, we omit its description here.

Finally, the Weak Fairness option [19,35,1] ensures that any process that has
a transition that remains enabled will eventually execute it. The algorithm is
based on a variant of Choeka’s flag algorithm [8] and involves the construction
of an extended state-space consisting of N copies of the original state-space
(where N is the number of processes). Clearly the additional memory and
time requirements of such an algorithm are great and therefore its use should
be avoided where possible (see section 5.3).



3.8 Temporal Reasoning in SPIN

As well as enabling a search of the state-space to check for deadlock, assertion
violations etc., SPIN allows the checking of the satisfaction of an LTL formula
over all execution paths. The mechanism for doing this is via never claims
— processes which describe undesirable behaviour, and Biichi automata — au-
tomata that accept a system execution if and only if that execution forces it
to pass through one or more of its accepting states infinitely often. Full details
of never claims and Biichi automata are given in [27,18,33]. Here, we give a
brief overview of the mechanisms involved and a description of how they have
been employed.

Standard LTL formulae are constructed from a set of atomic propositions,
the standard Boolean operators (-, A and V), and the temporal operators ||
(always), () (eventually), o (next) and U ((strong) until). Propositions include
process control such as p@label meaning process p is at label label.

When SPIN is used to verify an LTL property one must first use SPIN’s LTL
converter (or an alternative— see section 6.1) which translates LTL formulae
into Promela syntax. This translation is a never-claim and encodes the Biichi
acceptance condition. During a SPIN verification, this never-claim is converted
to a Biichi automaton. Another Biichi automaton, consisting of the the syn-
chronous product of the LTS corresponding to the concurrent system (model)
and the Biichi automaton corresponding to the never-claim, is constructed. A
depth-first search explores the state-graph associated with this (new) Biichi
automaton.

If the original LTL formula f does not hold, the depth-first search will “catch”
at least one execution sequence for which —f is true. If f has the form [|p,
(that is f is a safety property), this sequence will contain an acceptance state at
which —p is true. In this case the never-claim is said to complete. Alternatively,
If f has the form ()p, (that is f is a liveness property), the sequence will contain
a cycle which can be repeated infinitely often, throughout which —p is true.
In this case the never-claim is said to contain an acceptance cycle. In either
case the never claim is said to be matched.

When using SPIN’s LTL converter it is possible to check whether a given
property holds for All Executions or for No Erecutions. A universal quantifier
is implicit in the beginning of all LTL formulas and so, to check an LTL
property it is natural, therefore, to choose the All Executions option. However,
we sometimes wish to check that a given property (p say) holds for some state
along some execution path. This is not possible using LTL alone. However,
SPIN can be used to show that “p holds for No Ezecutions” is not true
(via a never-claim violation), which is equivalent. Therefore, when listing our

10
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properties (section 5.3), we use the shorthand E()p (meaning for some path
p) to mean “({)p for No Executions) is not true”.

This concludes the background material, we are now ready to begin the first
phase of the approach: a description of the basic call service.

4 Basic Call Service

Figure 3 gives a diagrammatic representation of the automaton for the ba-
sic call service. States to the left of the idle state represent terminating be-
haviour, states to the right represent originating behaviour. Events observable
by service subscribers label transitions: user-initiated events at the terminal
device, such as (handset) on and (handset) off, are given in plain font, network-
initiated events such as unobt and engaged are given in italics. Note that there
are two “ring” events, oring and tring, for originating and terminating ring
tone, respectively. This reflects the fact that the ringing tone is indeed gen-
erated at each terminal device. Not all transitions are labelled. For example,
there is an unlabelled transition from the (originating) state calling to dial,
simply because there is no observable event associated with this transition.

The automata must communicate with each other; namely, the behaviour of
one call process, as originating party, affects the behaviour of another call pro-
cess, as terminating party. We do not adopt a formal notation to describe the
communication mechanism (e.g. extended finite state automata) but describe
it informally, as follows.

A communication channel is associated with each call process (or automata).
Each channel has capacity for at most one message: a pair consisting of a
channel name (the other party in the call) and a status bit (the status of

11



Contents of Channel A Interpretation

empty A is free
(A,0) A is engaged, but not connected
(B,0) A is engaged, but not connected

B is terminating party
B is attempting connection

(B,1) If channel B contains (A,1) then A and
B are connected

Fig. 4. States of a Communications Channel in the Protocol

the connection). When it is not confusing, we refer to communication channel
associated with call process A as channel A. When a communication channel
is empty, then its associated call process is not connected to, or attempting
to connect to, any other call process. When a communication channel is not
empty, then the associated call process is engaged in a call, but not necessarily
connected to another user. The interpretation of messages is described more
comprehensively in Figure 4.

The communication channels are used to coordinate call set up and clear
down. The basic protocol for call set up from A to B is as follows, assuming
neither are engaged in a call. When A goes off hook, the message (A,0) is
placed on channel A. After dialling B, the message (A,0) is sent to channel B.
When B receives this message, the message (B,1) is sent to channel A and the
status bit in the message on channel B is changed to 1; the connection is then
established. To clear down, A can close down one side of the connection by
going on hook: the message is removed from its communication channel and
the status bit of the message in channel B becomes 0. Then, neither A nor
B are in a connected state, and A is free to close down the connection. On
the other hand, channel B cannot close down the connection (reflecting the
real-life situation). So, if B goes on hook, while A and B are connected, then
the connection status remains unchanged for both A and B.

5 Basic Call Service Properties

In this section we give a set of temporal properties for the basic call service.
Before doing so, we explain the form of the propositions and the addition of
a new temporal operator.

12



5.1 Propositions

Propositions in SPIN’s version of LTL may refer to values of (global) variables
or to process “counters”. Examples of the former are x+ == 0 and x >= y.
An example of the latter is user[proci|@Qidle, meaning the incarnation of the
process user with process identifier proci is at label idle. Process identifiers
are simply global variables, initialised when a process is instantiated (and
captured by assignment within the Promela run command).

In our propositions we will assume that the variables include the arrays connect.to,
recording the presence of a connection between two users, dialled, recording
the most recent number dialled (since leaving the idle state), and event and
network_event, for user-initiated and network-initiated events, respectively.
proci and chan_nameli] are the process identifier and the channel name asso-
ciated with user process 7, respectively.

5.2 Relativised Next Operator

When model-checking, the temporal operator o (next) in LTL must be used
with caution, due to problems of stuttering equivalence — properties involving
o can not be guaranteed to be closed under stuttering (see, for example, [37]).
Consequently a valuable state reduction strategy, partial order reduction (see
section 3.2.2) is not applicable in the presence of o. However, this is not a
great hardship since it is in fact very rare that a property holds in every next
global state in a distributed system.

The o operator is of little use in a distributed system, what is required is a
relativised o. That is, we would like to refer a next state relative to a particular
constituent process. Such an operator would allow us to formalise properties
such as “after a process p reads from a channel, its next action is to increment
a given variable”. (Note that the next global state might be one in which
another process updates a different variable.)

We propose that in SPIN, relativised operators can be implemented by ju-
dicious use of the built-in global variable _last and the (LTL) next operator.
This variable holds the value of the (internal) process number of the process
that last made a transition. Although some formulae that involve the next
operator o can be shown to be stutter-closed (and so partial order reduction
can be used for the verification of such properties), in general, the use of the
_last variable precludes the use of partial order reduction.

We introduce the operator op,,.; as a shorthand meaning the next global state
in which process proci has made a (local) transition (i.e. the first global state

13



in which proci has made a move). In general, o and oy, will refer to dif-
ferent states, the former occurring before (or at the same time as) the lat-
ter. Thus a property of the form “if p is true, then the next time process
¢ makes a transition, ¢ will be true”, which is expressed in LTL as follows:
[l(p = o(([(J=(r)||((=r)U(r Aq)))) (where r is defined as _last == proci), can
be expressed more simply as [|(p — oprociq)-

5.3 Basic Call Service Temporal Properties

As described in sections 3.3 and 5.2 respectively, we use the following short-
hand notation: E (for some path) and oo (next, with respect to process ).
In order to allow a further compact representation of properties, we introduce
the operators W (weak until) and P (precedes), defined as follows:

fWg =11V (fUg)

and
fPg=—(=fUg).

The LTL is given here alongside each property. This involves referring to
variables (eg. dialled and connect) contained within the Promela code (an
extract of which is given in section 6). We use symbols to denote predicates, for
example “[|p where p is dialled[i] == i”. This provides a neater representation,
and the LTL converter requires properties to be given in this way.

Property 1 A connection between two users is possible.

That is: EOp, where p is connect[i].to[j] == 1, for i # j.

Property 2 If you dial yourself, then you receive the engaged tone before
returning to the idle state.

That is: [[(p — ((-r)Wgq)) where pis dialled|i] == chan_nameli], q is network_event[i]| ==
engaged and r is user|proci|Qidle.

Property 3 Busy tone or ringing tone will directly (that is, the next time that
the process is active) follow calling.

That is: [|(p — oproeiq) Where p is event[i] == call and ¢ is ((network_event[i] ==
engaged) V (network_event|i] == oring)).

Property 4 The dialled number is the same as the number of the connection
attempt.

14



That is: [[(p — ¢) where pis dialled[i] == j and q is partner[i] == chan_namel[j].

Property 5 If you dial a busy number then either the busy line clears before
a call is attempted, or you will hear the engaged tone before returning to the
idle state.

That is: [[(p AvAt) = (((ms)W(w))]|((—=r)Wq))) where p is dialled]i] == j,
v is eventli] == dial, t is full(chan_name[j]), s is event[i] == call, w is
len(chan_nameli]) == 0, r is user[proci]Qidle and q is network_event[i] ==
engaged, for i # j.

Note that the operator len is used to define w in preference to the function
empty (or nfull). This is because SPIN disallows the use of the negation of
these functions (and —w arises within the never-claim).

Property 6 You cannot make a call without having just (that is, the last time
that the process was active) dialled a number.

That is: [|(p — ¢) where p is user|proci|Qcalling and q is event[i| == dial.

Note that property 1 would not hold for all sequences because a connection
may not always be possible, for example, because the other line is out of ser-
vice, or constantly engaged, or the originator goes on-hook before a connection
is made.

Great care has been taken to ensure that each temporal formula not only
expresses precisely a property, but that the form will enable us to reason about
them in the most efficient way. For example, it would be tempting to express
Property 2 as [[(p — ()q), where p is (dialled[i]| == chan_-name[i]) and ¢ is
(network_event[i]| == engaged) (see [6]). This formula would be problematic
in two ways. On the one hand it could be satisfied in a situation where a caller
dialled his/her own number but failed to hear the engaged tone as a result (but
heard the engaged tone wltimately, albeit during a different call). This would
result in a longer search time to find an error. On the other hand, this formula
would cause an error to be reported if a caller dialled his/her number and then
simply failed to progress infinitely often. To avoid this unwanted scenario, the
weak-fairness option would be required (see section 3.2.3), so causing a huge
increase in the search-depth/time. The use of the W operator in this situation
is therefore crucial.
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6 Basic Call Service in Promela

Each call process (see figure 3) is described in Promela as an instantiation of
the (parameterised) proctype User declared thus:

proctype User (byte selfid;chan self)

Promela is a state-based formalism, rather than event-based. Therefore, we
represent events by (their effect on) variables, and states (e.g. calling, dialling,
etc.) by labels. Since each transition is implemented by several compound
statements, we group these together as an atomic statement, concluding with
a goto.

An example of the Promela code associated with the idle, dialing, calling and
oconnected states and their outgoing transitions is given below. The global/local
variables and parameters include the self-explanatory selfid and partnerid,
the communication channels self and partner, and the variables dev, dialled,
event and network_event. In addition messchan and messbit are local vari-
ables used for reading messages, the channel null allows a default value for
the partner variable when that call process is not engaged in a call. This
value is not strictly necessary for modelling purposes, but can be valuable for
reasoning.

Any variable about which we may intend to reason should not be updated
more than once within any atomic statement, other variables may of course
be updated as required. In addition d_steps (deterministic sequences of code
that are executed indivisibly), while more efficient than atomic steps, are not
suitable here because they do not allow a process to jump to a label out of
scope. Finally, we note that there are numerous in-line assertions within the
code, particularly at points when entering a new (call) state, and when reading
and writing to communication channels.

idle:
atomicq{
assert(dev == on);
assert(partner[selfid]==null);
/* either attempt a call, or receive one */
if
:: empty(self)->event[selfid]=off;
dev[selfid]=off;
self!self,0;goto dialing
/* no connection is being attempted, go offhook */
/* and become originating party */
:: full(self)-> self?<partner[selfid],messbit>;
/* an incoming call */
if
::full(partner[selfid])->
partner[selfid]7<messchan,messbit>;
if
:: messchan == self /* call attempt still there */
->messchan=null;messbit=0;goto talert
:: else -> self?messchan,messbit;
/* call attempt cancelled */
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partner[selfid]=null;partnerid=6;
messchan=null;messbit=0;goto idle
fi
::empty(partner[selfid])->
self?messchan,messbit;

/* call attempt cancelled */
partner[selfid]l=null;partnerid=6;
messchan=null; messbit=0;
goto idle

fi
fi};

dialing:
atomicq{
assert(dev == off);
assert(full(self));
assert(partner[selfid]==null);
/* dial or go onhook */
if
:: event[selfid]=dial;
/* dial and then nondeterministic choice of called party */
if
:: partner[selfid] = zero;
dialled[selfid] = 0;
partnerid=0
:: partner[selfid] = one;
dialled[selfid] = 1;
partnerid=1
:: partner[selfid] = two ;
dialled[selfid] = 2;
partnerid=2
: partner([selfid] = three;
dialled[selfid] = 3;
partnerid=3
:: partnerid= 7;
fi
:: event[selfid]=on;
dev[selfid]=on;
self?messchan,messbit;assert(messchan==self);
messchan=null ;messbit=0;
goto idle
/*go onhook, without dialling */
fi};

calling:/* check number called and process */

atomicq{
event[selfid]=call;
assert(dev == off);
assert(full(self));
if
: partnerid==7->goto unobtainable
:: partner([selfid] == self -> goto busy

/* invalid partner */
((partner[selfid] !=self)&&(partnerid!=7)) ->
if
:: empty(partner([selfid])->partner[selfid]!self,0;
self?messchan,messbit;
self !partner[selfid],0;
goto oalert
/* valid partner, write token to partner’s channelx/
:: full(partner[selfid]) -> goto busy
/* valid partner but engaged */
fi
fi};

oconnected:
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atomicq
assert(full(self));
assert(full(partner[selfid]));
/* connection established */
connect[selfid].to[partnerid] = 1;
goto oclosel};

Any number of call processes can be run concurrently. For example, assum-
ing the global communication channels zero, one, etc. a network of four call
processes is given by:

atomicq{
run User(0,zero);run User(l,one);
run User(2,two);run User(3,three)}

6.1 Options and State-space Reduction

Initial attempts to validate the properties against a network of four call pro-
cesses fail because of state-space explosion. In this section we examine the
causes of state-space explosion, the applicability of standard solutions involv-
ing configuring SPIN and how the the Promela code itself can be transformed
to optimise the state-space. The fully optimised code (including features) is
given in the appendix.

SPIN Options

The most obvious, standard optimisation to apply is POR, (see section 3.2.2);
however, it has only limited effect on our model. Closer examination shows
that this is hardly surprising. The only statements statically defined as “safe”
by SPIN are assignments to local variables or exclusive channel read/send
operations. The former are not only rare, but they are embedded in atomic
statements that are themselves only safe if all component statements are safe.
The latter do not appear at all: there are a few channel instances which could
be declared to be xs, but none the former. Moreover, while we could declare
further dedicated channels between pairs of processes, and annotate them
appropriately, we are still left with the problem that even a non-destructive
read or test of the length of a channel violates the xr property. Such a test
is crucial: often behaviour depends on the exact contents of a channel. Thus,
while some small gains can be made, they are minimal. Moreover, many such
statements are embedded in unsafe atomic statements; it would clearly be a
retrograde step to reduce the atomicity.

States can be compressed using minimised automaton encoding (MA) or com-
pression (COM) (see section 3.2.3). When using the former, it is necessary
to define the maximum size of the state-vector, which of course implies that
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one has searched the entire space. However one can often find a reasonable
value by choosing the (uncompressed) value reported from a preliminary ver-
ification with a deliberate assertion violation. While MA and COM together
give a significant memory reduction, the trade-off in terms of time was simply
unacceptable, for example, after 65 hours, the depth reached was only of the
order of 10°.

State-space Reductions

A simple but stunningly effective way to reduce the state-space is to ensure
that each visit to a call state is indeed a visit to the same underlying Promela
state. This means that as many variables as possible should be initialised and
then reset to their initial value (reinitialised) within Promela loops. For exam-
ple, in virtually every call state it is possible to return to idle. An admirable
reduction is made if variables such as messchan and messbit are initialised
before the first visit to this label (call state), and then reinitialised before
subsequent visits. This is so that global states that were previously distin-
guished (due to different values of these variables at different visits to the idle
call state) are now identified. The largest reduction is to be found when such
variables are routinely reset before progressing to the next call state. Unfortu-
nately, this is not always possible, as it would result in a variable (about which
we wish to reason) being updated more than once within an atomic statement
(as discussed in 6). However, there is a solution: add a further state where vari-
ables are reinitialised. For example, we have added a new state preidle, where
the variables network_event and event are reinitialised, before progression to
tdle. Therefore every occurrence of goto idle becomes goto preidle.

We note that although the (default) data-flow optimisation option available
with SPIN attempts to reinitialise variables automatically, we have found that
this option actually increases the size of the state-space of our model. This
is due to the initial values of our variables often being non-zero (when they
are of type mtype for example). SPIN’s data-flow optimisation always resets
variables to zero. Therefore we must switch this option off, and reinitialise our
variables manually.

By merely commenting in/out any reference to (update of) all of the event
variables when any such variable is needed for verification (see for example
Property 3), the size of the state-space can be increased by an unnecessarily
large amount. For example, to prove that Property 3 holds for user[i], we are
only interested in the value of event|i], not of event[j] where i # j. The latter
do not need to be updated. Thus an “inline” function, event_action(eventq)
has been introduced to enable the update of specific variables. That is, it allows
us to update the value of event[i] to the value eventq, and leave the other event
variables set to their default value. So, for example, if 7 = 0, the event_action
inline becomes:
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inline event_action (eventq)
{
if
::selfid==0->event [selfid]=eventq
::selfid!=0->skip
fi
}

Any reference to this inline definition is merely commented out when no event
variables are needed for verification. (Another inline function is included to
handle the network_event variables in the same way.)

We note that this reduction is not implemented in SPIN, though SPIN does,
however, issue a warning “variable never used” in situations where such a
reduction would be beneficial.

These transformations not only lead to a dramatic reduction of the underlying
state-space, the search depth required was reduced to 10 percent of the initial
value, but they do not involve abstraction away from the original model. On
the contrary, if anything, they could be said to reduce the level of abstraction.

Unlike other abstraction methods (see for example [9], [20] and [23]) our tech-
niques are simple, and merely involve making simple checks that unnecessary
states have not been unintentionally introduced. We believe that these kinds
of state-space explosions are not uncommon. All SPIN users should be aware
that they may be introducing spurious states when coding their problem in
Promela.

Finally, we note that the structure of never claims (Biichi automata) can affect
efficiency and consistency of results. We use the conversion tool of Etessami,
[16], which will shortly be implemented in SPIN. The Biichi automata in this
case tend to be smaller (that is they contain fewer states) and have led to the
faster detection of “bad” paths for some properties.

7 Basic Call Service Validation

It was possible to verify all six properties fairly quickly and well within our
1.5 Gbyte memory limit. State compression was used throughout.

In property 1 the No Ezecutions option was selected and for all other proper-
ties, the All Executions option was selected.

For the verification of property 1, a path containing the expected never-claim
violation was found within a search-depth of 10,000 in each case.

For each of the properties 2,4,5 and 6 a search of the entire search-space
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showed there to be no errors. When partial-order reduction was applied each
search was completed within a maximum search-depth of 2.5 million and there
are at most 1 million stored states in each case. Each search completed within
10 minutes. Failure to apply partial-order reduction resulted in an increase
in the maximum search depth reached of between 19% and 24% and a corre-
sponding increase in the number of stored states of about 23%.

The verification of property 3 took longer (21 minutes), required a greater
search-depth to be reached (4.2 million) and more states to be explored (3.7 x
10°%). This is partially due to the fact that both the event and network _event
variables for the process under consideration had to be included for this prop-
erty. In addition, the use of the _last operator precludes the use of partial order
reduction, which could have helped to reduce the complexity in this case.

8 Features

Now that the state-space is tractable, we can commence the second phase:
adding a number of features to the basic service.

8.1 Features

The set of features that we have added include:

e CFU — call forward unconditional All calls to the subscriber’s phone
are diverted to another phone.

e CFB — call forward when busy All calls to the subscriber’s phone are
diverted to another phone, if and when the subscriber is busy.

e OCS — originating call screening All calls by the subscriber to numbers
on a predefined list are inhibited. Assume that the list for user x does not
contain x.

e ODS - originating dial screening. The dialling of numbers on a prede-
fined list by the subscriber is inhibited. Assume that the list for user = does
not contain z.

e TCS — terminating call screening Calls to the subscriber from any
number on a predefined list are inhibited. Assume that the list for user x
does not contain .

¢ RBWF - ring back when free The subscriber has the option to call the
last recorded caller to his/her phone.

e OCO - originating calls only The subscriber is only able to be the
originating party of a call.
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Fig. 5. Finite State Automaton for RBWF

e TCO - terminating calls only The subscriber is only able to be the
terminating party of a call.

Note that examples of services that offer the features OCO or TCO are a pay
phone and a teen line respectively.

We do not give automata for all the features, but give only one example. Figure
5 illustrates the change in user-perceived behaviour when the user subscribes
to the ring back when free feature.

9 Temporal Properties for Features

The properties for features are more difficult to express than those for the
basic service. In order to accurately reflect the behaviour of each feature, great
attention must be paid to the scope of each property within the corresponding
LTL formula (see for example [14]). For example, in property 8, it is essential
that (for the CFB feature to be invoked) the forwarding party has a full
communication channel whilst the dialling party s in the dialling state. This
can only be expressed by stating that the forwarding party must have a full
channel continuously between two states, the first of which must occur before
the dialling party enters the dialling state, and the second after the dialling
party emerges from the dialling state.

The values of the variables 7,7 and k depend on the particular pair of fea-
tures and the corresponding property that is being analysed. These variables
are therefore updated prior to each verification either manually (by editing
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the Promela code directly), or automatically during the running of a model-
generating script (see section 13).

Property 7 — CFU Assume that user j forwards to k.

If user i rings user j then a connection between @ and k will be attempted before
user 1 hangs up.

That is: [J(p — (rPq)), where p is dialled[i] == j, r is partner[i] ==
chan_namelk], and ¢ is dev[i] == on.

Property 8 — CFB Assume that user j forwards to k.

If user i rings user j when j is busy then a connection between i and k will be
attempted before user i hangs up.

That is: [|(((uA)A((unt)U((—u)AtAp))) — (rPq)), where p is dialled[i] == j,

tis full(chan-namel[jl), r is partner[i| == chan_namelk], u is U ser|proci|Qdialling
and ¢ is dev[i] == on.

Property 9 — OCS Assume that user i has user j on its screening list.
No connection from user i to user j is possible.

That is: [](—p), where p is connect[i].to]j] ==

Property 10 — ODS Assume that user i has user j on its screening list.
User i may not dial user j .

That is: [](—p), where p is dialled[i] == j.

Property 11 — TCS Assume that user i has user j on its screening list.
No connection from user j to user i is possible.

That is: [|(—p), where p is connect[j].to[i]| ==

Property 12 — RBWF Assume that user j has RBWF.

It is possible for an attempted call from i to j to eventually result in a successful
call from j to i (without j ever dialling i) .

That is: E(o((p At Aoq) A (rPq)), where p is dialled[i] = j, q is dialled[j] = 1,
r is connect[j].to[i] == 1 and t is event[i] == call.
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Property 13 — OCO Assume that user j has OCO.

No connection from user i to user j is possible.

That is: [J(—p), where p is connect[i].to]j] ==

Property 14 — TCO Assume that user j has TCO.

No connection from user j to user i is possible.

That is: [|(—p), where p is connect[j].to[i]| ==

10 The Features in Promela

We do not give all the details of the implementation of features in Promela,
but draw attention to some of the more important aspects:

To implement the features we have included a “feature_lookup” function (see
below) that implements the features and computes the transitive closure of
the forwarding relations (when such features apply to the same call state).
We distinguish between call and dial screening; the former means a call
between user A and B is prohibited, regardless of whether or not A actually
dialled B, the latter means that if A dials B, then the call cannot proceed,
but they might become connected by some other means. The latter case
might be desirable if screening is motivated by billing. For example, if user
A dials C (alocal leg) and C forwards calls to B (a trunk leg) then A would
only pay for the local leg.

Currently we restrict the size of the lists of screened callers (relating to
the OCS, ODS and TCS features) to one. That is, we assume that it is
impossible for a single user to subscribe to two of the same screening feature.
This is sufficient to demonstrate some feature interactions, and limits the
size of the state-space.

The addition of RBWF, while straightforward, increases the complexity of
the underlying state-space greatly. This is because it involves recording (in a
structure indexed by call processes) the last connection attempt. The issue
is not just that there is a new global variable, but that call states that were
previously identified are now distinguished by the contents of that record
(c.f. discussion above about variable reinitialisation).

To ensure that all variables are initialised, we use 6 as a default value.
This is particularly useful when a user does not subscribe to a particular
feature. The value 7 is used to denote both an unobtainable number (e.g.
an incorrect number) and to denote the “button press” in RBWF. We do
not use an additional value for the latter, so as not to increase the state
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space.

10.1 Implementation of features: the feature_lookup inline

In order to enable us to add features easily, all of the code relating to fea-
ture behaviour is now included within an inline definition. In SPIN, an inline
definition is defined at the same level as a proctype declaration. An inline
invocation (an inline call) is performed with the same syntax as a procedure
call in an imperative language, such as C, and the parameters to an inline
definition are typically names of variables. The body of an inline is expanded
within the body of the User proctype at each point of invocation.

feature_lookup is defined as follows:

inline feature_lookup(part_chan,part_id,st)
{
do
::((st==st_idle)&&(term_call_only[selfid]==1))->st=st_blocked
:: ((st==st_diall)&&(0DS[selfid]==part_id))->st=st_unobt
::((st==st_diall)&&(RBWF [selfid]==1)&&(part_id==7))
->st=st_rback
t:((part_id!'=7)&&(st==st_diall)&&(CFU[part_id]!=6))
->part_id=CFU[part_id];
part_chan=chan_name [part_id]
::((part_id!'=7)&&(st==st_diall)&&(CFB[part_id] !=6)&&(len(part_chan)>0))
->part_id=CFB[part_id];
part_chan=chan_name [part_id]
:: ((st==st_call)&&(0CO[part_id]==1))->st=st_unobt
::((st==st_call)&&(0CS[selfid]==part_id))->st=st_unobt
11 ((st==st_call)&&(TCS [part_id]==selfid))->st=st_unobt
::else->break

The parameters part_chan, part_id, and st take the values of the current
partner, partnerid and state of a user when a call to the the feature_lookup
inline is made. Statements within feature_lookup pertaining to features that
are not currently active are automatically commented out (see section 13).

We note that one may regard feature_lookup as encapsulating centralised
intelligence in the switch, as it has “knowledge” of the status of processes and
data concerning feature configuration. While on the one hand one might argue
that this is against the spirit of an IN switch, on the other hand we maintain
that MUMC feature interactions simply cannot be detected in a completely
distributed architecture.
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BC CFU | CFB | OCS | ODS | TCS | RBWF| OCO | TCO
property 1 «/ X «/ X X X «/ X X
property 2 v X x v v v/ v x |/
property 3 «/ «/ 4/ «/ “/ X ﬂ/ X «/
property 4 ﬂ/ X X ﬂ/ N/ 4/ */ «/ «/
property 5 V4 X X X v/ X v/ X N/
property 6 v/ v/ v/ v/ v/ v/ X «/ «/
property 7 X «/ - - - - - -
property 8 X ﬂ/ - - - - -
property 9 X - «/ - - -
property 10 X - - 4/ - - -
property 11 X - - - «/ - -
property 12 X - - - - «/ _
property 13 X - - - - - “/ N
property 14 X - - - - - - v/

Fig. 6. Results of Property validation
10.2 Feature Validation

Each feature was validated (via SPIN verification) against the appropriate
set of properties (1-12). We consider the property associated with a feature,
the basic call properties, and the other feature properties, as appropriate. In
figure 6 a dash (—) denotes that the property is not appropriate — for example
a property might depend upon data that is not relevant to that feature. A x
indicates that for some suitable set of parameters, the property is not satisfied.
For ease of presentation and for comparison, BC is considered (again) as a
feature.

11 Static Analysis

Static analysis is an analysis of the structure of the feature descriptions, i.e.
an examination of the Promela descriptions. In this analysis, interaction is
defined as follows.

Definition An interaction is when overlapping guards: two or more guards
which evaluate to true, under an assignment to variables, lead to diverging
consequences.

In other words, if there is an overlap, and the consequences diverge, then there
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is non-determinism and hence a potential interaction. A more operational
explanation is that we are trying to detect of shared triggers of features. Shared
trigger is a well known concept, though seldom expressed in the above way.
Because we have collected additional feature behaviour together within the
inline feature_lookup, we need only consider overlapping guards within this
function.

As an example, consider the following overlap between CFU and CFB:

::((part_id!=7)&&(st==st_dial)&&(CFU[part_id] !=6))
->part_id=CFU[part_id]; part_chan=chan_name[part_id]

::((part_id!'=7)&&(st==st_dial)&&(CFB[part_id] !=6)&&(len(part_chan)>0))
->part_id=CFB[part_id] ;part_chan=chan_name [part_id]

The overlap occurs under the assignment st = st_dial, CFU[part_id] = z,
len(part_chan) > 0, and C'FB|part_id| = y where z,y # 6 and x # y. The
first choice consequently assigns x to part_id, but the second assigns y to
part_id. These are clearly divergent, and so we have found an interaction.

SUSC and MUMC interactions are distinguished by considering the roles of
part_id and selfid as indices. If the same index is used for the feature sub-
scription, e.g. CFU|[part_id] and C'F Blpart_id], then the interaction is SUSC,
if different indices are used, it is MUMC. In this example, the interaction is
clearly SUSC.

Interactions found from static analysis are relatively rare, because the shared
triggers indeed lead (for different reasons) to the same action, or because there
are few overlaps. Overlaps (found through the process of superposition) are
sometimes subtle. For example, consider the following choices:

:: ((st==st_dial)&&(0DS[selfid]==part_id))
->st=st_unobt

:: ((st==st_dial)&&(RBWF [selfid]==1)&&(part_id==7))
->st=st_rback

There is no overlap here because 7 is not a valid number to be in a screening
list, hence no interaction.

In all, there are 9 pairs to consider (4 clauses for st_dial, leading to 6 pairs,
and 3 clauses for st_call, leading to 3 pairs). The results of the static analysis
are given in the tables of figure 7 and 8. A |/ indicates an interaction whereas
a X indicates none. The tables are symmetric.

Static analysis is a very simple yet very effective mechanism for finding some
interactions — those which arise from new non-determinism. It depends very
much on the structure of the specification, unlike our dynamic form of analysis.
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CFU | CFB OCS | ODS | TCS |RBWF | OCO | TCO
CFU - «/ X X X X X X
CFB «/ - X X X X X X
OCS X X - X X X X X
ODS X X X - X X X X
TCS X X X X - X X X
RBWF| x X X X - - X X
0Cco X X X X X X X
TCO X X X X X X X X

Fig. 7. Feature Interaction Results - Static Analysis, SUSC

CFU | CFB | OCS | ODS | TCS |RBWF | OCO | TCO
CFU - X X v X X X X
CFB X - X v X X X X
OCS X X - X X X X X
ODS v v X - X X X X
TCS X X X X - X X X
RBWF| x X X X X - X X
OCO X X X X X X X X
TCO X X X X X X X X

Fig. 8. Feature Interaction Results - Static Analysis, MUMC

12 Dynamic Analysis

Dynamic analysis is an analysis of the logical properties that are satisfied (or
not) by pairs of users subscribing to combinations of features. In this analysis,
an interaction is defined as follows.

Definition Let x and y be user processes, and xy, U yy, the configuration,
or scenario, in which x subscribes to feature f; and y subscribes to feature
fj. Features f; and f; interact if a property that holds for f; alone, no longer
holds in the presence of another feature f;. More formally, for a property ¢,

we have zy, = ¢ but x5, Uyy, ~ ¢.

When z == y, then the interaction is SUSC, otherwise it is MUMC. Note
that there are no constraints on i and j, ie. i = j or # j. An SUSC (MUMC)
interaction between f; and f;, resulting from a violation of property ¢; is
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written (fi, f;)s ((fi, fi)m)-

The analysis is pairwise, known as 2-way interactions. While at first sight
this may be limiting, empirical evidence suggests there is little motivation to
generalise: 3-way interactions that are not detectable as a 2-way interaction
are exceedingly rare [32]. A similar approach to dynamic analysis is taken, for
example, by [39].

A naive approach would be to consider any property above as a candidate for
¢. However, it is easy to see that this would lead to all features interacting. A
more selective approach is required: we consider only the properties associated
with the features under examination, i.e. for features f; and f;, consider only
properties ¢; and ¢;.

13 Automatic Model Generation and Feature Interaction

Originally, before features were added to the basic call model, global variables
were manually “turned off” (ie. commented out) or replaced by local variables
when they are not needed for verification. The addition of features has led to
even more variables requiring to be selectively turned on and off, and set to
different values. For example if an originating call screening feature is selected
the orig_call_sreen array has to be included and its elements set to the ap-
propriate values. In addition the feature_lookup inline must be amended to
include those lines pertaining to the originating call screening feature. If no
ring back when free feature is chosen, the entire ringback call state must be
commented out.

Making all of the necessary changes before every SPIN run was extremely time-
consuming and error prone. Therefore, we now use a Perl script to enable us to
perform these changes automatically. Specifically this enables us to generate,
for any combination of features and properties, a model from a template file.
Each generated model also includes a header containing information about
which features and properties have been chosen in that particular case, which
makes it easier to monitor model-checking runs.

Dynamic feature interaction analysis is combinatorially explosive: we must
consider all pairs of features and combinations of suitable instantiations of the
free variables 4,7 and k occurring in the properties. For example, for the SUSC
case alone this gives 36 different scenarios (though not all are valid). To ease
this burden and to speed up the process, a further Perl script is used to enable

e systematic selection of pairs of features and parameters 7,7 and k, and gen-
eration of corresponding model,
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e automatic SPIN verification of model and recording of feature interaction
results.

Note that scenarios leading to feature interactions are recorded. Depending
on the property concerned, a report of 1 error (properties 7-11) or 0 errors
(property 12) from the SPIN verification indicates an interaction. Once (if)
an SUSC interaction is found the search for MUMC interactions commences.
If an MUMUC interaction is found the next pair of features is considered. The
following example of output demonstrates the complete results for CFU and
CFB with property 7.

/*The features are 1 and 2 */

/*New combination of features:CFU[0]=1 and CFB[0]=0 */
feature 2 is meaningless

/*New combination of features:CFU[0]=1 and CFB[0]=1 */
with property 7
with parameters 0,0 and 1 errors: 0

with parameters 1,0 and 1 errors: 0
with parameters 2,0 and 1 errors: 0

with parameters 3,0 and 1 errors: 0

/*New combination of features:CFU[0]=1 and CFB[0]=2 */
with property 7
with parameters 0,0 and 1 errors: 1 FEATURE INTERACTION: SUSC

/*New combination of features:CFU[0]=1 and CFB[1]=0 */
potential loop, test seperately

/*New combination of features:CFU[0]=1 and CFB[1]=1 %/
feature 2 is meaningless

/*New combination of features:CFU[0]=1 and CFB[1]=2 %/
with property 7
with parameters 0,0 and 1 errors: 1 FEATURE INTERACTION: MUMC

13.1 Dynamic Analysis — Feature Interaction results

The tables in figure 9 and 10 give the interactions found (using automated
model generation and analysis) for pairs of features in both the SUSC case and
the MUMC case. A y/ in the row labelled by feature f; means that the property
¢; is violated whereas a x indicates that no such violation has occurred. Two
features f; and f; interact if and only if there is a / in position (f;, f;) and/or
a 4/ in position (f;, fi). BC is excluded as every feature interacts with it in
some way.

New SUSC interactions are detected by the dynamic analysis, namely those
associated with the RBWF feature. For example, there is an (RBW F,CFU)g
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CFU | CFB OCS | ODS | TCS |RBWF | OCO | TCO
CFU - «/ X X X X X X
CFB «/ - X X X X X X
OCS X X - X X X X X
ODS X X X - X X X X
TCS X X X X - X X X
RBWE| ./ | x |+ | vV | vV | - |V |V
0CO X X X X X X - X
TCO X X X X X X X _

Fig. 9. Feature Interaction Results - Dynamic Analysis, SUSC

CFU | CFB OCS | ODS | TCS |RBWF | OCO | TCO
CFU «/ «/ X X X X X X
CFB “/ «/ X X X X X X
OCS X X X X X X X X
ODS “/ X X X X X X
TCS X X X X X X x x
RBWE| x x |V oV V| x| VY
0OCO X X X X X x x x
TCO X X % X X X % X

Fig. 10. Feature Interaction Results - Dynamic Analysis, MUMC

interaction because the CFU feature prevents the record variable pertaining
to the subscriber being set to a non-default value. Therefore the subscriber is
unable to perform a ring-back.

The tables are not symmetric. For example, there is an (ODS, CFU),; inter-
action, but not a (CFU, ODS),, interaction. To understand why, observe that
static analysis detects an MUMC interaction under the assignment ODS|[0] =
1, and CFUJ1] = 2. Dynamic analysis also detects an interaction violation —
indeed our analysis script (see section 13) generates exactly this scenario: an
(ODS,CFU)y, interaction with ¢ = 0 and j = 1 (i.e. user 0 rings user 1).
Consider those computations where feature_lookup takes the ODS branch.
One could understand this as ODS having precedence. There is no interaction
in this case: both property 7 and property 10 are satisfied. However, there is
a computation sequence where the C'F'U branch is taken; in this case CFU
has precedence and property 10 is violated because user 0 has dialled user 1
— before the call is forwarded to user 2 (although clearly property 7 is satis-
fied). Often, understanding why and how a property is violated will give the
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designer strong hints as to how to resolve an interaction.

14 Role of Static and Dynamic Analysis

The interactions found through dynamic analysis depend very much on the
properties and how the features are modelled. When the properties are ade-
quate, we would expect every statically detected interaction to be detected
dynamically, but not vice versa. This is borne out by our analysis.

We may regard the static analysis step as an inexpensive method of uncovering
some interactions, as well as providing an indication of whether or not we have
a good set of behavioural properties. But, note that the properties are not com-
plete descriptions, in particular they do not state what should not happen (i.e.
the frame problem). For example, one might expect a (CFU,TCS), interac-
tion but this is not the case because although TCS will block the forwarded
call, the partner variable will be set appropriately, thus satisfying property
7. Perhaps one should strengthen the property for CFU, to insist that the
connection is made (rather than just setting partner appropriately). But, it
is not that simple, the forwarded party may be engaged, or have a forwarded
feature (or any other kind of feature); the possibilities are endless. Therefore,
we consider the CFU property to be quite adequate.

In order to illustrate the contributions of the two analyses better, consider two
examples: when an interaction is detected and when it is not.

14.0.1 ODS and CFU

Static analysis detects an interaction when ODS[0] = 1, and CFU[1] = 2.
Dynamic analysis also detects an interaction, with ¢ = 0 and 7 = 1. In any
trace where feature_lookup takes the ODS branch, there is no interaction
(the CFU property is not violated because we do not even get the stage of
user 0 attempting to ring user 1). One could understand this as ODS having
precedence. However, there is a trace where the C F'U branch is taken; in this
case CFU has precedence and the ODS property is violated because user 0
has dialled user 1 — before the call is forwarded to user 2.

14.0.2 0OCS and CFU

Neither static nor dynamic analysis detects an interaction. In the static case,
this is obvious because the OC'S case refers to the call state and the C'F'U case
refers to the dial state. These are disjoint states, hence no overlap. However,
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one might expect to detect an interaction dynamically, thinking of the scenario
described above (OCS[0] = 1, CFU[1] = 2, and user 0 rings user 1). It seems
that one property must be violated. But, there is no violation and the clue as
to why comes from the static analysis: CFU is triggered properly whilst in the
dial state, but later on, in the call state, OC'S stops the call progressing. The
property for CFU is fulfilled, we do attempt to make the appropriate call, and
then that call is blocked. So, both properties are satisfied and we do not have
an interaction.

This example highlights again the fact that the properties are not complete
descriptions, we do not insist that a connection is made for CFU. As before,
it also illustrates why complete descriptions at this level are not appropriate.

It is also important to note that the particular specification detail of a feature
can affect the interaction results associated with that feature. For example,
had we chosen to implement the OCO feature from within the dialing state
(rather than in the calling state), far more interactions would have exhibited.
There would, for example, have been a static (MUMC) interaction between
ODS and OCO and a dynamic (MUMC) interaction between CFA and OCO.

14.1  Comparison with Other Feature Interaction Results

Unfortunately, it is very difficult to compare interaction analysis results — even
when researchers model the (apparently) same features, actual specification
detail can profoundly affect the result (as seen above). Nevertheless, we have
compared our results with those from [39] and the contest run in conjunc-
tion with FIW 2000 (Feature Interaction Workshop 2000) [3]. Our results are,
broadly speaking, similar, though we note that our interpretation of RBW F'
is rather different from that in the contest.

15 Conclusions and Future Directions

Our approach to feature interaction detection involves modelling a service at
two different levels of abstraction: communicating finite state automata and
temporal logic formulae, represented by Promela specifications, labelled transi-
tion systems and Biichi automata. In this paper, we have considered modelling
and analysing a basic call service with eight features, involving four users with
full functionality. There are two types of analysis, static and dynamic; the lat-
ter inolves model-checking with SPIN and is completely automated, making
extensive use of Perl scripts to generate the SPIN runs.
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The application area is a challenging one for model-checking for two reasons:
formulating the right temporal properties for distributed systems is difficult,
and the state spaces for any realistic model quickly become intractable. We
have demonstrated why relativised properties are important in distributed
systems and how they can be implemented in the LTL of SPIN, and how a
Promela model can be optimised, without losing operational detail. For the
latter, we have outlined a simple but effective state-space reduction technique
for Promela that does not abstract away from the system being modelled. On
the contrary, it may be understood as reducing the gap between the Promela
representation and the system under investigation. The technique involves
reinitialising variables and results in a reduction of 90 per cent of the state-
space. Thus, we overcome classic state-explosion problems and our interaction
analysis results are considerably more extensive than those in [39]. We believe
that both our reduction technique and the use of Perl scripts could be useful
to the SPIN community in general.

Since our analysis technique is based on property violation, and reasoning
by model-checking always provides a counter-example, we can gain a good
understanding of why an interaction occurs. Since our service model is low-
level, we can quickly see which operational aspects (eg. local, global variables)
are causing an interaction, this can help the redesign process. For example,
static analysis indicates shared triggers and dynamic analysis indicates in-
built precedences between features, when the results of the analysis are not
symmetric. Both can indicate how to alter precedences between features, in
order to resolve interactions.

Finally, we observe that we have only proved our results for four user processes,
we would like to be able to generalise these results for any number of user
processes. This is currently under investigation.
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Appendix: The Basic Service with features

We give here the optimised code for the basic service plus features. All code
pertaining to feature behaviour is commented out.

mtype =
{on,off,dial,call,oring,tring,unobt,engaged, connected,disconnect,
callback,st_idle,st_blocked,st_unobt,st_rback,st_diall,st_call};

chan null = [1] of {chan,bit};

chan zero = [1] of {chan,bit};

chan one [1] of {chan,bit};

chan two [1] of {chan,bit};

chan three = [1] of {chan,bit};

chan chan_name[4]; /* convert from number to channel name */

/*byte call_forward_always([4];*/ /*the ith member of these arrays switched to */
/*byte call_forward_busy[4]; */ /*default value of 6 if user[i]*/
/*byte orig_call_screen[4];*/ /*does not have this feature,*/
/*byte orig_dial_screen[4];*/ /* and to identity of user that */
/*byte term_call_screen[4];*/ /*user[i] forwards to, or cant call */
/* or cant be called by, otherwisex/

/*byte ring_back_when_free[4];*/ /*set to 0 or 1%/
/*byte orig_call_only[4];*/ /*set to 0 or 1%/
/*byte term_call_only[4];*/ /*set to O or 1%/

/*byte record[4] = 6;%/

/*mtype dev[4] = on;*/

/*byte dialled[4] = 6;%/

/*mtype network_event[4] = on;*/
/*mtype event[4] = on;*/

chan partner[4];

/*typedef array { byte to[4] }
array connect[4]; */
/* 16  bytes in total */

/*short pO=-1;%/
/*p3= -1;%/
/*pl= -1,p2=-1%/

/* The simple basic call protocol: A rings B */

/* A goes offhook, put A,0 on channel A */

/* A dials B and B is free, x/

/* then A puts A,0 on channel B; B,0 on channel A. */
/* B goes offhook and then put B,1 on channel A */

/* A and B are now connected */

/* To disconnect: A removes token from own channel, */

/* B removes token from own channel %/

/*inline feature_lookup (ql,idl,st)

{
do
:: ((st==st_idle)&&(term_call_only[selfid]==1))->st=st_blocked
11 ((st==st_diall)&&(orig_dial_screen[selfid]==id1))->st=st_unobt
11 ((st==st_diall)&&(ring_back_when_free[selfid]==1)&&(id1==7))->st=st_rback
1 ((1d1!'=7)&&(st==st_diall)&&(call_forward_always[id1] !=6))
->idl=call_forward_always[idl];
gql=chan_name[id1]
10 ((1d11=7)&&(st==st_diall)&&(call_forward_busy[id1] !=6)&&(1len(q1)>0))
->idil=call_forward_busy[id1];ql=chan_name[id1]
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11 ((st==st_call)&&(orig_call_screen[selfid]==id1))->st=st_unobt
::((st==st_call)&&(term_call_screen[idl]==selfid))->st=st_unobt
::((st==st_call)&&(orig_call_only[id1]==1))->st=st_unobt
::else->break

od

Ix/

/*inline event_action (eventq)

{
if
::selfid==0->event[selfid]=eventq
::selfid!=0->skip
fi

I/

/*inline network_ev_action (neteventq)

{

if

::selfid==0->network_event [selfid]=neteventq
::selfid!=0->skip

fi
}x/

proctype User (byte selfid;chan self)

{/* start User x/
{chan messchan=null;
bit messbit=0;
mtype state=on;
mtype dev=on;

byte partnerid=6;

idle:
atomicq{
assert(dev == on);
assert(partner[selfid]==null);
/* either attempt a call, or receive one */
if
: empty(self)->state=st_idle;feature_lookup(partner[selfid],partnerid,state);
if
state==st_blocked->state=on;goto idle
:: else->state=on
fi;
/*event_action(off) ;x/

dev=off;
self!self,0;goto dialing
/* no connection is being attempted, go offhook */
/* and become originating party */
: full(self)-> self?<partner[selfid],messbit>;
/* an incoming call */
if
::full(partner[selfid])->
partner[selfid] ?<messchan,messbit>;
if
: messchan == self /* call attempt still there */
->messchan=null;messbit=0;goto talert
:: else -> self?messchan,messbit; /% call attempt cancelled */
partner([selfid]=null;partnerid=6;messchan=null;messbit=0;
goto preidle
fi
::empty(partner[selfid])->
self?messchan,messbit; /% call attempt cancelled */
partner[selfid]=null;partnerid=6;messchan=null;messbit=0;
goto preidle
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fi};

dialing:

atomicq{
assert(dev == off);
assert(full(self));

assert(partner[selfid]==null);
/* dialing or go onhook */

if
1t /xevent_action(dial) ;*/
/* dial and then

nondeterministic choice of called party */

if

: partner([selfid] = zero;
/*dialled[selfid] = 0;x*/
partnerid=0

:: partner[selfid] = one;
/*dialled[selfid] = 1;%/
partnerid=1

:: partner[selfid] = two ;
/*dialled[selfid] = 2;%/
partnerid=2

: partner[selfid] = three;

/*dialled[selfid] = 3;*/
partnerid=3
:: partnerid= 7;

fi;
state=st_diall;
/* feature_lookup(partner[selfid],partnerid,state);*/
if
::state==st_unobt-> state=on;partner[selfid]=null;partnerid=6;/*dialled[selfid]=6;*/
goto unobtainable
/*::state==st_rback-> state=on;goto ringback*/
::(state==st_diall&&partnerid!=7)-> state=on;goto calling
::(state==st_diall&&partnerid==7)-> state=on;partner[selfid]l=null;partnerid=6;
/*dialled[selfid]=6;*/
goto unobtainable
fi
::/*event_action(on) ;*/
dev=on;

self?messchan,messbit;assert(messchan==self);
messchan=null ;messbit=0;
goto preidle
/*go onhook, without dialling */
fi};

calling: /* check number called and process */

atomic{/*event_action(call) ;*/

assert(dev == off);

assert(full(self));
/* record[partnerid]=selfid;*/

state=st_call;

/*feature_lookup (partner[selfid],partnerid,state);*/

if
::state==st_unobt->state=on;partner[selfid]=null;partnerid=6;/*dialled[selfid]=6;*/
goto unobtainable

::state==st_call->state=on;skip

fi;

if

:: partner[selfid] == self -> goto busy

/* invalid partner */
:: partner[selfid]!=self ->
if
:: empty(partner[selfid])->partner[selfid]!self,0;
self?messchan,messbit;
self !partner[selfid],0;
messchan=null;messbit=0; goto oalert
/* valid partner, write token to partner’s channel*/
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full(partner[selfid]) -> goto busy
/* valid partner but engaged */
fi
fi};

busy: /* number called is engaged, go onhook or trivial dial */
atomicq{
assert(full(self));
/*network_ev_action(engaged) ;*/
if
:: /xevent_action (on);*/
dev = on;
self?messchan,messbit;assert (messchan==self);
partner[selfid]=null;partnerid=6;
messchan=null;
/*dialled[selfid]=6;*/
messbit=0; goto preidle
/*go onhook, cancel connection attempt */
/* :: event_action(dial);
goto busy*/
/* trivial dial */
fi};

/*comment out entire ringback state when no ACB switched on */
/*otherwise just comment out events when not needed */
/*Can’t nest comments remember*/
/*ringback:
atomic{printf("MSC: Last Caller was user %d\n",record[selfid]);
self?<messchan,messbit>;
assert (messchan==self);
if
:: self?messchan,messbit;dev=on;
dialled[selfid]=6;
partner[selfid]=null;partnerid=6;
messchan=null ;messbit=0;
event_action(on);
goto preidle
(record[selfid] !'=6) ->
messchan=null ;messbit=0;
partner[selfid]=chan_name[record[selfid]];
partnerid=record[selfid];
event_action(callback);
goto calling
fi};x/

unobtainable: /* number called is unobtainable, go onhook or trivial dial */
atomic{assert(full(self));
assert(partner[selfid]==null);
assert(partnerid==6);
/* assert(/*dialled[selfid]==6) ;*/
/*network_ev_action(unobt) ;*/
if
::/*event_action(on);*/
dev = on;
self?messchan,messbit; assert (messchan==self);
messchan=null;
messbit=0;goto preidle
/*go onhook, cancel connection attempt */
/*::event_action(dial);goto busy*/
/* trivial dial */
fi};

oalert:
/* called party is ringing */
atomic{
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assert(full(partner([selfid]));
assert(full(self));
assert(dev == off);
/*network_ev_action(oring) ;*/
self?<messchan,messbit>;assert(messchan==partner([selfid]);
messchan=null;
/* check channel */
if
::messbit== 1->messbit=0;goto oconnected
/* correct token */
::messbit==0->goto oalert
/* wrong token, not connected yet, try again */
::messbit==0->goto oringout
/* give up */
/* :: event_action(dial);messbit=0;goto oalert*/
/* trivial dial */
fi};

oringout: /*abandon call attempt*/
atomicq{
assert(full(partner[selfid]));
assert(full(self));
assert(dev == off);
/*event_action(on);*/
dev=on;
self?messchan,messbit;
partner[selfid] 7messchan,messbit;
partner[selfid] 'messchan,0;
partner[selfid]l=null;partnerid=6;
/*dialled[selfid]=6;%*/
messchan=null ;messbit=0;
goto preidle;
/* give up, go onhook */
};

oconnected: atomic{
assert(full(self));
assert (full(partner[selfid]));
/* connection established */
/*connect[selfid].to[partnerid] = 1;%/
goto oclosel};

oclose: /* disconnect call */
atomicq{
assert(full(self));
assert(full(partner[selfid]));
/*event_action(on);*/
dev = on;
self?messchan,messbit; /* empty own channel */
assert(messchan== partner[selfid]);
assert(messbit==1);
partner[selfid] ?messchan,messbit; /* empty partner’s channel */
assert (messchan==self);
assert(messbit==1); /* and disconnect partner */
partner[selfid] !messchan,0;
/* connect[selfid].to[partnerid] = 0 ;*/
partner[selfid]=null;
/*dialled[selfid]=6;*/
partnerid=6;messchan=null;messbit=0;
goto preidle};

talert: atomic{
assert((dev == on)&&(full(self)));
/* either device rings or*/
/* connection attempt is cancelled and then empty channel */
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partner[selfid] ?<messchan,messbit>;
if
:: messchan==self->
/*network_ev_action(tring) ;*/
messchan=null ;messbit=0;
goto tpickup
else->skip /* attempt has been cancelled */

fi;
/*network_ev_action(disconnect) ;*/
self?messchan,messbit;
partner[selfid]=null;partnerid=6;
/*dialled[selfid]=6;*/
messchan=null ;messbit=0;
goto preidle

};

tpickup: /* proceed with connection or connect attempt cancelled */
atomic{assert(full(self));
if
:: full(partner([selfid]) ->
partner[selfid]7<messchan,messbit>;
if
: messchan==self -> /*connection proceeding */
assert (messbit ==0);
self?messchan,messbit;
assert (messchan==partner[selfid]);
assert(messbit==0);
/*event_action(off) ;*/
dev = off;
partner[selfid] 7messchan,messbit;
partner[selfid] !self,1; /% establish connection */
self !partner[selfid],1;
messchan=null ;messbit=0;
goto tclose
else —-> /* wrong message, connection cancelled */
/*network_ev_action(disconnect) ;*/
self?messchan,messbit;
/*event_action(on);*/
dev=on;
partner[selfid]=null;
/*dialled[selfid]=6;*/
partnerid=6;messchan=null;messbit=0;
goto preidle
fi

empty(partner[selfid])-> /* connection cancelled */
/*network_ev_action(disconnect) ;*/
self?messchan,messbit;
/*event_action(on);*/
dev=on;
partner[selfid]=null;partnerid=6;
/*dialled[selfid]=6;*/
messchan=null ;messbit=0;
goto preidle
fi};

tclose: /* check if originator has terminated call */

atomic{self?<messchan,messbit>;

if

::(messbit == 1 && dev == off) -> /* trivial handset down */
/*event_action(on) ;*/

dev = on; messchan=null;messbit=0;goto tclose

::(messbit == 1 &% dev == on) -> /% trivial handset up */
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/*event_action(off);*/
dev = off; messchan=null;messbit=0;goto tclose

(messbit == 0 && dev == on) -> /* connection is terminated

*/
self?messchan,messbit;

partner[selfid]=null;partnerid=6;
/*dialled[selfid]=6;*/
messchan=null ;messbit=0;
goto preidle

(messbit == 0 && dev == off) ->
/*network_ev_action(disconnect) ;*/

/* disconnect tone */
/*event_action(on) ;*/

dev=on; /* connection is terminated

*/
self?messchan,messbit;

partner[selfid]=null;
/*dialled[selfid]=6;*/
partnerid=6;messchan=null;messbit=0;
goto preidle

fi};

preidle:

atomicq{
/*network_ev_action(on) ;*/
/*event_action(on);*/
goto idle

}

} /* end User */

init
{
atomic{partner[0]=null;
partner[1]=null;
partner[2]=null;
partner[3]=null;
chan_name[0]=zero;
chan_name[1]=one;
chan_name[2]=two;
chan_name[3]=three;

/*switch on features herex/

/*default value 6, */

/*if user i has feature, set to id of user to be forwarded to, or screened */
/*call_forward_busy[0]=6;

call_forward_busy[1]=6;

call_forward_busy[2]=6;

call_forward_busy[3]=6;*/

/*call_forward_always[0]=1;
call_forward_always[1]=6;
call_forward_always[2]=6;
call_forward_always[3]=6;*/

/*orig_dial_screen[0]=6;

orig_dial_screen[1]=6;
orig_dial_screen[2]=6;

orig_dial_screen[3]=6;%/

/*orig_call_screen[0]=6;
orig_call_screen[1]=6;
orig_call_screen[2]=6;

orig_call_screen[3]=6;%*/

/*term_call_screen[0]=6;
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term_call_screen[1]=6;
term_call_screen[2]=6;
term_call_screen[3]=6;*/

/*ring_back_when_free[0]=0;
ring_back_when_free[1]=0;
ring_back_when_free[2]=0;
ring_back_when_free[3]=0;%/

/*orig_call_only[0]=0;
orig_call_only[1]=0;
orig_call_only[2]=0;
orig_call_only[3]=0;%*/

/*term_call_only[0]=0;
term_call_only[1]=0;
term_call_only[2]=0;
term_call_only[3]=0;*/

/*p0=+/run User(0,zero);
/*pl=x/ run User(1l,one);
/*p2=+/ run Orig_User(2,two);
/*p3=x/ run Term_User(3,three);
}
}
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