What Use are Formal Design and Analysis Methods
to Telecommunications Services?

Mufty Calder
Department of Computing Science
University of Glasgow
Glasgow, Scotland.
muffy@dcs.gla.ac.uk

Abstract. Have formal methods failed, or will they fail, to help us solve prob-
lems of detecting and resolving of feature interactions in telecommunications
software? This paper contains a SWOT (Strengths, Weaknesses, Opportuni-
ties, and Threats) analysis of the use of formal design and analysis methods in
feature interaction analysis and makes some suggestions for future research.

1 Introduction

Over the last few years, a very active research area has been the investigation of formal
methods, or formal description techniques, for solving (some of) the problems of detect-
ing and resolving of feature interactions in telecommunications software. The results of
that research will not be enumerated here (see the last few Feature Interaction Work-
shops [12, 13, 15] for a good selection of papers in the area) but much of the research
has focussed on the formal specification of services and features, and the verification of
properties of those specifications.

While this research has been in response to a clearly identified need, after an initial
flush of enthusiasm, many in the community are beginning to wonder if formal methods
have failed, or will fail, to deliver. Some of the questions being asked are:

e can they ever scale up to industrial requirements,
e can they reveal unknown interactions,

e can they help us understand the nature of interactions, better than with informal
techniques,

e can the benefits outweigh the costs,

e does the inherent complexity, particularly space complexity, prohibit effective use
of automated reasoning tools,

e can they deal with the many difficult characteristics of the domain; e.g. dis-
tributed control and data, influences from environment, multi-vendor, multi-
platform?

To an extent, these questions merely illustrate the well known tensions between
theory and practice, or between dreams and reality. Some of them have been examined
elsewhere, and specific remedies proposed (for example in [20, 30]). But, I suggest

that the situation is somewhat more serious than has been acknowledged and warrants
further debate. In particular, whereas some of the reservations behind the questions
given above are specific to the field of feature interactions, others are more generic. This
is worrying because formal methods have in several areas failed to deliver the dream
that was promised to software engineering two decades ago. Does this mean they could,
or even that they must, fail again here too?

This paper aims to open up a debate of this issue, beginning with a SWOT (Strengths,
Weaknesses, Opportunities, and Threats) analysis of the use of formal design and anal-
ysis methods in feature interactions. This is followed by a brief overview of the broader
roles of formal design and analysis in both software and hardware engineering, including
a closer inspection of a few specific areas. In light of the analysis and the historical
context, the final section explores possible new roles for formal design and analysis
methods and suggests areas where we should be aiming our research efforts.

It is important to note that I have deliberately avoided the phrase “formal methods”
in the title. This is because I want to avoid the conventional and narrow interpretation
of formal methods as just specification and verification; rather I mean the employment
of formal, symbolic notations, theories and tools for both describing and prescribing
emergent as well as obligatory behaviour. Also, while I refer to the field as “feature
interactions”, I intend it to mean something broader than just detection and resolution;
rather, it is intended to encompass service creation, analysis and subsequent system
development, maintenance, evolution, and even de-commissioning.

2 SWOT Analysis
2.1 Strengths

e The process of developing formal models forces contexts and assumptions to be
made explicit — confusion about these is often a source of unpredicted interactions.

e Descriptive models faithful to operational service behaviour can provide platforms
for experimentation with and exploration of new and tentative behaviours, as well
as for established and legacy systems.

e Abstract models may allow us to make generic definitions of (classes of) interac-
tions.

e Automated analysis of models is possible through the use of symbolic simulation,
reasoning and prototyping tools.

e Formal design and analysis methods are the basis of nearly all off-line approaches.

2.2 Weaknesses

e Finding appropriate levels of abstraction is very hard. Moreover, the chosen level
of abstraction may prove to be inappropriate and subsequently there can be no
effective utilisation of the analysis.

e The activity of formal modelling and analysis is very time consuming; this is tradi-
tionally a problem for industry, and increasingly one for the academic community.

2.3

New features are usually non-conservative extensions of existing services; we do
not generally have good mechanisms for dealing with this. (A particular case of
this is referred to as non-monotonicity in [30].)

There is little evidence of formal design and analysis methods uncovering unknown
interactions.

In a multi-vendor market, source specifications, whether informal or formal, may
not be available.

Many services and the systems in which they are components involve a high
proportion of undocumented legacy code. This code may have to be re-engineered.

There may be a large gap between prescriptive specifications of what services
should do and what what they actually do.

Most techniques have been designed for expressability rather than for tool support.

There are widespread beliefs that specifications should be readable by a wide
audience.

There are widespread beliefs that a formal approach needs to be taken for a whole
problem.

Most formal analyses can only consider features pairwise.

Opportunities

The problems have not been solved by other approaches.

In a multi-vendor, multi-platform market, developers may realise that in order to
integrate their products with those from other vendors, they require more formal
descriptions from the other vendors.

Recent (finite-state) tool developments are very promising, for example model-
checkers [18] can now deal with an order of 10'% states.

While formal techniques have been predominantly employed in off-line approaches,
they might also be employed in on-line approaches.

Projects may be able to identify smaller, crucial problems where it is cost effective
to apply formal analysis techniques.

Formal techniques may be most attractive when offered as one of several comple-
mentary techniques.

2.4 Threats

e Progress is simply too slow.

e On-line approaches may prove to be more adaptive and effective; for example,
negotiating agents may become one such approach.

e Common architectures and changing underlying technology may make interac-
tions irrelevant.

This analysis might at first sight appear to have omitted several generally accepted
motherhoods. For example, some “standard” strengths such as the provision of unam-
biguous, rigorous descriptions are not included; nor are some of the traditional weak-
nesses, such as lack of evidence of ability to scale up, cultural resistance, inadequate
tools, relationships between models in different formalisms, education, etc. These are
deliberately omitted, since I believe that in the past, the community has been trying
to captilise on the wrong strengths (and consequently weaknesses, opportunities, etc.).
Moreover, under those assumptions, the techniques are almost bound to fail to deliver.
For example, one often cited advantage of formal definitions is that there is “only one
correct way to interpret the behaviour defined”. Although this is a contemporary com-
ment (and a direct quote, though it seems unfair to single out the authors), the senti-
ment has been discredited on many occasions. For example, during the 70’s there was a
raging debate about the meaning of the infamous stack abstract data type. Eventually
it was found that the usual array and index implementation was not a valid imple-
mentation of the standard specification which included the equation pop(push(s,z))=s!
Clearly this is not what the specifiers meant when they were writing defining the equa-
tions, and the debate was finally resolved by a general recommendation that initial
algebra semantics is not appropriate for composite data types.

The last threat is a bit of a joke, nonetheless there is a serious aspect to it. In such
a rapidly changing technology, it is quite possible that the problem will just go away
before we solve it. We must remain vigilant to this possibility and aware that we are
problem-driven. The application of formal design and analysis methods is not the end
but the means to achieve better telecommunications services.

On a more optimistic note, it is almost inevitable that further problems will be
thrown up by new technologies. For example, already the service management frame-
works such as TINA (Telecommunications Information Network Architecture) and in-
telligent agents [17] present us with new challenges.

3 Historical Perspective

The formal methods dreams of the 70’s and early 80’s failed to make the promised
impact on software engineering, as practised in most commercial software development.
Although there have not been many successful adoptions of formalisms, such as context-
free grammars and finite-state diagrams, they are in general not the consequences of the
formal methods “movement”. For example, consider compilers. While the impact of
formal grammars and parser generators has been great, i.e. they are almost universal,
formal programming language semantics and semantics-based compiler generators have
made little impact outside academia. That is not to say that formal semantics are not
useful, but that they have not had the commercial impact envisioned (for example, Java
was developed and released without a formal semantics).

Many of the early proponents of formal design and analysis methods recognise that
this failure can, in part, be attributed it to the “totalitarian” nature of the programme
of the 70’s and 80’s. This programme called for the integration of formal design and
analysis methods into every stage of the software lifecycle, i.e. into the requirements
— specification — design — implementation — testing process. Particular emphasis was
placed on the early requirements and specification stages, on totality (all aspects of a
system must be formally specified), and formal transformations between each stage.

But, the community is beginning to move away from this approach. For example, in
[10], Cliff Jones explains how his views have changed from the “austere suggestions” of
over a decade ago, and Jackson and Wing comment that by “promoting full formalisa-
tion in expressive languages, formalists have unwittingly guaranteed that the benefits
of formalisation are thinly spread”. Each conclude that the trend now is towards for-
mal methods light, where partiality and focussed application are key, with minimum
emphasis on notational detail.

There are several such focussed applications; one notable example, which is very
relevant to our domain, is the area of protocol validation and testing, e.g. [18]. Testing
in this context has proved to be very important. Whereas the role of testing was
minimised in the early approach to formal methods, (the emphasis was primarily at
the front end of the lifecycle) in the protocol domain, formally based testing has turned
out to be one of the greatest benefits of using formal design and analysis methods (for
examples, see [4, 21]). Undoubtedly, this success has been largely a consequence of the
development of tractable finite-state verification techniques.

Other successful applications include safety-critical applications (e.g. railway sig-
nalling [26], medical applications [19]), security protocols (state exploration [23], au-
thentication logics [1], induction [27]), re-engineering large legacy astronomical software
(28], and hardware verification [6]. We note that, again, many of these successes are a
result of effective finite-state verification techniques.

The last area is very interesting because it raises some strong parallels (and dif-
ferences) worth noting. While formally based hardware design and verification is a
long-established field, recently a new enthusiasm, particularly from industry, can be de-
tected as the challenge moves on from gate level behaviour to the system level design,
i.e. system-chips and chip sets. Moreover, we can detect signs of the formal methods
light approach here. For example, Gadi Singer, general manager of design at Intel says
in [11] (my emphasis):

We believe that the technology and the knowledge required to do verification
right will be a differentiator among companies and will be a competitive
advantage for Intel. We think that Intel will have the advantage ... because
of the ability to put together a complete set of complementing technologies
that will allow our designs to be more reliable.

Clearly, there are key similarities between the two fields and therefore we should
learn from their experience. For example, some striking similarities are that com-
ponents are being developed and offered by multiple vendors, and developers require
well-designed architectures to ensure correct operation, as well as well-documented ar-
chitectures which can interoperate with others. In common with other areas of software
engineering, there is an increasing recognition of the need for reusable components, i.e.
reusable cores and IP (intellectual property) blocks. To this end, more than 100 elec-
tronics firms have recently joined the VSI (Virtual Socket Interface)) Alliance — a group
which aims to develop standards for interfacing IP blocks from multiple sources.

On the other hand, we must be aware that there are also some key differences. For
example, unlike hardware design, features do not represent users’ ultimate intentions;
they are merely a way of achieving some of those intentions. Moreover, features are
being added at an exponential rate, features extend systems in a non-conservative way,
and hardware does not get re-released.

4 Discussion and Challenges

The original formal methods contribution to software engineering attempted to integrate
formal analysis and design methods into every stage of the requirements — specification
— design — implementation — testing process. I suggest that this is a narrow view of
the role of formality and one which is bound to fail, largely because it fails to address
the weaknesses identified earlier and in particular, because it does not target resources
effectively and it presupposes that requirements are fixed in a predetermined and static
way.

But, this limited role is not the only possible one; Pamela Zave remarked in [10]
that:

Finding the best way to use formal methods in an application domain is
research, not development.

So, what kind of research is required in order to address the points raised in our anal-
ysis so far? What use are formal design and analysis methods to telecommunications
services?

I suggest that they can be of great use, but we need to use formal design and anal-
ysis methods in ways which capitalise upon the strengths and opportunities identified
earlier, while avoiding the weaknesses and threats. In order to achieve this, some rec-
ommendations for future research directions are described below. The description is
not exhaustive and some issues are interrelated.

Ezperimentation

While we still require specifications to document interfaces, software components and
IP blocks, we need to move beyond the desire for prescriptive specification, towards
experimental modelling of emergent behaviour. This may require a change of “spirit”
in the way we approach mathematical models: a mathematical model is a prototype
and one in which we can test, explore, and learn about behaviours.

The feature interaction “problem” presents us with a unique domain where we not
only seek to validate desired interactions, but most importantly we seek to uncover and
resolve undesirable and unpredicted interactions. Unpredictability is key, and formal
design and analysis methods have not traditionally been used in such an experimental
context. By such a context, I mean both using a model to prove or disprove a hypoth-
esis, as well experimentation with a model to derive, or uncover, further hypotheses.
Formally based approaches to experimentation, rather like formally based testing, can
lead the experimenter to uncover crucial properties, theorems or interactions. This is
particularly relevant when dealing with emergent, or unknown behaviour, and I believe
that this is exactly where formal techniques may offer us a significant gain over other
techniques. We should therefore capitalise on this opportunity and capitalise on the
strengths of formal modelling in this context.

Understanding the problem domain

Interactions may be uncovered and resolved through experimentation, as described
above, or through instantiation of generic characterisations. The latter requires a deep
understanding of the problem domain, and while there are several excellent informal
characterisations of classes of interactions (e.g. [7]), and several specific formal char-
acterisations within particular models (e.g. [5, 29]) we are still lacking good, generic,
formal characterisations.

Levels of abstraction will be particularly important when making such generic def-
initions, as well as learning from other fields (both within software and other forms of
engineering) where interaction and interoperability are key issues (do we want a virtual
feature alliance?).

Modelling

We need to work on developing models which are abstract enough to uncover properties
and commonalities, yet concrete enough to inform the operational world. We need
models which inform us about what is, rather than what we would like, in an idealised
world. Moreover, we need to target our efforts so that the formal models express
critical or poorly understood components, and at times when the process of developing
the model will help us to become more confident about both the individual component
and the overall system. The emphasis should not be on complete models, but on
those which are focussed on aspects where formal modelling and analysis will provide
additional insight (c.f. the “filtering” approach of [21]).

This will involve identifying the relevant aspects, or dimensions, and most impor-
tantly, critical intersections of those dimensions. These dimensions may be generic,
or domain-specific. Examples of the former include functional behaviour, component
range (e.g. scheduler, router, etc.), software lifecycle, product lifecycle, user or network
views, service environment, safety-criticality, and fault-tolerance; examples of the lat-
ter include billing and charging behaviour, data transformations, user intentions, and
temporal relationships between features.

Analysis without behavioural models

Telecommunications services are rarely a “green field” site. It is much more likely that
we are integrating, modifying and extending a mixture of existing software and new
functionality. So, the existing software may well be poorly documented legacy code,
or just third party software, and we need good ways of dealing with that. Approaches
which depend on pre-existing behavioural models usually involve re-engineering, or
specifying the legacy system. There appears to be little work on alternative approaches,
though one notable example is the approach suggested in [25], where the legacy code is
embedded in a transactional model.

The problem of dealing with legacy code is not the only motivation for analysis
techniques which do not depend on behavioural models. For example in [21], Kimbler
outlines the “vicious” circle of finding criteria for interaction analysis which depends
on behavioural specifications.

On-line techniques

So far, formal methods have been used primarily for off-line interaction detection and
resolution, and clearly more research effort should continue in this area. However, with
the emergence of multi-vendor markets and evolving architectures, the need for on-line
techniques seems certain to increase. How can formal design and analysis contribute to
the design, implementation, and run-time functioning of on-line feature management?
Here perhaps is an ideal application for a combination of experimental and formal
approaches. For example, how can a formally based model of service behaviour inform
an on-line feature manager, in real-time? What kinds of theories of services, call models,
features and interactions would we need, and what kinds of analyses? How could we
avoid the vicious circle mentioned above, and how and when would the feature manager
make use of those theories? Would the techniques be tractable?

The approach of Aggoun and Combes in [3], which introduces the concepts of pas-
sive observers in the service creation environment and active observers in the service
execution environment, with feedback from the latter to the former, is a good example
of such a combination approach. Further research in this area is needed and could
motivate the development of some quite novel roles for formal design and analysis in
telecommunications services.

Acknowledgements

Some of these ideas have developed through discussions with Evan Magill and I would
like to acknowledge his contribution; thanks also to Kris Kimbler and Tom Melham for
their comments on an earlier draft of this paper.

References

[1] M. Abadi and A.D. Gordon. A calculus for cryptographic protocols. The spi calculus. In Fourth
ACM Conference on Computer and Communications Security. ACM Press, 1997. In press.

[2] A. Alfred, N. Griffith. Feature Interactions in the Global Information Infrastructure. In Proceed-
ings of 3rd ACM Sigsoft Symp. on Foundations of Software Engineering, Software Engineering
Notes, Vol. 20, No. 4, Oct. 1995.

[3] I. Aggoun and P. Combes. Observers in the SCE and the SEE to Detect and Resolve Service
Interactions. In [15].

[4] N. Arakawa, M. Phalippou, N. Risser, and T. Soneoka. Combination of conformance and inter-
operability testing. Formal Description Techniques, pp. 397-412, V. M. Diaz and R. Groz (eds.),
Elsevier Science Publishers, B.V. (North-Holland) 1993.

[5] P. Au and J. Atlee. Evaluation of a State-Based Model of Feature Interactions. In [15].

[6] G. Barrett. Model checking in practice: the t9000 virtual channel processor. IEEE Trans. on
Software Engineering, volume 21, number 2, 1995.

[7] E.J. Cameron, N.D. Griffeth, Y.J. Lin, M.E. Nilson, W.K. Shnure, and H. Velthuijsen. A feature
interaction benchmark in IN and beyond. In [13].

[8] E.M. Clarke and J.M. Wing. Formal Methods: State of the Art and Future Directions. Report
by the Working Group on Formal Methods for the ACM Workshop on Strategic Directions in
Computing Research, ACM Computing Surveys, vol. 28, no. 4, December 1996, pp. 626-643. Also
CMU-CS-96-178.

[9] P. Combes and S. Pickin. Formalisation of a User View of Network and Services for Feature
Interaction Detection. In [13].

[10] Formal Methods: Point-Counterpoint. Round table discussion on formal methods, pp. 18-30,
IEEE Computer, April 1996.

1]
12]
13]
14]
15]
16]
17)
18]
19]

[20]
[21]

[29]
[30]

EETIMES, 26 January, 1998, TechWeb News.
http://www.techweb.com/se/directlink.cgi?EET19980126S0017.

Proceedings of International Workshop on Feature Interactions in Telecommunications Systems
IT, St. Petersburg, U.S.A., IEEE Communications Society, 1992.

W. Bouma and H.Velthuijsen (eds.). Feature Interactions in Telecommunications Systems II.
Proceedings of International Workshop, Amsterdam, IOS Press, 1994.

K.E. Cheng and T. Ohta (eds.). Feature Interactions in Telecommunications Systems III. Tokyo,
IOS Press, 1995.

P. Dini, R. Boutaba, and L. Logrippo, (eds.) Feature Interactions in Telecommunications Systems
IV. Montreal, IOS Press, 1997.

M. Faci, L. Logrippo, and B. Stepien. Structural Modals for Specifying Telephone Systems. To
appear in Computer Networks and ISDN Systems.

N.D. Griffeth and H. Velthuijsen. The Negotiating Agents Approach to Runtime Feature Inter-
action Resolution. In [13].

G. Holzmann. Design and Validation of protocols: a tutorial. Computer Networks and ISDN
Systems, No. 25, pp. 981-1017, 1993.

J. Jacky. Specifying a safety-critical control system in Z. IEEE Trans. on Software Engineering,
volume 21, number 2, 1995.

K. Kimbler. Addressing the Feature Interaction Problem at the Enterprise Level. In [15].

F. Kristoffersen, L. Verhaard, and M. Zeeberg. Test derivation for SDL based on ACTs. Formal
Description Techniques, pp. 381-396, V. M. Diaz and R. Groz (eds.), Elsevier Science Publishers,
B.V. (North-Holland) 1993.

F.J. Lin and Y-J. Lin. A Building Block Approach to Detecting and Resolving Feature Interactions,
in [13].

G. Lowe. Breaking and fixing the Needham-Schroder public-key protocol in CSP and FDR. In
Proceeding of TACAS ’96, Lecture Notes in Computer Science, volume 1055, pp. 147-166, 1996

Information Processing Systems — Open Systems Interconnection — LOTOS — A Formal De-
scription Technique Based on the Temporal Ordering of Observational Behaviour. International
Organisation for Standardisation. 1988.

D. J. Marples, E.H. Magill, and D.G. Smith. An infrastructure for Feature interaction resolution
in a multiple service environment - The application of transaction Processing techniques to the
Feature Interaction Problem. In TINA 95 Telecommunications Information Network Architecture
Conference, Melbourne, Australia, February 1995.

M. Morley. Safety-level communication in railway interlockings. Science of Computer Program-
ming, volume 29, number 1-2, July 1997.

L. Paulson. Proving Properties of Security Protocols by Induction. pp. 70-83, Proceedings of the
10th Computer Security Foundations Workshop, IEEE, 1997.

M. Stickel et al. The deductive composition of astronomical software from sub-routing libraries. In
Proceedings of CADE 12, Lecture Notes in Computer Science, pp. 341-355, volume 814, Springer
Verlag.

M. Thomas. Modelling and Analysing User Views of Telecommunications Services. In [15].

H. Velthuijsen. Issues of Non-monotonicity in Feature-Interaction Detection. In [14].

