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Abstract

The role of scaffold proteins within signal transduction pathways is
an area of current active investigation by biochemists. Much of their
effort is presently directed towards identifying which of the many proteins
implicated in such pathways, play this role. Moreover the full biological
significance of the role is yet to be fully understood. It seems that generic
models of the dynamic properties of scaffold proteins and their influence
on the signalling can be helpful in interpreting experimental data and
developing understanding. We have been developing some PEPA models
of the role of scaffold proteins. In this paper we report the results of our
preliminary experiments.

1 Introduction

In this paper we present some preliminary work on using PEPA to model scaffold
proteins, and investigating their role within the dynamic behaviour of signal
transduction pathways within cells. We do not look at any particular pathway,
but rather develop generic models which seek to illustrate how the scaffold
proteins interact with other proteins in the pathway, and the impact that this
has on the signalling dynamics.

This work is just in its infancy and we present here two simple models. The
first represents only the formation of the complex on the scaffold and how this
is affected by the concentrations of the scaffold and the reagents, and by the
ratio between the binding and release rates. This model is analysed using both
Markovian and continuous state space semantics. The second model considers
the competitive formation of protein complexes in the cytosol, assuming that
once proteins have bound in the cytosol they are no longer able to engage with
the scaffold. This model is analysed only using the continuous state space
semantics. For both models careful consideration of the kinetics is needed, as
will be explained.

The rest of the paper is structured as follows. In Section 2 we present a
brief introduction to scaffold proteins and their role in cell signalling. Section 3
presents the first PEPA model, considering the binding of reagents to scaffold,
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Figure 1: Schematic view of a scaffold protein

and the numerical experiments upon it. Section 4 presents the elaborated model
which takes into account the formation of complexes in the cytosol. Finally, in
Section 5 we summarise our results and discuss some directions for future work.

2 Scaffold proteins

In signal transduction pathways within a cell, a series of biochemical reactions
serve to pass a message from the cell membrane to the nucleus. The message
is prompted by the arrival of a signalling molecule at the membrane of the cell,
and the result of the signal can be a profound effect on the behaviour of the
cell, for example triggering cell replication, differentiation or apoptosis. The
message is passed as peaks of concentration of proteins along the pathway and
sophisticated structures in the pathway can mean that the message is amplified
or attenuated as it passes from membrane to nucleus.

Considerable wet lab effort is being applying to identifying the proteins which
constitute different signalling pathways. This experimental work has identified
some proteins which appear to play an organisational rather than a signalling
role. These proteins, termed scaffold proteins, serve as additional infrastructure
within the cell rather than actually carrying the message themselves [1]. The
exact purpose of this infrastructure is not yet clear although it is possible that
by increasing local concentrations the scaffolds enhance the message passing
capability of the pathway [2]. Certainly, it is known that the scaffold will bind
to a number of reagents which constitute successive steps in the pathway forming
a complex in which the interacting reagents are in close proximity (see Figure 1).

There have been some previous studies which looked at how the relative con-
centrations of reagents, and the binding and release rates, affect the formation
of protein complexes in general [3] and scaffold complexes in particular [4]. At
this early stage of our work we seek to recreate their results as much as anything,
although the ultimate aim is to go beyond what has been done before.

Ferrell’s paper [2] proposes three implications of scaffold proteins:

1. too little scaffold leads to low signalling;

2. too much scaffold leads to low signalling;
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Scaffold000

def
= (mapk in , k).Scaffold100 + (mapkk in , k).Scaffold010

+ (mapkkk in , k).Scaffold001

Scaffold100

def
= (mapkout , l).Scaffold000 + (mapkk in , k).Scaffold110

+ (mapkkk in , k).Scaffold101

Scaffold010

def
= (mapk in , k).Scaffold110 + (mapkkout , l).Scaffold000

+ (mapkkk in , k).Scaffold011

Scaffold001

def
= (mapk in , k).Scaffold101 + (mapkk in , k).Scaffold011

+ (mapkkkout , l).Scaffold000

Scaffold110

def
= (mapkout , l).Scaffold010 + (mapkkout , l).Scaffold100

+ (mapkkk in , k).Scaffold111

Scaffold101

def
= (mapkout , l).Scaffold001 + (mapkk in , k).Scaffold111

+ (mapkkkout , l).Scaffold100

Scaffold011

def
= (mapk in , k).Scaffold111 + (mapkkout , l).Scaffold001

+ (mapkkkout , l).Scaffold010

Scaffold111

def
= (mapkout , l).Scaffold011 + (mapkkout , l).Scaffold101

+ (mapkkkout , l).Scaffold110

MapK free

def
= (mapk in ,>).MapK bound

MapK bound

def
= (mapkout ,>).MapK free

MapKK free

def
= (mapkk in ,>).MapKK bound

MapKK bound

def
= (mapkkout ,>).MapKK free

MapKKK free

def
= (mapkkk in ,>).MapKKK bound

MapKKK bound

def
= (mapkkkout ,>).MapKKK free

Scaffold000
��
K

(MapK free ‖ MapKK free ‖ MapKKK free)

where K = {mapk in ,mapkout ,mapkk in ,mapkkout ,mapkkkin ,mapkkkout}

Figure 2: Simple scaffold model to explore the dynamics of scaffolds and sub-
strates

3. intermediate levels generate high signalling.

As a validation for our initial models we have addressed the question of how
well we can recreate this behaviour? Moreover, we additionally consider the
extent to which rates affect the outcomes.

3 Simple model

Our initial model is shown in Figure 2. In previous work [5] we have devel-
oped PEPA models in two distinct style: reagent-centric and pathway-centric.
In the reagent-centric style we focussed on the reagents in the pathway and
assumed discrete levels of concentration. There is one set of component defini-
tions for each reagent, each definition corresponding to one of the discrete levels
of concentration. The component definition prescribes the actions (reactions)
which can increase or decrease the concentration, therefore taking the reagent
component to another state (level). In the extreme case this reduces to two
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MapK free

def
= (mapk in , m1).MapK bound

MapK bound

def
= (mapkout , m2).MapK free

MapKK free

def
= (mapkk in , m3).MapKK bound

MapKK bound

def
= (mapkkout , m4).MapKK free

MapKKK free

def
= (mapkkk in , m5).MapKKK bound

MapKKK bound

def
= (mapkkkout , m6).MapKKK free

Figure 3: Kinase components for Markovian model

parameter value

k 1000
l 1000

m1 1.0
m2 10.0
m3 1.0
m4 10.0
m5 1.0
m6 10.0

Table 1: Parameter values for Markovian experiments

local states for the reagent corresponding to high and low concentration. In the
pathway-centric style we focussed on subpathways, or cycles of behaviour within
the model. The distinct components of the model correspond to those reagents
which have initial concentrations, and the derivatives of the components are
the different states (e.g. phosphorylations, complex formations etc.) that the
reagents may find themselves in.

For this model where we are interested in the structural rather than the
signalling/concentration aspects of the system the reagent-centric style does
not seem appropriate. Instead we adopt something closer to the pathway-centric
style in which we focus on the possible state that the various components of the
system may find themselves. The slight complication of this is that the ODE
semantics has generally been applied to the models developed in the reagent-
centric style [6].

The model we consider has a three position scaffold and three reagents, which
are kinases, which may bind to it. Throughout these experiments we assume
that signalling proceeds whenever the three reagents are bound, either in the
scaffold (the only possibility here) or in the cytosol.

3.1 Markovian experiments

When conducting Markovian analysis the structure of the model was as above
but the passive rates of the kinases (MapK ,MapKK ,MapKKK ) were replaced
as shown below in Figure 3

Different configurations of the model were considered. For example, when
there are three instances of the scaffold and three instances of each kinase and
the release rate is faster than the binding rate then the configuration of the
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model is:

(Scaffold000 ‖ Scaffold000 ‖ Scaffold000) ��
L

(MapK ‖ MapKK ‖ MapKKK ‖ MapK ‖ MapKK

‖ MapKKK ‖ MapK ‖ MapKK ‖ MapKKK )

where L = {mapk in ,mapkout ,mapkk in ,mapkkout ,mapkkk in ,mapkkkout

and the rates are as shown in the Table 1.
For a model with unlimited amounts of kinase we modify the corresponding

part of the model as follows:

MapK
def
= (mapk in , m1).MapK + (mapkout , m2).MapK

MapKK
def
= (mapkk in , m1).MapKK + (mapkkout , m2).MapKK

MapKKK
def
= (mapkkk in , m1).MapKKK + (mapkkkout , m2).MapKKK

and the model configuration becomes:

(Scaffold000 ‖ Scaffold000 ‖ Scaffold000) ��
L

(MapK ‖ MapKK ‖ MapKKK )

A full scaffold is one in which all its positions are occupied, i.e. Scaffold111.
Assume that the instances of scaffold are numbered 1 . . . n where n is the num-
ber of scaffold instances. Note, scaffold instances are not to be confused with
positions within a given scaffold instance. In the experiments, n = 3. For each
experiment we return the following results.

• The ratio of scaffold to kinase, written scaffold:kinase. The ratios corre-
pond to equal amounts, more scaffold than kinase, and less scaffold than
kinase.

• The likelihood (expressed as probability), in the steady state solution,
of being in a state with scaffolds 1, 2, 3 full, scaffolds 1, 2 full, and only
scaffold 1 full. Call these probabilities p123, p12 and p1, respectively.

• The total throughput, indicating that when a scaffold is full, a signalling
event can occur. The throughput is calculated by summing the throughput
for each of the cases: all scaffold instances full, two scaffold instances full,
and one scaffold instance full. To compute these from the probabilities
p123, p12 and p1, we appeal to symmetry. Let combi be the number of
combinations of i scaffolds full. For example, assuming three scaffold
instances, then comb1 = 3, comb2 = 3, comb3 = 1.

The formula for total throughput, for n scaffold instances, is given by:

(Σn
i=0(p1...n × combi × i))λ

where λ is the rate of the signalling event.

When n = 3, the throughput is defined by:

((p123 × 3) + (p12 × 3× 2) + (p1 × 3× 1))λ
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3.2 Experiment set 1: binding rate == release rate

Consider the case where the binding and release rates are equal.

scaffold:kinase p123 p12 p1 throughput
3:3 .0019 .125 .015 .80λ
3:2 0 .04 10−4 .24λ
3:unlimited .015 .037 .125 .64λ

It is clear that greatest signalling (i.e. throughput) occurs when the amounts
of scaffold and kinase are equal. Least signalling occurs when there is too little
kinase, but even when the kinase is unlimited, the throughput is still lower than
in the case where they are equal.

3.3 Experiment set 2: binding rate > release rate

Now consider the case where the binding rate is an order of magnitude higher
that the release rate.

scaffold:kinase p123 p12 p1 throughput
3:3 .42 .75 .0075 5.78λ
3:2 0 .22 .02 1.39λ
3:unlimited .052 .125 .32 1.87λ

Again, we see the same behaviour. Not suprisingly, the effect of equal
amounts of scaffold and kinase is more pronounced when the binding rate is
an order of magnitude higher; note that the difference between the other two
cases (too much, too little kinase) is not significant.

So, we can conclude that we see the expected behaviour. But this is only
a rough impression, since the rates can only be relative and do not precisely
implement known kinetics. The PEPA notation has been useful for formulating
the model and the workbench for initial exploration, we now turn our atten-
tion to interpretation via the continuous state space semantics, allowing us to
conduct experiments with larger populations of molecules.

3.4 Dizzy experiments

In order to analyse the models with larger populations of molecules, we used
the tool written by Stephen Gilmore to translate a PEPA model into the format
required for input to the Dizzy tool.

This is relatively straightforward but we found that the resulting .dizzy
file needed some manipulation after the translation in order to get the rates
of the synchronisation actions correct. This was because at different parts of
the model we found that we wanted different kinetics in order to capture the
correct rate of interaction between components. The tool written by Stephen
was intended for computer science rather than systems biology case studies, and
consequently uses the min-kinetics by default.

For the binding of kinase to scaffold we found that we needed mass action
kinetics and so the Dizzy file was edited to reflect this, inserting the product
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The effects of varying the amount of scaffold protein available

full scaffolds

No. of scaffolds No. of reagents Binding and No. of full scaffolds
Release rate

50 1000 1.0 49.8
100 1000 1.0 99.7
200 1000 1.0 199
300 1000 1.0 299
400 1000 1.0 398
500 1000 1.0 497
600 1000 1.0 596
700 1000 1.0 693
800 1000 1.0 788
900 1000 1.0 875
1000 1000 1.0 910
1100 1000 1.0 804
1200 1000 1.0 684
1300 1000 1.0 586
1400 1000 1.0 506
1500 1000 1.0 442
1600 1000 1.0 389
1700 1000 1.0 346
1800 1000 1.0 307
1900 1000 1.0 276
2000 1000 1.0 249
2500 1000 1.0 160
3000 1000 1.0 111
3500 1000 1.0 81.5
4000 1000 1.0 62.4
10000 1000 1.0 10.0

Table 2: The effects of varying the amount of scaffold protein available (k = l =
1.0)
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of the relevant concentrations, as the rate constant multiplier for such actions.
However for the release of a kinase from the scaffold, the min-kinetics was
correct, as although they are represented apparently as separate entities in the
PEPA model, the filled scaffold and the bound kinase are really a single entity.

A number of experiments were carried out on this simple model to study
the effect of varying the relative concentrations of scaffold and kinases, and the
ratio of the binding and release rates. The results are shown in Tables 2 and 3
respectively.

In Table 2 we can see the effect outlined by Ferrell [2]. As we increase the
number of scaffold proteins, keeping the number of kinases the same, we see
the number of filled scaffolds increasing but then decreasing again. Recall that
signalling is deemed to occur in filled scaffolds so we would expect a similar
pattern for the signalling in the cell. The peak is reached when the number of
scaffolds and kinases is balanced. This effect is sometimes termed combinatorial
inhibition [4].

In Table 3 we see the effect of changing the ratio between the binding rate
and the release rate. We assume in the current experiments that all the kinases
have the same binding rate and the same release rate. Here we see that as the
ratio increases, so that binding is more likely than release, so the number of
filled scaffolds increases.

4 Enhanced model

In this section we consider a model which also captures the possibility of a
complex forming in the cytosol. This free-floating complex formation is now
in competition with the formation of a complex on the scaffold. This model is
shown in Figure 4. The scaffold aspect of the model remains unchanged but the
MAPK reagents now have additional activities, reflecting their ability to bind
to each other, as well as binding to the scaffold.

4.1 Dizzy experiments

Again we carried out experiments to investigate the impact of changing the
concentration of the scaffold, and the ratio of the binding rate to the release
rate (not shown here). We also now considered the impact of changing the
concentration of the kinases.

As can be seen in Table 4 when the concentration of scaffold is varied we
again see the characteristic shape of combinatorial inhibition. Note that now
the peak is somewhat lower than in the previous experiment. This is because
some of the kinases are binding in cytosol and are not available to enter the
scaffold.

Table 5 shows the results of varying the concentration of one of the kinases,
whilst keeping the concentration of scaffold protein and other kinases constant
at 1000. As the concentration of MapKK increases, we see an increase in the
number of filled scaffolds, but then a decrease again. This can be explained as
the ability to form a scaffold with a full complement of kinases clearly depends
on the availability of the kinases. However, as the concentration of MapKK
increases, the ability to form complexes in the cytosol also increases (note that
MapKK plays the central role in such complexes). Thus the number of full
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The effects of varying the ratio of the binding rate to the release rate with constant concentration

full scaffolds

No. of scaffolds No. of reagents Binding rate Release rate No. of full
scaffolds

1000 1000 0.10 1.0 741
1000 1000 0.20 1.0 809
1000 1000 0.30 1.0 841
1000 1000 0.40 1.0 861
1000 1000 0.50 1.0 874
1000 1000 0.60 1.0 885
1000 1000 0.70 1.0 893
1000 1000 0.80 1.0 899
1000 1000 0.90 1.0 905
1000 1000 1.0 1.0 910
1000 1000 1.10 1.0 914
1000 1000 1.20 1.0 917
1000 1000 1.30 1.0 920
1000 1000 1.40 1.0 923
1000 1000 1.50 1.0 925
1000 1000 1.60 1.0 928
1000 1000 1.70 1.0 930
1000 1000 1.80 1.0 932
1000 1000 1.90 1.0 934
1000 1000 2.0 1.0 935

Table 3: The effects of varying the ratio of the binding rate to the release rate
with constant concentration levels [Scaffold] = 1000
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Scaffold000

def
= (mapk in , k).Scaffold100 + (mapkk in , k).Scaffold010

+ (mapkkk in , k).Scaffold001

Scaffold100

def
= (mapkout , l).Scaffold000 + (mapkk in , k).Scaffold110

+ (mapkkk in , k).Scaffold101

Scaffold010

def
= (mapk in , k).Scaffold110 + (mapkkout , l).Scaffold000

+ (mapkkk in , k).Scaffold011

Scaffold001

def
= (mapk in , k).Scaffold101 + (mapkk in , k).Scaffold011

+ (mapkkkout , l).Scaffold000

Scaffold110

def
= (mapkout , l).Scaffold010 + (mapkkout , l).Scaffold100

+ (mapkkk in , k).Scaffold111

Scaffold101

def
= (mapkout , l).Scaffold001 + (mapkk in , k).Scaffold111

+ (mapkkkout , l).Scaffold100

Scaffold011

def
= (mapk in , k).Scaffold111 + (mapkkout , l).Scaffold001

+ (mapkkkout , l).Scaffold010

Scaffold111

def
= (mapkout , l).Scaffold011 + (mapkkout , l).Scaffold101

+ (mapkkkout , l).Scaffold110

MapK free

def
= (mapk in ,>).MapK sbound

+ (mapkbind , k).MapK bound

MapK sbound

def
= (mapkout ,>).MapK free

MapK bound

def
= (mapkunbind , l).MapK free

MapKK free

def
= (mapkk in ,>).MapKK sbound

+ (mapkbind ,>).MapKK kbound

+ (mapkkbind , k).MapKK bound

MapKK kbound

def
= (mapkunbind ,>).MapKK free

MapKK bound

def
= (mapkkunbind , l).MapKK free

MapKK sbound

def
= (mapkkout ,>).MapKK free

MapKKK free

def
= (mapkkk in ,>).MapKKK bound

+ (mapkkbind ,>).MapKKK kbound

MapKKK bound

def
= (mapkkkout ,>).MapKKK free

MapKKK kbound

def
= (mapkkunbind ,>).MapKKK free

Scaffold000
��
L

(MapK free
��
M

MapKK free
��
M

MapKKK free)

where L = {mapk in ,mapkout ,mapkk in ,mapkkout ,mapkkk in ,mapkkkout}
and M = {mapkbind ,mapkunbind}

Figure 4: More complex scaffold model to explore the dynamics of scaffolds
and substrates including the binding between free-floating MapK , MapKK and
MapKKK elements

10



 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Nu
m

be
r o

f f
ul

l s
ca

ffo
ld

s

Number of scaffolds

The effects of varying the amount of scaffold protein available

full scaffolds

No. of scaffolds No. of reagents Binding and No. of full scaffolds
Release rate

50 1000 1.0 25.5
100 1000 1.0 52.3
200 1000 1.0 110
300 1000 1.0 175
400 1000 1.0 247
500 1000 1.0 328
600 1000 1.0 417
700 1000 1.0 516
800 1000 1.0 615
900 1000 1.0 694
1000 1000 1.0 725
1100 1000 1.0 701
1200 1000 1.0 638
1300 1000 1.0 564
1400 1000 1.0 495
1500 1000 1.0 435
1600 1000 1.0 385
1700 1000 1.0 342
1800 1000 1.0 306
1900 1000 1.0 275
2000 1000 1.0 248
2500 1000 1.0 159
3000 1000 1.0 111
3500 1000 1.0 81.5
4000 1000 1.0 62.4
10000 1000 1.0 10.0

Table 4: The effects of varying the amount of scaffold protein available (k = l =
1.0, r = s = 1.0)
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The effects of varying the concentration of MAPKK with constant scaffold concentration levels

full scaffolds

No. of scaffolds, No. of reagent Binding and No. of full scaffolds
MAPK and MAPKKK MAPKK Release rate

1000 100 1.0 87.7
1000 200 1.0 174
1000 300 1.0 259
1000 400 1.0 342
1000 500 1.0 422
1000 600 1.0 499
1000 700 1.0 571
1000 800 1.0 635
1000 900 1.0 689
1000 1000 1.0 725
1000 1100 1.0 737
1000 1200 1.0 722
1000 1300 1.0 685
1000 1400 1.0 638
1000 1500 1.0 587
1000 1600 1.0 539
1000 1700 1.0 493
1000 1800 1.0 451
1000 1900 1.0 412
1000 2000 1.0 378
1000 2100 1.0 346
1000 2200 1.0 318
1000 2300 1.0 292
1000 2400 1.0 269
1000 2500 1.0 248

Table 5: The effects of varying the concentration of MAPKK with constant
scaffold concentration levels [Scaffold] = 1000

12



No gnuplots available yet.....

No. of scaffolds, binding release binding release No. of full
and kinases rate k (S) rate l (S) rate r (C) rate s (C) scaffolds

1000 1.0 1.0 1.0 1.0 725
1000 2.0 1.0 1.0 1.0 814
1000 3.0 1.0 1.0 1.0 853
1000 4.0 1.0 1.0 1.0 877
1000 5.0 1.0 1.0 1.0 892

1000 2.0 2.0 1.0 1.0 725
1000 3.0 3.0 1.0 1.0 725
1000 4.0 4.0 1.0 1.0 725
1000 5.0 5.0 1.0 1.0 725

1000 1.0 1.0 2.0 1.0 671
1000 1.0 1.0 3.0 1.0 636
1000 1.0 1.0 4.0 1.0 610
1000 1.0 1.0 5.0 1.0 588

1000 1.0 1.0 2.0 2.0 725
1000 1.0 1.0 3.0 3.0 725
1000 1.0 1.0 4.0 4.0 725
1000 1.0 1.0 5.0 5.0 725

Table 6: The effects of varying the binding/release rates with constant scaffold
and kinase concentration levels [Scaffold] = 1000

scaffolds declines as the amount of MapKK continues to increase. Interestingly
the peak value for full scaffolds occurs when there is slightly more of MapKK
than the other reagents (1200).

In a further set of experiments we investigate the impact of varying the
rates of binding in the scaffold with respect to the rate of binding in the cy-
tosol, and also the rate of both forms of binding with respect to the rate of the
corresponding release. These results are shown in Table 6.

The significant factor seems to be the ratio of the ratios between the binding
and release rates in the scaffold (denoted (S)) and the cytosol (denoted (C))
respectively.

5 Conclusions and further work

So far our experiments have only been preliminary and to some extent they
replicate those already reported in the literature[3, 4]. We have focussed on
the formation of the scaffold complex. In future work we plan to look beyond
the scaffold complex to its role within the signalling pathway, and investigate
the implications of the ability of the scaffold to increase the throughput of the
pathway.
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