
Modelling Legacy Telecommunications SwitchingSystems for Interaction AnalysisMu�y Calder and Stephan Rei�Department of Computing ScienceUniversity of GlasgowGlasgowemail: mu�y, srei�@dcs.gla.ac.uk1 IntroductionTelecommunications switching systems have evolved rapidly over the past twodecades, from networks which supported only POTS (the plain old telephonyservice), to ones which support services such as call forwarding, 3-way calling,personal numbers, alternative charging, and virtual private networks. Forces be-hind this evolution include deregulated, global markets and changing social andbusiness practices, as well as advances in the underlying software and hardwaretechnologies.Like most processes of change, this evolution can be a di�cult process tomanage, not least because it has continually thrown up a number of interworkingproblems. A fundamental source of these interworking problems derives fromrapidly changing system requirements. These requirements, particularly thosewhich involve network functionality, must respond rapidly to changing techno-logical capabilities and social contexts. In turn, the implementation of these newrequirements enable further technological, business and social changes, and soon. Thus, the scope for introducing new network functionality is never ending.At each stage in the evolution, new additional functionality, i.e. new fea-tures, may interact with pre-existing features, in unanticipated ways. Whenone feature inuences the behaviour of another, we refer to this situation as afeature interaction. To manage interworking, we must be able to detect any suchfeature interactions, and resolve them, in a suitable manner.The telecommunications industry has invested heavily in developing soft-ware switching systems, many of which are extremely fragile and were devel-oped without the bene�t of modern software methods and technologies. Theselegacy systems cannot in many cases, for economic or technical reasons, bere-engineered. Interworking with them is clearly a challenge, as is interworkingwith any third party system { where access to system speci�cations or intentionsis not possible. 1

The SEBPC-funded project Hybrid Techniques for Detecting and ResolvingFeature Interactions in Telecommunications Services1 aims to meet this chal-lenge by developing a number of o�-line (at the design stage) and on-line (atrun-time) approaches to interworking problems. One main objective is to de-velop a hybrid feature manager which can mediate between new features anda legacy switching system. The manager is hybrid in that it will run in real-time, and be able to adapt to new services, yet in order to do so e�ectivelyit must be informed by an o�-line analysis of features. The analysis will pro-vide the knowledge and theories about the potential causes and resolutions ofinteractions.In this chapter we concentrate on describing the overall hybrid approachand preliminary results from an o�-line analysis. The latter involves modellingswitching systems in such a way that we can reason about their observablebehaviour and postulate and test theories of interactions: detection and resolu-tion. Here, we give an overview of how we model the system components, bothat an informal and formal level, and how we employ mathematical reasoningtechniques to analyse behaviour.In the next section we give a very brief overview of telecommunicationsservices and feature interactions. In section 3 we discuss the special case oflegacy/proprietary systems and in section 4 and we present our hybrid solution.Section 5 contains an overview of the feature manager and is followed by furtherdetails of speci�c aspects of our formal model. Section 7 briey describes themodel-checker SPIN and a temporal logic and in section 8 we discuss how wehave employed them for automated reasoning about our legacy system model.The �nal section contains our conclusions and directions for further work.2 Background: Telecommunications ServicesIn modern telecommunications systems, control of the progress of calls andconnections is provided by software at an exchange, this is referred to as astored program control exchange. This software must respond (or react) toevents such as lifting a handset or entering digits, as well as sending controlsignals to handsets and lines such as ringing tone or line engaged.A service is the collection of functionality provided by a network operatorand is usually self-sustaining; the basic service is known as POTS.A feature is additional functionality; examples of features are a call forward-ing capability and ring back when free. Services o�er a variety of features whichare said to interact when one a�ects the functionality of another(s). When inter-actions are not benign, both the expectations of users and the quality of servicesmay be compromised. The feature interaction problem is diverse and complex,and has been recognised by both the industrial and academic communities asurgent { as evidenced by the International Feature Interaction in Telecommu-nications workshop which was established in 1992 and has since been held at1This is a joint research project with the Department of Electrical and Electronic Engi-neering at the University of Strathclyde. 2

Feature
Manager

off-line
analysis

feature

feature

legacy switch

Terminal Terminal Terminal

Figure 1: An On-line Feature Manager { System Architectureregular intervals [FIW92, FIW94, FIW95, FIW97, FIW98].Feature interaction detection and resolution techniques are broadly charac-terised as o�-line, at design stage or service conception, or on-line, as servicesare executing. While o�-line interaction analysis techniques are perhaps mostaesthetically appealing, they may not always be possible. Speci�cally, they arepredicated upon the existence of speci�cations of features { at the very leastdescriptions of functional behaviour and/or requirements. Moreover, they su�erfrom a combinatorial explosion of cases to consider as the number of featuresinvolved grows.3 Feature Interaction and Legacy ServicesAlthough one would normally assume a satisfactory resolution of feature inter-actions within a given legacy and/or proprietary system, the issue arises againwhen that system is required to work with further, additional, features and/orservices, or simply to interwork with another system e.g. a PBX (private branchexchange) and a PSTN (public switching telecommunications network).In both cases, a purely o�-line approach is not going to be feasible, an on-line approach is required which does not depend on knowledge of the internalbehaviour of the system components.
3

model

theory
of

interactions

components
legacy
switch

feature
manager

components
legacy
switch

feature
manager

Figure 2: Role of Formal Modelling4 A Hybrid ApproachThe role of fur on-line feature manager is to mediate between new features, thelegacy system, and the other components of the system (e.g. terminal devices).Figure 1 illustrates the role of the feature manager; for simplicity, we label allother system components as `terminal' , for terminal devices, etc.The feature manager must both detect potential interactions, between newfeatures and the legacy system, and between new features themselves, and re-solve them in a satisfactory way. Sometimes, the only resolution is to surpressone feature, then the question is which one; other times, it may be possibleto interleave features or to run them sequentially, in a particular order. In allcases, the feature manager must be able to make that decision.We have followed the the transactional approach proposed by Magill andMarples in [11] where the legacy switching system is treated as black-box, i.e.it receives inputs and responds with outputs, embedded in a transactional \co-coon". The cocoon permits a rollback and commit facility, allowing us to ex-periment with sequences of possible inputs and responses and thereby choosethe best possible resolution to a feature interaction (assuming one has been de-tected). The precise details of the transactional approach are not relevant hereand they are described in more detail in section 5 and in [2]. What is relevantis to note that the information required in order to choose a best resolution isderived from an o�-line analysis of feature behaviour. Crucial to this analysisis a formal model of the system.The role of the formal model is more than just an abstraction, or speci�ca-tion, of intended and/or required behaviour; it is actually part of the incremental4

process of developing those intentions/requirements. That is, it is an part of aadaptive, experimental process, as we have advocated in [1]. Figure 2 illustratesthis process.The initial step in the process is to develop an (initial) formal model ofthe on-line system, i.e. the legacy switch, a relatively \uninformed" featuremanager, and the system components. Dotted lines denote this step. The(initial) model provides us with a platform, or test-bed, in which to experimentwith and reason about observable behaviour of the legacy system and the newfeatures. Properties of this system will enable us to postulate theories of featuresand system events such as \feature x should have precedence over feature y",\event x should never be followed by event y, otherwise deadlock will occur",\event x and event y cannot be o�ered to a user simultaneously (e.g. a spokenannouncement and a busy tone)".The next step is to use these theories to guide the feature manager, whichwill consequently alter system behaviour. We can then derive further propertiesof the altered system, postulate further theories and further enhance the featuremanager, observe new system behaviour, and so on.We are still in the preliminary stages of this project, and therefore in theinitial modelling step. The remainder of this paper outlines progress so far inthis regard.5 Overview of the Feature ManagerOverview of the ModelThere are three principal categories of components in our system: the users,the operator and the network (Figure 3). Components communicate by sendingand receiving messages along the connecting channels.The term `user' is used to describe points of interaction between the networkand the outside world, such as terminal devices, trunks (connections to othernetworks) or any other communication equipment.The (network) operator maintains subscriber and call records, although theseare important to correct functioning and billing within the system, we do notdwell on these aspects in more detail here. Hence, all the associated connectionsare not drawn in Figure 3.The network consists of the database components, the switching hardwareprocess and a number of processes, instantiated during the lifetime of the system.Figure 3 illustrates a con�guration for n calls, i.e. n feature manager processes,each with a legacy software process and m feature processes.The switching hardware delivers messages between the users and the featuremanagers (and combinations thereof). The legacy software processes representthe existing software, which is to be enhanced by the feature processes. Notethat the number of features connected to each feature manager is arbitrary (andcan be zero). 5

Subscribers
Record

Call
Record

Operator

Network Operator

Process

Database

Key to Symbols

Database Query
(Read/Update)

Communication

Users

...User 1 User 2 User 3 User n

...

...

Legacy
Software

1

Legacy
Software

2

Legacy
Software

3

Legacy
Software

n

Feature
Manager 1

Feature
Manager 2

Feature
Manager 3

Feature
Manager n

Feature
1,1

Feature
3,l

Feature
n,m

Feature
1,j

Feature
2,k

Feature
2,1

Feature
3,1

Feature
n,1

Switching
Hardware

Figure 3: Overview of the SystemThe feature managers are central to our system, as they provide the abilityto organise the co-working of the legacy software and the new features.The Transactional Nature of the Feature ManagerThe feature manager passes incoming messages from the switching hardware tothe legacy software and all features { for simplicity we assume that this happensin parallel. The legacy software and the features are embedded within a cocoonthat o�ers a consistent interface. For the remainder of this section we use theterm feature to denote both the new features as well as the basic call software.(We expect the latter to be included in the legacy software.)When a message is processed by a feature two possible behaviours can occur:the message triggers a response (one or more messages) or it does not. Alltriggered responses are sent back to the feature manager, concluding with atransaction �nished message. The latter is also sent by features not respondingwith a proper message 2.The responses are collected by the feature manager, added to a list of re-sponses, and once all responses are collected they are evaluated. There are threepossible outcomes:1. the feature manager did not receive any proper message,2. the feature manager received exactly one proper message,2Any message apart from the transaction �nished message is a proper message.6

3. the feature manager received multiple proper messages.In the �rst two cases, the feature manager's role is straightforward: the basiccall progresses (the former case) or the feature takes control of the call (the lattercase). It is the third case which is interesting: the possibility that more thanone feature might reply and the consequent potential for an interaction is indeedthe motivation for the feature manager. Rather than resolve an interaction atthis point, we explore the space of possible resolutions in the following way.The feature manager stores the current state and initiates copies of thefeature processes. The current state includes the list of events and other localinformation; it describes a snapshot of the system from the viewpoint of thefeature manager. Assuming that at least one message has been received, the�rst one is fed to the copies of the features, the responses are gathered andprocessed. Part of this processing may involve sending and receiving furthermessages to and from the (copies of the) features.This process terminates when there are no further responses; at this point,we have a sequence of messages and responses, which we consider as a branch ina behaviour tree. To construct the rest of the tree, we restore the initial state,farm out the next event, generate a new branch, and so on. Once all eventsare processed we have de�ned a full behaviour tree. It remains to select themost promising path in that tree; this choice will ultimately be guided by theunderlying theory of features and events.When the path is selected, it is committed by sending out the appropriatemessages to the switching hardware.The approach depends on certain assumptions about the system, namelythat we can create copies of all the associated processes. As this might notalways be possible, particularly in a legacy system, one might emulate processcopies if the system provides the functionality to reset a process to a certainstate. In this case, to emulate multiple copies we maintain stacks of all messages,reset the control process and replay messages from the stack to obtain a processin the desired state. This is very much like failure recovery in database systemsemploying a rollback-commit strategy. For further details of the construction ofthe behaviour trees, see [2].6 Modelling a Basic Legacy Switching SystemA Simpli�ed SystemThe system described in Section 5 turns out to be very complex, particularlysince certain details of the feature manager will be re�ned during the modellingprocess. Therefore, here we concentrate on modelling the simpli�ed system, i.e.the initial modelling step. However, we try to construct the (simpli�ed) modelin a way that will allow straightforward extension.The system under consideration consists of users, the switching hardwareand legacy software. The relation to the earlier proposed system can be seeneasily: the number of features is zero. The feature manager is excluded, since7

in this simpli�ed system its only purpose would be to pass messages from thelegacy software to the switching hardware and vice versa.Each process can be modelled by a non-deterministic �nite state machine orautomata (FSM/FSA); we can compose �nite state machines, allowing commu-nication via their respective input and output messages.Switching Hardware ProcessThe switching hardware is the main control process, i.e. a reactive process whichscans input channels for incoming messages and transmits appropriate outgoingmessages. Our model incorporates this scanning as sequential polling. Apartfrom being realistic, this also provides a fair mechanism. Therefore, the generalbehaviour of the switching hardware process can be described as:loopfor each input channelscan for messageif message existsread messageprocess messagefiend forend loopProcessing a message basically consists of identifying the source and destina-tion and sending it on the right output channel. There are three combinationsof message source/destination to be considered:1. a message from a user to the associated legacy software process,2. a message from a legacy software process to the associated user,3. a message from one legacy software process to another legacy softwareprocess.In each case, the processing is quite straightforward.Legacy SoftwareThe legacy software is POTS (Plain Old Telephone System) basic call software.The POTS behaviour is described by the FSM in Figure 4 with input messagesin italics; all other messages are output messages. A message consists of twoparts: an event and an argument. The argument is a user identi�er or 0 whenno argument is required. Some arrows are labelled with two messages separatedby a semicolon, we shall regard this as a sequential composition of messages.State names are only given to increase the legibility: states do not containany information; the behaviour is described by the input and output messagesonly. 8

BUSY

BUSYBUSY

BUSYBUSY

BUSY

BUSY

BUSY

BUSY

busy
status

offhook

idle

dialtone

wait for
onhook

dialed busy?

con-
nected

(i_alert, from_user)

(offhook, 0)

(dial_tone, 0)

(line_error_tone, 0)

(dial, number)

(onhook, 0)

(no_outgoing_calls_tone, 0)

(call_barred_tone, 0)

(invalid_number_tone,0)

(line_error_tone, 0)

(o_alert, to_user)

(i_connect, from_user) ;
(connect, 0)

(i_timeout, from_user) ;
(timeout_tone, 0)

(i_disconnect, from_user);
(disconnect_tone, 0)

(onhook, 0) ;
(o_disconnect, to_user)

(o_timeout, to_user);
(stopalert, 0)

(onhook,0)

(offhook, 0) ;
(o_connect, to_user)

wait for
answer

(i_free,from_user);
(ringtone, 0)

(i_busy,from_user);
(busytone, 0)

(onhook, 0);
(o_stopalert, to_user)

alerted

(i_stopalert, from_user) ;
(stopalert,0)

(o_free, to_user);
(alert, 0)

(onhook,0)(onhook,0)

(onhook,0)

BUSY

(i_alert,fromuser) ;
(o_busy,touser)

is a shorthand for:

Figure 4: The Basic Call Software ProcessTo illustrate the behaviour, consider an example of call set-up and clear-down for a call from user 0 to user 4. Assume that the basic call software is inthe idle state and user 4 is able to engage in the call.Example 1 The basic call software receives an (o�hook, 0) message to which itresponds with (dial tone, 0). Next, a (dial, 4) messages triggers the sending of(o alert, 4). The fact that User 4 is free is signalled by receiving (i free, 4). As-sume user 4 goes o�hook which leads to an (i connect, 4) message being received,triggering (connect, 0) being sent. Now the two users are connected. The basiccall software receives an (onhook, 0) message indicating that the connection isto be cleared down, triggering an (o disconnect request, 4) message being sent.At this point the basic call software is in its initial idle state and a new callcan be made.Note that in the current BT (British Telecom) network, only the originatorof a call can clear down the call (with exceptions like 999). However, manyPBXs show symmetric behaviour, as modelled here.When the initial model has been developed, and indeed during the processof development, the next step is to reason about (observable) behaviour. Anumber of formalisms and tools could be suitable for this purpose, but giventhe emphasis on communication between FSM's in our approach, we have chosena formalism based on communicating FSM's.9

7 Automated ReasoningPromela and SPINPROMELA (PROcess METa Language) is the input language for the modelchecker SPIN [9] which we use for formal, automated reasoning.In PROMELA, processes run concurrently and communicate via channels, i.e.they can receive messages from and send messages to other processes. Com-munication may be synchronous or asynchronous. A process denotes a set ofexecution sequences, de�ned by a (B�uchi) automaton. A (B�uchi) automatonis simply an FSM/FSA which accepts in�nite words, ideal as wen are dealingwith non-terminating, i.e. in�nite telecommunications processes. In our case, aprogram involves several concurrent processes, thereby denoting the interleav-ing product of the component process automata. Encoding our system model inPROMELA is relatively straightforward, since each major component is de�ned byan automata. The communication between the automata is similarly straight-forward to de�ne, employing both synchronous and asynchronous mechanisms,as appropriate.Reasoning about a PROMELA program in SPIN involves reasoning over theunderlying (B�uchi) automaton; hence we domodel-checking, rather than theoremproving. There are a number of reasoning mechanisms in SPIN, we mention thetwo most relevant below.In-Line AssertionsAn assertion is a Boolean expression about the program state and can be in-serted anywhere in a program. Assertions are typically program invariants, orthey reect our assumptions about the program state at a particular point.They are an important part of the veri�cation process and allow us to per-form an \behavioural audit" as a call progresses. Examples of assertions aremessage.event == dial, len(buffer) == 0, or basiccall@idle. The �rsttwo examples express an expectation about the value of the a variable; the lastexample asserts that the named process is at label idle.Linear Temporal LogicIn-line assertions allow us to reason about particular program states, as we passthrough them; to reason about program states over time, we need a temporallogic. SPIN supports LTL, Linear temporal logic, a propositional logic withtemporal operators including 2 (always) and 3 (eventually). The logic is linearbecause all formulae are implicitly quanti�ed over all execution sequences.The mechanism for checking satisfaction of linear temporal logic formulae isvia never claims { processes which describe undesirable behaviour. Full detailsof never claims and B�uchi automata are given in [9]; here we give only a brief,informal overview of the mechanisms involved.A never claim is a process which is run in lock-step with the system underinvestigation. We say that a never claim is matched when either it completes, or,10

and it is in an acceptance cycle { part of an in�nite cycle through an acceptancestate. If the never claim expresses some undesirable behaviour, then matchingthe never claim means that the undesirable behaviour is possible. On the otherhand, if the never claim is not matched, then the undesirable behaviour is notpossible. Every LTL formula can be associated with a never claim; looselyspeaking, the claim embodies the negation of the formula. Therefore, to provea property, we demonstrate that its negation never holds.8 Reasoning about the Legacy System ModelObservationsReasoning about our system includes the validation (or otherwise) of expectedbehaviour vs operational behaviour. The expected behaviour is formulated byabstract properties, expressed in terms of observations of the system.The fundamental question is: what behaviour can we observe?Recalling that are reasoning about black-box systems, i.e. proprietary orlegacy code, we cannot (in the worst case) observe any internal behaviour. Thisobviously excludes information describing states, e.g. the states themselves(i.e. idle, dialling, etc.) or local variables. So, we have to consider otherpossibilities, namely we need to rely on the messages that are passed on thecommunication channels. At �rst glance this does not seem to be too prob-lematic, but the consequences are far reaching: any decision-making algorithmused in the online feature manager must be able to base decisions on exactlythe same sparse information.We cannot explore this in detail here, but we note that most propertiesof interest consist of a condition (maybe complex) and a consequence;n thefollowing section we consider two examples.Example Temporal PropertiesConsider the following properties (desirable for POTS):� If user A calls user A, then user A should perceive a busy-tone.� If there are no faults with the lines and user A is allowed to originate calls,user A calls B and user B is not busy, then eventually users A and B canbe connected.Both properties can be expressed by reference to only messages on commu-nication channels and an abstract notion of time (at least a temporal orderingevents).Consider expressing these two properties wrt our system model:Example 2 If (dial,1) is sent, then eventually a (busy tone,0) is sent.11

Example 3 If (dial,2) is sent, and neither of (line error tone, 0), (busy tone,0), (call barred tone, 0), (no outgoing calls tone, 0) or (i timeout request, 2), issent then eventually a (connect,0) is sent.The second property is particularly di�cult to read, as the condition mustbe expressed by the conjunction of the (absence of) several messages. Note thatthese are not complete descriptions, which would su�er from the frame problem.That is, it is not a trivial to express properties which also describe possibleevents which are not supposed to happen need.For completeness we show how the two examples above can be written inLTL. Note that we expect the �rst property to be true always, whereas thesecond one only holds for some computation sequence (e.g. sometimes, thecalled party might not answer). Other properties have much more expansivedescriptions, these two give only a avour of the approach.Example 4 2((dial; 1)! 3(busy tone; 0)) (1)Example 5 3((dial; 2)^ :(line error tone; 0) ^ :(busy tone; 0)^:(call barred tone; 0) ^ :(no outgoing calls tone; 0)^:(i timeout request; 2))! 3(connect; 0)) (2)Using SPIN, we are indeed able to demonstrate that both these propertieshold, for the appropriate set of computation sequences. We note that the processof proving in-line assertions and temporal properties has been a valuable partof the development process, enabling us to uncover numerous errors, inconsis-tencies, and misconceptions about the system, as well as uncovering importantproperties.9 Conclusions and Future WorkWe have described a hybrid approach to developing an on-line feature man-ager for mediating between legacy and new telecommunications services. Theapproach involves developing a transactional system behaviour and modellingthe switching systems, in such a way that we can reason about their observablebehaviour and hypothesise about and test theories of interactions. The formalmodel is not just a speci�cation, but it is part of an experimental, cyclical pro-cess in which we can both prescribe and explore behaviour, and derive, evaluateand test further properties.We have described the system components, both at an informal and formallevel, and briey discussed how we employ mathematical reasoning techniquesto analyse behaviour. Some examples illustrate our approach.12

Our research is still at a preliminary stage. We have concentrated on theoverall system architecture, the hybrid approach, and the feasability of auto-mated reasoning using PROMELA and SPIN. We are satis�ed with the outcomesso far, though we have some reservations about the ability of SPIN to handle thefull-scale formal model, some further abstraction may be necessary.Three major inter-related areas for further research are the design of speci�calgorithms for the construction of the behaviour trees, the selection of the \best"path within these trees, and the incorporation of feature and event theories intothe feature manager. Last, but not least, we will implement the approach inthe live switching environment provided by our industrial collaborators.References[1] M. Calder. What Use are Formal Design and Analysis Methods to Telecom-munications Services? In [7], pp. 23- 31.[2] M. Calder, E. Magill and D. Marples. A Hybrid Approach to Software In-terworking Problems: Managing Interactions between Legacy and Evolv-ing Telecommunications Software. To appear in IEE Proceedings{Software,1999.[3] Proceedings of International Workshop on Feature Interactions in Telecom-munications Systems II, St. Petersburg, U.S.A., IEEE Communications So-ciety, 1992.[4] W.Bouma and H.Velthuijsen (eds.). Feature Interactions in Telecommuni-cations Systems II. Proceedings of International Workshop, Amsterdam,IOS Press, 1994.[5] K.E. Cheng and T. Ohta (eds.). Feature Interactions in Telecommunica-tions Systems III. Tokyo, IOS Press, 1995.[6] P. Dini, R. Boutaba, and L. Logrippo (eds.). Feature Interactions inTelecommunications Systems IV. Montreal, IOS Press, 1997.[7] K. Kimbler and W. Bouma (eds.) Feature Interactions in Telecommunica-tions and Software Systems V. IOS Press, 1998.[8] IN Distributed Functional Plane Architecture. Recommendation Q.1204,ITU-T, March, 1992.[9] Gerard J. Holzmann. The Model Checker SPIN, IEEE Transactions onSoftware Engineering, 23,No.5, May (1997).[10] Intelligent Network Recommendations. Q.1200 { Q.1229, CCITT, 1997.[11] The Use of Rollback to Prevent Incorrect Operation of Features in Intelli-gent Network Based Systems. In [7].13

[12] M. Thomas. Modelling and Analysing User Views of TelecommunicationsServices In P. Dini, R. Boutaba, and L. Logrippo (eds.). Feature Interac-tions in Telecommunications Systems IV. Montreal, IOS Press, 1997.

14

