A Symbolic Semantics and Bisimulation for Full
LOTOS

Mufty Calder

Department of Computing Science,
University of Glasgow, Glasgow G12 8QQ

email:muffy@dcs.gla.ac.uk

Carron Shankland

Department of Computing Science and Mathematics,
University of Stirling, Stirling FK9 4LA

email: carron@cs.stir.ac.uk

October 18, 2000

Abstract

A symbolic semantics for Full LOTOS in terms of symbolic transi-
tion systems is defined; the semantics extends the standard one by giving
meaning to symbolic, or (data) parameterised processes. Symbolic bisim-
ulation is defined and illustrated with reference to examples.

The approach taken follows that applied to message passing CCS
in [HL95], but differs in several significant aspects, taking account of the
particular features of LOTOS: multi-way synchronisation, value negotia-
tion, selection predicates.

1 Introduction

LOTOS [ISO88] is a message passing process algebra which combines two or-
thogonal languages: a process language, known as Basic LOTOS, with features
from both CSP [Hoa85] and CCS [Mil89], and the equational abstract data
type language ACT ONE [EM85]. LOTOS is an ISO standard formal descrip-
tion technique. The semantics of LOTOS given in the standard [ISO88] is in
terms of structured labelled transition systems. In this semantics, each (data)
variable in a process is instantiated by every possible value of its corresponding
type, resulting in infinite transition systems (both in breadth and in depth).
This approach has several drawbacks. First, it is impossible to use stan-
dard (finite state) model-checking techniques over infinite transition systems.
To employ model-checking as a proof technique for LOTOS systems one usually
has to restrict the underlying types. Second, because the data values are em-
bedded in the transitions, any uniformities in the actions of the processes are

lost. For example, the process description may make it clear that a particular
action happens when the value of some variable lies between 3 and 42 (say), but
that information is much harder to extract from the labelled transition system
directly, especially if there are an infinite number of branches at that point.
Finally, as a consequence of this approach it is not possible to reason about
partial, or (data) parameterised, behaviour expressions. Our experiences with
LOTOS applications (e.g. [TO94, Tho94, Tho97, SM98]) indicate that this is
highly desirable. For example, one might wish to reason about the behaviour
of a telephone service without recourse to the actual numbers dialled (c.f. the
example in section 4.2).

The advantage of the standard approach to the semantics of LOTOS is that it
easily accommodates multi-way synchronisation, i.e. associative synchronisation
between two or more processes (CCS only allows two-way synchronisation).
Multi-way synchronisation is particularly useful for certain kinds of systems, and
has led to a particular constraint-oriented style of specification in the LOTOS
community [VSvSB91].

So, the problem we address here is how to reason over potentially infinite
LOTOS processes while retaining multi-way synchronisation. Since the addition
of data to the language is the reason for the problem, some sort of separation
of the concerns of data and processes seems appropriate. We cannot complete-
ly disregard data when considering the meaning of processes and equivalence
between processes: the particular value of a data variable can completely alter
the behaviour of a process. There are two kinds of solution to this problem.
The first is to get rid of data altogether, either in a brute force manner [Bol92]
(which changes the behaviour of the process), or by constructing a process rep-
resentation of the data type [Got87, Bri92]. The latter approach, however, still
results in infinite branching. The other kind of solution is to adopt a symbolic
approach. The tool SMILE [LITE] implements a symbolic semantics for Full
LOTOS by Eertink [Eer94]. This semantics achieves a separation of the con-
cerns of data and process, without losing information, but is rather operational,
concentrating on using the semantics in implementing a simulation tool. There
are no equivalences or preorder relations associated with the semantics. A less
implementation oriented approach is taken to symbolic semantics for message
passing CCS in [HL95]. The semantics is given in a modular fashion, separating
the notion of a symbolic semantics from the operational aspects of making the
symbolic semantics work within an implementation, for example, how variable
assignments are recorded.

Our approach is to define a symbolic semantics for LOTOS in terms of sym-
bolic transition systems. This semantics eliminates infinite branching, maintains
uniformities of data, and allows the representation of partial specifications, but
does not lose the advantage of multi-way synchronisation, nor the information
conveyed by the data. Symbolic bisimulation between symbolic transition sys-
tems is also defined. Symbolic bisimulation should not lead to processes being
distinguished which are not in the standard semantics; similarly processes which
are distinguished under the standard semantics are not identified in the symbol-
ic semantics. The proof of this is the subject of a different paper; here we simply

set up the framework for reasoning about Full LOTOS. Broadly, we follow the
approach taken in [HL95] for symbolic transition graphs and message passing
CCS, but our approach differs in several significant ways to accommodate the
particular features of LOTOS.

The paper is organised as follows. Section 2 introduces LOTOS and the
standard semantics, highlighting the significant features. In Section 3 symbolic
transition systems are introduced, with some basic definitions and conventions
that will be used throughout in Section 3.1, the main definition in Section 3.2,
and the axioms and rules for generating a symbolic transition system from
a (possibly open) LOTOS behaviour expression in Section 3.4. In Section 4
(strong) symbolic bisimulation (i.e. bisimulation over symbolic transition sys-
tems) is defined. Small examples are used throughout to illustrate symbolic
transition systems and symbolic bisimulation; a larger example based on tele-
phony systems is given in Section 4.2.

Finally we draw our conclusions together in Section 5 and discuss future
directions.

2 LOTOS

The language Full LOTOS! is large and a complete presentation is outside the
scope of this paper. Although we are interested in the effect of data we are
not interested in the language per se therefore we do not discuss ACT ONE
here. We assume only that the language has inductive data theories and a proof
system. Instead we concentrate on the behavioural aspects of the language, and
how that behaviour may be modified by data.

Therefore, we begin with a brief overview of the syntax and a discussion
of the semantics of those features distinguishing LOTOS from other process
algebras, such as CCS [Mil89] and CSP [Hoa85]. Further details of LOTOS
may be found in [ISO88, BB89].

IFull LOTOS is Basic LOTOS (the process algebra) plus algebraic data types. In the
remainder of this paper the term LOTOS refers to Full LOTOS.

2.0.1 Syntactic Conventions

behaviour expressions begin with P or Q.
selection predicates (Boolean expressions) begin with SP.
gates in their simplest form are denoted g or h. Let G be

the set of gate names, then g ranges over G U {6},
and a ranges over G U {4,i}. (The special gates §
and i are explained below.)

experiment offers (the data associated with events) begin with d and
have the form !F or 7z : S. The set of structured
events (gates plus data) is denoted Act and « ranges
over Act U {d,i}. Note: G C Act, therefore o ranges
over (G also.

(open) data expressions begin with E.

ground data terms begin with v.

exit parameters begin with ep.
variables begin with z, y, or z.
sorts begin with S.

2.0.2 Operators of LOTOS

As in CCS and CSP, the main components of LOTOS are actions and processes.
The basic processes in LOTOS are stop, indicating inaction (deadlock), and
exit(epi, ..., ep,), indicating successful termination with data values. (There
is also exit with no associated data.)

Actions occur at gates, and may or may not have data offers associated
with them, e.g. g d; ...d, is an action at gate g with data offers d; ...d,. A
data offer can be a value (denoted by !, e.g. ¢g!4) or a variable over a set of
values (denoted by ?, e.g. g7z :Nat). Actions may also be subject to selection
predicates, written g dy ...d,[SP], where SP is a Boolean condition that may
restrict the allowed data values. There are two special actions; i which is the
(unobservable) internal event, and ¢ which is the successful termination event
(and may have associated data).

Actions and processes are combined using the following operators:

action prefixing

choice

parallelism

written g di ...d,; P, meaning behave like the action
g dy ...d, and then behave like the process P.

written P; [] P., meaning behave either like process P; or
like process P,. Nondeterministic choice results if the initial
action of each branch is the same.

There are two other specialised versions of choice, one to
nondeterministically choose a gate name from a given list,
written choice ¢ in [¢1,...,9,] [] P, and a similar one to
nondeterministically choose a data value from a given range,
written choice z:S [] P.

In its most general form written Py |[g1,.-., gn]| P2, mean-
ing perform the behaviours P; and P» in parallel, synchro-
nising on actions in the list ¢1,..., g,. An action in G may
not proceed unless both processes are willing to perform that
action. Actions not in ¢, ..., g, may proceed when ready.
There are three special cases: synchronising on no actions
(written Py ||| P2), synchronising on all actions in G (writ-
ten Py || P»), and par g in [g1,...,9,] op P where op is
one of the three parallel operators described so far, meaning
instantiate n copies of P in parallel, replacing g; for g in the

ith instance of P.

enable

disable

guard

hide

renaming

variable declaration

written P; > P», meaning behave like process P; and when
that terminates successfully, behave like process Ps.
Enable can also be parameterised with data
P, > accept z; : S1,...,z, : S, in Py, where values
are passed from the terminating exit of P; and bound to
Tly---5Tn in PQ.

written P; [> P, meaning behave like process P, but at
any time P, may interrupt and assume control. Control
never returns to P;. If P; terminates successfully then P,
can no longer interrupt.

written [SP]—> P meaning behave like process P if the
Boolean condition SP is satisfied, otherwise behave like
stop.

written hide G in P, meaning behave like P, but if an
action in G occurs then convert it to the internal action
i (so it cannot be observed by the environment). This is
mainly used to force the enclosed processes to communicate
only with each other.

written P[S], allows the gate names in P to be renamed,
according to the function S.

written let z; = Fy,...,z, = E, in P, meaning bind z; to
the value F; in P.

Recursion is also allowed and is unconstrained.

2.1 Semantics and Distinguishing Features of LOTOS

The standard semantics (i.e. according to [ISO88]) of a LOTOS process is a
structured labelled transition system, as defined in Appendix A.

LOTOS has three (related) features which distinguish it from most of the
standard process algebras: multi-way (broadcast) synchronisation, value negoti-
ation, and selection predicates. These make it non-trivial to directly apply the
notion of symbolic transition and bisimulation as described in [HL95].

Multi-way synchronisation means that when two actions synchronise, with
possibly some data exchange taking place, the resulting action may be involved
in further synchronisation. This is contrast to CCS and the message passing
process calculus used in [HL95], where synchronisation is strictly two way: two
actions synchronise yielding an unobservable 7 action, which may not synchro-
nise with any other action.

As a result of multi-way synchronisation, it makes less sense in LOTOS to
refer to“input” events and “output” events. In LOTOS an event offers a single
value or a set of values drawn from a particular sort; these are distinguished
by the use of ! or 7 respectively. Either kind of offer may be subject to a
selection predicate which may restrict the data further. In fact, if the selection
predicate evaluates to false, the event itself is prevented from occurring. Note
that selection predicates can refer to data in the current event (whereas the
guards found in other process algebras refer to data from previous events).

!'and ? offers can synchronise in any combination. For example, when v; and
vp are ground terms, glvy; P and glva; @ can synchronise iff v; = v, where =
is the equivalence induced by the data type. glv; P and ¢g7z:S; @, where v is
a ground term of sort S, can synchronise with the effect of z being bound to v
thereafter (i.e. in Q). Finally, g7z:S; P and g?y:S; @ can also synchronise,
the result being that for every possible value, x and y are bound to the same
value thereafter. If they are qualified by selection predicates, then the value
must satisfy both predicates. This is known as value negotiation.

For example,

(g'succ(0); Pr) | [g]| (97z:Nat[odd(z)]; P2) |[g]| (97y:Nat[y > 0]; Ps)
can synchronise, and is equivalent (with respect to bisimulation) to

glsucc(0); (Py | [g]| Pz2[succ(0)/z] |[g]| Ps[succ(0)/y])

And this in turn can synchronise with, say,
glpred(succ(succ(0))); Py

all of which assumes an appropriate theory of Nat.

Multiway synchronisation is achieved in the underlying transition system by
encoding data into transitions in both ! and 7 events. This can be seen clearly
by referring to the rules for generating a transition system from action prefix
events. The rule for ! events is straightforward:

glv; P o', p

where v is a ground term and v’ = [v] (i.e. the equivalence class of v).
Perhaps less obvious is the rule for ? events:

9?x:S; P —2% Plv/x]

where v is a ground term of sort S.

This latter rule gives us an axiom schema for each 7z event which must
be instantiated by terms/values of the appropriate sort. The binding of z is
defined at this point, i.e. the semantics is early. A late symbolic semantics
(meaning that the binding of variables to values is delayed as long as possible)
has no counterpart in the (standard) concrete semantics. This is in constrast to
value-passing CCS where both kinds of semantics are possible.

For example, ¢!0; P offers the single transition labelled ¢[0], while g7z :Nat; P
offers the transitions labelled by ¢[0], g[succ(0)], g[succ(succ(0))], See Fig. 1.
Thus, event offers of more than one value (i.e. ? offers) correspond to a (possibly
infinite) choice over all values of the data type.

Figure 1: Standard semantics of g?x:Nat event offer

This encoding of values in the transitions in turn affects the rules for syn-
chronised parallelism. Consider the rule for CCS style two-way synchronisation
(we use LOTOS syntax here for comparison):

g'E; Py 9, P, g?x:S; P 9, Py
9'E; Pi|[g]] g7z:S; Py —2— Py|[g]| P2[v/z]
9€ {g1,---, 0,0}

Here there is a single transition associated with the ? offer (labelled with z)
and there is a clear indication that value passing is occurring: z gets bound to
the value v. However, this approach is clearly limited to two-way synchronisa-
tion because the value passed disappears from the transition after synchronisa-
tion.

In contrast, the LOTOS rule for synchronised parallelism for the same pro-
cesses makes use of the encoding of values in transitions:

g'E; Py v, P, g?x:8S; P 9, Py
9'E; Pillgi, .-, gull g72:8; Py —2L~ Pi |[g1, .-, ga]| P2
ge {gla"'agnaé}

where v = [E].

In the LOTOS approach, one of the transitions generated by the axiom
schema for ? offers is chosen to match the transition generated by the ! offer; the
matching transition may of course be matched again in another synchronisation.
That is, there may be lots of other potential transitions from a state labelled
with ¢ and some value, but only one which is labelled with the value v (derived
from the expression E).

So, if we wish to preserve multi-way synchronisation and selection predicates
in LOTOS (and we do), we cannot simply employ the CCS-approach to ? offers.

3 Symbolic Transition Systems for LOTOS

We must define a new semantics for LOTOS which associates a finite number of
symbolic transitions with ? offers (like CCS), but preserves multi-way synchro-
nisation and the selection predicates. The new semantics should remove the
infinite branching introduced by ? offers, but should still be compatible with
the standard semantics (i.e. it must not identify more or fewer processes).

Before giving the new symbolic semantics, we introduce some basic defini-
tions and conventions.

3.1 Preliminaries

Concrete Semantics and Strong Bisimulation We refer to the standard
semantics (as defined in [ISO88] and Appendix A) as the “concrete” seman-
tics. We refer to the corresponding strong bisimulation equivalence [Mil89] as
“standard” bisimulation (equivalence), written as ~. (N.B. ~ is defined only
on closed behaviour expressions.) The definition is repeated in Appendix B for
convenience.

States and Boolean Formulae States in transition systems begin with T or
U, and Boolean expressions (over data) begin with B (in the case of partitions
in the bisimulation), and b in the case of transition conditions.

Variables and Substitutions Variables and substitutions are over data. We
assume all data expressions are typed, but we do not make this explicit in our
definitions. Similarly, all substitutions are well typed.

We assume a set new-var of fresh variable names. Strictly speaking, any
reference to this set requires a context, i.e. the variable names occuring so far.
For simplicity, we will assume that this context can be inferred, as required.

A (data) substitution is written as [z/z] where z is substituted for z; we use
o and 7 to denote substitutions. Substitutions are applied to process behaviours
purely syntactically, and therefore not applied to subsequent process calls. We
write the composition of two substitutions oy and o as o102, where o5 has
precedence over .

Structured Events LOTOS allows multiple data offers, e.g. g!z!y?n:Nat; P.
For simplicity in the following we will assume that only one event offer can occur
at a gate/event.

The function name() : Act U {d,i} —» G U {4,1i} extracts the gate name
from a structured event.

Free and Bound Variables Standard LOTOS does not distinguish between
bound and free variables (because it allows no free variables), but this is an
important distinction in the symbolic semantics.

Informally, free variables arise in several ways: as formal process parameters,
as variables which have been introduced (and bound) earlier by a ? event, a
let clause, or an >> with accept clause. For example, in g?z; g¢lz; exit, all
occurrences of z are bound, but in glz; exit, z is free.

The variables occurring in a data expression E are given by vars(E). A
behaviour expression may contain free and bound (data) variables; a closed be-
haviour expression is one with no free variables and a ground expression is one
with no variables. The free variables of behaviour expressions, denoted fu(P),
are defined in Definition 4 of Appendix B. We assume that we may perform
alpha conversion (renaming of free variables) whenever necessary.

For a given expression F, we call a substitution ¢ closing on F when all
Eq is closed. Similarly for other objects such as states in symbolic transition
systems, boolean expressions, and terms.

3.2 Symbolic Transition Systems

Following [HL95], symbolic transition systems (STS) are transition systems
which separate the data from process behaviour by making the data symbol-
ic. Our STS are labelled transition systems with variables, both in states and
transitions, and conditions which determine the validity of a transition.

Definition 1 (Symbolic Transition Systems)
A symbolic transition system consists of:

e A (nonempty) set of states. Each state T is associated with a set of free
variables, denoted fu(T).

o A distinguished initial state, Ty.

e A set of transitions written as T £—2+ T’ such that fo(T') C fo(T) U fu(E)
and fo(b) C fo(T) U fo(E) and #(fo(E) — fo(T)) < 1.
b is a Boolean expression and o € SimpleEv U StructEv.

Following convention, we shall often identify an STS with its initial state.
And since one possible interpretation of states is to view states as labelled by
behaviour expressions, the set of free variables of an STS T, fu(T), is defined
as the set of free variables of the behaviour expression labelling the initial state
of T. (By an abuse of notation we will often confuse state and their labels.) We

define the free variables of a state (behaviour expression) in Definition 4 of the
appendix.

We say that a state is closed if its set of free variables is empty. An STS is
closed if its initial state is closed.

In the sequel, for brevity, whenever quantifiers are used in conjunction
with symbolic transitions, we quantify only over destination states; source,
condition, gate and variable/expression are ignored. For example, we write
3T T2 95 T'tomean3T,T',b,g,E. T L 9B T andV T'. T L 9B, T
tomean VT, T, b, g, E. T 9B, T’ Similarly for concrete transitions.

We give a symbolic semantics for LOTOS by associating a symbolic transi-
tion system with each LOTOS behaviour expression P, written STS(P).

3.3 Intuition

A complete definition of the axioms and rules which define the symbolic seman-
tics is given in the next section. Before proceeding to the formal definition, we
give an example which serves to illustrate the difference between the concrete
and symbolic semantics. Figs. 2 and 3 below contain portions of the respective
transition systems for the behaviour expression

g?x:Nat[z < 10]; h?y:Nat; hlz; stop

—
O@@

f=

Figure 2: Concrete Transition System

In the concrete semantics, query offers are instantiated by explicit data offers.
Therefore, in Fig. 2, the ? offers correspond to either many or an infinite number

10

of transitions, each of which is labelled by a concrete offer. Strictly speaking,
the labels are the equivalence classes denoted by the ground expressions.

O

Figure 3: Symbolic Transition System

In the symbolic semantics, open behaviour expressions label states (e.g.
hlz; stop), and transitions offer variables, under some conditions; these con-
ditions determine the set of values which may be substituted for variables.
Whereas the concrete system in Fig. 2 has infinite branching, the symbolic
system in Fig. 3 has only finite branching.

3.4 Symbolic Semantics: Axioms and Rules of Transition

We assume the existence of the flattening function of the standard semantics.
The flattening function essentially ensures that the specification adheres to the
LOTOS syntax, but also removes all hierarchical structure, ensures uniqueness
of variable names, and that all names and types used are previously defined.
The resulting object is called a canonical LOTOS specification.

For a given canonical LOTOS specification P, the rules to generate STS(P)
are as follows.

prefix axioms

oW
I
S

, [E if
E_{x if

=
I
-~
)
()

E if d ='F
r

E _{ z if d
exit axioms

exit 29+ stop

exit(ep) 97, stop

o [E ifep = E
"1 #z ifE = any S where z € new-var.

11

let rule

P[E/:L‘]b o i
let x=E in P22, P

choice range rules

Plgi/g] -—2~ P’
choice g in [g1,...,9a] [] P -2~ P’
for each g; € {g1,...,9n}

Pb @ P’
choice : S [| P L—2+ P’

par rule
Plg/g] op ... op Plgn/g] +—2—~ P’
par g in [gi,...,gn] op P L2 !
where op is one of the parallel operators, |[h1,..., hp]]|, for some
gate names hi, ..., hny, || or |||

hide rules

Pba/
b

hide g1,...,gn in P hide g1,...,gn in P’

if name(a) € {g1,...,9n}

Pb o P’
b_o . hide ¢1,...,¢q, in P’

hide ¢1,...,9n in P

if name(a) € {g1,...,9n}

accept rules

e 1
Py > accept z:8 in Py L2 P{ > accept z:S in P,
if name(a) # ¢

131 b OFE P{
Py > accept v:S in Py L+ Py[E/x]

Similarly for > with no data.

12

disable rules

e 1
P [>P, X2, PI[>P,

if name(a) # ¢

Pt p
P[>P,t 2, p

if name(a) =4

Pyt P
P[>P,t 2, p}

general parallelism rules (synchronising)

P, by g P{ Py b g Pé
Pil[g1,-- - a) | P2 22L2te P{[g1, o gn] | P}
where g € {g1,...,9n,0}

py baBy pl Py b2 98 pi
Pillgr,...,gn]| Py L0l i L =02 9By Pli[g,, ... g,]| P
when vars(by U Ey) Nvars(be U) = &.

general parallelism rules (not synchronising)

Pt P
Pi|[g1,-- -, gn]| P2 2227 Plo|[g1,. .., gu]| P2

name(a) € {g1,.--,9n,0}
y o { [2/z] if @ = gz and z € vars(P2) where z € new-var.
L]

otherwise

Similarly for Ps.

choice rules

e &
P[] P, 2>, P

iy
P[Pt P}

13

guard rule
P b « P’
([SP] - P) bASP « P’

stop rule

stop generates no rules.

instantiation rule

P[gl/hl,,gn/hn][El/iL‘l,,Em/CEm] b a Pl
plgr, s gal(Bry. .o, B) 2 P!
where plhi,...,h](2z1,. .., Zy) := P is a process definition

bracket rule

P b « !
(P) b « P/
relabel rule
P b « !

(P)[gl/hlv"'vgn/hn] b_o (Pl)[gl/hla"'agn/hn]
h; ifa = giandgie{gly"'agn}

o =< mME ifa=gFEand g € {g,-..,9n}
« otherwise

3.5 Key Features

Key features (and differences from [HL95] and the concrete semantics) of the
symbolic semantics defined above are:

e The syntactic distinction between the two kinds of data offer, i.e. between
? and !, has been lost. That is, both are represented by a transition
labelled by a gate/event, an expression (possibly a simple variable) and a
Boolean condition. Each offer is a set of values constrained in some way
— the constraint is usually expressed both by the form of the expression
and by the condition. Whether or not a variable has been bound can be
determined by examining the free variables of the associated states.

Transitions associated with ? events may introduce new variables, in order
to avoid variable name capture. For example, in g?z:S; P ||| glz; @Q,
the query variable needs to be renamed in order avoid capturing the free
variable in the right hand side. New variables may be necessary even when
every ? variable in a specification is unique. For example, when a process is
invoked more than once, e.g. P[g] ||| P[g] where P[g] = g?z:S; P’, then
one of the z variables must be assigned a unique name to avoid confusion.

14

e Guarding, prefix and parallelism are the only rules which alter transition
conditions.

e Transitions may have conditions which are not satisfiable. We will refer to
these transitions as “imaginary”. Imaginary transitions may, for example,
be the result of unsatisfiable conditions in a LOTOS guard, e.g. [z < 0]

-> P, where z is of sort Nat. Such imaginary conditions are detected
when the proof system of the data type is employed to evaluate conditions
generated by the axioms and rules of the previous section.

Figs. 4, 5, 6 and 7 contain some simple examples which illustrate some of
the features of the concrete and symbolic transition systems (CTS and STS
respectively).

Figs. 4 and 5 illustrate the CTS and STS, respectively, for the same be-

haviour expression.

QX

g

Figure 4: CTS for P[g] ||| Plg] where Plg] = g?z; hlz; P[g]

Note that the processes in Figs. 6 and 7 do not have a corresponding CTS
because open processes are not defined in the standard LOTOS semantics, and
while the former results in a finite system, the subtle change in the recursion in
the latter results in a infinite (depth) system.

15

<

Figure 5: STS for P[g] ||| Plg] where Plg] = g?z; hlz; P[g]

0

Figure 6: STS for P[g](z) = gl + 1; P(x)

OO

Figure 7: STS for P[g](z) = glz + 1; P(z + 1)

16

3.6 State Equivalence and Substitution in STSs

When constructing STSs from behaviour expressions, straightforward syntactic
substitution on behaviour expressions was employed. Thus, state equivalence is
defined purely by syntactic equivalence. The examples STSs of Figs. 5 and 6
show the applied syntactic state equivalence.

However, in order to define equivalence relations, preorders, or logics over
STSs and to ensure that cycles (such as might arise from recursive processes)
are handled correctly, we must first define substitution on STSs.

Consider, for example, the simple buffer Buff = input?x:Nat; output!x;
Buff. The STS which corresponds to Buff is shown in Figure 8.

Figure 8: Failed substitution on Buff STS

If the first action taken by this process is to input the value 3, then the x
at the output gate must also be bound to that value. Since Buff is recursive,
we expect that the next time round the loop a different value may be input,
and therefore a different substitution must be applied. However, if we simply
substitute 3 for x in the STS, as shown in Figure 8, we fail to capture this
possibility.

In [HL95], this problem is solved by introducing the concept of a “term”:
a node in a symbolic transition system paired with a substitution. The same
solution can be adapted for LOTOS. Formally, a substitution is a partial func-
tion from Var to VarU Val and a term consists of an STS, T, paired with a
substitution, o such that domain(o) C fu(T). We write this as T, to indicate
that the substitution is not applied directly to 7', and use ¢ and u to range over
terms.

For example, since Buff is closed, it can be paired only with the empty
substitution to form the term Buff[;. The substitution is applied step by step,
when necessary, as explained in the rules for transitions between terms (Figure
9). For example, below are some possible transitions starting from the term
Buff| ;. The substitutions capture the fact that the variable z is discarded
and then bound afresh upon each pass through the loop, making it possible to

process a different value during each pass.
Buff[| L ImPRIL Buffr

BUff,[zl/z] tt output z1 Buff[]

17

Tt 2.7 implies T,z 9o, T
Tt 9B, 7" implies T, o989, T/,
where fu(E) C fu(T) and
o =f(T)<o
Tt 9, T' implies T, telelzl oz 77
where z & fu(T) and z & fu(T,)

(By s <o we mean domain restriction as in the Z notation, ie., the restriction
of o to include only domain elements in the set s.)

Figure 9: Rules for transitions between terms

Buff[L ImPUCZL Buff’ ;.1 and so on.

The definition of free variables is extended to terms in the obvious way. Terms,
rather than STSs, are used as the basis for defining the bisimulation in the next
section.

4 Symbolic Bisimulations

Although our motivation is to separate reasoning about data from reasoning
about processes, data cannot be disregarded when considering the equivalence
of processes: the particular value of a data variable can completely alter the
behaviour of a process. Therefore, for our purposes the gate label is too coarse a
measure of equivalence; we need the extra refinement gained by also considering
data, but without considering specific data values.

The crux of the following definition of bisimulation is the notion that data
can be partitioned according to some Boolean expressions, or predicates, e.g.
{z <0,z > 0} and this may give enough information to accurately simulate a
process, without assigning a particular value to the data variables. The role of
the partition is to allow transitions to be split or merged according to their data
parameters.

The use of the partition means that each bisimulation is a parameterised
family of relations, where the parameters are the predicates. Furthermore, we
only consider simulating transitions which could possibly be valid. Namely,
given a particular predicate, or “context” b, and a transition with condition b',
we do not consider that transition at all if the context and condition are mutually
inconsistent. For example, if b is £ = 0, and b’ is 2 # 0, then the transition can
never be valid in this context, i.e. it is “imaginary” and so we do not need to
consider the transition in the simulation. We also note that whereas Hennessey
and Lin [HL95] define both an early and a late bisimulation equivalence, only
an early bisimulation is meaningful in our context (as explained in Section 3.2).

18

We give a definition of “layered” symbolic bisimulation, written NZ-C , where i
is the depth of bisimulation. Similarly, we also make use of the layered definition
of standard concrete bisimulation, see [Mil89], page 225.

In this section we show how bisimulation is defined upon terms.

We shall assume we have a function new(#, u) which, given two terms ¢ and
%, returns a variable which is not among the free variables of either ¢ or w.

Definition 2 (Symbolic Bisimulation on terms)
For all b, a Boolean expression, t and u, terms:

1. t~fu.

2. For all & an ordinal >0, t ~? | u iff

(a) (dataless case)

if t has a transition t 2%+ t' then there is a finite set of Booleans

B over fu(t) such that (b A b;) = \/ B and for each b’ € B there is

a transition u 2 » o' such that b' = b, and t' N,be’ u'.

(b) (data case, no new variable)
if t has a transition t 2—9% ' where fu(E;) C fu(t), then there is a
finite set of Booleans B over fo(t) U {2} such that (b A by N z=E;) =\ B,
where z = new(t, u), and for each b' € B either
there is a transition u 2=92 o' where fo(E,) C fo(u), and b' = b,
and b' = E, = E, and t' N,Z’ o'

or
- e !
there is a transition u 29%+ o' such that b' = b, and t' ~° '

(c) (data case, new variable)
if t has a transition t 92+ t' where z = new(t, u), then there is a
finite set of Booleans B over fu(t) U {z} such that (b A b;) = \/ B
and for each b’ € B either

there is a transition u 292 o' where fo(E,) C fo(u), and b' = b,
and ' = 2z = E, and t' ~Y '

or
. .y - ’
there is a transition u L9+ o' and b’ = b, and t' ~°

(d) , (e), (f) Symmetrically, the transitions of uw must be matched by t.

!

3. For k an ordinal and X\ a limit ordinal, t Ng wiff Ve <. t~tou.

We may be relating processes that are parameterised. Therefore, the free
variables must be matched accordingly.

Definition 3 (~° for parameterised processes)

If fo(t) = {x} and fo(u) = {}, then
t~b iﬁvz.t[z/z] INUEVERZE) Uz /y]s

19

where z = new(t, u).
We use ~ to denote the largest symbolic bisimulation, for a given b.

Cases (b) and (¢) of Definition 2 appear quite complex, but the intuition is
as follows. For case (b) we assume that the data of the ¢ transition is a value
(expression). This expression can either be matched by a u transition with the
same value, or a u transition with a new variable z. The rules for transitions
between terms (Definition 9) allow new variables to be introduced. The condi-
tions to be matched (particularly the implication between the members of the
partition and the condition of the u transition) vary depending on what sort of
u transition is matched. Essentially, if a new variable is matched then condi-
tions relating to the data are captured exactly by the condition b,. If a data
expression is matched then information about data is given both by b, and the
expression E,. The role of the new variable z is to provide a common language
for matching transitions. Case (c¢) is similar, but starting with the assumption
that the data of the ¢ transition is a new variable z.

The resulting bisimulation is a Boolean condition-indexed relation. So, in
most cases, when ¢ ~° u, and ¢ evolves to ¢/, and u evolves to v/, and ¢ ~* u/,
then b’ is a different condition to b, i.e. different states in the symbolic transition
systems will be related by different members of the family of relations. This is
because, in a typical symbolic transition system, restrictions on data increase
with depth.

4.1 Examples
Some small examples illustrate symbolic bisimulation.

Ezxample 1. Consider the following two processes, also illustrated in Fig. 10.

process P [c,d,e,f,g] (x:Int): process Q [c,d,e,f,g]l(y:Int):
exit := exit :=
g'x; (c;([x<0] -> f;exit gly; (. c;C [y<0] -> fjexit
[0[x=0] -> g;exit) [1Ly=0] -> d;exit)
[1c; ¢ [x=0] -> d;exit [dc; ¢ [y=0] -> g;exit
[1[x>0] -> e;exit)) [DLy>0] -> e;exit))
endproc endproc

These two processes are bisimilar, i.e. P(z) ~ Q(y). The crucial partitions
for both P and @ are {z =0, z < 0}, for the left ¢ branches, and {z =0,z > 0},
for the right ¢ branches, where z is a unifying variable.

Specifically, we have the following relations (and their symmetric counter-
parts):

~ = {(P(2), Q(2)), (P, @)}
~*<0 = (P11, Qu1), (P11, Qi11)}
~=0 = {(P1, Qu2), (Pr2, Qu), (Praz, Quz), (Prar, Quiz)}
~*20 = {(Pra, Qr2), (Pi22, Qu22)}

20

ke, ke,
DS ASODS

Figure 10: Example 1

The family of indexed relations describing the complete bisimulation is
{Ntt ~2<0 _2=0 Nz>0}.

Example 2. Consider the following two processes, also illustrated in Fig. 11.

process P [c,d,e,f,g] : exit := process Q [c,d,e,f,g]l : exit :=
g?x:Int; ([x>0] -> c;f;exit g?y:Int;c; ([y>0] -> f;exit
[1[x=0] -> c;e;exit [10y=01 -> e;exit
[1[x<0] -> c;d;exit) [1[y<0] -> d;exit)
endproc endproc

- O

Figure 11: Example 2
These two processes are symbolically bisimilar, i.e. P ~* Q.

In this case the crucial partition is {z < 0,z = 0,z > 0}, where z is a
unifying variable. More specifically, we have the following relations (and their

21

symmetric counterparts):

tt
~

{(P,Q), (P,)}

{(P13, Q11), (P131, Qu13)}
~*=0 = {(Pra, Qu1), (Pr21, Qui2)}

{(P11, Q1), (P111, Qu11)}

That P ~% @ goes against normal intuition about the effect of (nondeter-
ministic) branching on equivalence (these processes without data would not be
equivalent under ~). Here as soon as the data value is bound the later actions
of the process are determined, so the choice is actually deterministic.

Ezample 3. Consider the following two processes, also illustrated in Fig. 12.

process P [g,rpt,out]:exit(Nat) := process Q [g,rpt]:exit :=
g?x:Nat;P1(x) g?y:Nat;Q1

where where

process P1 [rpt,out](z:Nat):exit := process Q1 [rpt]:noexit :=

[z<0] -> out;exit rpt; Q1

[1[z>=0] -> rpt;P1(z+1) endproc

endproc endproc

endproc

O O

Figure 12: Example 3

These two processes are also symbolically bisimilar, i.e. P ~% @, given certain
assumptions about Nat.

This time the partition is not particularly interesting, but we need infor-
mation from the inductive theory of Nat, namely that Vz : Nat.(z >=0 A
(Vn:Nat.z +n >=0)).

22

Note that all the right-hand transitions from P, i.e. P; Py,
P Py, ..., are imaginary and therefore these are not considered in
the bisimulation. Excluding these transitions, we have the following infinite
relation (and its symmetric counterpart):

~ = {(PaQ):(Pl,Ql),(Pll,Q1),(P111,Q1),.__}

Finally, we give an example of two processes which are not symbolically
bisimilar.

Ezample 4. Consider the following two processes:

process P [g]:exit(Nat) := process Q [g]l:exit :=
g!3; exit g?y:Nat [odd(y)];exit
endproc endproc

While we can define a suitable partition in one direction, e.g. {y = 3}, giving
us (y = 3) = odd(y), the symmetric case does not hold, i.e. odd(y) # (y = 3).
As we would expect, the two cannot be shown to be bisimilar.

4.2 A Larger Example

In this section we consider two specifications of user behaviour in a telephone
network where users are forbidden to make and receive calls to/from particular
users. The two specifications are given in Figs. 13 and 15, and their respective
STS in Figs. 14 and 16. We allow ourselves the liberty of extending the defi-
nitions to actions with multiple data offers. As noted earlier, this is a simple
extension, omitted in the rest of the paper for simplicity.

Each user process is parameterised by the user id, the list of prohibited
incoming callers, and the list of prohibited outgoing numbers. There are 5
events: the con (connect) and discon (disconnect) events, the dial (dial), unobt
(unobtainable) and on (on hook) events. The first three events include data
offers, for example, discon!x!y denotes the event of disconnecting the call from
user x to user y. Conditions are used both to guard processes (within a choice)
and to qualify structured input events. For brevity, details of the datatype
userid and idlist have been omitted. Also, we do not allow that phones are
engaged, or unobtainable for reasons other than being in the out list.

The difference between Tel_I and Tel_II is essentially the points at which
choices are made, rather than the criteria involved in those choices.

Phone Users are Bisimilar Tel_I and Tel_II are symbolically bisimilar
under the trivial condition, tt; i.e. Tel_I ~' Tel II.
There is a symbolic bisimulation consisting of the following relations (as-
suming the symmetric pairs in each set):
St = {(S0, ToO
Snot(z mem bar_in) — { S]., T1
S(z mem bar_out) —

{
Snot(w mem bar_out) _ {

process Tel_I[dial,con,discon,unobt,on]

(id:userid,bar_in:idlist,bar_out:idlist) :noexit :=

(con?x:userid'id [not (x mem bar_in)]; discon'x!'id; on;
Tel_I[dial,con,discon,unobt,on] (id,bar_in,bar_out))
(]

(dial?x:userid;
([x mem bar_out] -> unobt; on;

Tel_I[dial,con,discon,unobt,on] (id,bar_in,bar_out)

(1

[not (x mem bar_out)] -> con!id'x; discon'!id'x; on;

Tel_I[dial,con,discon,unobt,on] (id,bar_in,bar_out)))
endproc

Figure 13: LOTOS Description of Telephone I

Figure 14: STS for Telephone I

24

process Tel_II[dial,con,discon,unobt,on]
(id:userid,bar_in:idlist,bar_out:idlist) :exit :=

(con?x:userid'id [not (x mem bar_in)]; discon'!x!'id; on;
Tel_I[dial,con,discon,unobt,on] (id,bar_in,bar_out))

1

(dial?x:userid [x mem bar_out]; unobt; on;
Tel_I[dial,con,discon,unobt,on] (id,bar_in,bar_out))

(]

dial?x:userid [not(x mem bar_out)]; con!id!x; discon!id!x; on;
Tel_I[dial,con,discon,unobt,on] (id,bar_in,bar_out))

endproc

Figure 15: LOTOS Description of Telephone IT

Figure 16: STS for Telephone II

The proof relies on the partition {z mem bar_out, not(x mem bar_out)}.

5 Conclusions and Further Work

We have defined a symbolic semantics for LOTOS in terms of symbolic transi-
tion systems, and symbolic bisimulation over those transition systems. Broadly
speaking, we have adopted the approach of [HL95]; however, the features of
LOTOS, especially the need to accomodate multi-way synchronisation and the
resulting model of value passing, mean that this is not a straightforward adap-
tation of the theory presented in [HL95].

Our symbolic approach eliminates infinite branching which has been a ma-
jor source of difficulty in reasoning about LOTOS specifications. The symbolic
semantics, and a bisimulation relation, allows us to reason about Full LOTOS
processes, separating the data from the processes, without losing essential in-
formation that the data supplies in terms of flow of control. The solution is
simple and intuitive, unlike some previous approaches which have meant using
considerable intuition about different representations of data, data as process-
es [Got87] or using transformations which are rather complex [Bri92] or do not
preserve the data information [Bol92].

We have only considered strong bisimulation here, though clearly other forms
of equivalence (e.g. weak) can be defined. While we have a means of checking
whether a given relation is a symbolic bisimulation, and several examples il-
lustrate this, we have not given here an effective method of constructing that
relation. However, it is fairly easy to see that the partition has to be derived
from (the cross product of) the conditions in each transition system. The inter-
esting case is when we have infinite (depth) transition systems; these may yield
an infinite number of variables, and consequently conditions, and so we must
be able to recognise the relationships between them. For example, see Fig. 6.

Related work includes the definition of a corresponding modal logic [CMS01]
in which to express temporal properties of LOTOS. In a related paper [CMS00]
the logic is shown to be adequate with respect to a version of the bisimulation
defined here, that is, it should distinguish and identify exactly the same pro-
cesses as the symbolic bisimulation. Also planned is development of tools to
support reasoning about LOTOS using symbolic transitions, namely a tool to
check symbolic bisimulation, and a model checker for the logic.

Acknowledgement. The authors would like to thank Savi Maharaj for useful input
on the definition of bisimulation, and Ed Brinksma for many fruitful discussions on
reasoning about LOTOS. Carron Shankland thanks the British Council, the Nuffield
Foundation and the Engineering and Physical Sciences Research Council for their
support.

26

A Semantics of LOTOS

The semantics of processes in LOTOS are given by structured labelled transition
systems. The complete syntax and semantics of full LOTOS may be found in
the LOTOS standard [ISO88]; here we give only the inference rules defining the
semantics of LOTOS. Notational conventions are as given in Section 2.

In order to turn a LOTOS specification into a labelled transition system, the
specification is first “flattened” to give a canonical LOTOS specification. The
inference rules of transition may then be applied to the canonical LOTOS spec-
ification to give a class of structured labelled transition systems, each relating
to different instantiations of the formal parameters of the specification.

In the next section we give the standard definitions relating to labelled tran-
sition systems and algebras which are required for the definition of the inference
rules in Section A.2.

A.1 Algebras and Transition Systems

A flattened canonical LOTOS specification, CLS, is given by a pair (AS, BS).
AS is an algebraic specification (S, OP, E), where (S, OP) is a signature and
E is a set of conditional equations. The semantics of AS is given by the many
sorted algebra Q(AS) which is the quotient term algebra of AS. BSis a behaviour
specification (PDEFS, pdefy) where PDEFS is the set of all the process definition
in CLS, and pdefy is the top level process of the specification. Each element of
PDEFS is a pair (p, Pp) of a process name and the corresponding behaviour
expression. All sort names and operations in BS are defined in AS (the flattening
function ensures this).

The algebraic specification generates a derivation system D, which allows us
to deduce if two terms are congruent, i.e. D + E; =45 Fs. The congruence
class of a term E, written [E], is defined as [F] = {E' | E =15 E'}.

A labelled transition system Sys is a 4-tuple (S, Act, T, 50) (S, Act, {—=C
S x S}, s0), which consists of a set S of states, a set Act of transition labels, a
transition relation —%— | one for each a € Act, with Act = G U {i}, and a
starting state so € S.

A structured labelled transition system Struc is a 5-tuple (S, Act, A, T, s)
where A = (D, O) is a many-sorted algebra such that (S, Act, T, s) is a labelled

transition system, for Act 1/ {itU{gv| g€ G,v e (UD)*}. This is also re-
ferred to as a labelled transition system over A.

In other words, a structured labelled transition system is just like a labelled
transition system, except that each label g is decorated by a string of values
from D.

A.2 LOTOS Axioms and Inference Rules

i P—1.p

gdi...dp; P2 s [ty [yr,. .. tYm/Ym|P

27

iff

v; = [E;] if d; =1F;(1 <i<n)and E; is a ground term,
v; € Q(s;) if di = 72;(1 <4 < n) with sort(z;) = s,
ti, - . ., tym are term instances with v; = [ty;] if d; = 7y;(1 <i<n,1<j<m)

and {y1,...,ym} ={zi | di = 72,1 <i<n}.

g dy...dy[SP]; P -2y [ty [y, .o Y/ Ym] P

iff

v; and ty; defined as above, and providing D + SP’ where SP’
denotes the ground equation obtained by simultaneous replacement
in SP of all z; in SP that also occur contained in a d; variable offer,
ie. d; =7x,(1 <i<n),byaterm ¢ € v;.

exit(ep,...,ep,) LUV, stop
iff
v; = [epi] if ep; is a ground term (1 < i < n)
v € Q(s;) if ep; = any s5,(1 <i < n)
exit S, stop

[El/:l‘,'l,...,En/CEn]P @ !
let oy = FE,...,2, = F, in P @, p!

(P)lgi/ 9] ——=P'
choice g in [g1,...,9.] [] P @, P!

for each g; € {g1,..., 9n}

[E/2]P —=—~ P
choice z [| P —&—~ P’

iff £ is a ground term with [E] € Q(s), where 2 is a variable with
sort(z) = s.

(P)lg1/g] par-op. .. par-op (P)[gn/g] —2—~ P’
par g in [g,..., g,] par-op P @ !

where par-op is ||, ||| or |[]]-

P [e] !

e

hide ¢;,...,9, in P hide ¢i,..., g, in P’
if name(a) € {g1,...,9n}

28

P e !
hide ¢;,...,9, in P L , hide ¢1,...,9, in P’
if name(a) € {g1,...,9n}

Py @, p

Py > accept z;:51,...,2,:S, in P @

name(q) # 0

})1 d vi...v, Pll

Pi' > accept z;:5i,..

Py > accept z;:51,...,2,:S, in P> i

where Ey,..., E, are ground terms with [Ey] = vy, ..., [E,] = vp.
P, a“,p
P [> Py & P1I[> Py
name(q) # 0

P O V1U Pll
P[> Py LUt pyf

Py —% . P}
P[> P, —2. P}

P, o, p'
P1|[gl,"'7gn]|P2 e P1,|[gl,---7gn]|P2
name(a) € {g1,...,9n,0}

P, —a . P
Pillgr,. ..y gnll P2 —2— P1 |[g1,- .-, ga]| P5
name(a) € {g1,...,9n,0}

P, ¢ > P| P, e - Pl
Pillgi,-- s gn]| Po —2~ Pi" |[g1,- ., ga]| P3
name(a) € {gl,' . ',gn,(s}

Pi[]| P —=—P'
Pr|| P, —— P

P1|[g1,...,gn]|P2 @ Pl
P1||P2 o i

where {g1,...,9n,} = G (the set of all gates).

Py o, p'
P[] P2 @, p

29

[E'l/:vl,...,E'n/:vn]P2

n:Sp in Ps

P, . p
P[P, —2+ P}

P [¢] !
[SP] >P —%» P!

iff SP is a ground equation and D + SP.

no inference rules are generated for stop

([El/xlv)EM/xm]PP)[gl/hlaygn/hn]

[e3 Pl

p[gl,...,gn](El,...,Em) «

iff (p, P,) € BS.PDEFS

!

where formal-gates(p) = (b, ..., hy), and formal-vars(p) = (x1,- .., Tm)-

P [¢] !
(P) [¢] !
P e, p!

(P) [gl/hlv---agn/hn] o (Pl)[g1/h1,...

where

hi,...,h, are gate-names,
a = gu...Un,
!

o =gu ... if g&{h,...,h,}
o =giv ... oy if g=hi(1<i<n)

:gn/hn]

These rules and axioms completely define the structured labelled transition

system of a canonical LOTOS specification.

B Auxiliary Definitions

Definition 4 (Free Variables)

Let vars(E) be the variables occurring in expression E. The set of free vari-

ables occurring in an expression is fu(E) = vars(E).

of behaviour expression P, fu(P), is defined by

30

The set of free variables

fu(stop) = {}

fu(exit) = {}

fu(exit(z)) = {z}

fo(Plgl) = {}

fU(P[g](iL’l,...,:I?n)) = {ﬂ:l,...,:ljn}

fo(g; P) = fo(P

fu(g?z:S[SP]; P) = (vars(SP) U fu(P))\ {z}
fo(9'z[SP]; P) = {z} U wvars(SP fo(P)

==

U
fo(ISP]=>P))
fo(let x=FE in P)

vars(SP) U fu(
vars(E) U (fo(P)\ {z})

fv(hide ¢g in P) = fuo(P)
fo(Pyx P3) = fu(P1) U fo(P2),
where * = [],[>,>, [lo1,---, 911, 1|, |lI
fo(P1 > accept z: S in P5) = fo(P1) U (fu(P2) \{z})
fv(choice g in [g1,...,g,] []P) = fo(P)
fu(choice z : T [] P) = fo(P)\{z}
fo(par g in [g1,...,gn] op P) = fu(P) where op is one of the parallel operators

References

[BB89] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification
Language LOTOS. In P.H.J. van Eijk, C.A. Vissers, and M. Diaz,
editors, The Formal Description Technique LOTOS, pages 23-76.
Elsevier Science Publishers B.V. (North-Holland), 1989.

[Bol92] T. Bolognesi, editor. Catalogue of LOTOS Correctness Pre-
serving Transformations. Technical Report Lo/WP1/T1.2/N0045,
The LOTOSPHERE Esprit Project, 1992. Task 1.2 deliverable.
LOTOSPHERE information disseminated by J. Lagemaat, email
lagemaat@cs.utwente.nl.

[Brig2] E. Brinksma. From Data Structure to Process Structure. In K.G.
Larsen and A. Skou, editors, Proceedings of CAV 91, LNCS 575,
pages 244-254, 1992.

[CMS00] M. Calder, S. Maharaj, and C. Shankland. An Adequate Logic for
Full LOTOS. Submitted for publication to FME 2001, 2000.

[CMS01] M. Calder, S. Maharaj, and C. Shankland. A Modal Logic for Early
Symbolic Transition Systems. The Computer Journal, 2001. To
appear.

[Eer94] H. Eertink. Simulation Techniques for the Validation of LOTOS
Specifications. PhD thesis, University of Twente, 1994.

[EMS85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1:
Equations and Initial Semantics. EATCS Monographs on Theoret-
ical Computer Science. Springer-Verlag, 1985.

31

[Got87]

[HL95]

[Hoa85]

[1SO88]

[LITE]

[Mil89]

[SMOS]

[Tho94]

[Tho97]

[T094]

[VSvSBOI1]

R. Gotzhein. Specifying Abstract Data Types with LOTOS. In
B. Sarikaya and G.V. Bochmann, editors, Protocol Specification,
Testing, and Verification, VI, pages 15-26. Elsevier Science Pub-
lishers B.V. (North-Holland), 1987.

M. Hennessy and H. Lin. Symbolic Bisimulations. Theoretical Com-
puter Science, 138:353-389, 1995.

C.AR. Hoare. Communicating Sequential Processes. Prentice-Hall
International, 1985.

International Organisation for Standardisation. Information Pro-
cessing Systems — Open Systems Interconnection — LOTOS — A
Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour, 1988.

M. Caneve and E. Salvatori, editors. LITE User Manual. Technical
Report Lo/WP2/N0034/V08, The LOTOSPHERE Esprit Project,
1992. LOTOSPHERE information disseminated by J. Lagemaat,

email lagemaat@cs.utwente.nl.

R. Milner. Communication and Concurrency. Prentice-Hall Inter-
national, 1989.

M. Sighireanu and R. Mateescu. Verification of the Link Layer Pro-
tocol of the IEEE-1394 Serial Bus (FireWire): an Experiment with
E-LOTOS. Springer International Journal on Software Tools for
Technology Transfer (STTT), 2(1):68-88, Dec. 1998.

M. Thomas. The Story of the Therac-25 in LOTOS. High Integrity
Systems Journal, 1(1):3-15, 1994.

M. Thomas. Modelling and Analysing User Views of Telecommu-
nications Services. In Feature Interactions in Telecommunications
Systems, pages 168-183. IOS Press, 1997.

M. Thomas and B. Ormsby. On the Design of Side-Stick Con-
trollers in Fly-by-Wire Aircraft. A.C.M. Applied Computing Review,
2(1):15-20, Spring 1994.

C.A. Vissers, G. Scollo, M. van Sinderen, and E. Brinksma. Speci-
fication styles in distributed systems design and verification. Theo-
retical Computer Science, 89:179-206, 1991.

32

