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Abstract. We formalise a continuous-time Markov chain with multi-
dimensional discrete state space model of the AKAP scaffold protein as
a crosstalk mediator between two biochemical signalling pathways. The
analysis by temporal properties of the AKAP model requires reasoning
about whether the counts of individuals of the same type (species) are
increasing or decreasing. For this purpose we propose the concept of
stochastic trends based on formulating the probabilities of transitions
that increase (resp. decrease) the counts of individuals of the same type,
and express these probabilities as formulae such that the state space
of the model is not altered. We define a number of stochastic trend
formulae (e.g. weakly increasing, strictly increasing, weakly decreasing,
etc.) and use them to extend the set of state formulae of Continuous
Stochastic Logic. We show how stochastic trends can be implemented in
a guarded-command style specification language for transition systems.
We illustrate the application of stochastic trends with numerous small
examples and then we analyse the AKAP model in order to characterise
and show causality and pulsating behaviours in this biochemical system.

1 Introduction

In the recent years biochemical networks have become an important application
area for modelling approaches and analysis techniques developed in theoret-
ical computer science. Our approach to modelling and analysing biochemical
networks is stochastic processes, continuous-time Markov chains (CTMCs) in
particular, which allow new quantitative analysis in addition to the traditional
simulation afforded by ordinary differential equations (ODEs). CTMC models
where states represent the counts of molecules for each biochemical species, also
called molecular CMTCs, together with the behaviour analysis based on Gille-
spie’s stochastic simulation algorithm [1], provide a faithful representation of
biochemical networks. One major limitation of the molecular CTMCs is the size
of the underlying state space that can easily become too large to be handled ex-
plicitly by stochastic model checking tools. CTMCs with levels [2] are based on
discrete levels of concentration instead of exact molecule counts. In comparison
to the molecular CTMC, the level abstraction reduces the state space, leading to
models that are more amenable to model checking techniques that analyse the
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entire state space. Another limitation of the molecular CTMCs is the need for
precise molecular concentrations for the species and details about the reactions,
whereas CTMCs with levels allow for greater abstraction and relative quantities.

We focus here on modelling the scaffold protein AKAP and its role as a medi-
ator of the crosstalk between the cyclic AMP (cAMP) and the Raf-1/MEK/ERK
signalling pathways. The behaviour of this biochemical system is complex and
still under study in the laboratory. Following discussions with laboratory sci-
entists, we have developed a CTMC with levels model, which we believe to be
the first formal model of the system. This modelling paradigm is well-suited to
the AKAP system because the experimental data gathered so far are relative
rather than exact. In other words, exact rates of reactions are unknown, but
their relative rates are known; for example, some are known to be about three
times faster than others, etc. Typical questions and properties conjectured by
laboratory scientists include if increasing concentration levels of molecule A lead
to decreasing concentration levels of molecules B and C, or confirming the pul-
sating behaviour suggested by the lab experiments. In order to formalise these
conjectured properties in the AKAP model we define stochastic trends.

Stochastic trends stem from modelling biochemical networks but they can be
more generally applied to Markov Population Processes (MPPs) – continuous-
time Markov chains where states record the counts of individuals in each colony
of a population [3–6]. MPPs can be used for modelling in a wide variety of appli-
cation domains, including, for example, computer networks, chemical reactions
networks, and ecology networks. Birth-death processes are simple MPPs. In par-
ticular, molecular CMTCs and CTMCs with levels are examples of MPPs. Many
key questions to ask of Markov population models involve trends. For example,
is a particular colony increasing/decreasing, is the change strict, weak, etc., or
if we get more individuals in colony A, will colony B then decrease? Analysis
of such logical properties by model checking requires a suitable representation
of trends. We propose an approach based on formulating the probabilities of
transitions that increase (resp. decrease) colony counts in a stochastic model.

Related work. The concept of a trend in a discrete or continuous deterministic
setting is well established (e.g. slope or first-order derivative), but less so in a
stochastic setting. First-order derivatives have been considered previously in the
context of model checking biochemical systems. For example in BIOCHAM [7,
8], oscillatory properties are analysed using queries expressed as formulae in LTL
with constraints over real numbers. Such formulae are interpreted over traces of
states and a state includes not only the concentration value of each molecular
species but also the value of its first-order derivative. This analysis applies to
BIOCHAM deterministic semantics, where the underlying model has exactly
one trace and therefore the concept of a trend is encapsulated by the first-
order derivative. In this paper we consider the concept of trend in a stochastic
setting, and without explicitly storing the trend in a state variable. Oscillating
behaviours can be formulated either as temporal formulae [9–11] in CTL, PCTL
or CSL or based on a system of differential equations [12]. However, for the
AKAP model we have to deal with incomplete data about the reaction rates.
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Stochastic trends provide a preliminary analysis technique when only partial
information is provided on the reaction rates such as a reaction rate is of the
order of some other reaction rate. Trend formulae are very closely related to
the trend variable approach [13]. One advantage of trend formulae over trend
variables is that the use of trend formulae does not increase the size of the
state space. Moreover, our analysis is forward-looking, or a priori, based on the
probability (over all possible transitions) for a colony to increase (resp. decrease),
whereas trend variables imply an a posteriori analysis based on behaviour that
has already occurred. In Sect. 5.3 we will give an in depth comparison between
trend formulae and trend variables.

Contributions. This paper is an extension of previous work [14] and focuses
on introducing stochastic trends as an analysis technique for MPPs in general,
models of biochemical networks in particular. The contributions of the paper are
twofold:

– Stochastic trend formulae for characterising the probability of increasing or
decreasing colonies that can be used to extend the set of state formulae in
temporal logics such as Continuous Stochastic Logic, along with an encoding
of trend formulae in the guarded-command modelling language of the PRISM
probabilistic model checker.

– A CTMC with level model of the AKAP scaffold protein as a mediator of
the crosstalk between the cyclic AMP and the Raf-1/MEK/ERK signalling
pathways, and the use of stochastic trends to characterise causality and
pulsating behaviours in the AKAP model.

Outline. The next section reviews the definition and basic concepts of continuous-
time Markov chains (CTMCs), Markov population processes (MPPs) and CTMCs
with levels. We also review the reagent-centric modelling style of MPPs, biochem-
ical systems in particular, and their representation in the modelling language of
the PRISM model checker, and the temporal logic Continuous Stochastic Logic
for expressing properties about CTMCs in PRISM. Section 3 presents the biolog-
ical model of the AKAP scaffold protein and in Sect. 4 we define the associated
CTMC with level model. We introduce stochastic trends in Sect. 5 and use
them for analysing the behaviour of the AKAP system in Sect. 6. We give our
conclusions and directions for future work in Sect. 7.

2 Preliminaries

In the following, we assume some familiarity with continuous-time Markov chains,
see for example [15–17].

2.1 Continuous-time Markov Chains

Definition 2.1. A (labelled) continuous-time Markov chain (CTMC) is a tu-
ple (S, s0, R, L) where S is a countable set of states, s0 ∈ S the initial state,
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R : S × S → R≥0 the transition rate matrix, AP a finite set of atomic proposi-
tions, and L : S → 2AP the labelling function associating to each state in S the
set of atomic propositions from AP that are valid in that state.

The transition rates determine the probability of transitions to be completed
within a certain amount of time following the negative exponential distribution:
when R(s, s′) > 0, then the probability of this transition to be triggered within t
time units equals 1− e−R(s,s′)·t. The time spent in state s before any transition
is triggered is exponentially distributed with parameter:

E(s) =
∑
s′∈S

R(s, s′).

E(s) is called the exit rate of state s. For a given state s, there is a race be-
tween outgoing transitions from s if there are more than one state s′ such that
R(s, s′) > 0. If the exit rate of a state is equal to 0 then no transition can be fired
from it and the state is called absorbing. The time-abstract probability of a state
s′ to be the next state to which a transition is made from state s is computed
by a transition probability function P : S × S → [0, 1] as follows:

P(s, s′) =


R(s,s′)
E(s) if E(s) 6= 0

1 if E(s) = 0 and s = s′

0 otherwise

This transition probability function, together with the state space S, initial
state s0 and labelling function L define a discrete-time Markov chain (DTMC)
embedded in the CTMC.

An infinite path of a CTMC is a sequence s0t0s1t1 . . . such thatR(si, si+1) > 0
and ti ∈ R>0 denotes the time spent in state si for all i ≥ 0. A finite path is a
sequence s0t0s1t1 . . . sk−1tk−1sk such that sk is an absorbing state. A self-loop
transition is a single transition going back to the same state it fired from. A
cycle is a path beginning and ending with the same state.

2.2 Markov Population Processes

A population is a collection of individuals grouped into colonies or categories
based on common features. Markovian population processes (MPPs) [3–6] are
continuous-time Markov chains that express demographic processes such as birth
and immigration (addition of individuals), death (removal of individuals) or
emigration (transfer of individuals between colonies). The characteristic feature
of MPPs is given by their states which enumerate the counts of individuals in
every colony.

Definition 2.2. A Markov population process (MPP) is a continuous-time
Markov chain M = (S, s0, R,AP , L) with S defined as a set of n-dimensional
states of the form s = (x1, . . . , xn) with n ≥ 1 the number of colonies in the
population and xi a non-negative integer representing the number of individuals
in colony i, for all i, 1 ≤ i ≤ n.
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Fig. 1. An M/M/1 queue with initial state 0, user arrival rate λ and user departure
rate µ.

We define an MPP either component-wise according to Def. 2.2, through a
state-transition graph if the state space is relatively small, or via a set of reactions
if we model a biochemical network. The graphical state-transition notation we
use for an MPP is the usual one for CTMCs: a directed graph with states as
nodes and an edge between any pair of nodes si and sj if R(si, sj) > 0 with
R(si, sj) the edge label; the initial state is marked by an incoming arrow with
no source.

Example 2.1. The simplest example of an MPP is a birth-death process (BD pro-
cess) defined as an MPP with one colony. In a BD process states can be indexed
by non-negative integers representing the counts of individuals in the single-
colony population such that state transitions occur only between neighbouring
states: from i to i+ 1 or from i+ 1 to i. One straightforward application of BD
processes is in queueing theory. A BD process is an example of a single server
queue with an infinite buffer size – also known as the M/M/1 queue in Kendall’s
notation [18, 19] if the user arrival (birth) rate λ and user departure (death) rate
µ are independent of the colony size. Then each state represents the number of
users in the system. In Fig. 1 we depict the MPP model of such a queue.

Another application domain for MPPs is biochemical networks. In these net-
works, the species quantities are usually given in terms of concentrations. Given
a biochemical network represented as a set of reactions and initial concentra-
tions for each species, we can associate an MPP model with as many colonies
as the number of different species and where both chemical species and reaction
rates are expressed in terms of number of molecules, assuming that all chemical
species are in the same static compartment (i.e. of constant volume V ). This
type of MPP model is usually referred to as molecular CTMC because we count
the molecules. We translate a concentration c for a species X to a number of
molecules equal to C = c · V ·NA where NA is Avogadro’s number (the number
of molecules contained in a mole of X).

A reaction is usually given by a stoichiometric equation:

r : α1X1 + . . .+ αnXn
k−→ β1X1 + . . .+ βnXn (1)

where, for all i, 1 ≤ i ≤ n, non-negative integers αi and βi are the stoichio-
metric coefficients defining how many molecules of Xi are consumed and pro-
duced respectively by the reaction, k is the constant reaction rate coefficient.
The species on the left and right hand side with non-zero coefficients are called
reactants and products respectively. In practise we do not include species with
null stoichiometric coefficients in a stoichiometric equation. Let Xmax

i denote
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the upper bound on the number of molecules Xi. Such bounds can either be
obtained from experimental data or estimated by using stochastic simulation
and model checking in tandem [20], or simply imposed for any species that
grows infinitely (in order to guarantee a finite CTMC). The reaction can occur
from a state s if s − (α1, . . . , αn) ≥ 0 and s − (α1, . . . , αn) + (β1, . . . , βn) ≤
(Xmax

1 , . . . , Xmax
n ), where Xmax

i is the maximum possible number of molecules
Xi. If a transition from s is taken according to this reaction, then we move to
the state s′ = s−(α1, . . . , αn)+(β1, . . . , βn). Assuming mass-action kinetics, the
transition rate is proportional to the number of affected molecules and equals
k ·
∏

1≤i≤n
(
Ci

αi

)
, with Ci denoting the number of molecules of species Xi, since

we need to consider all possible combinations of individual molecules.
The combinatorics of every possible molecular count in a molecular CTMC

can lead to state space explosion. Molecular CTMC models can be too large to
analyse using model checking and only an analysis based on stochastic simula-
tion becomes available, which does not construct the complete underlying state
space. One way of tackling this problem is to discretise each species concentra-
tion uniformly into a number of levels of concentration, rather than representing
by numbers of molecules. A transition from one state to another reflects changes
of these levels according to a biochemical reaction. The result is a stochastic,
population based model that is more abstract than the molecular CTMC and
called continuous-time Markov chain with levels [21, 22, 2]. One advantage of
using CTMC with levels is that it allows one to deal with incomplete or only
relative information about molecular concentrations, often the case in experi-
mental settings. Another advantage of CTMCs with levels over the molecular
CTMC is its smaller state space, allowing the models to be more amenable to
stochastic model checking.

Informally, in a CTMC with levels each species is characterised by a number
of levels, equidistant from each other, with step size h. We assume that all species
have the same step size. We assign to each species different concentration levels,
from 0 (corresponding to null concentration) to a maximum number N . When
the maximum molar concentration is M , then the step size h = M

N . Here, we
assume all reactions have mass-action kinetics.

Definition 2.3 (CTMC with levels). A CTMC with levels for a biochemical
system is an MPP where the molecules of the same species form a colony and
states represent levels of concentrations of the species. For n different species
(Xi)1≤i≤n, a state is a tuple s = (`1, `2, . . . , `n) with `i the discrete concentration
level for the species Xi, for all i, 1 ≤ i ≤ n. A reaction of the form given by
Eq. 1 has similar firing conditions as in the case of molecular CTMCs and the
rate of a transition fired by such a reaction is the product of the reaction rate
coefficient adjusted for the step-size discretisation h and the concentrations of
the reacting species, i.e., k

h ·(`
α1
1 ·h) · . . . ·(`αn

n ·h), where k is the constant reaction
rate coefficient and `αi

i is the discrete level of concentration of reacting species
Xi with stoichiometric coefficient αi.

In comparison with molecular CTMCs and traditional ordinary differential
equations (ODEs), CTMCs with levels models are more compact than molecular
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CMTCs yet retain the stochasticity lost in the ODEs. The granularity of a
CTMC with levels can be changed by decreasing the stepsize. As the stepsize
decreases with the number of levels tending to infinity, the variability of the
CTMC with levels model is reduced and, as predicted by Kurtz’s Theorem [23]
(on the relationship of the class of density dependent Markov chains and a set
of ODEs), the obtained global behaviour of the CTMC with levels model tends
towards that given by the ODE model [2].

A biochemical reaction does not take only the simple form of an arrival,
departure or transfer event between colonies as the definition of MPP. Often
there is a form of cooperative transfer from some colonies to others. An example
is the following where species are transferred to and from X1 and X2, and X3.

Example 2.2. Consider a simple reaction system consisting of three species X1,
X2 and X3 with initial molar concentrations X1(0) = X2(0) = 2 mol/l and

X3(0) = 0 mol/l , and a forward and a backward reaction X1 + X2
k1−→ X3,

X3
k2−→ X1 + X2 with k1 = 1.2, k2 = 0.2. If we consider N = 3 the maximum

number of levels of concentration, the step size is h = 2
3 mol/l . The CTMC with

levels modelling this system is represented in Fig. 2 with the initial state rep-

resenting the initial concentration levels given by (bX1(0)
h c, bX2(0)

h c, bX3(0)
h )c =

(3, 3, 0). We convert a molar concentration Xi(0) to a number of levels bXi(0)
h c.

//
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Fig. 2. CTMC with levels for the forward/backward reaction X1 +X2
k1/k2←→ X3

2.3 Modelling MPPs in PRISM

There are several languages or formalisms for specifying Markov population pro-
cesses based on rate transition matrix descriptions, state-transition graphs and
stoichiometric equations for chemical reactions. Several other formalisms are
available for this purpose as overviewed in [6], including guarded command mod-
els (GCM). GCMs are textual models describing the classes of possible state
transitions on colonies and take inspiration from Dijkstra’s guarded-command
language (GCL). Reactive Modules [24] and PRISM’s specification language [25]
are based on the same formalism.

We adopt the reagent-centric modelling approach to modelling biochemical
systems [26] implemented as a PRISM specification as follows. Each of the
colonies, also called reagents, in an interaction or transition is mapped to a
process, whose variation reflects increase or decrease, e.g., through production
or consumption, through birth, death or migration, etc. For example, the chem-

ical reaction r1 given in stoichiometric notation by X1 + X2
k1−→ X3 refers to
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three reagents and so it is modelled by three processes, X1, X2 and X3, which
are then composed concurrently, synchronising on the event r1. If we assume an
underlying semantics of CTMC with levels, after the event r1, the concentration
level of X3 is increased and those of X1 and X2 are decreased.

The PRISM language includes modules with local variables, action-labelled
guarded commands (transitions) and multiway synchronisation of modules. Each
process is implemented by a module, and the modules are composed using the
multiway synchronisation operator (denoted by ||) over all common actions.

We illustrate the approach with the biochemical system introduced in Ex-
ample 2.2. The PRISM model, depicted in Fig. 3, has three modules X1, X2 and
X3, one for each species, all modules running concurrently. Each module has the
form: a state variable denoting the species concentration level, followed by com-
mands labelled by the reactions in which the species is a reactant or product.
In this example there are two commands labelled by r1 and r2. Each command
has the form:

[label] guard -> rate : update;

meaning that the module makes a transition to a state described by the update
at the given rate when the guard is true (the label is optional). The r1-labelled
command in the first two modules decreases the number of levels by 1 and in the
third module increases the number of levels by 1. Initially, there are N levels of
X1 and X2 and 0 levels of X3. The module Const consists of commands labelled
by the reaction labels with trivial guards and updates and the rate equal to the
constant reaction rate coefficient. All r1-labelled transitions synchronise and
the resulting transition occurs with a rate equal to the product of the individual
rates, i.e. (k1/h)*(X1*h)*(X2*h).

2.4 Stochastic Model Checking

Since MPPs are CTMCs, we use Continuous Stochastic Logic (CSL) [15] as a
temporal logic for specifying properties about their stochastic behaviour. CSL is
a stochastic extension of the Computational Tree Logic (CTL) allowing one to
express a probability measure of the satisfaction of a temporal property in either
transient or in steady-state behaviours. The formulae of CSL are state formulae
and their syntax is the following:

State formula Φ ::= true | a | ¬Φ | Φ ∧ Φ | P./ p[Ψ ] | S./ p[Ψ ]

Path formula Ψ ::= XΦ | ΦUI Φ

where a ranges over a set of atomic propositions AP , ./∈ {≤, <,≥, >}, p ∈ [0, 1],
and I is an interval of R≥0. There are two types of CSL properties: transient (of
the form P./ p[Ψ ]) and steady-state (of the form S./ p[Ψ ]). A formula P./ p[Ψ ] is
true in state s, denoted by s |= P./ p[Ψ ], if the probability that Ψ is satisfied by
the paths starting from state s meets the bound ./ p. A formula S./ p[Ψ ] is true
in a state s if the steady-state (long-run) probability of being in a state which
satisfies Ψ meets the bound ./ p. The path formulae are constructed using the
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ctmc

const double max_conc = 2;

const int N = 4;

const double h = max_conc/N;

const double k1 = 1.2;

const double k2 = 0.2;

module X1

X1 : [0..N] init N;

[r1] (X1>0) -> (X1*h) : (X1’=X1-1);

[r2] (X1<N) -> (1) : (X1’=X1+1);

endmodule

module X2

X2 : [0..N] init N;

[r1] (X2>0) -> (X2*h) : (X2’=X2-1);

[r2] (X2<N) -> (1) : (X2’=X2+1);

endmodule

module X3

X3 : [0..N] init 0;

[r1] (X3<N) -> (1) : (X3’=X3+1);

[r2] (X3>0) -> (X3*h) : (X3’=X3-1);

endmodule

module Const

[r1] true -> (k1/h) : true;

[r2] true -> (k2/h) : true;

endmodule

system

X1 || X2 || X3 || Const

endsystem

Fig. 3. PRISM program for the forward/backward reaction X1 +X2
k1/k2←→ X3

X (next) operator and the UI (time-bounded until) operator. Informally, the
path formula XΦ is true on a path starting in s if Φ is satisfied in the next

state following s in the path, whereas Φ1 UI Φ2 is true on a path ω if Φ2 holds
at some time instant in the interval I in a state s′ in ω and at all preceding time
instants Φ1 holds. This is a minimal set of operators for CSL. The operators false,
disjunction and implication can be derived using basic logical equivalences. Two
more path operators are available as syntactic sugar:

– the eventually operator F (future) where FI Φ ≡ true UI Φ, and

– the always operator G (globally) where GI Φ ≡ ¬(FI ¬Φ).

If I = [0,∞), then the temporal operators U, F, G are no longer time-bounded,
hence we omit the interval superscript notation in this situation.

The model checking problem of a state formula Φ being satisfied in an MPP
is denoted by M, s0 |= Φ. We omit the initial state s0 when it is obvious.

The PRISM probabilistic model checker [17] has a property specification
language based on the temporal logics PCTL, CSL, LTL and PCTL∗, including
extensions for quantitative specifications and rewards. PRISM allows one to
express a probability measure that a temporal formula is satisfied. The bound ./p
may not be specified, in which case a probability is calculated in PRISM. Thus
these two additional properties P=?[Ψ ] and S=?[Ψ ] are available: the results of the
verification of such formulae are the expected probabilities for the satisfaction
of the path formula denoted by Ψ .
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3 The AKAP Scaffold Protein

In this section we give an overview of the AKAP scaffold protein and its medi-
ating role in the crosstalk between the cAMP and Raf-1/ERK/MEK signalling
pathways. The behaviour of this system is complex and still under study in the
laboratory.

In intracellular signal transduction pathways, scaffolds are proteins exhibiting
two main functions [27]. Namely, a scaffold protein anchors particular proteins
in specific intracellular locations for receiving signals or transmitting them, and
it provides a catalytic function by increasing the output of a signalling cascade
or decreasing the response time for a faster output under certain circumstances.

3.1 Species

Figure 4 illustrates the species involved in the biochemical system and their in-
teractions in the AKAP model with emphasis on the AKAP’s anchoring role as
positions on the scaffold are filled or unfilled. The species involved are: cyclic
adenosine monophosphate (cAMP); protein kinase A (PKA); Raf-1 with two
phosphorylation sites of interest, Serine 338 (Ser338) and Serine 259 (Ser259);
phosphodiesterase 8 (PDE8A1); phosphatase PP. The left-hand side of Fig. 4
shows an unfilled scaffold with free PDE8A1, and the right-hand side shows a
filled scaffold.

S259PP Raf-1

PKA

PDE8A1

cAMP

AKAP

S388

S259PP

PKA

PDE8A1

S388

Raf-1

cAMP

AKAP

Fig. 4. Interactions between cAMP, unfilled AKAP scaffold, free PDE8A1 and filled
scaffold where: A→ B means A activates or phosphorylates B, A 99K B stands for A
dephosphorylates B, A a B means A degrades B.
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3.2 Behaviour

If the concentration of cAMP rises above a given threshold, cAMP activates PKA
by binding to it. Activated PKA catalyses the transfer of phosphates to the phos-
phorylation site Ser259 of Raf-1. The site Ser338 of Raf-1 is said to be inhibited
when Ser259 is phosphorylated. Only when Ser338 becomes phosphorylated, the
pathway Raf-1/MEK/ERK is activated (and say that Raf-1 is active) and the
signalling cascade begins.

The catalytic function of PKA sometimes couples with the AKAP, by binding
PKA together with phosphodiesterase PDE8A1 on the scaffold to form a complex
that functions as a signal module. Under these conditions, as the cell is stim-
ulated, cAMP activates PKA, and then PKA is responsible for the activation of
PDE8A1 (by phosphorylation). PDE8A1 degrades cAMP, but if phosphorylated,
PDE8A1 degrades more cAMP, hence rapidly reducing the amount of cAMP that
can activate PKA. This leads to a feedback mechanism for downregulating PKA.

Discussions with laboratory scientists revealed the following expectations, or
conjectures, about the AKAP system behaviour.

Causal relation between concentration fluctuations. We define causality to mean:
assuming more A (less A) denotes increasing (resp. decreasing) concentration
levels for a species A, the implication “more A⇒ less B” means that a decrease
in B’s concentration level is necessarily preceded by an increase in A’s concen-
tration level. Laboratory scientists expect that increasing concentration level of
phosphorylated PDE8A1 leads to a cascade of changes in the concentration lev-
els of the other reactants: decreasing concentration levels of cAMP and active
PKA, and an increase in the activity of Raf-1 – due to lower levels of phospho-
rylated Raf-1 at site Ser259. Informally, we express this causality relation by the
following relationship:

more pPDE8A1 ⇒ less cAMP ⇒ less active PKA ⇒ more active Raf-1

Pulsating behaviour. Time courses from laboratory experiments suggest the pres-
ence of a pulsating behaviour in the system. The pulsations ensure that the state
of the Raf-1 pathways alternates between active and inactive, which is a desirable
behaviour because very long periods of activity or inactivity may increase the
risk of disease. In the current model we do not consider explicitly interactions
between cAMP and Raf-1. However, the system is not closed and we include an
exogenous interaction represented by the diffusion of cAMP. We conjecture this
makes the system exhibit a pulsating behaviour corresponding to the feedback
mechanism for the downregulation of PKA, coupled with the diffusion of cAMP.
Note that we call such a behaviour pulsating, not oscillating: oscillation assumes
fluctuation around a given value, but the current partial data do not provide us
with such a value.
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4 MPP Model for the AKAP System

We define a CTMC with levels model for the AKAP system based on combina-
tions of the species represented in Fig. 4. An overview of the model follows.

4.1 Scaffolded Species

The AKAP scaffold has three positions to be filled in order by PKA, site Ser259
of Raf-1 and PDE8A1 respectively, with the third one not necessarily filled. We
define an abstraction over these species consisting of different combinations in
order to encode the context of reactions as follows:

– for filled scaffold: S[PKA’s state][Ser259’s state][PDE8A1’s state]

– for unfilled scaffold: S[PKA’s state][Ser259’s state].

where each state has a binary representation with 1 representing activated or
phosphorylated and 0 otherwise. For instance, S100 represents a filled AKAP
scaffold with active PKA and unphosphorylated Ser259 and PDE8A1, whereas
S01 represents an unfilled scaffold with inactive PKA and phosphorylated Ser259.
All the possible abstract species involving a scaffold are: S00, S10, S01, S11, S000,
S100, S101, S110, S011, S010, S001, S111.

We also distinguish between PDE8A1 and its phosphorylated form PDE8A1
(pPDE8A1) as two different unscaffolded species. The same reasoning applies to
the phosphatase PP anchored on a filled scaffold and PP on an unfilled scaffold
(denoted by uPP). The remaining unscaffolded species is cAMP.

4.2 Biochemical Reactions

In Fig. 5 we list the biochemical reactions of the model. Each reaction is given
by a stoichiometric equation with explicit reference to the scaffold positions
(the underlying reactions have mass-action kinetics). We associate reaction rate
constants (from r1 to r26) with each biochemical reaction.

The existing experimental data suggest only approximate ratios of the reac-
tion rates. More precisely, we have some information on the ratio between the
rate of PKA phosphorylating Raf-1 at site Ser259 and PDE8A1 (either on the
scaffold or not). On unfilled scaffolds, PKA phosphorylates three times less un-
scaffolded PDE8A1 than Raf-1 at site Ser259 from the same scaffold. On filled
scaffolds, PKA phosphorylates Raf-1 at Ser259 and PDE8A1 at the same rate.
Consequently the relation between constant rates of the reactions involving PKA
phosphorylating either PDE8A1 or Raf-1 is: r4 = r5 = r6 = r10 = r11 =
3 · r12 = 3 · r13. In addition, phosphorylated PDE8A1 degrades about three
times more cAMP than PDE8A1 does, hence we deduce the following ratios
between the constants rates of the reactions where PDE8A1 degrades cAMP :
r19 = r20 = r21 = r22 = r23 = r24 = 3 · r25 = 9 · r26.
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cAMP diffusion:
r1→ cAMP

PKA activation:

S000 + cAMP
r2→ S100

S00 + cAMP
r3→ S10

Ser259 phosphorylation:

S100
r4→ S110

S101
r5→ S111

S10
r6→ S11

Ser259 dephosphorylation:

PP + S010
r7→ PP + S000

PP + S011
r8→ PP + S001

PP + S01
r9→ PP + S00

cAMP release:

S111
r17→ S011 + cAMP

S11
r18→ S01 + cAMP

PDE8A1 phosphorylation:

S100
r10→ S101

S110
r11→ S111

S10 + PDE8A1
r12→ S10 + pPDE8A1

S11 + PDE8A1
r13→ S11 + pPDE8A1

PDE8A1 dephosphorylation:

PP + S001
r14→ PP + S000

PP + S011
r15→ PP + S010

uPP + pPDE8A1
r16→ PP + PDE8A1

cAMP degradation:

S011 + cAMP
r19→ S011

S001 + cAMP
r20→ S001

S100 + cAMP
r21→ S100

S110 + cAMP
r22→ S110

S010 + cAMP
r23→ S010

S000 + cAMP
r24→ S000

pPDE8A1 + cAMP
r25→ pPDE8A1

PDE8A1 + cAMP
r26→ PDE8A1

Fig. 5. Biochemical reactions occurring during scaffold-mediated crosstalk between
cAMP and the Raf-1/MEK/ERK pathway. The notation Sv1v2v3 represents a filled scaf-
fold with v1, v2, v3 denoting the activation state of the bound PKA, site Ser259 of
Raf-1 and PDE8A1 respectively, i.e., 0 for inactive and 1 for active or phosphorylated.
Similarly, Su1u2 represents an unfilled scaffold with u1 and u2 denoting the activation
state of the bound PKA and Ser259 respectively.

4.3 The PRISM Model for the AKAP System

The PRISM model consists of four modules: one module for cAMP, one module
for the scaffold with 12 variables (one variable for each type of scaffold), a module
for PDE8A1 and pPDE8A1, and a module for PP and uPP. The complete PRISM
model can be found at http://www.dcs.gla.ac.uk/~muffy/akap/.

We assume that the initial concentrations for species S00, S000, PP and uPP
are all equal to 12mol/l, for cAMP 120mol/l, for unscaffolded PDE8A1 6mol/l,
and 0 otherwise. We calculate the stepsize for the CTMC with levels abstraction
as h = 12

N withN the number of levels. The system is not closed as cAMP is added
exogenously from time to time. Such interaction is needed in the model because
cAMP is consumed and to avoid termination, must be replenished. We model
this interaction with an extra integer variable tick ranging from 0 to maximum
value tick_max (10 in our prototype). The concentration level of cAMP increases
when the value of tick is less than tick_max/2 or it reaches the maximum value
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(with tick being reset to 0). The variable tick is incremented by 1 whether or
not diffusion takes place, i.e. when its value is greater than tick_max/2 but less
than the maximum. We consider a default 1.0 rate for all reactions including r4
and r19, unless defined as equal or proportional to r4 and r19.

An indication of the size of the model is: for N = 3, we have 1 632 240 states
and 12 691 360 transitions, and for N = 5, we have 74 612 328 states and 734
259 344 transitions.

5 Trend-based Characterisation of Transitions in an MPP

In this section we define trend formulae that describe stochastic trends of colonies,
illustrate them with several examples, show how they can be encoded in the
PRISM model checker, and compare them to the trend variables introduced by
Ballarini and Guerriero [13].

5.1 Trend Formulae

In a similar approach taken to the definition of the transition probability func-
tion, we introduce families of functions Pi↑, Pi↓, Pi= corresponding to increas-
ing, decreasing or constant counts of individuals in a colony i respectively, where
i ranges over colony identifiers in an MPP.

Definition 5.1. LetM = (S, s0, R,AP , L) be an MPP. The probability of mak-
ing a transition from a state s to a state where the count of individuals in colony
i increases is a function Pi↑ : S → [0, 1] defined as the sum of all i-increasing
transition rates divided by the exit rate in state s:

Pi↑(s) =

{
1

E(s) ·
∑
{R(s, s′) | s′ ∈ S, si < s′i}, if E(s) 6= 0

0, otherwise

The functions Pi↓ : S → [0, 1] and Pi= : S → [0, 1] of making a transition from
a state s to a state where the count of individuals in colony i decreases or stays
constant are defined in a similar way:

Pi↓(s) =

{
1

E(s) ·
∑
{R(s, s′) | s′ ∈ S, si > s′i}, if E(s) 6= 0

0, otherwise

Pi=(s) =

{
1

E(s) ·
∑
{R(s, s′) | s′ ∈ S, si = s′i}, if E(s) 6= 0

0, otherwise

As expected, we have Pi↑(s)+Pi↓(s)+Pi=(s) = 1 for all s ∈ S with E(s) 6= 0.

Definition 5.2 (Trend formulae). A trend formula θ is a boolean predicate
over Pi↑(s), Pi↓(s) and Pi=(s), where s ∈ S, of one of the following forms:

θ ::= f(s) = p | f(s) > p | f(s) = f ′(s) | f(s) > f ′(s) | ¬ θ | θ ∧ θ
∀f, f ′ ∈ {Pi↑,Pi↓,Pi=},∀s ∈ S,∀p ∈ [0, 1]
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Using the above elementary trend formulae, we define a derived set of trend
formulae consisting of inequalities such as Pi↑ ≤ p or Pi↑ ≥ Pi↓ and the follow-
ing auxiliary named trends.

Definition 5.3 (Auxiliary trend formulae). We say that in a state s the
stochastic trend of a colony i is:

– strictly increasing if

i⇑(s) , (Pi↑(s) > Pi↓(s)) ∧ (Pi↑(s) > Pi=(s)) is true

– strictly decreasing if

i⇓(s) , (Pi↓(s) > Pi↑(s)) ∧ (Pi↓(s) > Pi=(s)) is true

– weakly increasing if i↑(s) , Pi↑(s) > Pi↓(s) is true

– weakly decreasing if i↓(s) , Pi↓(s) > Pi↑(s) is true

– very weakly increasing if i↑= (s) , Pi↑(s) ≥ Pi↓(s) is true

– very weakly decreasing if i↓= (s) , Pi↓(s) ≥ Pi↑(s) is true

– constant if i=(s) , (Pi=(s) > Pi↓(s)) ∧ (Pi=(s) > Pi↑(s)) is true

– equi if il= (s) , (Pi↑(s) = Pi↓(s)) ∧ (Pi↓(s) = Pi=(s)) is true

We illustrate the use of trend formulae in the next section.

5.2 Trend-based Properties in CSL

We use trend formulae in CSL formulae for reasoning over changes in particular
colony counts. Therefore, we extend the set of state formulae in CSL to include
trend formulae as modalities of arity 0. The definition of path formulae does not
change.

State formula Φ ::= true | a | Φ ∧ Φ | θ | P./ p[Ψ ] | S./ p[Ψ ]

Path formula Ψ ::= XΦ | ΦUI Φ

The semantics of trend formulae is defined as s |= θ if and only if θ(s) ≡ true.
In the following we illustrate several CSL properties using trend formulae on

two examples.

Example 5.1. Consider MPP C1 defined in Fig. 6 with one colony whose count
ranges from 1 to 5 individuals and states from s0 to s6. The initial state is
s0 = 4. We encode the MPP using two variables: i for the colony index and k for
the state index. Then for instance, the evaluation of the transition probability
functions Pi↑, Pi↓ and Pi= in state s0 gives 0, 1 and 0 respectively (hence i⇑(s0)
is true), while in state s1, functions Pi↑, Pi↓ and Pi= evaluate to 1

2 , 1
2 and 0

respectively. In state s2 the trend of i is strictly increasing since Pi↑(s2) = 1. In
state s4 the probability of a decreasing count is 2

3 and of a constant count is 1
3 .

In the following CSL experiments we use the variable s to range over states
(indexed by k), with k ranging from 0 to 6:
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Fig. 6. Markov population process C1 and C2 both having initial state s0.

– The probabilities of reaching a state sk where the trend θ is true, with θ
ranging over i⇑, i↑, i↑=, i⇓, i↓, i↓=, i= and il=, are listed in Table 1.

– Eventually all states are stochastically very weakly increasing:
C1 |= P≥1[F (P>0[G (i↑=)])] returns true.

– Not all states are eventually weakly increasing:
C1 |= P≤0[F (P>0[G (i↑)])] returns true.

– Eventually all states are stochastically very weakly decreasing:
C1 |= P≥1[F (P>0[G (i↓=)])] returns true.

– The probability that all states are very weakly decreasing:
C1 |= P=?[G (i↓=)] returns 0.5.

Table 1. Model checking CSL formulae for C1 that compute the probability of reaching
a state sk where the trend θ is true, with θ ranging over trend formulae and k ranging
from 0 to 6

Model checking CSL formula k

0 1 2 3 4 5 6

C1 |= P=?[F ((i⇑) ∧ (s = k))] 0 0 0.5 0 0 0 0

C1 |= P=?[F ((i↑) ∧ (s = k))] 0 0 0.5 0 0 0 0

C1 |= P=?[F ((i↑=) ∧ (s = k))] 0 1 0.5 0.5 0 0 0.5

C1 |= P=?[F ((i⇓) ∧ (s = k))] 1 0 0 0 0.5 0.167 0

C1 |= P=?[F ((i↓) ∧ (s = k))] 1 0 0 0 0.5 0.167 0

C1 |= P=?[F ((i↓=) ∧ (s = k))] 1 1 0 0.5 0.5 0.167 0.5

C1 |= P=?[F ((i=) ∧ (s = k))] 0 0 0 0.5 0 0 0.5

C1 |= P=?[F ((il=) ∧ (s = k))] 0 0 0 0 0 0 0



Trend-based Analysis of a Population Model of the AKAP Scaffold Protein 17

– Eventually i will strictly decrease for some time with a non-zero probability
until it reaches a constant trend:
C1 |= P≥1[F (P>0[(i⇓) U (i=)])] returns true.

– Eventually i will strictly increase for some time with a non-zero probability
until it reaches a constant trend:
C1 |= P≥1[F (P>0[(i⇑) U (i=)])] returns true.

Example 5.2. Consider now the MPP C2 defined in Fig. 6. Note that C2 has
infinite paths including infinite loop-free paths (i.e., infinite paths without self-
loops). We analyse a set of CSL queries using trends that are more complex than
those from Example 5.1. Again, k ranges from 0 to 6.

– Eventually a state with an equi trend is reached (more precisely s1):
C2 |= P≥1[F (il=)] returns true, whereas in C1 this query returns false.

– The probability of reaching a state having a very weakly increasing trend and
in the next state the trend is strictly decreasing with non-zero probability:
C2 |= P=?[F ((i↑=) ∧ P>0[X ((i⇓) ∧ (s = k))])] returns 1 for k = 4, 0.5 for
k = 5, and 0 otherwise.
If we restrict the probability of a strictly decreasing next state to at least
0.5, then the probability of C2 |= P=?[F ((i↑=) ∧ P>0.5[X ((i⇓) ∧ (s = k))])]
is 0.5 for k = 5, and 0 otherwise.

– The probability that eventually all states are stochastically very weakly de-
creasing: C2 |= P=?[FP>0[G (i ↓=)]] returns 0.5, whereas in C1 the same
query returns 1.

– The probability that eventually i will strictly decrease for some finite time
with a non-zero probability until it reaches a constant trend:
C2 |= P=?[FP>0[(i⇑) U (i=)]] returns 0.5.

– Eventually i will have a strictly decreasing trend for some time until reaching
a constant trend and then, with probability greater than 0.5, will show an
increasing trend:
C2 |= P≥1[FP>0[(i⇓) UP>0[(i=) UP>0.5[i⇑]]]] returns true.

– The probability that always a decreasing trend of i eventually leads to an
increasing trend and vice versa:
C2 |= P=?[G (((i⇓) =⇒ P>0[F i⇑]) ∧ ((i⇑) =⇒ P>0[F i⇓]))] returns 0.5.

– The long-run probability that a decreasing trend of i eventually leads to an
increasing trend and vice versa:
C2 |= S≥1[((i⇓) =⇒ P>0[F i⇑]) ∧ ((i⇑) =⇒ P>0[F i⇓])] returns true.

– Variable i has a constant trend in the long-run, more specifically when state
s3 is reached: C2 |= S=?[i

=] returns 0.5.

Since we can define i-increasing/decreasing/constant functions for DTMCs,
the trend formulae approach presented in this section is also applicable to DTMC
models and PCTL formulae.
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5.3 Trend Formulae vs. Trend Variables

An approach closely related to trend formulae is described in [13] in the context
of modelling and analysis of biochemical systems. It is based on associating two
boolean variables inc X and dec X to each species X in order to record, for
each possible transition, if the value of X increases or decreases respectively; if
the variable X is not updated by a transition, neither are the associated vari-
ables inc X and dec X. The aim is to analyse behavioural queries such as mono-
tonic and oscillatory trends in models of biochemical systems. In our preliminary
work [28] we had a similar approach based on adding one integer variable drv X
to each species X; the value of drv X is updated at the the same time as the
value of X and it denotes the sign of the change of X: 1 for increasing, -1 for
decreasing and 0 otherwise. In the following we identify two major differences
between the trend variable approach and our trend formulae approach.

State Space Size. Trend formulae do not increase the size of the state space, a
well-known issue for the trend variable approach. To support this claim let us
first give a constructive definition of a single-colony MPP enriched with trend
variables. Let M = (S, s0, R, L) be a single-colony MPP; then the corresponding
MPP with trend variables M ′ = (S′, s′0, R

′, L′) is constructed as follows:

1. Add the initial state s′0 = (s0, t, t) to S′.
2. For all states i, j ∈ S with R(i, j) > 0 and (i, inc, dec) ∈ S′ with inc, dec ∈
{t, f}, add (j, inc′, dec′) to S′ where:

inc′ =


t, if i < j

f , if i > j

inc, if i = j

dec′ =


f , if i < j

t, if i > j

dec, if i = j

3. R((i, inc, dec), (j, inc′, dec′)) = R(i, j) for all (i, inc, dec), (j, inc′, dec′) ∈ S′.
4. L′(i, inc, dec) = L(i) for all (i, inc, dec) ∈ S′.

Proposition 5.1. Given a single-colony MPP M , the state size of the MPP M ′

obtained from M by enriching it with trend variables is greater or at least equal
to the state size of M .

Proof. We prove that |S′| ≥ |S′| by identifying two types of transitions in M
that increase the state space:

– If R(i, j) > 0 for i > j and (i, inc, dec) ∈ S′, then (j, f , t) ∈ S′. If R(k, j) > 0
for k < j and (k, inc′, dec′) ∈ S′, then (j, t, f) ∈ S′. In this case M ′ has two
distinct states for the same colony count of j, one more than M has.

– If R(i, j) > 0 and R(j, i) > 0 with i > j and (i, inc, dec), (j, inc′, dec′) ∈ S′,
then (j, f , t), (i, t, f) ∈ S′. If (inc, dec) 6= (t, f) then M ′ has two distinct
states for the same colony count of i, one more than M has; the same rea-
soning goes for the state j in M .
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Fig. 7. Markov population process C′2 with initial state s′0 = (4, t, t) obtained from C2

by enriching the states with two boolean variables keeping track of the increasing or
decreasing trend of the first component of the state.

Consider the following simple example. We add trend variables to the MPP
C2 defined in Fig. 6 to obtain the MPP C ′2 depicted in Fig. 7. Notice that C ′2
has one additional state and one additional transition, due to the cycle between
states s5 and s6 in C2: if we consider a path in C ′2 starting from the initial state
(4, t, t), when we first reach the state where i = 1 the trend variables inc and
dec are set to f and t respectively because the value of i decreases strictly; but
when the state i = 1 (i.e., state s′7) is the state visited from i = 0 (i.e., state s′6),
then inc and dec are set to t and f respectively since the value of i increases
from 0 to 1. Hence in C ′2 there are two states with i = 1 but different values for
the trend variables inc and dec.

The result above can be generalised for MPPs with several colonies. Therefore
if a state occurs multiple times along an execution path or along different paths,
the size of the state space may increase. In addition, the size of each state
increases by the two boolean trend variables, for each colony in the MPP.

A Priori and A Posteriori Trend Computation. Trend variables provide an a
posteriori detection of a stochastic trend, whereas trend formulae an a priori
detection. More precisely, if a transition from state s to state s′ increases (de-
creases) the counts in a colony, the trend variable approach detects in state s′

the increasing (resp. decreasing) trend, whereas the trend formulae approach de-
tects the trend in state s, i.e., prior to the transition. When deciding to analyse
an MPP using trends, one has to decide which type of detection of the trend
best suits the problem. Note also that the values of trend variables associated
with a colony variable A are not updated during a transition if the value of
A is not changed by the transition. This notion of monotonicity corresponds,
in our framework, to weak monotonicity, more precisely to very weakly increas-
ing/decreasing trends.

We illustrate the difference between the increasing trend computed using
trend variables and computed using the trend formulae for the MPP C1 from
Fig. 6. Let C ′1 be the MPP resulting from adding trend variables to C1, as
depicted in Fig. 8. Now consider the temporal property φ =“eventually the value
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Fig. 8. MPP C′1 with initial state s′0 = (4, t, t) obtained from C1 by adding trend
variables.

of i will increase”. In CSL with trends formulae this property is specified as
P=?[F (θup ∧ (s = k))] for MPP C1 with θup either strictly increasing, weakly
increasing or very weakly increasing trend and k ranging from 0 to 6. Then
φ′ = P=?[F (inc ∧ (s′ = k))] is the property corresponding to φ we want to check
for C ′1. The results of model checking φ and φ′ in PRISM are given in Table 2.
Notice that in C ′1 an increasing trend is found in the initial state only because the
variables inc and dec are set initially to true. Otherwise, an increasing trend is
detected in C ′1 in state s′2 because the transition from s′1 to s′2 increased the value
of i: the conclusion that the trend is increasing in state s′2 was established when
the transition to be triggered was already chosen. Therefore we call this analysis
a posteriori. The same reasoning can be applied to the increasing trend in state
s′3. The detection of state s2 as a state with increasing trend in C1 is performed a
priori any possible transition and this trend corresponds to the increasing trend
detected in state s′3 of C ′1. With trend formulae we detect the states with the
highest probability of moving to a state where the value of i is increased. The
corresponding state of the increasing trend of s′2 in C ′1 is s1 in C1 having a very
weakly increasing trend. The strictly increasing and weakly increasing trends
require that the probability of i to increase in state s1 is strictly greater than the
probability to decrease, which is not the case because Pi↑(s1) = Pi↓(s1) = 0.5.
The very weakly increasing trend is detected in states s3 and s6 where, because
of the cycle, the value of i remains unchanged.

The trend formulae approach permits expressing different concepts that can-
not be expressed with trend variables such as several types of monotonicity or,
for instance, the following property for C1: “What is the probability to eventually
reach a state where i will most probably increase and in the next state will most
probably decrease”. By model checking C1 |= P=?[F ((i ↑=) ∧ P>0[X (i⇓)])] we
obtain probability 1 as the probability of taking the path starting in the initial
state that reaches the state s1 where i = 3 has the highest chances of increasing
and in the next state to decrease strictly. But if we consider the CSL formula
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Table 2. Comparison of checking trend formulae and trend variable properties in C1

and C′1

Model checking CSL formula k

0 1 2 3 4 5 6

C1 |= P=?[F ((i⇑) ∧ (s = k))] 0 0 0.5 0 0 0 0

C1 |= P=?[F ((i↑) ∧ (s = k))] 0 0 0.5 0 0 0 0

C1 |= P=?[F ((i↑=) ∧ (s = k))] 0 1 0.5 0.5 0 0 0.5

C′1 |= P=?[F (inc ∧ (s′ = k))] 1 0 0.5 0.5 0 0 0

with trend variables, C ′1 |= P=?[F (inc ∧ P>0[X dec])], the result is probability
0 because it detects the increasing trend in state s′2, where i = 4 and from the
next state the trend is only increasing.

6 Trend-based Analysis of the AKAP System

In this section we apply trend formulae in the analysis of AKAP system. We
formalise in CSL the causality and fluctuation properties and model check them
in PRISM. Stochastic trend formulae are essential for expressing these proper-
ties. The key question is which trends best encode more X and less X for X a
colony. Consider the statement more X. In order to express an increase in the
concentration of X, we rule out decreasing concentrations but consider transi-
tions that do not change the concentration. Therefore the trend we choose to
encode more X is the weakly increasing trend X ↑. The same reasoning applies
to encoding less X by X ↓.

6.1 Causality Relation

A causality relation between two events can be formalised as a temporal query
using the necessarily preceded or requirement pattern [29]. This pattern rep-
resents an ordering relation between two events, the occurrence of the latter
being conditioned by the occurrence of the former: a state φ is reachable and
is necessarily preceded all the time by a state ϕ. The associated CTL formula is
EFφ ∧ (AG((¬ϕ) ⇒ AG(¬φ))), where A and E are temporal operators quan-
tifying universally and existentially over paths respectively.

Consider now the causal relation stated in Section 3 for the AKAP model:

more pPDE8A1⇒ less cAMP and less active PKA

The two CSL state formulae encoding the two sides of the implication above are:

ϕ1 , pPDE8A1↑
φ1 , (cAMP↓) ∧ (active PKA↓)
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where the concentration of active PKA is given by the sum of concentrations of all
scaffold combinations with 1 in the first position: S10, S11, S100, S110, S101 and
S111. Employing basic proposition equivalences, we translate the requirement
pattern for the cause ϕ1 and effect φ1 into CSL to obtain the following formula
which was checked as true for our PRISM model:

P>0[Fφ1] ∧ P≥1[G((¬ϕ1)⇒ P≤0[Gφ1]))]

We can express a tighter causality relation between increasing concentration
levels of pPDE8A1 (ϕ2 , pPDE8A1 ↑) and decreasing levels of cAMP (φ2 ,
cAMP↓) using the following formula checked as true for our PRISM model:

P≥1[F ((¬ϕ2 ∧ ¬φ2) U (P≥1[(ϕ2 ∧ ¬φ2) UP>0[Xφ2]]))]

This formula stands for “more pPDE8A1 ⇒ less cAMP” in the notation intro-
duced in Sect. 3 and it states that there is a time interval where the trend
of pPDE8A1 is not decreasing and the trend of cAMP is not decreasing un-
til the trend of pPDE8A1 starts increasing and soon after the trend of cAMP
starts decreasing. A similar CSL formula can be employed in order to show that
“less pPDE8A1⇒ more cAMP” and “less cAMP⇒ less active PKA”.

6.2 Pulsating Behaviour

An oscillating behaviour of a variable assumes a fluctuation of the value of
the variable around a given value k. Oscillation and its expression as temporal
formulae in CTL and PCTL have been studied in [10] and informally described
as always in the future, the variable x departs from and reaches the values k
infinitely often. The corresponding CTL formula is AG(((x = k) ⇒ EF(x 6=
k)) ∧ ((x 6= k) ⇒ EF(x = k))). In the context of BIOCHAM [9], a weaker
form of oscillation properties expressed in CTL is used with the symbolic model
checker NuSMV; the oscillating behaviour is approximated by the necessary
but not sufficient formula EG((EF¬ϕ) ∧ (EFϕ)) expressing that there exists
a path where at all time points whenever ϕ is true it becomes eventually false,
and whenever it is false it becomes eventually true.

We are interested in pulsating behaviour, i.e. no fixed k. We therefore con-
sider oscillations (around 0) of the values of some variables. We refer to this
approximate oscillating behaviour as pulsation. The CSL formulae describing
pulsations of cAMP, active PKA and pPDE8A1 are the following:

P≥1[G(((cAMP↑)⇒ P>0[F(cAMP↓)]) ∧ ((cAMP↓)⇒ P>0[F(cAMP↑)]))]
P≥1[G(((active PKA↑)⇒ P>0[F(active PKA↓)])∧

((active PKA↑)⇒ P>0[F(active PKA↓)]))]
P≥1[G(((pPDE8A1↑)⇒ P>0[F(pPDE8A1↓)]) ∧ ((pPDE8A1↓)⇒ P>0[F(pPDE8A1↑)]))]

and they were all checked as true for our model using PRISM.
We can also prove that the presence of a synchronised pulsation with pPDE8A1

showing a very weakly increasing (decreasing) trend at the same time as cAMP
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and active PKA follow a very weakly decreasing (increasing) trend. Consider the
following two state formulae:

φ3 , (pPDE8A1↑=) ∧ (cAMP↓=) ∧ (active PKA↓=)

φ4 , (pPDE8A1↓=) ∧ (cAMP↑=) ∧ (active PKA↑=)

The following formula expressing a synchronised pulsation was checked as true
for our model using PRISM:

P≥1[G((φ3 ⇒ P>0[Fφ4]) ∧ (φ4 ⇒ P>0[Fφ3]))]

We remark that using weakly monotonic trends in formulae φ3 and φ4, the
above formula would return false. Hence weakly monotonic trends are too strong
to show the synchronised pulsation, whereas the very weakly trends validate it.
The reason is that the pulsations take place modulo a very small time delay, when
the probability of increasing concentrations may be equal to the probability
of decreasing concentration of a species. Therefore the three species (cAMP,
active PKA and pPDE8A1) do pulsate in a synchronised way, but only when we
consider weak monotonicity.

Finally, we note that we have not used any timed operators, i.e. the bounded
until operator, in this case study. This is because the system is still under in-
vestigation and currently we have only semi-quantitative information. It was
therefore more relevant to consider trends within the context of unbounded tem-
poral operators. In other applications, where rate information is more precise,
time-bounded operators would be more relevant.

7 Conclusions and Future Work

We have introduced stochastic trend formulae for characterising the probability
of increasing/decreasing colonies in MPP models. The probabilities are forward-
looking, based on behaviour that will occur in the future. We defined a set of
stochastic trend formulae and showed how to derive several formulae encapsu-
lating useful forms of monotonicity. We extended the set of state formulae of
CSL with trends formulae and we defined an encoding in the PRISM language
using the PRISM formula construct, which means that there are no additional
variables in the underlying state space. We compared stochastic trend formulae
with stochastic trend variables, and showed the former is more tractable with
respect to the state space size and the size of the states. We note that while we
focus on continuous time here, similar results are easily obtained for the discrete
time case.

After illustration with several small examples, stochastic trends were applied
to the analysis of causality relations and pulsating behaviour in a significant
biochemical signalling case study: the AKAP mediated crosstalk between the
cAMP and Raf-1/ERK/MEK pathways. We believe this to be the first formal
model of this system. We were able, with the use of trend formulae, to show
causality and pulsations predicted by life scientists and observed in laboratory
experiments.
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Future work includes investigating how stochastic trends (an abstraction)
over different combinations of colonies affects various relations (e.g. simulation)
between MPPs.
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