
Theoretical Computer Science 373 (2007) 163–181
www.elsevier.com/locate/tcs

A rewriting logic framework for operational semantics of membrane
systems

Oana Andreia, Gabriel Ciobanub,c,∗, Dorel Lucanub

a LORIA, 54602 Villers-lès-Nancy Cedex, France
b Faculty of Computer Science, “A.I.Cuza” University, 700483 Iaşi, Romania
c Institute of Computer Science, Romanian Academy, 700505 Iaşi, Romania

Abstract

Existing results in membrane computing refer mainly to P systems’ characterization of Turing computability, also to some
polynomial solutions to NP-complete problems by using an exponential workspace created in a “biological way”. In this paper we
define an operational semantics of a basic class of P systems, and give two implementations of the operational semantics using
rewriting logic. We present some results regarding these implementations, including two operational correspondence results, and
discuss why these implementations are relevant in order to take advantage of good features of both structural operational semantics
and rewriting logic.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Membrane systems; Operational semantics; Rewriting logic; Maude

1. Membrane systems

Membrane systems represent a new abstract model of parallel and distributed computing inspired by cell
compartments and molecular membranes [16]. A cell is divided into various compartments, each compartment with
a different task, with all of them working simultaneously to accomplish a more general task for the whole system.
The membranes of a P system determine regions where objects and evolution rules can be placed. The objects evolve
according to the rules associated with each region, and the regions cooperate in order to maintain the proper behaviour
of the whole system. P systems provide a nice abstraction for parallel systems, and a suitable framework for distributed
and parallel algorithms [9]. It is desirable to find more connections with various fields of computer science, including
implementations and executable specifications. Sequential and parallel simulators exist, as well as a flexible web-based
simulator available at http://psystems.ieat.ro.

A detailed description of P systems can be found in [17]. A P system consists of several membranes that do
not intersect, and a skin membrane, surrounding them all. The membranes delimit regions, and contain multisets
of objects, as well as evolution rules. The application of evolution rules is done in parallel, and is eventually

∗ Corresponding author at: Institute of Computer Science, Romanian Academy, 700505 Iaşi, Romania.
E-mail addresses: Oana.Andrei@loria.fr (O. Andrei), gabriel@iit.tuiasi.ro (G. Ciobanu), dlucanu@info.uaic.ro (D. Lucanu).

0304-3975/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2006.12.016

http://www.elsevier.com/locate/tcs
http://psystems.ieat.ro
http://psystems.ieat.ro
http://psystems.ieat.ro
http://psystems.ieat.ro
mailto:Oana.Andrei@loria.fr
mailto:gabriel@iit.tuiasi.ro
mailto:dlucanu@info.uaic.ro
http://dx.doi.org/10.1016/j.tcs.2006.12.016


164 O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181

regulated by priority relationships between rules. The important feature of maximal parallelism is explained verbally
in membrane systems literature. According to [17], maximal parallel rewriting “means that we assign objects to rules,
non-deterministically choosing the objects and the rules, until no further assignment is possible. More mathematically
stated, we look to the set of rules, and try to find a multiset of rules, by assigning multiplicities to rules, with two
properties: (i) the multiset of rules is applicable to the multiset of objects available in the respective region, that is,
there are enough objects in order to apply the rules a number of times as indicated by their multiplicities, and (ii) the
multiset is maximal, no further rule can be added to it (because of the lack of available objects)”.

The structure of a P system is represented by a tree (with the skin as its root), or equivalently, by a string of correctly
matching parentheses, placed in a unique pair of matching parentheses; each pair of matching parentheses corresponds
to a membrane. Graphically, a membrane structure is represented by a Venn diagram in which two sets can be either
disjoint, or one the subset of the other. The membranes are labelled in a one-to-one manner. A membrane without any
other membrane inside is said to be elementary.

Formally, a P system of degree m is a tuple Π = (O, µ,w1, . . . , wm, (R1, ρ1), . . . , (Rm, ρm), io), where:

(i) O is an alphabet of objects;
(ii) µ is a membrane structure;

(iii) wi are the initial multisets over O associated with the regions defined by µ;
(iv) Ri are finite sets of evolution rules over O associated with the membranes, of typical form u → v, with u a

multiset over O and v a multiset containing paired symbols (messages) of the form (c, here), (c, in j ), (c, out)
and the dissolving symbol δ;

(v) ρi is a partial order relation over Ri , specifying a priority relation among the rules: (r1, r2) ∈ ρi iff r1 > r2 (i.e.,
r1 has a higher priority than r2);

(vi) i0 is either a number between 1 and m specifying the output membrane of Π , or it is equal to 0 indicating that
the output is the outer region.

Since the skin is not allowed to be dissolved, we consider that the rules of the skin do not involve δ. These are called
general P systems, or transition P systems; many other variants and classes have been introduced [17].

The membrane structure and the multisets in Π determine a configuration of the system. We can pass from a
configuration to another one by using the evolution rules. The use of a rule u → v in a region with a multiset w means
to subtract the multiset identified by u from w, and then to add the messages of v. The evolution rules in a membrane
are applied in a maximal parallel manner, and all membranes evolves in parallel. Since the right-hand side v of a rule
consists only of messages, an object introduced by a rule cannot evolve in the same step by means of another rule. If
a message appears in v in the form (c, here), then it remains in the same region. If it appears as (c, in j ), then a copy
of c is introduced in the child membrane with the label j ; if a child membrane with the label j does not exist, then the
rule cannot be applied. If it appears as (c, out), then a copy of the object c is introduced in the surrounding membrane.
If the special symbol δ appears in v, then the membrane which delimits the region is dissolved; in this way, all the
objects in this region become elements of the surrounding membrane, while the rules of the dissolved membrane are
removed.

Example 1. We consider an example of a P system with dissolving and priorities; it is taken from [17], page 71. This
P system Π1 generates values of the form n2 for n ≥ 1.

Π1 = (O, µ,w1, w2, w3, (R1, ρ1), (R2, ρ2), (R3, ρ3), 1), (1)
O = {a, b, d, e, f }, µ = [1[2[3 ]3 ]2 ]1, (2)

w1 = λ, R1 = ∅, ρ1 = ∅, w2 = λ, ρ2 = {(r1, r2)}, (3)
R2 = {b → (d, here), d → (de, here), r1 : f f → ( f, here), r2 : f → δ}, (4)
w3 = a f, R3 = {a → (ab, here), a → (b, here)δ, f → ( f f, here)}, ρ3 = ∅. (5)

The initial configuration is given in Fig. 1.
Since no object is available in membranes 1 and 2, the only possibility to start is by using the rules of membrane 3

together with its free objects a and f . Using the rules a → (ab, here) and f → ( f f, here) in parallel for the available
occurrences of a and f , after n ≥ 1 steps we get n occurrences of b and 2n occurrences of f . At any moment we can
use a → (b, here)δ instead of a → (ab, here), and consequently we get n + 1 occurrences of b and 2n+1 occurrences



O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181 165'

&

$

%

'

&

$

%

'

&

$

%3

2
1

a f

a → (ab, here)

a → (b, here)δ

f → ( f f, here)

b → (d, here)

d → (de, here)

( f f → ( f, here)) > ( f → δ)

Fig. 1. The initial configuration of a P system generating n2.

of f , followed by the process of dissolving membrane 3. Region 3 is dissolved, its rules are lost, and its objects
move to region 2. The obtained configuration is [1 [2 bn+1 f 2n+1

, b → (d, here), d → (de, here), r1 : f f →

( f, here), r2 : f → δ, r1 > r2, ]2 ]1. According to the priority relation, the rule f f → f is used as much as
possible. In one step bn+1 is transformed in dn+1, while the number of f occurrences is divided by two. Then, in the
next step, n + 1 occurrences of e are produced, and the number of f occurrences is divided again by two. At each
step, further n + 1 occurrences of e are produced. Finally, after n + 1 steps (n steps when the rule f f → ( f, here)
is used, and one when using the rule f → δ), membrane 2 is dissolved, its rules are removed, and its objects move
to the skin region. The number of the objects e is the square of the number of d. Consequently, we may say that Π2
generates values of the form n2, for n ≥ 1.

The existing results regarding P systems refer mainly to their expressive power and complexity, namely to their
characterization of Turing computability (universality is obtained even with a small number of membranes, and with
rather simple rules), and to polynomial solutions of NP-complete problems by using an exponential workspace created
in a “biological way” (e.g. membrane division, string replication). Other types of formal results are given by normal
forms, hierarchies and connections with various formalisms [16].

In this paper we refer to an operational semantics of P systems, discussing an encoding of P systems in rewriting
logic, and proving soundness and correctness regarding this encoding. We show that rewriting logic is suitable for
defining small-step operational semantics of P systems. Moreover, using rewriting logic, we were able to show that
the big-step semantics of P systems can be refined leading to a richer class of models.

The structure of the paper is as follows. Section 2 presents the inductive definition of the membrane structure, the
sets of the configurations for a P system, and an intuitive definition for the transition steps between the configurations.
Section 3 presents an operational semantics of P systems considering each of the transition steps: maximal parallel
rewriting, parallel communication, and parallel dissolving. Rewriting Logic and Maude are shortly described in
Section 4, and then we implement the operational semantics of P systems using Maude. The relationship between
the operational semantics of P systems and Maude rewriting is given in Section 5 by operational correspondence
results. Conclusion, related work, and references end the paper.

2. Configurations and transitions

Let O be a finite alphabet of objects over which we consider the free commutative monoid O∗
c , whose elements are

multisets. The empty multiset is denoted by empty.



166 O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181

Objects can be enclosed in messages together with a target indication. We have here messages of typical form
(w, here), out messages (w, out), and in messages (w, inL). For the sake of simplicity, hereinafter we consider that
the messages with the same target indication merge into one message:∏

i∈I

(vi , here) = (w, here),
∏
i∈I

(vi , inL) = (w, inL),
∏
i∈I

(vi , out) = (w, out),

with w =
∏

i∈I vi , I a non-empty set, and (vi )i∈I a family of multisets over O .
We use the mappings rules and priority to associate to a membrane label the set of evolution rules and the priority

relation : rules(L i ) = Ri , priority(L i ) = ρi , and the projections L and w which return from a membrane its label and
its current multiset.

The setM(Π ) of membranes for a P system Π , and the membrane structures are inductively defined as follows:

• if L is a label, and w is a multiset over O ∪ (O × {here}) ∪ (O × {out}) ∪ {δ}, then 〈 L | w 〉 ∈M(Π ); 〈 L | w 〉 is
called simple (or elementary) membrane, and it has the structure 〈〉;

• if L is a label, w is a multiset over O ∪ (O × {here}) ∪ (O × {inL(M j )| j ∈ [n]}) ∪ (O × {out}) ∪ {δ},
M1, . . . , Mn ∈M(Π ), n ≥ 1, where each membrane Mi has the structure µi , then 〈L |w; M1, . . . , Mn 〉 ∈M(Π );
〈 L | w ; M1, . . . , Mn 〉 is called a composite membrane, and it has the structure 〈µ1, . . . , µn〉.

We conventionally suppose the existence of a membrane NULL such that M, NULL = M = NULL, M and
〈 L | w ; NULL 〉 = 〈 L | w 〉. The use of NULL significantly simplifies several definitions and proofs. LetM∗(Π ) be
the free commutative monoid generated byM(Π ) with the operation ( , ) and the identity element NULL. We define
M+(Π ) as the set of elements from M∗(Π ) without the identity element. Let M+, N+ range over non-empty sets
of sibling membranes, Mi over membranes, M∗, N∗ range over possibly empty multisets of sibling membranes, and
L over labels. The membranes preserve the initial labelling, evolution rules and priority relation among them in all
subsequent configurations. Therefore in order to describe a membrane we consider its label and the current multiset
of objects together with its structure.

A configuration for a P system Π is a skin membrane which has no messages and no dissolving symbol δ, i.e. the
multisets of all regions are elements in O∗

c . We denote by C(Π ) the set of configurations for Π .
An intermediate configuration is an arbitrary skin membrane in which we may find messages or the dissolving

symbol δ. We denote by C#(Π ) the set of intermediate configurations. We have C(Π ) ⊆ C#(Π ).
Each P system has an initial configuration which is characterized by the initial multiset of objects for each

membrane and the initial membrane structure of the system. For two configurations C1 and C2 of Π , we say that
there is a transition from C1 to C2, and write C1 ⇒ C2, if the following steps are executed in the given order:

(1) maximal parallel rewriting step: each membrane evolves in a maximal parallel manner;
(2) parallel communication of objects through membranes, consisting in sending and receiving messages;
(3) parallel membrane dissolving, consisting in dissolving the membranes containing δ.

The last two steps take place only if there are messages or δ symbols resulting from the first step, respectively.
If the first step is not possible, then neither are the other two steps; we say that the system has reached a halting
configuration.

3. Operational semantics

We present shortly an operational semantics of P systems, considering each of the three steps.

3.1. Maximal parallel rewriting step

Here we formally define the maximal parallel rewriting
mpr
=⇒L for a multiset of objects in one membrane, and we

extend it to maximal parallel rewriting
mpr
=⇒ over several membranes. Some preliminary notions are required.

Definition 1. The irreducibility property w.r.t. the maximal parallel rewriting relation for multisets of objects,
membranes, and for sets of sibling membranes is defined as follows:

• a multiset of messages and the dissolving symbol δ are L-irreducible;



O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181 167

• a multiset of objects w is L-irreducible iff there are no rules in rules(L) applicable to w with respect to the priority
relation priority(L);

• a simple membrane 〈 L | w 〉 is mpr-irreducible iff w is L-irreducible;
• a nonempty set of sibling membranes M1, . . . , Mn is mpr-irreducible iff Mi is mpr-irreducible for every i ∈ [n];

NULL is mpr-irreducible;
• a composite membrane 〈 L | w ; M1, . . . , Mn 〉 is mpr-irreducible iff w is L-irreducible, and the set of sibling

membranes M1, . . . , Mn is mpr-irreducible.

The priority relation is a form of control on the application of rules. In the presence of a priority relation, no rule
of a lower priority can be used during the same evolution step when a rule with a higher priority is used, even if the
two rules do not compete for the same objects. We formalize the conditions imposed by the priority relation on rule
applications in the definition below.

Definition 2. Let M be a membrane labelled by L , and w a multiset of objects. A non-empty multiset R = (u1 →

v1, . . . , un → vn) of evolution rules is (L , w)-consistent if:

– R ⊆ rules(L),
– w = u1 . . . unz, so each rule r ∈ R is applicable on w,
– (∀r ∈ R, ∀r ′

∈ rules(L)) r ′ applicable on w implies (r ′, r) /∈ priority(L),1

– (∀r ′, r ′′
∈ R) (r ′, r ′′) /∈ priority(L),

– the dissolving symbol δ has at most one occurrence in the multiset v1 . . . vn .

Maximal parallel rewriting relations mpr
=⇒L and

mpr
=⇒ are defined by the following inference rules:

For each w = u1 . . . unz ∈ O+
c such that z is L-irreducible, and (L , w)-consistent rules (u1 →

v1, . . . , un → vn),

(R1)
u1 . . . unz

mpr
=⇒L v1 . . . vnz

.

For each w ∈ O+
c , w′

∈ (O ∪ Msg(O) ∪ {δ})+c , and mpr-irreducible M∗ ∈M∗(Π ),

(R2)
w

mpr
=⇒L w′

〈 L | w ; M∗ 〉
mpr
=⇒ 〈 L | w′ ; M∗ 〉

.

For each L-irreducible w ∈ O∗
c , and M+, M ′

+ ∈M+(Π ),

(R3)
M+

mpr
=⇒ M ′

+

〈 L | w ; M+ 〉
mpr
=⇒ 〈 L | w ; M ′

+ 〉

.

For each w ∈ O+
c , w′

∈ (O ∪ Msg(O) ∪ {δ})+c , M+, M ′
+ ∈M+(Π ),

(R4)
w

mpr
=⇒L w′, M+

mpr
=⇒ M ′

+

〈 L | w ; M+ 〉
mpr
=⇒ 〈 L | w′ ; M ′

+ 〉

.

For each M, M ′
∈M(Π ), and M+, M ′

+ ∈M+(Π ),

(R5)
M

mpr
=⇒ M ′, M+

mpr
=⇒ M ′

+

M, M+

mpr
=⇒ M ′, M ′

+

.

For each M, M ′
∈M(Π ), and mpr-irreducible M+ ∈M+(Π ),

(R6)
M

mpr
=⇒ M ′

M, M+

mpr
=⇒ M ′, M+

.

1 We recall that (r1, r2) ∈ priority(L) iff r1 > r2.



168 O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181

We note that
mpr
=⇒ for simple membranes can be described by rule (R2) with M∗ = NULL.

Remark 1. The relations
mpr
=⇒ and mpr-irreducibility are connected as expected: M is mpr-irreducible iff there does

not exist M ′ such that M
mpr
=⇒ M ′.

Proposition 1. Let Π be a P system. If C ∈ C(Π ) and C ′
∈ C#(Π ) such that C

mpr
=⇒ C ′, then C ′ is mpr-irreducible.

The proof of Proposition 1 follows by structural induction on C .
The formal definition of

mpr
=⇒ given above corresponds to the intuitive description of the maximal parallelism,

namely the application of a multiset of rules such that no further rule can be added to these rules. The nondeterminism
is given by the associativity and commutativity of the concatenation operation over objects used in (R1). The
parallelism of the evolution rules in a membrane is also given by (R1): u1 . . . unz

mpr
=⇒L v1 . . . vnz says that the

rules of the multiset (u1 → v1, . . . , un → vn) are applied simultaneously. The fact that the membranes are evolving
in parallel is described by (R3)–(R6).

3.2. Parallel communication of objects

We say that a multiset w is here-free/out-free/inL -free if it does not contain any here/out/inL messages, respectively.
For w a multiset of objects and messages, we introduce the operations obj, here, out, and inL as follows:

obj(w) is obtained from w by removing all messages,

here(w) =

{
empty if w is here-free,
w′′ if w = w′(w′′, here) ∧ w′ is here-free;

out(w) =

{
empty if w is out-free,
w′′ if w = w′(w′′, out) ∧ w′ is out-free;

inL(w) =

{
empty if w is inL -free,
w′′ if w = w′(w′′, inL) ∧ w′ is inL -free.

We consider the extension of the operator w (previously defined over membranes) to nonempty sets of sibling
membranes by setting w(NULL) = empty and w(M1, . . . , Mn) = w(M1) . . . w(Mn).

We recall that the messages with the same target merge in one message.

Definition 3. The tar-irreducibility property for membranes and for sets of sibling membranes is defined as follows:

• a simple membrane 〈 L | w 〉 is tar-irreducible iff w is here-free and L 6= Skin ∨ (L=Skin ∧ w out-free);
• a nonempty set of sibling membranes M1, . . . , Mn is tar-irreducible iff Mi is tar-irreducible for every i ∈ [n];

NULL is tar-irreducible;
• a composite membrane 〈 L | w ; M1, . . . , Mn 〉, n ≥ 1, is tar-irreducible iff: w is here-free and inL(Mi )-free for

every i ∈ [n], L 6= Skin ∨ (L = Skin ∧ w is out-free), w(Mi ) is out-free for all i ∈ [n], and the set of sibling
membranes M1, . . . , Mn is tar-irreducible;

Notation. We treat messages of the form (w′, here) as a particular communication inside a membrane, and we
substitute (w′, here) by w′. We denote by w the multiset obtained by replacing (here(w), here) with here(w)

in w. For instance, if w = a (bc, here) (d, out) then w = abc (d, out), where here(w) = bc. We note that
inL(w) = inL(w), and out(w) = out(w).

Parallel communication relation tar
=⇒ is defined by the following inference rules:

For each tar-irreducible M∗ ∈M∗(Π ) and multiset w such that
here(w) 6= empty, or L = Skin ∧ out(w) 6= empty, or it exists Mi ∈ M∗ with
inL(Mi )(w)out(w(Mi )) 6= empty,

(C1)
〈 L | w ; M∗ 〉

tar
=⇒ 〈 L | w′ ; M ′

∗ 〉



O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181 169

where

w′
=

{
obj(w) out(w(M∗)) if L = Skin,

obj(w) (out(w), out) out(w(M∗)) otherwise ,

and
w(M ′

i ) = obj(w(M ′

i )) inL(Mi )(w), for all Mi ∈ M∗.

For each M1, . . . , Mn, M ′

1, . . . , M ′
n ∈M+(Π ), and multiset w,

(C2)
M1, . . . , Mn

tar
=⇒ M ′

1, . . . , M ′
n

〈 L | w ; M1, . . . , Mn 〉
tar

=⇒ 〈 L | w′′ ; M ′′

1 , . . . , M ′′
n 〉

where

w′′
=

{
obj(w) out(w(M ′

1, . . . , M ′
n)) if L = Skin,

obj(w) (out(w), out) out(w(M ′

1, . . . , M ′
n)) otherwise,

and each M ′′

i is obtained from M ′

i by replacing its resources with

w(M ′′

i ) = obj(w(M ′

i )) inL(M ′
i )
(w), for all i ∈ [n].

For each M, M ′
∈M(Π ), and tar-irreducible M+ ∈M+(Π ),

(C3)
M tar

=⇒ M ′

M, M+

tar
=⇒ M ′, M+

.

For each M ∈M(Π ), M+ ∈M+(Π ),

(C4)
M tar

=⇒ M ′, M+

tar
=⇒ M ′

+

M, M+

tar
=⇒ M ′, M ′

+

.

Remark 2. M is tar-irreducible iff there does not exist M ′ such that M tar
=⇒ M ′.

Proposition 2. Let Π be a P system. If C ∈ C#(Π ) with messages and C tar
=⇒ C ′, then C ′ is tar-irreducible.

The proof of Proposition 2 is by structural induction on C .

3.3. Parallel membrane dissolving

If the special symbol δ occurs in the multiset of objects of a membrane labelled by L , that membrane is dissolved,
its evolution rules and the associated priority relation are lost, and its contents (objects and membranes) is added to
the contents of the surrounding membrane. We say that a multiset w is δ-free if it does not contain the special symbol
δ.

Definition 4. The δ-irreducibility property for membranes and for sets of sibling membranes is defined as follows:

• a simple membrane is δ-irreducible iff it has no messages;
• a non-empty set of sibling membranes M1, . . . , Mn is δ-irreducible iff every membrane Mi is δ-irreducible, for

1 ≤ i ≤ n;
• a composite membrane 〈 L | w ; M+ 〉 is δ-irreducible iff w has no messages, M+ is δ-irreducible, and w(M+) is

δ-free;
• NULL is δ-irreducible.

Parallel dissolving relation δ
=⇒ is defined by the following inference rules:

For each M∗ ∈M∗(Π ), δ-irreducible 〈 L2 | w2δ ; M∗ 〉, and label L1,

(D1)
〈 L1 | w1 ; 〈 L2 | w2δ ; M∗ 〉 〉

δ
=⇒ 〈 L1 | w1w2 ; M∗ 〉

.



170 O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181

For each M+ ∈M+(Π ), M ′
∗ ∈M∗(Π ), δ-free multiset w2, multisets w1, w

′

2, and labels L1, L2

(D2)
〈 L2 | w2 ; M+ 〉

δ
=⇒ 〈 L2 | w′

2 ; M ′
∗ 〉

〈 L1 | w1 ; 〈 L2 | w2 ; M+ 〉 〉
δ

=⇒ 〈 L1 | w1 ; 〈 L2 | w′

2 ; M ′
∗ 〉 〉

.

For each M+ ∈M+(Π ), M ′
∗ ∈M∗(Π ), multisets w1, w2, w

′

2, and labels L1, L2

(D3)
〈 L2 | w2δ ; M+ 〉

δ
=⇒ 〈 L2 | w′

2δ ; M ′
∗ 〉

〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉
δ

=⇒ 〈 L1 | w1w
′

2 ; M ′
∗ 〉

.

For each M+ ∈M+(Π ), M ′
∗, N ′

∗ ∈M∗(Π ), δ-irreducible 〈 L | w ; N+ 〉, and multisets w′, w′′,

(D4)
〈 L | w ; M+ 〉

δ
=⇒ 〈 L | w′

; M ′
∗ 〉

〈 L | w ; M+, N+ 〉
δ

=⇒ 〈 L | w′ ; M ′
∗, N+ 〉

.

(D5)
〈 L | w ; M+ 〉

δ
=⇒ 〈 L | ww′

; M ′
∗ 〉 〈 L | w ; N+ 〉

δ
=⇒ 〈 L | ww′′

; N ′
∗ 〉

〈 L | w ; M+, N+ 〉
δ

=⇒ 〈 L | ww′w′′ ; M ′
∗, N ′

∗ 〉

.

Remark 3. M is δ-irreducible iff there does not exist M ′ such that M δ
=⇒ M ′.

Proposition 3. Let Π be a P system. If C ∈ C#(Π ) is tar-irreducible and C δ
=⇒ C ′, then C ′ is δ-irreducible.

The proof of Proposition 3 follows by a structural induction on C .
We can note that C ∈ C(Π ) iff C is tar-irreducible and δ-irreducible.

According to the standard description in membrane computing, a transition step between two configurations C, C ′
∈

C(Π ) is given by: C ⇒ C ′ iff C and C ′ are related by one of the following relations:

either C
mpr
=⇒;

tar
=⇒ C ′, or C

mpr
=⇒;

δ
=⇒ C ′, or C

mpr
=⇒;

tar
=⇒;

δ
=⇒ C ′.

The three alternatives in defining C ⇒ C ′ are given by the existence of messages and dissolving symbols along the
system evolution. Starting from a configuration without messages and dissolving symbols, we apply the “mpr” rules
and get an intermediate configuration which is mpr-irreducible; if we have messages, then we apply the “tar” rules and
get an intermediate configuration which is tar-irreducible; if we have dissolving symbols, then we apply the dissolving
rules and get a configuration which is δ-irreducible. If the last configuration has no messages or dissolving symbols,
then we say that the transition relation ⇒ is well-defined as an evolution step between the first and last configurations.

Proposition 4. The relation ⇒ is well-defined over the entire set C(Π ) of configurations.

Examples of inference trees, as well as the proofs of the results are presented in [2]. We have shortly presented the
operational semantics just to give sense to the implementations of P systems into rewriting logic.

4. Implementing P systems using rewriting logic

A general methodology for using rewriting logic to give semantics to programming languages is presented in
[15]. The authors describe the advantages and the drawbacks of equational specifications and structural operational
semantics [19], as well as the capabilities of rewriting logic to unify the two approaches such that their advantages
are preserved and their drawbacks are surmounted. By using an efficient implementation of rewriting logic as Maude
[11], a formal specification of a language can be automatically transformed into an interpreter. Moreover, Maude
provides an useful search command, a semi-decision procedure for finding failures of safety properties, and also a
model checker. Roughly speaking, a rewrite theory is a triple (Σ , E,R), where (Σ , E) is an equational theory used
for implementing the deterministic computation, therefore (Σ , E) should be terminating and Church-Rosser, andR is
a set of rewrite rules used to implement nondeterministic and/or concurrent computations. Therefore we find rewriting



O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181 171

logic suitable for implementing the membrane systems. The Web page of the implementations described in this paper
can be found at http://thor.info.uaic.ro/∼rewps/index.html.

We mainly follow the same line as that in [15]: we use an equational part for specifying configurations
(configurations are similar to states), and rewrite rules for specifying the semantics. In [15], a continuation passing
style is used for defining the dynamics of a program. This approach is suitable for languages with complex control
structures. In our case, the control part of a P system is different from that of a programming language. It consists in
maximal parallel application of the evolution rules according to their priorities (if any), and the (repeated) steps of
internal evolution, communication, and dissolving. This sequence of steps uses a kind of synchronization; therefore
we cannot follow the continuation passing style.

The first challenge is to describe the maximal parallel rewriting, because this is not quite natural for rewriting logic.
In [1] the reflection property of rewriting logic is used for defining maximal parallel rewriting. A P system was defined
at object level, and its semantics at metalevel. The description at metalevel assumes many additional operations, and
therefore the checking and the analysis of the result specification was time consuming. Here we use a novel approach.
The evolution rules are represented as terms at the object level. This allows us to define the operational semantics at
the object level and, consequently, the checking and the analysis of the result specification is more efficient.

The second challenge is given by the sequence of internal steps: evolution, communication, and dissolving. We
decorated the terms denoting membranes with colours, and these colours are used by a rewrite engine to choose
the appropriate (sub)set of rewriting rules. The definition of semantics for P systems in rewriting logic reveals an
interesting aspect: internal evolution, communication and dissolving inside a complex membrane may interleave.
This leads to a relaxed operational semantics for P systems presented in Section 5.1. If only main configurations are
observable, then the big-step semantics and the refined one are behaviourally equivalent.

4.1. Maude equational specification of P systems

We consider the sorts Obj, Soup, Membrane, Configuration for object names, multisets of ingredients,
membranes and configurations, respectively. Their definitions and the relations between them are introduced by the
following (simplified) functional module:

mod PSCONFIGURATION is
pr QID .
sort Label . subsort Label < Qid .
sorts Obj Soup EmptyMembraneSet Membrane MembraneSet Configuration .
subsort Obj < Soup .
subsort EmptyMembraneSet Membrane < MembraneSet .
op empty : -> Soup .
op __ : Soup Soup -> Soup [assoc comm id: empty] .
op NULL : -> EmptyMembraneSet .
op <_|_> : Label Soup -> Membrane .
op _‘,_ : MembraneSet MembraneSet -> MembraneSet

[assoc comm id: NULL] .
op <_|_;_> : Label Soup MembraneSet -> Membrane .
op ‘{_‘} : Membrane -> Configuration .
endm

The sort Soup represents the multiset type with two constructors: empty and . The second constructor is required
to satisfy the structural laws of associativity and commutativity, and it has an identity empty. The subsort relation Obj
< Soup says that each object defines a particular multiset. The sort Membrane has two constructors for the two types of
membranes: elementary and composite. The operation , on a set of membranes is required to satisfy the structural
laws of associativity, commutativity and identity because the order of sibling membranes is irrelevant; what matters is
the positions of the membranes, namely if one is inside the other. An expression of the form 〈L | W 〉 corresponds to
a state of an elementary membrane labelled by L and having the multiset of objects given by W , while an expression
of the form 〈L | W ; M1, . . . , Mn〉 corresponds to a composite membrane labelled by L with the current multiset of
objects described by W and the state of the i-th component given by Mi . The sort Configuration corresponds to a P

http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html


172 O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181

system configuration; it has no subsorts and its constructor { } : Membrane → Configuration has the skin membrane
as its only argument. The intended meaning consists in starting our maximal parallel rewriting strategy only from the
skin membrane in order to ensure the processing of all membranes of P system during a transition step.

For the communications of objects through membranes, we define a sort Target together with two operations for
sending objects out of the membrane or in a specified membrane, such that a pair composed of a multiset of objects
and a target represents an element of sort Message.

In order to deal with the membrane dissolving, we add a sort Dissolve, and a constant operation delta
corresponding to the dissolving element δ.

For the evolution rules we introduce a sort MRule together with two operations corresponding to rules with or
without priorities:

op _:_->_ : Priority Soup Soup -> MRule .
op _->_ : Soup Soup -> MRule .

where a sort for labels is denoted by Priority because the labels are used for defining priorities between rules. We
add a supersort of MRule, namely MRuleSet, used for giving the evolution rules associated to a membrane, with a
concatenation operation , which is associative, commutative, and has an identity element none. For example, a
set of rules is given through the operator rules as follows:

eq rules(M3) = (r1 : a -> (a b, here)) ,
(r2 : a -> (b, here) delta) ,
(r3 : f -> (f f, here)) .

We define three operators: prty, lhs, and rhs in order to extract the components of a rule description. The partial
order relation over rule priorities in a membrane is given by the operator rho through set of pairs of related priorities.
For example, the following equation describes the priority relation in a membrane identified by a label M1:

eq rho(M1) = (r1 > r3) , (r2 > r3) .

We make intensive use of the order sorted equation logic implemented by Maude. Therefore we consider sort Soup
(for multisets of objects) to be a subsort of DissSoup (for multisets of objects and δ’s) and of OutSoup (for multisets
of objects and out messages); DissSoup and OutSoup are subsorts of OutDissSoup, which in turn is a subsort of
MsgDissSoup (for multisets of objects, messages and δ’s). All these sorts are subsorts of sort Soup?. The sorts of the
corresponding membranes are as follows: DMembrane for membranes having multisets of sort DissSoup, Membrane+
for membranes having multisets of sort MsgDissSoup, and Membrane? for membranes having multisets of sort Soup?.
The names of sorts for sets of membranes are composed from the name of the corresponding membrane and the
suffix Set: DMembraneSet, MembraneSet+, and MembraneSet?. The sorts of nonempty sets of membranes are
NeDMembraneSet, NeMembraneSet+, and NeMembraneSet?. We also use a sort Configuration? for intermediate
configurations.

4.2. Maude evolution rules

As we already emphasized, a specific feature of a P system is that it has a tree like structure with the skin as its root,
the composite membranes as its internal nodes and the elementary membranes as its leaves. The order of the children
of a node is not important due to the associativity and commutativity properties of the concatenation operation for
membranes , .

Since Maude is not able to execute parallel transitions required by a P system, we should use a sequential
application of the rules. In this sequential process, in order to prevent the case when the result of one rule is used
by another, we use a technique of marking the intermediate configurations with colours. This is achieved by using two
operators blue and green:

op blue : Membrane -> Membrane? .
op blue : MembraneSet -> MembraneSet? .
op blue : Label Soup Bool -> Soup? .
op blue : Label MRuleSet Soup Bool -> Soup?.



O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181 173

op green : Membrane+ -> Membrane? .
op green : MembraneSet+ -> MembraneSet? .
op green : MsgDissSoup -> Soup? .

The following rule marks the commitment of the maximal parallel rewriting step:

rl [1] : { M } => { blue(M) } .

starting with a term { M } of sort Configuration.
The operator blue traverses the tree in a top-down manner, firing the maximal parallel rewriting process in every

membrane through the blue operator on Soup terms. The Boolean argument of operation blue is used to show
whether a dissolving rule is chosen during the current maximal parallel step in a membrane with dissolving rules. We
need this flag because at most one δ symbol is allowed in a membrane. We use the variables L:Label, S,S1,S2:Soup,
PS:PrioritySet, neM,neM1,neM2:NeMembraneSet, R:MRule, RS:MRuleSet. Here are the rules implementing the
top-down traversal:

crl [3] : blue(< L | S ; neM >) => if PS == noprty
then

(if (freeDeltaRules(L) == none)
then < L | blue(L, S) ; blue(neM) >
else < L | blue(L, S, false) ; blue(neM) >
fi)

else
(if (freeDeltaRules(L) == none)
then < L | blue(L, PS, S) ; blue(neM) >
else < L | blue(L, PS, S, false) ; blue(neM) >
fi)

fi
if PS := priorities(rules(L)) .

crl [4] : blue(< L | S >) => if PS == noprty
then

(if (freeDeltaRules(L) == none)
then < L | blue(L, S) >
else < L | blue(L, S, false) >
fi)

else
(if (freeDeltaRules(L) == none)
then < L | blue(L, PS, S) >
else < L | blue(L, PS, S, false) >
fi)

fi
if PS := priorities(rules(L)) .

crl [5] : blue(neM) => blue(neM1), blue(neM2)
if neM1, neM2 := neM .

where the operator freeDeltaRules provides the non-dissolving evolution rules of a membrane.
The multiset of objects is divided into two parts during the maximal parallel rewriting process: blue represents the

objects available to be “consumed” via evolution rules, while the green represents the objects resulted from applying
evolution rules over the blue objects (therefore the green objects are not available anymore for the current evolution
step). When no more rule can be applied, the remaining blue objects (if any) become green.

crl [6] : blue(L, S) =>
green(rhs(R)) blue(L, S1)



174 O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181

if R, RS := rules(L) /\ S2 := lhs(R) /\ S2 S1 := S .
crl [7] : blue(L, S) => green(S)

if irreducible(L, S, rules(L)) .

The predicate irreducible returns true iff the left-hand side of each evolution rule from the membrane with the
label L does not match the given multiset of objects. The nondeterministic choice of the evolution rules is given by the
associative and commutative matching operator R, RS := rules(L), and the nondeterministic choice of the objects
is given by the associative and commutative matching operators S2 := lhs(R) and S2 S1 := S.

We recall that, for evolution rules with priorities, if a rule with a higher priority is used, then no rule of a lower
priority can be used, even if the two rules do not compete for the same objects. In order to handle the priorities, we
first introduce two new operators:

• rmLower — given a rule R and a set of rules RS of a membrane, this operator removes from RS the rules with lower
priorities than the priority of R;

• allowed — a matching rule can be applied if either it does not have a priority, or it has a maximal priority, or it
has a priority and any rule with a higher priority does not match the current multiset of objects.

crl [8] : blue(L, PS, S) =>
green(rhs(R)) blue(L, rmLower(L, prty(R), PS), S1)

if R, RS1 := rules(L) /\ S2 := lhs(R)
/\ S2 S1 := S /\ allowed(L, S, R, RS1, PS) .

crl [9] : blue(L, PS, S) => green(S)
if irreducible(L, PS, S, rules(L)) .

The operator green traverses the tree in a bottom-up manner as follows:

– green multisets from (O ∪ Msg(O) ∪ {δ})∗c merge into one green multiset;
– a leaf becomes green if its multiset is green;
– a set of sibling subtrees (with the roots sibling nodes) becomes green if each subtree is green;
– a subtree becomes entirely green if:

(1) the multiset of the root is green;
(2) the subtrees determined by the children of the root form a green set of sibling subtrees;
(3) there are no messages to be exchanged between the root node and its children.

We present here the rules implementing the bottom-up traversal. Note that rule 13 pushes up the operator green only
if the corresponding membranes have no messages but may contain the dissolving symbol, i.e. the least sort of the
parameter is NeDMembraneSet. The other rules pop up the operator green either from a multiset of objects, or from a
multiset of membranes. We use the following additional variables: Smd,Smd1,Smd2:MsgDissSoup, Sd:DissSoup,
Sod:OutDissSoup, So:OutSoup, S’:Soup?, neM’:NeMembraneSet?, neM+,
neM+,neM1+,neM2+:NeMembraneSet+, M1+,M2+:MembraneSet+, neDM,neDM1,
neDM2:NeDMembraneSet.

rl [10] : < L | green(Smd) >, neM’ => green(< L | Smd >), neM’ .
rl [11] : < L1 | S’ ; < L | green(Smd) > > =>

< L1 | S’ ; green(< L | Smd >) > .
rl [12] : { < L | green(S) > } => { green(< L | S >) } .
rl [13] : < L | green(Sod) ; green(neDM1) > =>

green(< L | Sod ; neDM1 >) .
rl [14] : green(Smd) green(Smd1) => green(Smd Smd1) .
rl [15] : green(neM1+), green(neM2+) => green((neM1+,neM2+)) .

In the communication stage of a green subtree, a node can send a message only to its parent or to one of its children.
The rules for each direction of communication (out and in) vary on the structure of the destination membrane.

The rules for in messages are the following:



O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181 175

crl [16] : < L | green(Smd) ; green(neM+) > =>
< L | green(Smd2) ; green(< L1 | Smd1 S >, M2+) >
if Smd2 (S, in(L1)) := Smd /\

< L1 | Smd1 >, M2+ := neM+ .
crl [17] : < L | green(Smd) ; green(neM+) > =>

< L | green(Smd2) ; green(< L1 | Smd1 S ; neM1+ >, M2+) >
if Smd2 (S, in(L1)) := Smd /\

< L1 | Smd1 ; neM1+ >, M2+ := neM+ .

An object sent out of the skin membrane is lost. We allow this operation to be executed only if the skin membrane
and its internal membranes are green; in this way we follow the same communication policy as for the rest of the
membranes. Therefore for out messages we have two additional rules (20 and 21) for sending messages out of the
skin membrane:

crl [18] : < L | green(Smd) ; green(neM+) > =>
< L | green(Smd S) ; green(< L1 | Smd1 >, M2+) >

if < L1 | Smd1 (S, out) >, M2+ := neM+ .
crl [19] : < L | green(Smd) ; green(neM+) > =>

< L | green(Smd S) ; green(< L1 | Smd1 ; neM1+ >, M2+) >
if < L1 | Smd1 (S, out) ; neM1+ >, M2+ := neM+ .

rl [20] : {< L | green(So (S, out)) >} => {< L | green(So) >} .
rl [21] : {< L | green(Smd (S, out)) ; green(neM+) >} =>

{< L | green(Smd) ; green(neM+) >} .

In a P system the dissolving process occurs after the end of the communication process. To fulfil this condition we
allow dissolving only if there are no messages to be sent (we use only variables of sort DissSoup and DMembrane).
By dissolving the membrane of a node, all of its objects are transferred to the membrane of its parent, the rules are
lost, and if it is an internal node, all of its children become children of its parent. The skin membrane is not allowed
to be dissolved. The rules for dissolving are:

crl [22] : < L | Sd ; neDM > => < L | Sd S1 ; neDM1 >
if < L1 | S1 delta >, neDM1 := neDM .

crl [23] : < L | Sd ; neDM > => < L | Sd S1 >
if < L1 | S1 delta > := neDM .

crl [24] : < L | Sd ; neDM > => < L | Sd S ; neDM1, DM2 >
if < L1 | S1 delta ; neDM1 >, DM2 := neDM .

When the entire tree becomes green, and it does not contain δ objects, there are no more messages to sent or nodes to
be dissolved, the following accomplishing rule is applied:

rl [2] : { green(M) } => { M } .

The resulting term corresponds to a configuration of P system reachable in one transition step from the given
configuration.

5. Operational correspondence

In this section we show how the dynamics of P systems and their corresponding implementations into Maude are
related. Such a relationship between operational semantics for P systems and the Maude rewriting relation is given by
two operational correspondence results.

Let Π = (O, µ,w1, . . . , wn, (R1, ρ1), . . . , (Rn, ρn), i0) be a P system having the initial configuration
〈 L1 | w1 ; Mi1 , . . . , Min 〉, {i1, . . . , in} ⊆ {2, . . . , n}, with rules(L j ) = R j , priority(L j ) = ρ j for all membrane
labels L j , and let ⇒ be the transition relation between two configurations. We associate to Π a rewriting theory
R(Π ) = (Σ , E, R) in the way we presented in the previous section. Σ is the equational signature defining sorts
and operation symbols, E is the set of Σ -equations which includes also the appropriate axioms for the associativity,



176 O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181

commutativity and identity attributes of the operators, and R is the set of rewriting rules. Considering −→R(Π )

the rewriting relation, we denote by −→
+

R(Π )
the transitive closure of −→R(Π ), and by −→

∗

R(Π )
its reflexive and

transitive closure.
An encoding function Im : M(Π ) → (TΣ ,E )Membrane from the set of membranes M(Π ) to the ground terms of

sort Membrane from the associated rewriting theory is defined by:

• if M = 〈 L | w 〉, then Im(M) = < L | w >

• if M = 〈 L | w ; M1, . . . , Mn 〉,
then Im(M) = < L | w ; Im(M1) ,..., Im(Mn) >

where L is a constant of sort Label, and w is a term of sort Soup. We extend the encoding function Im over nonempty
sets of sibling membranes by

Im(M1, . . . , Mk) = Im(M1), . . . , Im(Mk), k ≥ 2

We also define an encoding function I : C(Π ) → (TΣ ,E )Configuration from the set of configurations to the ground
terms of sort Configuration such that I(C) = {Im(C)}, for every C ∈ C(Π ).

We denote by [i– j] the rewriting system consisting of the rules [i], [i +1], . . . , [ j]. If R and R′ are two terminating
rewriting systems, then t ′′ is a R; R′-normal form of t iff there is t ′ such that t ′ is a R-normal form of t and t ′′ is a
R′-normal form of t ′. R; R′ is a rewriting system with priorities: the rules of R have a higher priority than the rules
of R′. This priority relation is different from the priority relation used in P systems. It can be implemented in the
algebraic specifications of the OBJ family (including Maude) by means of sorts and the subsort relation [4].

Lemma 1. The rewriting system consisting of the rules [3–9] is terminating whenever it is applied on a term of the
form blue(M : Membrane).

Proof. We define a termination function τ as follows:

τ(blue(〈 L | w 〉)) = 1 + |w|

τ(blue(〈 L | w ; t1, . . . , tn 〉)) = 1 + |w| + τ(t1, . . . , tn)

τ (〈 L | t 〉) = τ(t)
τ (〈 L | t ; t ′ 〉) = τ(t) + τ(t ′)
τ (t1, . . . , tn) = τ(t1) + · · · + τ(tn)

τ (t t ′) = τ(t) + τ(t ′)
τ (green(w : MsgDissSoup)) = 0
τ(blue(w : Soup)) = |w|

For each rule of both [3–4] and [6–9], we have τ(lhs) > τ(rhs). For rule [5], we have τ(lhs) = τ(rhs). It is worth
to note that if t ′ is the normal form of a term blue(t : Membrane) in the rewriting system [3–9], then τ(t ′) = 0. �

Lemma 2. The rewriting system consisting of the rules [10–21] is terminating whenever it is applied to a [3–9]-
normal form.

Proof. Let t be a [3–9]-normal form. If green(t ′) = t |ω, where ω is the sequence of positive integers describing
the path from the root of t to the root of the subterm green(t ′) at that position, we define weight(green(t ′)) =

|ω|. Let us define the termination function τ(t) as a pair of positive integers, where the first component is
Σ {weight(green(t ′)) | green(t ′) subterm of t}, and the second component is the number of messages in t . For each
rule in [10–21], we have τ(lhs) >lex τ(rhs). �

Lemma 3. The rewriting system consisting of the rules [22–24] is terminating whenever it is applied to a
[3–9]; [10–21]-normal form.

Proof. Let t be a [3–9]; [10–21]-normal form. We define τ(t) as being the number of δ symbols in t . We have
τ(lhs) > τ(rhs) for each rule in [22–24]. �



O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181 177

We assume the existence of two subsorts for membranes, namely MprNormalForm and TarNormalForm. A
term t belongs to the sort MprNormalForm iff it is irreducible with respect to the rewriting system [3–9], and t
belongs to the sort TarNormalForm iff it is irreducible with respect to the rewriting system [10–21]. Let delGreen(t)
denote the term obtained from t by deleting all occurrences of green, i.e. if t = f (t1, . . . , tn), f 6= green, then
delGreen(green(t)) = delGreen(t) = f (delGreen(t1), . . . , delGreen(tn)).

Proposition 5. (a) If blue(L , S)
∗
−→[3–9] green(S′), then S

mpr
=⇒L S′.

(b) Conversely, if S
mpr
=⇒L S′, then there is a rewrite blue(L , S)

∗
−→[3–9] green(S′).

Proof. (a) is proved by induction on the length of the rewriting, and (b) by induction on the number of rules applied
in parallel. �

Proposition 6. (a) If t is a [3–9]-normal form of blue(I(C)), then there is C ′ such that delGreen(t) = I(C ′) and
C

mpr
=⇒ C ′.

(b) Conversely, if C
mpr
=⇒ C ′, then I(C ′) = delGreen(t) for certain t, and t is a [3–9]-normal form of blue(I(C)).

Proof. (a) is proved by structural induction on C , and (b) is proved by induction on the depth of the deduction tree
for C

mpr
=⇒ C ′. �

Proposition 7. Let t be a [3–9]-normal form of blue(I(C)) such that t has messages and delGreen(t) = I(C ′).
(a) If green(t ′) is a [10–21]-normal form of t , then there is C ′′ such that t ′ = I(C ′′) and C ′ tar

=⇒ C ′′.
(b) Conversely, if C ′ tar

=⇒ C ′′, then green(I(C ′′)) is a [10–21]-normal form of t .

Proof. (a) is proved by structural induction on C ′, and (b) is proved by induction on the depth of the deduction tree
for C ′ mpr

=⇒ C ′′. �

The proof of the next proposition is similar to the previous ones:

Proposition 8. Let t be a [3–9]; [10–21]-normal form of blue(I(C)) such that δ occurs in t and delGreen(t) = (C ′).
(a) If green(t ′) is a [22–24]-normal form of t , then there is C ′′ such that t ′ = I(C ′′) and C ′ δ

=⇒ C ′′.
(b) Conversely, if C ′ δ

=⇒ C ′′, then green(I(C ′′)) is a [22–24]-normal form of t .

The next theorem follows from Propositions 5–8:

Theorem 1 (Operational Correspondence I). The rewriting relation given by [1]; [3–9]; [10–21]; [22–24]; [2] is a
correct and complete implementation of ⇒.

5.1. Faithful and accurate implementations for P systems

The implementation of the sequential composition [3–9]; [10–21]; [22–24] using a general rewrite engine like
Maude requires some auxiliary operations and verification of conditions. In this subsection we provide an alternative
to the above sequential composition, discussing the consequences in defining various granularities (between “big” and
“small”) of the operational semantics for P systems. In what follows we replace the rules 22–24 with the following
ones:

crl [22’] : < L | green(Sd) ; green(neDM) > =>
< L | green(Sd S1) ; green(neDM1) >
if < L1 | S1 delta >, neDM1 := neDM .

crl [23’] : < L | green(Sd) ; green(neDM) > =>
< L | green(Sd S1) >
if < L1 | S1 delta > := neDM .

crl [24’] : < L | green(Sd) ; green(neDM) > =>
< L | green(Sd S1) ; green((neDM1, DM2)) >
if < L1 | S1 delta ; neDM1 >, DM2 := neDM .



178 O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181

and the rule 13 with the following one:

rl [13’] : < L | green(Sod) ; green(neM) > =>
green(< L | Sod ; neM >) .

Note that the operator green has a parameter neM of sort NeMembraneSet in rule 13’, i.e. nonempty sets of non-
dissolving membranes. In this way, the above rule together with rule 15 ensure that a subtree becomes entirely green
if it is also the case that the multisets corresponding to the children and to the root do not contain δ.

We denote by RELAX the rewriting system obtained from [3–24] replacing 13 by 13’, and [22–24] by [22′–24′
], i.e.,

RELAX = [3–24]{13′/13, 22′-24′/22-24}. Experimenting in Maude by using the new implementation of the SOS of P
systems, we have noticed that we are still able to simulate ⇒ using the rewrite system [1]; RELAX; [2]. Investigating
the properties of RELAX, we obtain the following results:

Proposition 9. (a) If M+

mpr
=⇒;

tar
=⇒ M ′

+ and M ′
+ is δ-irreducible, then green(Im(M ′

+)) is a [3–21]{13′/13}-normal
form of blue(Im(M+)).
(b) Conversely, if green(t ′) is a [3–21]{13′/13}-normal form of blue(Im(M+)) obtained by using at least one
of the rules of [16–21], and t ′ does not contain δ as subterm, then there is M ′

+ such that Im(M ′
+) = t ′ and

M+

mpr
=⇒;

tar
=⇒ M ′

+.

Proposition 10. (a) If M+

mpr
=⇒;

δ
=⇒ M ′

+, then green(Im(M ′
+)) is a [3–15]{13′/13} ∪ [22′–24′

]-normal form of
blue(Im(M+)).
(b) Conversely, if green(t ′) is a [3–15]{13′/13} ∪ [22′–24′

]-normal form of blue(Im(M+)) obtained by using at least
one of the rules of [22′–24′

], and t ′ does not contain messages, then there is M ′
+ such that Im(M ′

+) = t ′ and

M+

mpr
=⇒;

δ
=⇒ M ′

+.

Proposition 11. (a) If M+

mpr
=⇒;

tar
=⇒;

δ
=⇒ M ′

+ then green(Im(M ′
+)) is an RELAX-normal form of blue(Im(M+)).

(b) Conversely, if green(t ′) is an RELAX-normal form of blue(Im(M+)), obtained by using at least one of the rules of

[16–21] and one of the rules of [22′–24′
], then there is M ′

+ such that Im(M ′
+) = t ′ and M+

mpr
=⇒;

tar
=⇒;

δ
=⇒ M ′

+.

In the new rewriting blue(I(C))
∗
−→RELAX green(t ′) we do not have a strict separation between the internal

steps given by the evolution of membranes, communication, and dissolving. If two parent-child membranes finish
their internal evolution, then they can communicate without waiting for the other membranes of the system to finish
their evolution step. Similarly, if two parent-child membranes finish the communication, then the child may dissolve
whenever it has a δ object.

The next theorem follows from the previous results (Propositions 9–11):

Theorem 2 (Operational Correspondence II). The rewriting system RELAX is terminating on blue(I(C)) for any
configuration C. Moreover, if C ⇒ C ′, then green(I(C ′)) is an RELAX-normal form of blue(I(C)) and, conversely,
if green(t ′) is an RELAX-normal form of blue(I(C)), then there is C ′ such that t ′ = I(C ′) and C ⇒ C ′.

Theorems 1 and 2 reveal two forms of correctness of an implementation with respect to the given operational
semantics. In a stronger form, we say that an implementation I is faithful if and only if it is defined by three relations
 mpr , tar, and diss such that I(C)  mpr I(C1) whenever C

mpr
=⇒ C1, I(C1)  tar I(C2) whenever C1

tar
=⇒ C2,

and I(C2)  diss I(C ′) whenever C2
δ

=⇒ C ′, for all configurations C, C ′ and intermediate configurations C1, C2.
In a weaker form, we say that an implementation I is accurate if and only if it is defined by a relation such that
I(C)  I(C ′) whenever C ⇒ C ′, for all configurations C, C ′. Theorem 1 refers to a faithful implementation, and
Theorem 2 refers to an accurate implementation.

In an accurate implementation it is possible to execute parallel transitions of different phases. This fact can
increase the potential parallelism of the rewriting implementations of the P systems. On the other hand, a faithful
implementation generates a smaller state space.

The computation of a RELAX-normal form requires fewer auxiliary rewritings and verifying conditions than the
computation of a [3–9]; [10–21]; [22–24]-normal form. However, if we use the Maude model-checker for analyzing P
systems, then [3–9]; [10–21]; [22–24] could be more efficient because it generates a smaller state space. We can



O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181 179

exemplify this aspect by using a simple P system 〈L1 | aa; 〈L2 | yy; 〈L3 | vv〉〉〉, where rules(L1) = a →

(b, in(L2)), rules(L2) = y → (x, out)(z, in(L3)), and rules(L3) = v → (u, out). We use the Maude command
search to generate the whole state space. For the faithful implementation we get 292 states:

Maude> search init =>+ C:Configuration .
search in EX : init =>+ C:Configuration .

Solution 1 (state 262)
states: 263 rewrites: 3059 in 41ms cpu (42ms real)
C:Configuration --> {< L1 | x x ; < L2 | b b u u ; < L3 | z z > > >}

No more solutions.
states: 292 rewrites: 3420 in 45ms cpu (46ms real)

For the accurate implementation we get 752 states:

Maude> search init =>+ C:Configuration .
search in EX : init =>+ C:Configuration .

Solution 1 (state 731)
states: 732 rewrites: 11001 in 90ms cpu (90ms real)
C:Configuration --> {< L1 | x x ; < L2 | b b u u ; < L3 | z z > > >}

No more solutions.
states: 752 rewrites: 11371 in 92ms cpu (92ms real)

Since we have a higher level of parallelism in the accurate implementation, there are more paths from the initial
configuration to the unique final one. The additional states are given by configurations where different membranes
are in different phases, e.g. L1 evolves, while L2 and L3 communicate. These forms of implementation exhibit
different levels of parallelism which can be exploited in analyzing P systems. An accurate implementation can be
used to analyze more aspects inspired by biology. Such an implementation is also appropriate when we are interested
in speeding up the execution on a parallel machine. On the other hand, if we are interested to investigate only
the configurations (states), then it is better to use a faithful implementation. We can use additionally the power
of the abstraction mechanism supplied by rewriting logic. The state space can be drastically reduced if the rules
describing the top-down and bottom-up traversals are transformed into equations. Making this modification in the
faithful implementation, we get only 97 states:

Maude> search init =>+ C:Configuration .
search in EX : init =>+ C:Configuration .

Solution 1 (state 83)
states: 84 rewrites: 1846 in 17ms cpu (17ms real)
C:Configuration --> {< L1 | x x ; < L2 | b b u u ; < L3 | z z > > >}

No more solutions.
States: 97 rewrites: 2090 in 20ms cpu (20ms real)

This modification is sound because the rewriting systems defined by these rules are terminating and confluent. The
price paid is that the properties of some intermediate states cannot be observed.

The accurate implementation leads to a new operational semantics where the phases of maximal parallel rewriting,
communication and dissolving are not strongly delimited. We think that this new small-step operational semantics can
provide a richer class of models described by P systems.



180 O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181

6. Conclusion and related work

We start by presenting some related models. Multisets represent the fundamental structure of other computation
models such as Gamma and Chemical Abstract Machine. As in P systems, multisets are viewed as entities containing
data (possibly, other multisets), and some multiset rules can be applied with a high degree of parallelism. The Gamma
formalism was proposed in [5] to capture the intuition of computation as a global evolution of a collection of atomic
values interacting freely. The computation model underlying Gamma is based on the chemical reaction metaphor; the
data are considered as a multiset of molecules and the computation is described by chemical reactions according to
some rules. Several reactions happen at the same time. The generality of the rules ensures a great expressive power
and, in a direct manner, computational universality. Even closer to P systems are the structured multisets defined in
[13]. Structured multisets can be seen as a syntactic facility allowing the organization of explicit data, and providing
a notation leading to higher-level programs manipulating more complex data structures.

The CHemical Abstract Machine (CHAM) formalism [6] extends the Gamma formalism introducing the notion
of sub-solution enclosed in a membrane, together with a given concurrency between the rules as a primitive notion.
Membranes appear in CHAM, but they are not similar to membranes in the P systems; they correspond to the contents
of membranes (multisets and lower level membranes). The goal of CHAM is completely different from that of P
systems. CHAM is mainly directed to the algebraic treatment of the processes these membranes can undergo; they
are more related to the recent introduced Brane calculus [8]. What Gamma and CHAM do not have is the notion of
localization, and the distribution aspects described easily by P systems.

Multiset rewriting lies at the core of these formalisms. Multiset rewriting is a special case of rewriting rules where
the operators considered are both associative and commutative. Several frameworks provide efficient environments to
apply multiset rewriting rules, eventually following some strategies. Among them, Maude and Elan [7] are two such
systems.

MGS is designed to represent and manipulate local transformations of entities structured by abstract topologies
[14]. A set of entities organized by an abstract topology is called a topological collection. The collection types can
range in MGS from sets and multisets to more structured types. MGS has the ability to nest different topologies in
order to describe biological systems. MGS can use transformation on multisets to express the computations of Gamma
and of the membrane systems. However MGS has a total order over rules.

Among these related approaches and formalisms with common ideas and differences between them, we have
selected membrane computing because it is directly inspired by the cell biology, and uses new and useful ideas:
localization, hierarchical structures, distribution, communication. The P systems provides an elegant and powerful
computation model, able to solve computationally hard problems in a feasible time, and useful to model various
biological phenomena.

In the framework of the membrane computing, we try to take advantage of good features of both structural
operational semantics and rewriting logic. In this way we use structural operational semantics to provide a detailed
step-by-step modelling of P systems computation. Operational semantics has a simple proof-theoretic semantics, and
it allows mathematical reasoning and proofs, by reasoning inductively or co-inductively about the inference steps.

A first Maude implementation is given in [1]; then a model-checking algorithm is applied for the first time to
analyze P systems. This implementation uses intensively the reflection property of rewriting logic, and is given for P
systems without dissolving. Since the analysis is given at meta-metalevel, it is time consuming. Trying to extend the
implementation for P systems with dissolving and other control mechanisms, we noticed that the main difficulty comes
from the lack of a formal operational semantics for P systems. The existence of such a formal description allows to
prove the correctness and completeness of the implementations. An operational semantics defining a deductive system
is presented in [2]. Starting from this formal semantics, we define a new implementation. A first version of that
implementation is presented in [3]. In this paper we extend the presentation from [3], and we show that implementing
the natural semantics of P systems into rewriting logic can help us to understand better the new model provided by
P systems. Moreover, rewriting logic semantics reveals the existence of various granularities in defining a small-step
operational semantics of the membrane systems. We prove the correctness and completeness of the implementations
with respect with the operational semantics. All these implementations can be found at http://thor.info.uaic.ro/∼rewps/
index.html.

The advantages of the implementations in Maude is given by the solid theoretical aspects of the rewriting logic,
and by the complex tools available in Maude. Among other several implementations of the membrane systems, we

http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html
http://thor.info.uaic.ro/~rewps/index.html


O. Andrei et al. / Theoretical Computer Science 373 (2007) 163–181 181

mention here only an implementation given on a parallel architecture, and few sequential implementations used in
solving NP-complete problems. A parallel implementation for transition membrane systems is reported in [10]. The
rules are implemented as threads. At the initialization phase, one thread is created for each rule. Rule applications
are performed in terms of rounds. To synchronize each thread (rule) within the system, two barriers implemented as
mutexes are associated with the thread. The implementation was designed for a cluster of computers. It is written in
C++ and it makes use of Message Passing Interface (MPI) as its communication mechanism.

Transition membrane systems and deterministic membrane systems with active membranes are simulated in
Prolog [12]; they are used to solve NP-complete problems as SAT, VALIDITY, Subset Sum, Knapsack, and partition
problems. Membrane systems with active membranes, input membrane and external output are simulated in CLIPS;
they are used to solve NP-complete problems in [18]. Polynomial-time solutions to NP-complete problems via
membrane systems can be reached trading time by space. This is done by producing an exponential amount of
membranes which can work in parallel.

Acknowledgement

The second and third authors’ research was partially supported by Romanian CEEX Grant 47/2005.

References

[1] O. Andrei, G. Ciobanu, D. Lucanu, Executable specifications of the P systems, Lecture Notes in Computer Science 3365 (2005) 127–146.
[2] O. Andrei, G. Ciobanu, D. Lucanu, A structural operational semantics of the P systems, Lecture Notes in Computer Science 3850 (2006)

32–49.
[3] O. Andrei, G. Ciobanu, D. Lucanu, Operational semantics and rewriting logic in membrane computing, Electronic Notes of Theoretical

Computer Science 156 (2006) 57–78.
[4] J.C.M. Baeten, J.A. Bergstra, J.W. Klop, W.P. Weijland, Term-rewriting systems with rule priorities, Theoretical Computer Science 67 (1989)

283–301.
[5] J.-P. Banatre, D. Le Metayer, A new computational model and its discipline of programming, INRIA Research Report No. 566, 1986.
[6] G. Berry, G. Boudol, The chemical abstract machine, Theoretical Computer Science 96 (1992) 217–248.
[7] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, ELAN from the rewriting logic point of view, Theoretical Computer Science 285

(2002) 155–185.
[8] L. Cardelli, Brane calculi, Lecture Notes in Computer Science 3082 (2005) 257–278.
[9] G. Ciobanu, Distributed algorithms over communicating membrane systems, Biosystems 70 (2003) 123–133.

[10] G. Ciobanu, W. Guo, P systems running on a cluster of computers, Lecture Notes in Computer Science 2933 (2004) 123–139.
[11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, J. F. Quesada, Maude: Specification and programming in rewriting

logic, Theoretical Computer Science 285 (2002) 1870–1243.
[12] A. Cordon-Franco, M.A. Gutierrez-Naranjo, M.J. Perez-Jimenez, A. Riscos-Nunez, F. Sancho-Caparrini, Implementing in prolog an effective

cellular solution for the Knapsack problem, Lecture Notes in Computer Science 2933 (2004) 140–152.
[13] P. Fradet, D. Le Metayer, Structured gamma, Science of Computing Programming 31 (1998) 263–289.
[14] J.-L. Giavitto, O. Michel, MGS: A rule-based programming language for complex objects and collections, Electronic Notes of Theoretical

Computer Science 59 (2001).
[15] J. Meseguer, G. Rosu, Rewriting logic semantics: From language specifications to formal analysis tools, Lecture Notes in Computer Science

3097 (2004) 1–44.
[16] Gh. Păun, Membrane Computing. An Introduction, Springer, 2002.
[17] Gh. Păun, Introduction to membrane computing, in: Proc. 1st Brainstorming Workshop on Uncertainty in Membrane Computing, 2004,

pp. 17–65.
[18] M.J. Perez-Jimenez, F.J. Romero-Campero, A CLIPS Simulator for Recognizer P Systems with Active Membranes, University of Sevilla

Techical Report 01/2004, 2004, pp. 387–413.
[19] G.D. Plotkin, Structural operational semantics, Journal of Logic and Algebraic Programming 60 (2004) 17–139.


	A rewriting logic framework for operational semantics of membrane systems
	Membrane systems
	Configurations and transitions
	Operational semantics
	Maximal parallel rewriting step
	Parallel communication of objects
	Parallel membrane dissolving

	Implementing P systems using rewriting logic
	Maude equational specification of P systems
	Maude evolution rules

	Operational correspondence
	Faithful and accurate implementations for P systems

	Conclusion and related work
	Acknowledgement
	References


