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The meaning of things lies not in the things themselves,
but in our attitude towards them.

Antoine de Saint-Exupéry
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Abstract

Membrane computing is a branch of natural computing which studies computational
models abstracted from the structure and the functioning of living cells. Membrane
computing is based on membrane systems or P systems. The computational model is
described by the following features: it has a finite tree-like structure, each membrane
determines a region where multisets of objects are processed by means of evolution
rules, adjacent regions can communicate, and membranes can be dissolved. The P
systems provide a nice abstraction for parallel and distributed systems.

The existing results in membrane computing refer mainly to the P systems charac-
terization of Turing computability, and to some polynomial solutions to NP-complete
problems.

The main purpose of this paper is to formally describe an operational semantics of
P systems. As a first result of the paper, we introduce an abstract syntax for P systems,
then we present the three sets of inference rules corresponding to the evolution stages of
a P system during a transition step: maximal parallel rewriting, parallel communication
through membranes, and parallel membrane dissolving. We provide these definitions
with correctness proofs. The above operational semantics is a natural semantics (or
big-step like), due to the parallel nature of this model.

The second result of the paper consists in an implementation for P systems in Maude,
an algebraic specification language based on rewriting logic. We obtain a simulator for
P systems for which we can use an existent LTL model checker implemented in Maude.
Moreover, this implementation provides a structural operational semantics (or small-
step like).

We end with the proof of the operational correspondence between the two opera-
tional semantics given above.



Chapter 1

Introduction

Membrane computing is a branch of natural computing which studies distributed and
parallel computing models and computing paradigms abstracted from the structure and
the functioning of living cells. Membrane computing is based on membrane systems or P
systems, a new class of computing devices introduced in [40]. The approach is based on
hierarchical and compartmentalized systems: finite cell-structures consisting of mem-
branes embedded in a main membrane; the membranes determine regions where objects
and evolution rules can be placed. The objects evolve according to the rules associated
with each region “in a maximally parallel manner, non-deterministically choosing the
rules and the objects” [41], and the regions cooperate in order to maintain the proper
behavior of the whole system. A computation starts from an initial configuration of the
system, and terminates when no further rule can be applied.

The domain is rather young and very active; new properties are discovered, as well
as connections with already known concepts. It is desirable to find new connections
with the applied computer science, including implementations and executable specifica-
tions. A sequential software simulator of membrane systems is presented in [11], and a
parallel simulator is presented in [10], while a flexible Web-based simulator is available
at http://psystems.ieat.ro.

The P systems are inspired by biological systems, but they are based on the the-
ory of automata and formal languages. The existing results in membrane computing
refer mainly to the P systems characterization of Turing computability, and to some
polynomial solutions to NP-complete problems. No operational semantics has yet been
proposed.

The first result presented in this paper consists of the formal description of an
operational semantics of P systems [3]. First we give an abstract syntax of P systems,
and then we define three sets of inference rules corresponding to the three stages of an
evolution step: maximal parallel rewriting, parallel communication through membranes,
and parallel membrane dissolving. Moreover we provide these definitions with proofs
for the correctness of each set of inference rules.

Structural operational semantics is an approach originally introduced by Plotkin
[42] in which the operational semantics of a programming language or a computational
model is specified in a logical way, independent of a machine architecture or imple-
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mentation details, by means of rules that provide an inductive definition based on
the elementary structures of the language or model. A clarifying introduction to this
subjects can be found in [26].

Within “structural operational semantics”, two main approaches coexist:

• Big-step semantics (also called natural semantics by Kahn [27], Gunter [25], and
Nielson and Nielson [37], and evaluation semantics by Hennessy [26]). In this
approach, the main inductive predicate describes the overall result or value of
executing a computation, ignoring the intermediate steps.

• Small-step semantics (also called structural operational semantics by Plotkin [42],
and Nielson and Nielson [37], computational semantics by Hennessy [26], and tran-
sition semantics by Gunter [25]). In this approach, the main inductive predicate
describes in more detail the execution of individual steps in a computation, with
the overall computation roughly corresponding to the transitive closure of such
small steps.

In general, the small-step style tends to require a greater number of rules that the
big-step style, but this is outweighed by the fact that the small-step rules also tend to
be simpler. The small-step style facilitates the description of interleaving ([36]).

Structural operational semantics is a specification formalism similar in some ways to
rewriting logic, but more limited in its expressive capabilities. The two main differences
(as presented in [29]) are the greater expressive power of rewriting logic due to the
ability for rewriting modulo user-definable axioms, and the fact that rewriting logic is a
full-fledged logic with both a proof and a model theory, whereas structural operational
semantics accounts are only proof-theoretic.

Rewriting logic has proven to be a very good semantic framework for concurrency
[32]. One important consideration is that, from a computational point of view, rewriting
logic deduction is intrinsically concurrent [29]. A wide variety of models of computa-
tions, including concurrent ones, can be naturally and directly expressed as rewrite
theories in rewriting logic without any artificiality. By combining both equations and
rules, rewriting logic semantic definitions unify both the semantic equations of equa-
tional semantics and the semantic rules of SOS [33].

Another result of this paper refers to a second style of operational semantics of
P systems resulted from translating the previously given operational semantics into a
rewriting logic theory specified in Maude. This translation is provided with an opera-
tional correspondence proof [2].

Regarding the big-step and small-step semantics, P systems are described in a big-
step style, and this is due to the parallel nature of this model. However, each operational
step of a P system is based on the contributions of its components: the ingredients of
each membrane (objects, messages, dissolving symbols, evolution rules) and the mem-
brane structure of the configurations. Translating the natural semantics of P systems
into rewriting logic, we get a certain refinement of the operational description similar
to the small-step like.
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By using an efficient implementation of rewriting logic as Maude, the formal spec-
ification of P systems is automatically transformed into an interpreter (hence, it is
executable). Moreover, Maude provides useful formal analysis tools like the search

command, a semi-decision procedure for finding failures of safety properties, and the
Maude’s LTL checker, a decision procedure for LTL properties of finite-state programs.

The paper is organized as follows.
Chapter 2 starts with the multiset notations used in this paper, then it reviews the

most important features of membrane computing and some types of P systems, with
more details on the transition P systems.

In Chapter 3 we introduce a natural semantics for P systems. We begin with an
abstract syntax for P systems, then we present the three sets of inference rules corre-
sponding to an evolution step accompanied by the corresponding correctness proofs.

Chapter 4 begins with a survey of the order-sorted equational logic - a sublogic of
rewriting logic. We continue with basic features of rewriting logic and its expressivity,
and we review three languages based on rewriting logic, with emphasis on Maude.
The chapter ends with an introduction of two formal analysis tools for concurrent
specification provided for free by Maude: the search command and the LTL model
checker.

Chapter 5 presents the implementation of P systems in Maude, the algebraic struc-
ture, equations and rules, which provides a structural operational semantics for P sys-
tems. The implementation is illustrated by two examples of P systems: a deterministic
one computing n2 for a given n ≥ 1, and a non-deterministic one computing values of
the form n2 for n = 1, 2, 3, .... Besides executing the resulted specifications, we illustrate
also the use of the two formal analysis tools presented in Chapter 4.

In Chapter 6 we prove the operational correspondence between the two operational
semantics given in Chapter 3 and Chapter 5.

Chapter 7 draws some conclusions and sketches some future work directions.

3



Chapter 2

Membrane Computing

2.1 Some General Prerequisites

We denote by N the set of natural numbers, and by [n] the set {1, . . . , n}, for every
n ≥ 1.

A multiset over an arbitrary set U is a mapping M : U −→ N associating to each
element a a finite natural number M(a) representing its multiplicity in the multiset.
The support of a multiset M is the set supp(M) = {a ∈ U |M(a) > 0}. A multiset M
is described by the set {(a,M(a)) | a ∈ supp(M)}. Therefore a multiset is finite when
its support is finite, and it is empty when its support is empty; the empty multiset is
denoted by ∅.

Among the operations on multisets we are interested in the union. Let M1,M2 :
U → N be two multisets. The union of M1 and M2 is the multiset M1 ]M2 : U → N
defined by (M1 ] M2)(a) = M1(a) + M2(a), for all a ∈ U , with supp(M1 ] M2) =
supp(M1) ∪ supp(M2). It is easy to see that the multisets M1 ] M2 and M2 ] M1

coincide on their common domain, and that M1 ] ∅ and M1 also coincide. Therefore
the union operation on multisets is commutative, and it has as identity element the
empty multiset.

An alphabet is a finite non-empty set of abstract symbols. Let O be an alphabet of
objects. Then we denote by O∗ the free monoid generated by O with the concatenation
operation (denoted by .) obeying the axioms of associativity and identity element (let
this be empty). Moreover we consider the free commutative monoid generated by O
denoted by O∗

c with the elements called strings.
If we denote by [O → N]f the set of finite multisets on O, then ([O → N]f ,], ∅) is a

free generated commutative monoid. There is an obvious biunivocal correspondence be-
tween the two free generated commutative monoids ([O → N]f ,], ∅) and (O∗

c , ., empty).
Consequently, hereinafter we represent a multiset of objects as a string from O∗

c , where
O is an alphabet of objects.
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2.2 Membrane Computing at a Glance

Membrane computing is an area of computer science which tries to abstract computing
models and computing paradigms from the structure and the functioning of living cells.
It deals with an abstract model of parallel and distributed computing inspired by cell
compartments and molecular membranes - a membrane system (hereinafter called P
system). A cell is divided in various compartments, each compartment with its own
multisets of objects and a different task, and all of them working simultaneously and
cooperating (by means of communication) to accomplish a more general task of the
whole system. P systems provide a nice abstraction for parallel systems, and a suitable
framework for distributed and parallel algorithms [9].

The essential ingredient of a P system is its membrane structure. This can take two
forms: (1) a hierarchical arrangement of membranes, like in a cell (hence described by
a tree), (2) a net of membranes, like in a tissue or a neural net (corresponding to a
graph-like structure). The rôle of a membrane is to separate two regions and to allow
(a certain type of) communication between them.

Membrane computing is rather young research area; the paper that introduced it is
[40]. It is important to remark that membrane computing was not conceived to provide
models to biology; but even if the current research on this area still does not provide
such kinds of models, the recent developments and increasing interest promise good
results in this direction.

But although membrane computing does not (yet) provide models to biology, it is
considered a part of natural computing. The justification consists in its attempt to
provide to computer science new useful ideas, models, paradigms from the way living
cells “compute”. Neural networks, genetic algorithms, and DNA computing are three
areas of natural computing already well established (in the first two cases also with
proved practical usefulness). Membrane computing can be seen as an extension of DNA
(more generally, molecular) computing, from the “one-processor” level to a distributed
computing model. However, nature computes not only at the neural or genetic level,
but also at the cellular level. None of the domains enumerated above considers the
cell itself as its main object of research, nor it pays any attention to membranes and
compartmentalization. And this is where membrane computing comes into stage.

2.3 The General Structure and Functioning of a

Living Cell

In this section we present the cell from the biologist point of view as in [41], while in
the next section we continue with the computer scientist point of view.

Everything alive consists of cells or has to do in a direct way with cells. The cell is
the smallest “thing” unanimously considered alive. It is very small and very intricate
in its structure and functioning, it has an elaborate internal activity and an exquisite
interaction with the neighboring cells, and with the environment in general. It is fragile
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and robust at the same time, with a way to organize and control the bio-chemical and
informational processes which was polished during billions of years of evolution.

Any cell means membranes. The cell itself is defined (separated from its environ-
ment) by a membrane, the external one. Inside the cell, several membranes enclose
“protected reactors”, compartments where specific biochemical processes take place.
In particular, a membrane encloses the nucleus (of eukaryotic cells), where the genetic
material is placed. Through vesicles enclosed by membranes one can transport packages
of molecules from a part of the cell to other parts of the cell - in such way that the
transported molecules are not “aggressed” during their journey by neighboring chemi-
cals.

Then, the membranes allow a selective passage of substances among the compart-
ments delimited by them. This can be a simple selection by size, in the case of small
molecules, or a much more intricate selection, through protein channels, which not only
select, but can also move molecules from a low concentration to a higher concentration,
perhaps coupling molecules, through so-called symport and antiport processes.

The membranes of a cell do not only delimit compartments where the specific re-
actions take place in solution, hence inside the compartments, but many reactions in a
cell develop on the membranes, catalyzed by the many proteins bound on them. It is
said that when a compartment is too large for the local biochemistry to be efficient, life
creates membranes, both in order to create smaller “reactors”, and in order to create
further “reaction surfaces”.

There are cells living alone (unicellular organism, such as ciliates, bacteria, etc.),
but in general the cells are organized in tissues, organs, organisms, communities of
organisms. All these suppose a specific organization, starting with the direct communi-
cation/cooperation among neighboring cells, and ending with the interaction with the
environment, at various levels. Together with the internal structure and organization
of the cell, all these suggest a lot of ideas, exciting from a mathematical point of view,
and potentially useful from a computability point of view. Part of them are already
explored in membrane computing.

2.4 The Structure of Cell-Like Systems

A detailed description of the P systems can be found in [39]. A P system consists of a
hierarchy of membranes that do not intersect, with a distinguishable membrane, called
the skin membrane, surrounding them all. A membrane without any other membranes
inside it is said to be elementary, while a non-elementary membrane it is said to be
a composite membrane. The membranes produce a compartmentalization consisting
of regions. For each membrane there is a unique associated region: the space delim-
ited from above by it and from below by the membranes placed directly inside, if any
exists. The space outside the skin membrane is called the outer region (or the environ-
ment). Because of this one-to-one correspondence we sometimes use membrane instead
of region.

The membranes (and the corresponding regions) are uniquely labelled using a given
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set, usually ranging from 1 (for the skin) to the total number of membranes (with 0 for
the outer region); but the labels can be more informative names.

Graphically, a membrane structure is represented by a Venn diagram in which two
sets can be either disjoint, or one is a subset of the other. This is illustrated in Figure
2.1:
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Figure 2.1: A membrane structure

Clearly, a hierarchical structure of membranes can be represented by a tree with
skin as its root and elementary membranes as leaves. Figure 2.2 gives a tree which
describes the membrane structure from Figure 2.1. This tree-like representation sug-
gests the usage of graph-theoretic notions such as the distance in the tree, the level of
a membrane, the height/depth of the membrane structure, as well as terminology, such
as parent/child membrane, ancestor, etc.

Another representation of a hierarchical structure of membranes is given by a string
of labelled matching parentheses; each pair of matching parentheses corresponds to a
membrane. For instance, a string corresponding to the structure from Figure 2.1 is the
following one:

[1 [2 ]2 [3 ]3 [4 [5 ]5 [6 [8 ]8 [9 ]9 ]6 [7 ]7 ]4 ]1.

The Venn diagrammatic-like representation makes clear that the order of sibling
membranes is irrelevant (as they float around), while, on the contrary, the inclusion
relationship (or parent-child relationship in the tree-like representation) between mem-
branes is essential. This is the reason for saying that Figure 2.2 gives “a” tree repre-
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Figure 2.2: A tree describing the membrane structure from Figure 2.1

sentation for the given membrane structure; while for the parenthesized representation,
the following string is also correct:

[1 [3 ]3 [4 [6 [8 ]8 [9 ]9 ]6 [7 ]7 [5 ]5 ]4 [2 ]2 ]1.

The compartments of a cell contains substances (ions, small molecules, macro-
molecules) swimming in an aqueous solution; there is no ordering there, everything
is closed to everything, the concentration matters, i.e., the number of copies of each
molecule. Hence we work with sets of objects whose multiplicities matters - multisets.

A multiset can be represented in many ways; but, as we presented in the beginning
of this chapter, we use the string representation.

It is important to emphasize that membrane computing deals with models which
are intrinsically discrete (hence working with multisets of objects of finite support) and
evolve through rewrite-like rules.

We have given a description of P systems in the general form, without specifying
the type of rules. Depending of the way rules are applied and their form there are three
central types of cell-like P systems considered in membrane computing: transition P
systems, P systems with symport/antiport rules, and P systems with active membranes.

2.5 Transition P Systems

Only rules in a region delimited by a membrane act on the objects in that region. The
multisets of objects from a region correspond to the “chemicals swimming in the solution
in the cell compartment”, while the rules correspond to the “chemical reactions possible
in the same compartment”. The rules must contain target indications, specifying the
membrane where objects are sent after applying the rule. The objects can remain in the
same region when they have a here target, or they can pass through membranes, in two
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directions: they can be sent out of the membrane which delimits a region from outside,
or can be sent in one of the membranes which delimit a region from inside, precisely
identified by its label. In a step, the objects can pass only through one membrane. We
say that objects are enclosed in messages together with the target indication. Therefore
we have here messages of typical form (w, here) with w a possibly empty multiset of
objects, out messages of typical form (w, out), and in messages of typical form (w, inL),
both with w a non-empty multiset of objects.

For the sake of simplicity, in the following of this paper we consider that the messages
with the same target indication merge into one message, such that

(w1, here) . . . (wn, here) = (w, here),
(w1, inL) . . . (wn, inL) = (w, inL), and
(w1, out) . . . (wn, out) = (w, out),

where w = w1 . . . wn.
A membrane is dissolved if the symbol δ resulted from a rule application. When such

an action takes place, the membrane disappears, its contents (objects and membranes)
remain free in the membrane placed immediately outside, and the evolution rules of the
dissolved membranes are lost. The skin membrane is never dissolved. The application of
evolution rules is done in parallel, and it is eventually regulated by priority relationships
between rules.

Formally, a transition P system is a structure

Π = (O, µ, w1, . . . , wm, (R1, ρ1), . . . , (Rm, ρm), io),

where:

(i) O is an alphabet of objects;

(ii) µ is a membrane structure;

(iii) wi are the initial multisets over O associated with the regions defined by µ;

(iv) Ri are finite sets of evolution rules over O associated with the membranes, of
typical form u → v, with u a non-empty multiset of objects, and v a non-empty
multiset of messages and/or the dissolving symbol δ;

(v) ρi is a partial order relation over Ri, specifying a priority relation among the rules:
(r1, r2) ∈ ρi iff r1 > r2 (i.e., r1 has a higher priority than r2);

(vi) i0 is either a number between 1 and m specifying the output membrane of Π, or
it is equal to 0 indicating that the output is the outer region.

Observation. Hereinafter when we say P systems, we refer to transition P systems if
no other specific type is specified (like symport/antiport, with active membranes, etc.)

The total number of membranes in a P systems gives its degree; hence Π is a P
system of degree m.

Since the skin is not allowed to be dissolved, we consider that the rules of the skin
do not involve δ.
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In order to describe a membrane we consider its label and the current multiset of
objects together with its structure. We use the mappings rules and priority to associate
to a membrane label the set of evolution rules and the priority relation : rules(Li) = Ri,
priority(Li) = ρi, and the projections L and w which return from a membrane its label
and its current multiset, respectively.

Notation. If X is a set, then X∗
c denotes the set of the finite multisets defined over

X, and X+
c denotes X∗

c without the empty multiset. This notations are inspired by the
one-to-one correspondence from the set of the finite multisets defined over X onto the
free commutative monoid generated by X.

Formally, the set of membranes for a P system Π, denoted by M(Π), and the
membrane structure are inductively defined as follows:

• if L is a label, and w is a multiset over O ∪ (O∗
c × {here}) ∪ (O+

c × {out}) ∪ {δ},
then 〈 L | w 〉 ∈ M(Π); 〈 L | w 〉 is called simple (or elementary) membrane, and
it has the structure 〈〉;

• if M1, . . . , Mn ∈M(Π) with n ≥ 1, the structure of Mi is µi for all i ∈ [n], L is a
label, w is a multiset over O∪ (O∗

c ×{here})∪ (O+
c ×{out})∪ (O+

c ×{inL(Mj)|j ∈
[n]}) ∪ {δ}, then 〈 L |w ; M1, . . . ,Mn 〉 ∈ M(Π); 〈 L |w ; M1, . . . , Mn 〉 is called a
composite membrane, and it has the structure 〈µ1, . . . , µn〉.

A finite multiset of membranes is usually written as M1, . . . , Mn. We denote by
M+(Π) the set of non-empty finite multisets of membranes. The union of two multi-
sets of membranes M+ = M1, . . . ,Mm and N+ = N1, . . . , Nn is written as M+, N+ =
M1, . . . ,Mm, N1, . . . , Nn. An element from M+(Π) is either a membrane, or a set of
sibling membranes.

A committed configuration for a P system Π is a skin membrane which has no
messages and no dissolving symbol δ, i.e., the multisets of all regions are elements in
O∗

c . We denote by C(Π) the set of committed configurations for Π, and it is a proper
subset of M(Π). We have C ∈ C(Π) iff C is the skin membrane of Π, and w(M) is a
multiset over O for each membrane M in C.

An intermediate configuration is a skin membrane in which we have messages or the
dissolving symbol δ. The set of intermediate configurations is denoted by C#(Π). We
have C ∈ C#(Π) iff C is the skin membrane of Π such that there is a membrane M in C
with w(M) = w′w′′, w′ ∈ (Msg(O) ∪ {δ})+

c , and w′′ ∈ O∗
c . By Msg(O) we denote the

set (O∗ × {here})∪ (O+ × {out})∪ (O+ × {inL(M)}), with the mention that a message
inL is allowed to appear in a region only if the membrane labelled by L is included in
that region. C#(Π) is also a proper subset of M(Π).

A configuration is either a committed configuration or an intermediate configuration.
Each P system has an initial committed configuration which is characterized by the

initial multiset of objects for each membrane and the initial membrane structure of
the system. The membranes preserve the initial labelling, evolution rules and priority
relation among them in all subsequent configurations.

For two configurations C1 and C2 of Π, we say that there is a transition from C1 to
C2, and write C1 ⇒ C2, if the following steps are executed in the given order:
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1. maximal parallel rewriting step, consisting of non-deterministically assigning ob-
jects to evolution rules in every membrane and executing them in a maximal
parallel manner;

2. parallel communication of objects through membranes, consisting in sending exist-
ing messages;

3. parallel membrane dissolving, consisting in dissolving the membranes containing
δ.

The last two steps take place only if there are messages or δ symbols resulted from the
first step, respectively. If the first step is not possible, consequently neither the other
two steps, then we say that the system has reached a halting configuration if the output
region i0 still exists in this configuration (in the case when i0 is the label of a membrane,
it can be dissolved during the computation). In this case we say that the computation
is successful.

We can associate a result to a successful computation in various ways. If we have an
output region specified, and this is an internal region, then we have an internal output:
we count the objects present in the output region in the halting configuration and this
number is the result of the computation. When we have i0 = 0, we count the objects
which leave the system during the computation, and this is called external output. In
both cases the result is a number. If we distinguish among different objects, then we
can have as the result a vector of natural numbers. The objects which leave the system
can also be arranged in a sequence according to the moments when they exit the skin
membrane, and in this case the result is a string. Non-halting computations provide
no output, and if the output membrane is dissolved during the computation, then the
computation aborts.

In our approach, the output region corresponds to an internal one, and the rules
from the output region do not involve the dissolving symbol δ.

In chapter 3 we present an operational semantics of the P systems, considering each
of the three steps.

Example 2.1 Consider the P system of degree 4

Π1 = (O, µ,w1, w2, w3, w4, (R1, ρ1), (R2, ρ2), (R3, ρ3), (R4, ρ4), 4),
O = {a, c, d, e, f},
µ = [1[2[3]3[4]4]2]1

w1 = λ,R1 = ∅, ρ1 = ∅,
w2 = λ, ρ2 = {(r1, r2)},
R2 = {d → (c, here), c → (a, here), a → (a, here)(e, in4),

r1 : ff → (f, here), r2 : f → δ},
w3 = ancf, R3 = {r1 : ca → (cd, here), r2 : c → δ, f → (ff, here)}, ρ3 = {(r1, r2)},
w4 = λ,R4 = ∅, ρ4 = ∅

The initial configuration is given in Figure 2.3.
There are no objects in the membranes 1, 2 and 4. The only possibility is to start

in membrane 3. Using the rules ca → (cd, here) and f → (ff, here), in parallel for all
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ca → (cd, here)
> c → δ

f → (ff, here)

d → (c, here)
c → (a, here)

a → (a, here)(e, in4)

ff → (f, here) > f → δ

Figure 2.3: The initial configuration of a deterministic P system computing n2, n ≥ 1

occurrences of a,c and f currently available, after n steps we get the multiset cdnf 2n
.

During the next step we can only use the rules c → δ and f → (ff, here): the only
occurrence of c is deleted, the number of occurrences of f is doubled, and δ occurs in
membrane 3; hence region 3 disappears, its rules are lost, and its objects, dnf 2n+1

, are
moved to region 2; therefore the computation continues in membrane 2. According to
the priority relation the rule ff → (f, here) is used as much as possible. The rules
d → (c, here) and ff → (f, here) are applied in parallel for n times, and we get the
multiset cnf 2n

. Then the rules c → (a, here) and ff → (f, here) are applied in parallel
for n times, resulting the multiset anf 2n−1

. Now we can apply in parallel for (n − 1)
times the rules a → (a, here)(e, in4) and ff → (f, here): during each step the number
of a’s remains constantly equal to n, the number of f ’s is halved, and n copies of e
are sent in membrane 4. Hence after these (n − 1) steps, we get anf in membrane
2 and en(n−1) in membrane 4. During the next step the rule a → (a, here)(e, in4) is
applied n times (sending n copies of e in membrane 4), and f → δ one time (dissolving
membrane 2). The obtained configurations corresponds to the skin membrane which
contains the multiset an, and the output membrane 4 with the multiset en2

. There are
no rules in membranes 1 and 4, hence the system cannot evolve any further. Therefore
this is a halting configuration, and the result of the computation is exactly the number
of objects from the output membrane 4, that is n2.
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2.6 Other Types of Cell-Like P Systems

There are three central types of cell-like P systems considered in membrane computing,
each of them allowing many possible extensions with most spectacular features. Details
on these features can be found in [41].

An important part of the cell activity is related to the passage of substances through
membranes. This operation is formalized by two types of rules:

- symport rules of the form (w, in), (w, out), and

- antiport rules of the form (w1, out; w2, in),
where w,w1, w2 are multisets of arbitrary size.

A natural question rises on the computability power of this type of communication,
that is the power of systems with only symport and antiport rules. Here the P systems
with symport/antiport rules come into stage. Their definition has many things in
common with the definition of transition P systems. In the following we explain the
differences.

A P system with symport/antiport rules is a construct of the form:
Π = (O, µ, w1, . . . , wm, E, R1, . . . , Rm, io).

E is a set of objects (E ⊆ O) which are present in the environment in arbitrarily
many copies. Because objects are only moved across membranes and a computation
starts with a finite multiset of objects present in the system, the number of objects
necessary for the computation cannot be increased if there is no way to supply objects;
this can be done by considering the set E. The environment is supposed inexhaustible,
hence the objects from E are supposed inexhaustible, irrespective how many of them
are brought into the system, arbitrarily many remain outside.

The rules from R can be of two types, symport rules and antiport rules, of the
forms specified above. As in the case of transition P systems, the rules are used in the
non-deterministic maximally parallel manner. But now the rules are associated with
the membranes, not with the regions, because each rules governs the communication
through a specific membrane.

The P systems with symport/antiport rules have a series of attractive characteristics:
they are fully based on biological types of multiset processing rules; the environment
takes a direct part into the evolution of the system; the computation is done only by
communication, no object is changed, the objects only move across membranes; no
object is created or destroyed, hence the conservation law is fulfilled.

The membranes play an important role in the reactions which take place in a cell,
and, moreover, they can evolve themselves, either changing their characteristics or even
getting divided. This idea motivated the formalization of the third type of cell-like P
system, the P systems with active membranes. In this case, membranes have electrical
polarizations, objects evolve also in the maximally parallel manner as in the other two
types of P systems, and the developmental rules are divided in object evolution rules,
in and out communication rules, dissolving rules, and division rules for elementary
membranes.

An important feature that should be noted for P systems with active membranes
is that the membrane structure evolves during the computation not only by decreasing
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the number of membranes, due to dissolving rules, but also by increasing the number
of membranes, by division.

Having a dynamical membrane structure allows not only with membrane dissolving
and membrane division (like in the case of P systems with active membranes), but also
operations on membranes like creation, merging, endocytosis, exocytosis, or gemmation.

Another interesting feature is provided by the structure of objects which we ignore.
This leads for example to splicing P systems, systems that evolve by means of rules
inspired by DNA computing.

We have presented succinctly some features of cell-like P system classes, many of
them constituting very interesting exercises (or challenges) for formalization in the same
manner as in the following chapters.

2.7 The Power of P Systems

The variety of suggestions from biology and the range of possibilities to define the
architecture and the functioning of a membrane-based-multiset-processing device are
practically endless, and already the literature of membrane computing contains a very
large number of models. Membrane computing is not a theory related to a specific
model, it is a framework for devising compartmentalized models. There are already
proposed many types of P systems, and the flexibility and the versatility of P systems
seem to be, in principle, unlimited.

The initial goal of membrane computing was to define computability models inspired
from the cell biology, and indeed a large part of the investigations in this area was
devoted to producing computing devices and examining their computing power, in
comparison with the standard models in computability theory, Turing machines and
their restricted variants. It has already been proved that most of the considered classes
of P systems are equal in power with Turing machines, i.e, they are computationally
complete (or Turing complete). Because these proofs are always constructive, universal
P systems are easy to be obtained - P systems able to simulate any other P system of
the given type, after introducing a “code” of the particular systems as an input in the
universal one.

All classes of systems presented in [41] (hence including the ones presented in the
previous section) are known to be universal. Thus the cell turns out to be a very
powerful “computer”, both when standing alone and in tissue.

In general, for P systems working with symbol-objects, these universality results
are proved by simulating computing devices which are known to be universal, and
which either work with numbers or do not essentially use the positional information
from strings. This is possible for register machines, matrix grammars in the binary
normal form, programmed grammars, regularly controlled grammars, graph-controlled
grammars (but not for arbitrary Chomsky grammars and for Turing machines, which
can be used only in the case of string-objects).

In [40] a proof of the computational completeness for transition P systems is pre-
sented using matrix grammars with appearance checking, while in [41] the same result
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is presented for P systems with symport/antiport rules by means of simulating register
machines in a surprisingly simple manner.
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Chapter 3

P Systems Operational Semantics:
A Big-Step Approach

Structural operational semantics descriptions of systems start from abstract syntax.
Specifications of abstract syntax introduce symbols for syntactic sets, meta-variables
ranging over those sets, and notation for constructor functions. Some of the syntactic
sets are usually regarded as basic, and left open or described only informally. The
abstract syntax for P systems is given as follows:

Objects o ∈ O
Multisets of objects w ∈ O∗

c

Labels L ∈ {Skin} ∪ L
Messages (w, here), (w, inL), (w, out) ∈ Msg(O)
Dissolving symbol δ
Membrane resources w ∈ (O ∪Msg(O) ∪ {δ})∗c
Membranes M ∈M(Π), M ::= 〈L | w〉 | 〈L | w; M+〉
Sibling membranes M+ ∈M+(Π) = M(Π)+

c

Committed configurations C ∈ C(Π)
Intermediate configurations C ∈ C#(Π)
Configurations C ∈ C(Π) ∪ C#(Π)

In structural operational semantics, the evolution of systems is modelled by a tran-
sition system specified inductively, by rules. The transition system for a P system Π
is intuitively defined as follows. For two committed configurations C1 and C2 of Π, we
say that there is a transition from C1 to C2, and write C1 ⇒ C2, if the following steps
are executed in the following given order:

1. the maximal parallel rewriting step, consisting of non-deterministically assigning
objects to evolution rules in every membrane, and executing them in a maximal
parallel manner;

2. the parallel communication of objects through membranes, consisting in sending
the existing messages;
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3. the parallel membrane dissolving, consisting in dissolving the membranes which
contain the δ symbol.

The last two steps take place only if there are messages or δ symbols resulted from the
first step, respectively. If the first step is not possible, consequently neither the other
two steps, then we say that the system has reached a halting configuration. A halting
configuration is always a committed one.

Next we present in detail each of the three steps.

3.1 Maximal Parallel Rewriting Step

We can pass from a configuration to another one by using the evolution rules. This
is done in parallel: all objects, from all membranes, which can be the subject of local
evolution rules, as prescribed by the priority relation, should evolve simultaneously.
The rules of each membrane are using its current objects as much as this is possible in
a parallel and non-deterministic way. However, an object introduced by a rule cannot
evolve at the same step by means of another rule. The use of a rule u → v in a region
with a multiset w means to subtract the multiset identified by u from w, and then to
add the objects of v according to the form of the rule.

We denote the maximal parallel rewriting on membranes by
mpr
=⇒ and by

mpr
=⇒L the

maximal parallel rewriting for a multiset of objects of the membrane labelled by L.

Definition 3.1 The irreducibility property w.r.t. the maximal parallel rewriting rela-
tion for multisets of objects, messages, and δ, for membranes, and for sets of sibling
membranes is defined as follows:

• a multiset w consisting only of objects is L-irreducible if there are no rules in
rules(L) applicable to w w.r.t. the priority relation priority(L);

• a multiset containing at least a message or the dissolving symbol δ is L-irreducible;

• a simple membrane 〈 L | w 〉 is mpr-irreducible if w is L-irreducible;

• a non-empty set of sibling membranes M1, . . . , Mn is mpr-irreducible if Mi is
mpr-irreducible, for every i ∈ [n];

• a composite membrane 〈L |w ; M1, . . . , Mn 〉, with n ≥ 1, is mpr-irreducible if w
is L-irreducible, and the set of sibling membranes M1, . . . ,Mn is mpr-irreducible.

Definition 3.2 Let M be a membrane labelled by L, and w a multiset of objects. A
non-empty multiset R = (u1 → v1, . . . , un → vn) of evolution rules is (L,w)-consistent
if:

- R ⊆ rules(L),

- w = u1 . . . unz, so each rule r ∈ R is applicable on w,
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- (∀r ∈ R, ∀r′ ∈ rules(L)) r′ applicable on w implies (r′, r) /∈ priority(L),

- (∀r′, r′′ ∈ R) (r′, r′′) /∈ priority(L),

- the dissolving symbol δ has at most one occurrence in the multiset v1 . . . vn.

The maximal parallel rewriting relation
mpr
=⇒ is defined by the following infer-

ence rules:

For each w ∈ O+
c and L-irreducible z ∈ O∗

c such that w = u1 . . . unz, and
(u1 → v1, . . . , un → vn) (L,w)-consistent,

(R1)
w

mpr
=⇒L v1 . . . vnz

For each w ∈ O+
c , w′ ∈ (O ∪Msg(O) ∪ {δ})+

c ,

(R2)
w

mpr
=⇒L w′

〈 L | w 〉 mpr
=⇒ 〈 L | w′ 〉

For each w ∈ O+
c , w′ ∈ (O ∪Msg(O) ∪ {δ})+

c , M+,M ′
+ ∈M+(Π),

(R3)
w

mpr
=⇒L w′,M+

mpr
=⇒ M ′

+

〈 L | w ; M+ 〉 mpr
=⇒ 〈 L | w′ ; M ′

+ 〉

For each w ∈ O+
c , w′ ∈ (O ∪Msg(O) ∪ {δ})+

c , and mpr-irreducible M+ ∈M+(Π),

(R4)
w

mpr
=⇒L w′

〈 L | w ; M+ 〉 mpr
=⇒ 〈 L | w′ ; M+ 〉

For each L-irreducible w ∈ O∗
c , M+,M ′

+ ∈M+(Π),

(R5)
M+

mpr
=⇒ M ′

+

〈 L | w ; M+ 〉 mpr
=⇒ 〈 L | w ; M ′

+ 〉

For each M,M ′ ∈M(Π), M+,M ′
+ ∈M+(Π),

(R6)
M

mpr
=⇒ M ′,M+

mpr
=⇒ M ′

+

M, M+
mpr
=⇒ M ′,M ′

+

For each M,M ′ ∈M(Π), and mpr-irreducible M+ ∈M+(Π),

(R7)
M

mpr
=⇒ M ′

M, M+
mpr
=⇒ M ′,M+
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Example 3.1 We consider the P system described in example 2.1. Then the inference
tree for

〈 1 | empty ; 〈 2 | aaf ; 〈 4 | ee 〉 〉 〉 mpr
=⇒ 〈 1 | empty ; 〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉 〉

is:

(R1)

aaf
mpr
=⇒4 (aa, here)(ee, 4)δ

(R4)

〈 2 | aaf ; 〈 4 | ee 〉 〉 mpr
=⇒ 〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉

(R5)

〈 1 | empty ; 〈 2 | aaf ; 〈 4 | ee 〉 〉 〉 mpr
=⇒ 〈 1 | empty ; 〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉 〉

Lemma 3.1 If w
mpr
=⇒L w′, then w′ is L-irreducible.

Proof: We get w
mpr
=⇒L w′ only applying (R1) using an (L,w)-consistent multiset of

rules. Then we have w′ = w′′z such that w′′ ∈ (Msg(O) ∪ {δ})+
c , and z ∈ O∗

c is
L-irreducible. Then w′ is L-irreducible by definition because it contains messages or δ.

Lemma 3.2 If M+
mpr
=⇒ M ′

+ then M ′
+ is mpr-irreducible.

Proof: Let M+,M ′
+ be two non-empty sets of membranes such that M+

mpr
=⇒ M ′

+. We
prove that M ′

+ is mpr-irreducible by induction on the depth of the associated inference
tree. We consider all possible cases for the final step of the inference:

(i) M+
mpr
=⇒ M ′

+ is inferred by (R2). Then M+ = 〈 L | w 〉 and M ′
+ = 〈 L | w′ 〉 with

w
mpr
=⇒ w′. By Lemma 3.1 w′ is L-irreducible, therefore M ′

+ is mpr-irreducible by
definition.

(ii) M+
mpr
=⇒ M ′

+ is inferred by (R3). Then M+ = 〈L |w ; N+ 〉 and M ′
+ = 〈L |w′ ; N ′

+ 〉
with w

mpr
=⇒L w′ inferred by (R1), and N+

mpr
=⇒ N ′

+ inferred by a shorter inference
tree. By Lemma 3.1 w′ is L-irreducible, and by inductive hypothesis, N ′

+ is mpr-
irreducible. Therefore M ′

+ is mpr-irreducible by definition.

(iii) M+
mpr
=⇒ M ′

+ is inferred by (R4). Then M+ = 〈 L | w ; N+ 〉 and M ′
+ =

〈L |w′ ; N+ 〉 with w
mpr
=⇒ w′ (therefore w′ is L-irreducible by Lemma 3.1) and N+

mpr-irreducible. By definition we obtain that M ′
+ is mpr-irreducible.

(iv) M+
mpr
=⇒ M ′

+ is inferred by (R5). Then M+ = 〈L |w ; N+ 〉 and M ′
+ = 〈L |w ; N ′

+ 〉
with w L-irreducible and N+

mpr
=⇒ N ′

+ inferred by a shorter inference tree. By
inductive hypothesis N ′

+ is mpr-irreducible, therefore M ′
+ is mpr-irreducible.

(v) M+
mpr
=⇒ M ′

+ is inferred by (R6). Then M+ = M, N+ and M ′
+ = M ′, N ′

+ where

M
mpr
=⇒ M ′ and N+

mpr
=⇒ N ′

+ are inferred by shorter inference trees. By inductive
hypothesis M ′ and N ′

+ are mpr-irreducible, therefore M ′, N ′
+ is mpr-irreducible.
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(vi) M+
mpr
=⇒ M ′

+ is inferred by (R7). Then M+ = M, N+ and M ′
+ = M ′, N+ where

M
mpr
=⇒ M ′ is inferred by a shorter inference tree, and N+ is mpr-irreducible. By

inductive hypothesis M ′ is mpr-irreducible, therefore M ′, N+ is mpr-irreducible
by definition.

Theorem 3.1 Let Π be a P system. If C ∈ C(Π) and C
mpr
=⇒ C ′, then C ′ ∈ C#(Π) and

C ′ is mpr-irreducible.

The proof of the theorem follows easily from Lemma 3.2.

3.2 Parallel Communication of Objects

Communication through two membranes M1 and M2 can take place only if one is inside
the other.

We say that a multiset w is here-free/inL-free/out-free if it does not contain any
here/inL/out messages, respectively.

For w a multiset of objects and messages, we introduce the operations obj, here,
out, and inL as follows:

obj(w) is obtained from w by removing all messages,

here(w) =

{
empty , if w is here-free
w′′ , if w = w′(w′′, here) ∧ w′ is here-free

out(w) =

{
empty , if w is out-free
w′′ , if w = w′(w′′, out) ∧ w′ is out-free

inL(w) =

{
empty , if w is inL-free
w′′ , if w = w′(w′′, inL) ∧ w′ is inL-free

We recall that all the messages with the same target merge in one message.

Definition 3.3 The tar-irreducibility property for membranes and for sets of sibling
membranes is defined as follows:

1. a simple membrane 〈 L | w 〉 is tar-irreducible iff L 6= Skin ∨ (L = Skin ∧
w is out-free);

2. a non-empty set of sibling membranes M1, . . . , Mn is tar-irreducible iff Mi is
tar-irreducible, for every i ∈ [n];

3. a composite membrane 〈 L | w ; M1, . . . , Mn 〉, n ≥ 1, is tar-irreducible iff:

(a) L 6= Skin ∨ (L = Skin ∧ w is out-free),

(b) w is inL(Mi)-free, for every i ∈ [n],

(c) for all i ∈ [n], w(Mi) is out-free,

(d) the set of sibling membranes M1, . . . , Mn is tar-irreducible.
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We consider Skin to refer the label of the skin membrane.

Notation. We treat the messages of form (w′, here) as a particular communication
inside their membranes consisting in substitution of (w′, here) by w′. We denote by
w the multiset obtained by replacing (here(w), here) by here(w) in w. For instance,
if w = a (bc, here) (d, out) then w = abc (d, out), where here(w) = bc. We note that
inL(w) = inL(w), and out(w) = out(w).

The parallel communication relation
tar
=⇒ is defined by the following five infer-

ence rules:

For each tar-irreducible M1, . . . , Mn ∈M+(Π) and multiset w such that
here(w) 6= empty, or L = Skin ∧ out(w) 6= empty, or it exists i ∈ [n] with
inL(Mi)(w)out(w(Mi)) 6= empty or here(w(Mi)) 6= empty,

(C1)〈 L | w ; M1, . . . , Mn 〉 tar
=⇒ 〈 L | w′ ; M ′

1, . . . , M
′
n 〉

where

w′ =
{

obj(w) out(w(M1)) . . . out(w(Mn)) , if L = Skin
obj(w) (out(w), out) out(w(M1)) . . . out(w(Mn)) , otherwise

and

w(M ′
i) = obj(w(M ′

i)) inL(Mi)(w), for all i ∈ [n]

For each M1, . . . , Mn,M
′
1, . . . , M

′
n ∈M+(Π), and multiset w,

(C2)
M1, . . . , Mn

tar
=⇒ M ′

1, . . . , M
′
n

〈 L | w ; M1, . . . , Mn 〉 tar
=⇒ 〈 L | w′′ ; M ′′

1 , . . . , M ′′
n 〉

where

w′′ =
{

obj(w) out(w(M ′
1)) . . . out(w(M ′

n)) , if L = Skin
obj(w) (out(w), out) out(w(M ′

1)) . . . out(w(M ′
n)) , otherwise

and each M ′′
i is obtained from M ′

i by replacing its resources by

w(M ′′
i ) = obj(w(M ′

i)) inL(M ′
i)
(w), for all i ∈ [n]

For each multiset w such that here(w) out(w) 6= empty,

(C3)〈 Skin | w 〉 tar
=⇒ 〈 Skin | obj(w) 〉

For each M,M ′ ∈M(Π), and tar-irreducible M+ ∈M+(Π),

(C4)
M

tar
=⇒ M ′

M, M+
tar
=⇒ M ′,M+
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For each M ∈M(Π), M+ ∈M+(Π),

(C5)
M

tar
=⇒ M ′,M+

tar
=⇒ M ′

+

M, M+
tar
=⇒ M ′,M ′

+

Example 3.2 The inference tree for

〈 1 | empty ; 〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉 〉 tar
=⇒ 〈 1 | empty ; 〈 2 | aaδ ; 〈 4 | eeee 〉 〉 〉

is:

(C1)

〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉 tar=⇒ 〈 2 | aaδ ; 〈 4 | eeee 〉 〉
(C2)

〈 1 | empty ; 〈 2 | (aa, here)(ee, in4)δ ; 〈 4 | ee 〉 〉 〉 tar=⇒ 〈 1 | empty ; 〈 2 | aaδ ; 〈 4 | eeee 〉 〉 〉

Lemma 3.3 If M+
tar
=⇒ M ′

+, then M ′
+ is tar-irreducible.

Proof: Let M+,M ′
+ be two non-empty sets of membranes such that M+

tar
=⇒ M ′

+. We
prove that M ′

+ is tar-irreducible by induction on the depth of the associated inference
tree. We consider all possible cases for the final step of the inference, i.e., each of the
five rules for communication:

(i) M+
tar
=⇒ M ′

+ is inferred by (C1). Then M+ = 〈 L | w ; M1, . . . , Mn 〉, M ′
+ =

〈 L | w′ ; M ′
1, . . . , M

′
n 〉 where M1, . . . ,Mn is a tar-irreducible set of membranes,

and (here(w) 6= empty, or L = Skin ∧ out(w) 6= empty, or it exists i ∈ [n]
with inL(Mi)(w)out(w(Mi)) 6= empty or here(w(Mi)) 6= empty). Then M ′

+ is
tar-irreducible by Definition 3.3.3.

(ii) M+
tar
=⇒ M ′

+ is inferred by (C2). Then M+ = 〈 L | w ; M1, . . . , Mn 〉, M ′
+ =

〈L |w′′ ; M ′′
1 , . . . , M ′′

n 〉 where M1, . . . , Mn
tar
=⇒ M ′

1, . . . , M
′
n is inferred by a shorter

inference tree. M ′
1, . . . , M

′
n is tar-irreducible by inductive hypothesis. For the

membrane M ′
+, w′′ is out-free if L = Skin, w′′ is inL(Mi)-free and w(M ′′

i ) is
out-free, for all i ∈ [n]. Moreover, the sibling membranes M ′′

1 , . . . , M ′′
n are tar-

irreducible. Then M ′
+ is tar-irreducible by Definition 3.3.3.

(iii) M+
tar
=⇒ M ′

+ is inferred by (C3). Then M+ = 〈 Skin |w 〉, M ′
+ = 〈 Skin | obj(w) 〉,

where out(w) 6= empty, and w(M ′
+) is out-free. Then M ′

+ is tar-irreducible by
Definition 3.3.1.

(iv) M+
tar
=⇒ M ′

+ is inferred by (C4). Then M+ = M, N+, M ′
+ = M ′, N+ where N+ is

tar-irreducible, and M
tar
=⇒ M ′ is inferred by a shorter inference tree. By inductive

hypothesis, M ′ is tar-irreducible. Therefore M ′
+ is tar-irreducible by Definition

3.3.2.
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(v) M+
tar
=⇒ M ′

+ is inferred by (C5). Then M+ = M, N+, M ′
+ = M ′, N ′

+ where

M
tar
=⇒ M ′ and N+

tar
=⇒ N ′

+ are inferred by shorter inference trees. M ′ and N ′
+ are

tar-irreducible by inductive hypothesis. It follows that M ′, N ′
+ is a tar-irreducible

by Definition 3.3.2.

Theorem 3.2 Let Π be a P system. If C ∈ C#(Π) and C
tar
=⇒ C ′, then C ′ ∈ C(Π) ∪

C#(Π) and C ′ is a tar-irreducible.

The proof follows easily from Lemma 3.3.

3.3 Parallel Membrane Dissolving

If the special symbol δ occurs in the multiset of objects of a membrane labelled by L,
the membrane is dissolved producing the following changes in the system:

• its evolution rules and the associated priority relation are lost, and

• its contents (objects and membranes) is added to the contents of the region which
was immediately external to the dissolved membrane.

We consider the extension of the operator w (previously defined over membranes)
to non-empty sets of sibling membranes by setting w(M1, . . . ,Mn) = w(M1) . . . w(Mn).

We say that a multiset w is δ-free if it does not contain the special symbol δ.

Definition 3.4 The δ-irreducibility property for membranes and for sets of sibling
membranes is defined as follows:

1. a simple membrane is δ-irreducible;

2. a non-empty set of sibling membranes M1, . . . , Mn is δ-irreducible iff every mem-
brane Mi is δ-irreducible, for 1 ≤ i ≤ n;

3. a composite membrane 〈L |w ; M+ 〉 is δ-irreducible iff M+ is δ-irreducible, and
w(M+) is δ-free.

The parallel dissolving relation
δ

=⇒ is defined by the following inference rules:

For each two multisets of objects w1, w2, and labels L1, L2,

(D1)
〈 L1 | w1 ; 〈 L2 | w2δ 〉 〉 δ

=⇒ 〈 L1 | w1w2 〉

For each M+ ∈M+(Π), δ-irreducible 〈 L2 | w2δ ; M+ 〉, and label L1,

(D2)
〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉 δ

=⇒ 〈 L1 | w1w2 ; M+ 〉
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For each M+ ∈M+(Π), δ-free multiset w2, and labels L1, L2,

(D3)
〈 L2 | w2 ; M+ 〉 δ

=⇒ 〈 L2 | w′
2 〉

〈 L1 | w1 ; 〈 L2 | w2 ; M+ 〉 〉 δ
=⇒ 〈 L1 | w1 ; 〈 L2 | w′

2 〉 〉

For each M+,M ′
+ ∈M+(Π), δ-free multiset w2, multisets w1, w

′
2, and labels L1, L2

(D4)
〈 L2 | w2 ; M+ 〉 δ

=⇒ 〈 L2 | w′
2 ; M ′

+ 〉
〈 L1 | w1 ; 〈 L2 | w2 ; M+ 〉 〉 δ

=⇒ 〈 L1 | w1 ; 〈 L2 | w′
2 ; M ′

+ 〉 〉

For each M+ ∈M+(Π), multisets w1, w2, w
′
2, and labels L1, L2

(D5)
〈 L2 | w2δ ; M+ 〉 δ

=⇒ 〈 L2 | w′
2δ 〉

〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉 δ
=⇒ 〈 L1 | w1w′

2 〉

For each M+ ∈M+(Π), multisets w1, w2, w
′
2, and labels L1, L2

(D6)
〈 L2 | w2δ ; M+ 〉 δ

=⇒ 〈 L2 | w′
2δ ; M ′

+ 〉
〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉 δ

=⇒ 〈 L1 | w1w′
2 ; M ′

+ 〉

For each M+, N+ ∈M+(Π), δ-irreducible 〈 L | w ; N+ 〉, and multisets w′,

(D7)
〈 L | w ; M+ 〉 δ

=⇒ 〈 L | w′ 〉
〈 L | w ; M+, N+ 〉 δ

=⇒ 〈 L | w′ ; N+ 〉

For each M+,M ′
+, N ′

+ ∈M+(Π), δ-irreducible 〈 L | w ; N+ 〉, and multisets w′, w′′,

(D8)
〈 L | w ; M+ 〉 δ

=⇒ 〈 L | w′ ; M ′
+ 〉

〈 L | w ; M+, N+ 〉 δ
=⇒ 〈 L | w′ ; M ′

+, N+ 〉

(D9)
〈 L | w ; M+ 〉 δ

=⇒ 〈 L | ww′ 〉 〈 L | w ; N+ 〉 δ
=⇒ 〈 L | ww′′ 〉

〈 L | w ; M+, N+ 〉 δ
=⇒ 〈 L | ww′w′′ 〉

(D10)
〈 L | w ; M+ 〉 δ

=⇒ 〈 L | ww′ 〉 〈 L | w ; N+ 〉 δ
=⇒ 〈 L | ww′′ ; N ′

+ 〉
〈 L | w ; M+, N+ 〉 δ

=⇒ 〈 L | ww′w′′ ; N ′
+ 〉

(D11)
〈 L | w ; M+ 〉 δ

=⇒ 〈 L | ww′ ; M ′
+ 〉 〈 L | w ; N+ 〉 δ

=⇒ 〈 L | ww′′ ; N ′
+ 〉

〈 L | w ; M+, N+ 〉 δ
=⇒ 〈 L | ww′w′′ ; M ′

+, N ′
+ 〉
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Example 3.3 The inference tree for

〈 1 | empty ; 〈 2 | empty ; 〈 3 | dffffδ 〉, 〈 4 | empty 〉 〉 〉 δ=⇒ 〈 1 | empty ; 〈 2 |dffff ; 〈 4 | empty 〉 〉 〉
is:

〈 2 | empty ; 〈 3 | dffffδ 〉 〉 δ=⇒ 〈 2 | dffff 〉
(D7)

〈 2 | empty ; 〈 3 | dffffδ 〉, 〈 4 | empty 〉 〉 δ=⇒ 〈 2 | dffff ; 〈 4 | empty 〉 〉
(D4)

〈 1 | empty ; 〈 2 | empty ; 〈 3 | dffffδ 〉, 〈 4 | empty 〉 〉 〉 δ=⇒
〈 1 | empty ; 〈 2 | dffff ; 〈 4 | empty 〉 〉 〉

Lemma 3.4 If M+
δ

=⇒ M ′
+, then M ′

+ is δ-irreducible.

Proof: Let M+,M ′
+ be two non-empty sets of membranes such that M+

δ
=⇒ M ′

+. We
prove that M ′

+ is δ-irreducible by induction on the depth of the associated inference
tree. We consider all possible cases for the final step of the inference:

(i) M+
δ

=⇒ M ′
+ is inferred by (D1). Since M ′

+ is a simple membrane, M ′
+ is δ-

irreducible by Definition 3.4.1.

(ii) M+
δ

=⇒ M ′
+ is inferred by (D2). Then M+ = 〈 L1 | w1 ; 〈 L2 | w2δ ; N+ 〉 〉 and

M ′
+ = 〈 L1 | w1w2 ; N+ 〉, where 〈 L2 | w2δ ; N+ 〉 is δ-irreducible. It follows that

w(N+) is δ-free, and that M ′
+ is δ-irreducible by Definition 3.4.3.

(iii) M+
δ

=⇒ M ′
+ is inferred by (D3). Then M+ = 〈 L1 | w1 ; 〈 L2 | w2 ; N+ 〉 〉 and

M ′
+ = 〈 L1 | w1 ; 〈 L2 | w′

2 〉 〉, where 〈 L2 | w2 ; N+ 〉 δ
=⇒ 〈 L2 | w′

2 〉 is inferred by
a shorter inference tree, and w2 is δ-free. 〈 L2 | w′

2 〉 is δ-irreducible by inductive
hypothesis. Since w2 is δ-free and no dissolving rule preserves δ, it follows w′

2 is
δ-free. Then M ′

+ is δ-irreducible by Definition 3.4.3.

(iv) M+
δ

=⇒ M ′
+ is inferred by (D4). Then M+ = 〈 L1 | w1 ; 〈 L2 | w2 ; N+ 〉 〉 and

M ′
+ = 〈 L1 | w1 ; 〈 L2 | w′

2 ; N ′
+ 〉 〉, where 〈 L2 | w2 ; N+ 〉 δ

=⇒ 〈 L2 | w′
2 ; N ′

+ 〉 is
inferred by a shorter inference tree, and w2 is δ-free. 〈L2 |w′

2 ; N ′
+ 〉 is δ-irreducible

by inductive hypothesis. Since w2 is δ-free and no dissolving rule preserves δ, it
follows w′

2 is δ-free. Then M ′
+ is δ-irreducible by Definition 3.4.3.

(v) M+
δ

=⇒ M ′
+ is inferred by (D5). M ′

+ is δ-irreducible by Definition 3.4.1.

(vi) M+
δ

=⇒ M ′
+ is inferred by (D6). Then M+ = 〈 L1 | w1 ; 〈 L2 | w2δ ; N+ 〉 〉 and

M ′
+ = 〈L1 |w1w

′
2 ; N ′

+ 〉, where 〈L2 |w2δ ; N+ 〉 δ
=⇒ 〈L2 |w′

2δ ; N ′
+ 〉 is inferred by

a shorter inference tree. 〈 L2 |w′
2δ ; N ′

+ 〉 is δ-irreducible by inductive hypothesis,
and hence N ′

+ is δ-irreducible, and w(N ′
+) is δ-free. M ′

+ is also δ-irreducible by
Definition 3.4.3.
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(vii) M+
δ

=⇒ M ′
+ is inferred by (D7). Then M+ = 〈 L | w ; N ′

+, N ′′
+ 〉 and M ′

+ =

〈 L |w′ ; N ′′
+ 〉, where 〈 L | w ; N ′

+ 〉 δ
=⇒ 〈 L | w′ 〉 is inferred by a shorter inference

tree, and 〈 L | w ; N ′′
+ 〉 is δ-irreducible. It follows that w(N ′′

+) is δ-free, and M ′
+

is δ-irreducible by Definition 3.4.3.

(viii) M+
δ

=⇒ M ′
+ is inferred by (D8). Then M+ = 〈 L | w ; N1

+, N2
+ 〉 and M ′

+ =

〈 L | w′ ; N3
+, N2

+ 〉, where 〈 L | w ; N1
+ 〉 δ

=⇒ 〈 L | w′ ; N3
+ 〉 is inferred by a shorter

inference tree, and 〈 L | w ; N2
+ 〉 is δ-irreducible. N3

+ is δ-irreducible and w(N3
+)

is δ-free by inductive hypothesis and Definition 3.4.3. It follows that N3
+, N2

+ is
δ-irreducible by Definition 3.4.2. Since w(N3

+, N2
+) is δ-free, we get that M ′

+ is
δ-irreducible by Definition 3.4.3.

(ix) M ′
+ is δ-irreducible by Definition 3.4.1.

(x) M+
δ

=⇒ M ′
+ is inferred by (D10). Then M+ = 〈 L | w ; N1

+, N2
+ 〉 and M ′

+ =

〈L|ww′w′′ ; N3
+〉, where 〈L|w; N1

+〉 δ
=⇒ 〈L|ww′〉 and 〈L|w; N2

+〉 δ
=⇒ 〈L|ww′′ ; N3

+〉
are inferred by shorter inference trees. 〈L |ww′′ ; N3

+ 〉 is δ-irreducible by inductive
hypothesis, and hence N3

+ is δ-irreducible, and w(N3
+) is δ-free. Then M ′

+ is δ-
irreducible by Definition 3.4.3.

(xi) M+
δ

=⇒ M ′
+ is inferred by (D11). Then M+ = 〈 L | w ; N1

+, N2
+ 〉 and M ′

+ =

〈L |ww′w′′ ; N3
+, N4

+ 〉, where 〈L |w ; N1
+ 〉 δ

=⇒ 〈L |ww′ ; N3
+ 〉 and 〈L |w ; N2

+ 〉 δ
=⇒

〈 L | ww′′ ; N4
+ 〉 are inferred by shorter inference trees. Both N3

+ and N4
+ are

δ-irreducible, and both w(N3
+) and w(N4

+) are δ-free by inductive hypothesis and
Definition 3.4.3. Therefore N3

+, N4
+ is also δ-irreducible, and w(N3

+, N4
+) is δ-free.

It follows that M ′
+ is δ-irreducible by Definition 3.4.3.

Theorem 3.3 Let Π be a P system. If C ∈ C#(Π) is mpr- and tar-irreducible and

C
δ

=⇒ C ′, then C ′ ∈ C(Π).

The proof follows easily from Lemma 3.4.

Proposition 3.1 Let Π be a P system. If C
mpr
=⇒ C ′ and C ′ tar

=⇒ C ′′ such that C ∈ C(Π),
C ′ ∈ C#(Π), and C ′′ is δ-irreducible, then C ′′ ∈ C(Π).

Proof: C ′ is mpr-irreducible by Theorem 3.1, and C ′′ is tar-irreducible by Theorem
3.2. Therefore C ′′ does not contain both messages and δ, and hence it is a committed
configuration, i.e., C ′′ ∈ C(Π).

Proposition 3.2 Let Π be a P system. If C
mpr
=⇒ C ′ and C ′ δ

=⇒ C ′′ such that C ∈ C(Π),
C ′ ∈ C#(Π), and C ′ is tar-irreducible, then C ′′ ∈ C(Π).

Proof: According to Theorem 3.1, C ′ is mpr-irreducible. According to Theorem 3.3,
C ′′ is δ-irreducible. Therefore C ′′ does not contain both messages and δ, and hence it
is a committed configuration, i.e., C ′′ ∈ C(Π).
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Proposition 3.3 Let Π be a P system. If C
mpr
=⇒ C ′, C ′ tar

=⇒ C ′′, and C ′′ δ
=⇒ C ′′′ such

that C ∈ C(Π), and C ′, C ′′ ∈ C#(Π), then C ′′′ ∈ C(Π).

Proof: According to Theorem 3.1, C ′ is mpr-irreducible. According to Theorem 3.2,
C ′′ is tar-irreducible, and hence C ′′ does not contain messages. According to Theorem
3.3, C ′′′ is δ-irreducible, and hence it does not contain both messages and δ. Therefore
C ′′′ is a committed configuration, i.e., C ′′′ ∈ C(Π).

Definition 3.5 Let Π be a P system. A transition step in Π is defined by the following
inference rules:

For each C, C ′′ ∈ C(Π), and δ-irreducible C ′ ∈ C#(Π),

C
mpr
=⇒ C ′, C ′ tar

=⇒ C ′′

C ⇒ C ′′

For each C, C ′′ ∈ C(Π), and tar-irreducible C ′ ∈ C#(Π),

C
mpr
=⇒ C ′, C ′ δ

=⇒ C ′′

C ⇒ C ′′

For each C, C ′′′ ∈ C(Π), and C ′, C ′′ ∈ C#(Π),

C
mpr
=⇒ C ′, C ′ tar

=⇒ C ′′, C ′′ δ
=⇒ C ′′′

C ⇒ C ′′′

The consistency of this definition follows from the previous three propositions.
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Chapter 4

Rewriting Logic: A Semantic
Framework for Concurrency

In this chapter we explain the basic concepts of order-sorted equational logic [23] and
rewriting logic [32], with emphasis on the intrinsic concurrency [33] of the latter logic,
and, in the end, we present the Maude system [12] together with the tools provided by
Maude for formal analysis of concurrent specifications.

4.1 Order-Sorted Equational Logic

This section presents the most basic definitions and results of Order-Sorted Equational
Logic ([23]).

Order-Sorted Algebra

Let S be a partially ordered set (or poset) whose elements are called sorts. An S-sorted
set A is a family of sets As for each sort s ∈ S. An S-sorted function f : A → B is an
S sorted family f = {fs : As → Bs|s ∈ S}.

Let ≤ be the partial order relation on S. This relation can be extended over strings
of equal length in S∗ by s1 . . . sn ≤ s′1 . . . s′n iff si ≤ s′i for 1 ≤ i ≤ n. Similarly, ≤
extends to pairs 〈w, s〉 in S∗ × S by 〈w, s〉 ≤ 〈w′, s′〉 iff w ≤ w′ and s ≤ s′.

Definition 4.1 A many-sorted signature is a pair (S, Σ), where S is called the sort
set and Σ is an S∗ × S-sorted family {Σw,s|w ∈ S∗, s ∈ S}. Elements of Σ are called
operations (or function) symbols, or for short, operations.

An order-sorted signature is a triple (S,≤, Σ) such that (S, Σ) is a many-sorted
signature, (S,≤) is a poset, and the operations satisfy the following monotonicity con-
dition:

σ ∈ Σw1,s1 ∩ Σw2,s2 and w1 ≤ w2 imply s1 ≤ s2.

When the sort set S is clear, we write Σ for (S, Σ), and when the poset (S,≤) is
clear, we write Σ for (S,≤, Σ). When σ ∈ Σw,s, we say that σ has rank 〈w, s〉, arity
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w, and (value, or result, or coarity) sort s. We may write σ : w → s for σ ∈ Σw,s to
emphasize that σ denotes a function with arity w and sort s. An important special
case is w = λ; then σ ∈ Σλ,s denotes a constant of sort s. The monotonicity condition
excludes overloaded constants, because w1 = w2 = λ implies s1 = s2.

Definition 4.2 An order-sorted signature Σ is regular iff given σ in Σw1,s1, and given
w0 ≤ w1 in S∗, there is a least rank 〈w, s〉 ∈ S∗ × S such that w0 ≤ w and σ ∈ Σw,s.

Definition 4.3 Let (S, Σ) be a many-sorted signature. Then an (S, Σ)-algebra A is a
family {As|s ∈ S} of sets called the carriers of A, together with a function Aσ : Aw → As

for each σ in Σw,s, where Aw = As1 × . . . Asn when w = s1 . . . sn, and where Aw is a
one point set when w = λ.

Let (S,≤, Σ) be an order-sorted signature. Then an (S,≤, Σ)-algebra is an (S, Σ)-
algebra A such that the following monotonicity conditions are satisfied:

1. s ≤ s′ in S implies As ⊆ As′,

2. σ ∈ Σw1,s1 ∩Σw2,s2 and w1 ≤ w2 imply Aσ : Aw1 → As1 equals Aσ : Aw2 → As2 on
Aw1.

When the sort set S is clear, (S, Σ)-algebras may be called many-sorted Σ-algebras;
similarly, when (S,≤) is clear, (S,≤, Σ)-algebras may be called order-sorted Σ-algebras.
We also write Aw,s

σ for Aσ : Aw → As.

Definition 4.4 Let (S, Σ) be a many-sorted signature, and let A and B be (S, Σ)-
algebras. Then an (S, Σ)-homomorphism h : A → B is an S-sorted function h = {hs :
As → Bs|s ∈ S} satisfying the following homomorphism condition:

hs(A
w,s
σ (a)) = Bw,s

σ (hw(a)) for each σ ∈ Σw,s and a ∈ Aw

where hw(a) = 〈hs1(a1), . . . , hsn(an)〉, when w = s1 . . . sn and a = 〈a1, . . . , an〉, with
ai ∈ Asi

for i ∈ [n] when w 6= λ. If w = λ, the above condition specializes to hs(A
λ,s
σ ) =

Bλ,s
σ .

Let (S,≤, Σ) be a order-sorted signature, and let A,B be two order-sorted (S,≤, Σ)-
algebras. Then an (S,≤, Σ)-homomorphism h : A → B is an (S, Σ)-homomorphism
h = {hs : As → Bs|s ∈ S} satisfying the following restriction condition:

s ≤ s′ and a ∈ As imply hs(a) = hs′(a).

Definition 4.5 Let (S, Σ) be a many-sorted signature. The many-sorted term algebra
TΣ is inductively constructed as follows:

• Σλ,s ⊆ TΣ,s;

• if σ ∈ Σw,s and if ti ∈ TΣ,si
for i ∈ [n], where w = s1 . . . sn with n > 0, then

σ(t1, . . . , tn) ∈ TΣ,s.
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For Σ an order-sorted signature, we similarly construct the order-sorted Σ-term
algebra TΣ as the least family {TΣ,s|s ∈ S} of sets satisfying the following conditions:

• Σλ,s ⊆ TΣ,s, for s ∈ S;

• TΣ,s′ ⊆ TΣ,s if s′ ≤ s;

• if σ ∈ Σw,s and if ti ∈ TΣ,si
, where w = s1 . . . sn 6= λ, then σ(t1, . . . , tn) ∈ TΣ,s.

A given term t in an order-sorted term algebra can have many different sorts. In
particular, if t ∈ TΣ has sort s, then it also has sort s′ for any s′ ≥ s.

Definition 4.6 Let Σ be an order-sorted signature. Then an order-sorted Σ-algebra
is initial in the class of all order-sorted Σ-algebras iff there is a unique order-sorted
Σ-homomorphism from it to any other order-sorted Σ-algebra.

Theorem 4.1 Let Σ be a regular order-sorted signature. Then TΣ is an initial order-
sorted Σ-algebra.

Proposition 4.1 Given a regular order-sorted signature Σ, for every t ∈ TΣ there is a
least s ∈ S, called the least sort of t and denoted LS(t), such that t ∈ TΣ,s.

The terms considered above are ground terms, in the sense that they involve no
variables. Terms with variables can be seen as a special case of ground terms, by
enlarging the signature with new constant that correspond to the variable symbols. We
assume that each variable comes with a given sort, so that we have an S-sorted family
X = {Xs|s ∈ S} of disjoint sets. Given an order-sorted signature (S,≤, Σ) and an S-
sorted variable set X that is disjoint from Σ, we define the new order-sorted signature
(S,≤, Σ(X)) by Σ(X)λ,s = Σλ,s ∪Xs and Σ(X)w,s = Σw,s, for w 6= λ. It is easy to see
that Σ(X) is regular if Σ is regular. We can form and view TΣ(X) as an order-sorted
Σ-algebra just by forgetting the constants in X. We denote this algebra TΣ(X).

Theorem 4.2 Given a regular order-sorted signature (S,≤, Σ), let A be a Σ-algebra
and let a : X → A be an S-sorted function; hereafter we call such a function an
assignment. Then there is a unique order-sorted Σ-homomorphism a∗ : TΣ(X) → A
such that a∗(x) = a(x) for each x ∈ X.

Definition 4.7 For(S,≤, Σ) a regular order-sorted signature, a Σ-equation is a triple
〈X, t, t′〉 (hereafter denoted by (∀X) t = t′) where X is a variable set, and t, t′ ∈ TΣ(X)

with LS(t) and LS(t′) in the same connected component of (S,≤).
An order-sorted Σ-algebra A satisfies a Σ-equation (∀X) t = t′ iff a∗LS(t)(t) =

a∗LS(t′)(t
′) in A for every assignment a : X → A. Similarly, A satisfies a set Γ of

Σ-equations iff it satisfies each member of Γ; in this case, we say that A is a (Σ, Γ)-
algebra.

Order-sorted conditional equations generalize order-sorted equations, i.e., they are
expressions of the form (∀X) t = t′ if C, where the condition C is a finite set of
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unquantified Σ-equations involving only variable from X. An order-sorted Σ-algebra
A satisfies the equation (∀X) t = t′ if C iff for each assignment a : X → A such that
a∗LS(v)(v) = a∗LS(v′)(v

′) in A for each equation v = v′ in C, then also a∗LS(t)(t) = a∗LS(t′)(t
′)

in A.

Order-Sorted Equational Deduction

Given an order-sorted signature Σ and a set Γ of conditional Σ-equations, we consider
each unconditional equation in Γ to be derivable. Other derivable equations can be
obtained by finite application of the following rules:

(1) Reflexivity.

(∀X)t = t

(2) Symmetry.
(∀X)t = t′

(∀X)t′ = t

(3) Transitivity.
(∀X)t1 = t2, (∀X)t2 = t3

(∀X)t1 = t3

(4) Congruence. For θ, θ′ : X → TΣ(X) substitutions, t ∈ TΣ(X),

(∀Y )θ = θ′

(∀Y )θ(t) = θ′(t)

(5) Unconditional Replacement. For each substitution θ : X → TΣ(Y ),

(∀X)t = t′

(∀Y )θ(t) = θ(t′)

4.2 Rewriting Logic

Since each rewrite theory has an underlying equational theory, different variants of
equational logic give rise to corresponding variants of rewriting logic. The expressiveness
of the rewrite theories is strongly related to the underlying equational language. The
most expressive is the membership equational logic (MEL) [31]: a Horn logic with
both equations t = t′ and membership equations t : s which generalizes order-sorted
equational logic and supports sorts, subsorts, partiality, and sorts defined by equational
axioms.

To simplify the exposition we present the order-sorted rewriting logic with uncon-
ditional rewrite rules.

A signature in (order-sorted) rewriting logic is an (order-sorted) equational theory
(Σ, E), where Σ is an equational signature and E is a set of Σ-equations. Rewriting
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operates on equivalence classes of terms modulo E. In this way, the rewriting is made
free from the syntactic constraints of a term representation and it gains more flexibility
in deciding what counts as a data structure. For example, string rewriting is obtained
by imposing an associative axiom, multiset rewriting by imposing associativity and
commutativity, while for the standard term rewriting the set of equations E is empty.

A sentence over a given signature (Σ, E) is an expression of the form (∀X)[t]E →
[t′]E, where t and t′ are Σ(X)-terms, and [t]E denotes the equivalence class of t modulo
the equations E. A sentence describes the possible transitions from the states described
by [t] to the corresponding states described by [t′]. If X = {x1, . . . , xn}, then we denote
a sentence by [t(x)]E → [t′(x)]E, where x is the sequence x1, . . . , xn. If E and X are
understood from the context, we simply write [t(x)] → [t′(x)] or [t] → [t′].

A rewriting specification R is a 4-tuple R=(Σ, E, L, R) where (Σ, E) is a rewriting
logic signature, L is a set whose elements are called labels, and R is a set of labelled
rewriting rules (sentences) written as r : [t(x)]E → [t′(x)]E.

Given a rewrite theory R, we say that R entails the sentence [t] → [t′], or that
[t] → [t′] is a (concurrent) R-rewrite, and write R ` [t] → [t′] iff [t] → [t′] can be
obtained by finite application of the following rules of deduction (where we assume that
all the terms are well formed and t(w/x) denotes the simultaneous substitution of wi

for xi in t):

(1) Reflexivity. For each t ∈ TΣ,E(X),

[t] → [t]

(2) Congruence. For each operation symbol f ∈ Σn, n ∈ N,

[t1] → [t′1], . . . , [tn] → [t′n]

[f(t1, . . . , tn)] → [f(t′1, . . . , t
′
n)]

(3) Unconditional replace. For each rule r : [t(x)] → [t′(x)] in R,

[u1] → [v1], . . . , [un] → [vn]

[t(u/x)] → [t(v/x)]

(4) Transitivity.
[t1] → [t2], [t2] → [t3]

[t1] → [t3]

The general theory of the rewriting logic allows also conditional sentences and con-
ditional rewriting rules [13].

Rewriting logic is reflective, i.e. there is a (finitely presented) universal rewriting
specification U such that for any (finitely presented) rewriting specificationR (including
U itself), we have the following equivalence:

R ` [t] → [t′] iff U ` 〈R, t〉 → 〈R, t′〉,
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where R and t are terms representing R and t as data elements of U . Since U is
representable in itself, it is possible to achieve a reflective tower with an arbitrary
number of reflection levels:

R ` [t] → [t′] iff U ` 〈R, t〉 → 〈R, t′〉 iff U ` 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉 . . .

4.3 The Intrinsic Concurrency in Rewriting Logic

Rewriting logic is a logic for reasoning correctly about concurrent systems having states,
and evolving by means of transitions. The signature of a rewrite theory describes
a particular structure for the states of a system so that its states can be distributed
according to such a structure. The rewrite rules in the theory describe which elementary
local transitions are possible in the distributed state by concurrent local transformations.
The rules of rewriting logic allow us to reason correctly about which general concurrent
transitions are possible in a system satisfying such a description. Thus each rewrite
step is a parallel local transition in a concurrent system. Alternatively, the rules of
rewriting logic can be considered as metarules for a correct deduction in a logical system.
Logically, each rewriting step is a logical entailment in a formal system.

The computational and the logical viewpoints under which rewriting logic can be
interpreted can be summarized in the following diagram of correspondences:

State ↔ Term ↔ Proposition
Transition ↔ Rewriting ↔ Deduction
Distributed Structure ↔ Algebraic Structure ↔ Propositional Structure

The last row expresses the fact that a state can be transformed in a concurrently
way only if it is nonatomic, that is, if it is composed out of smaller state components
that can be changed independently. In rewriting logic this composition of a concurrent
state is formalized by the operations of the signature Σ of the rewrite theory R that
axiomatizes the system. From the logical point of view such operations can naturally
be regarded as user-definable propositional connectives stating the particular structure
that a given state has. It is important to notice that the algebraic structure of a
system also involves equations. Such equations describe the system’s global state as a
concurrent data structure, and they are working as “data solvents” to loosen up the
data structures so that more rewrites can be performed in parallel.

Because rewriting logic is neutral about concurrency constructs, it is a general se-
mantic framework for concurrency that can express many concurrency models ([33])
such as: equational programming, which is the special case of rewrite theories whose
set of rules is empty and whose equations are Church-Rosser, possibly modulo some
axioms A; lambda calculi and combinatory reduction systems; labelled transition sys-
tems; grammars and string-rewriting systems; Petri nets, including place/transition
nets, contextual nets, algebraic nets, colored nets, and timed Petri nets; Gamma and
the Chemical Abstract Machine; CCS and LOTOS; the π calculus; concurrent objects
and actors; the UNITY language; concurrent graph rewriting; dataflow; neural net-
works; real-time systems, including timed automata, timed transition systems, hybrid
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automata, and timed Petri nets; and the tile logic model of synchronized concurrent
computation.

Since the above are typically executable, rewriting logic is a flexible operational
semantic framework to specify such models.

4.4 Rewriting Logic Languages

The idea of using rewrite rules to specify algorithms and compute with them is not new;
it is implicit in algebraic simplification techniques that go back to antiquity ([30]). In
a formal version it can be traced back to the Herbrand-Gödel-Kleene theory of general
recursive functions, and - in a variety of limited forms - it also goes back to Post
systems, combinators, the lambda calculus and pure Lisp. In the context of equational
logic, early proposal to program with rewrite rules include work by O’Donnell [38], and
Goguen and Tardo [24], and a vast body of work has followed since that time ([22]
for example). However, the semantics of such rewrite rule languages has usually been
based on equational logic, i.e., they have been given a functional interpretation.

Several research groups have developed language tools to support formal reasoning
and executable specification in rewriting logic.

The ELAN language is a rewriting language developed at LORIA (CNRS, INRIA,
and Universities of Nancy) by P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau
and M. Vittek [5, 7]. It has as modules computational systems, consisting of a rewrite
theory and a strategy to guide the rewriting process [6]. This group and their col-
laborators have developed an impressive collection of examples and case studies in
areas such as logic programming languages, constraint solving, higher-order substitu-
tion, equational theorem-proving and other such computational systems. Besides the
ELAN interpreter, there is work in compilation techniques, including compilation of
AC-rewriting [34, 35, 28].

The CafeOBJ language implementation, developed at the Japan Advanced Institute
of Science and Technology (JAIST) in Kanazawa [19, 16, 17] by K. Futatsugi, R. Di-
aconescu and T. Sawada, which is also based on rewriting logic, contains OBJ as its
functional sublanguage, and supports object-oriented specifications. Furthermore, its
semantics is multi-logical and includes hidden-sorted versions of equational and rewrit-
ing logic [15, 16, 17]. The CafeOBJ language has been the basis of an ambitious research
effort - the Cafe Project - involving several research institutions in Japan, Europe and
the US, as well as several Japanese industries, to exploit the promising possibilities of
rewriting logic for formal methods applications in software engineering [20]. This project
has achieved a distributable version of the language and further work on its semantics,
a collection of specification libraries and case studies, and environment, and a collec-
tion of theorem proving tools supporting different forms of verification. Furthermore,
a compiler has been developed in addition to the Cafe interpreter implementation.

The Maude language implementation was developed at SRI, Menlo Park, California
and at University of Illinois at Urbana-Champaign by M. Clavel, F. Duran, S. Eker,
P. Lincoln, N. Marti-Oliet, J. Meseguer, and C. Talcott. A quick survey of its features
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are presented in the next section.

4.5 The Maude System

Maude is a software system developed around the Maude language. Core Maude is the
Maude interpreter implemented in C++; it provides the Maude’s basic functionality.
Full Maude is an extension written in Maude itself, allowing combination of various
Maude modules to build more complex modules. Maude can be used for many appli-
cations with competitive performance and advantages over the conventional code. The
current Maude implementation can execute syntactic rewriting with speeds from half a
million to several millions rewrites per second, depending on the particular application
and machine. It is able to work well with multisets having millions of elements.

The Maude system is available free of charge, under the terms of the GNU General
Public License, at the Maude home page http://maude.cs.uiuc.edu. Many useful
materials are available, and Maude binaries are provided for selected architectures and
operating systems together with installation instructions. For the current work we have
used the version 2.1 of Maude, under Linux.

Maude is essentially a mathematical language. It has been influenced in important
ways by OBJ3 [22]; in particular, Maude’s equational logic sublanguage contains OBJ3
as a sublanguage. The main differences from OBJ3 at the equational level are a much
greater performance, and a richer equational logic, namely, membership equational logic
[31], that extends OBJ3’s order-sorted equational logic [23].

The key novelty of Maude is that, besides efficiently supporting equational com-
putation and algebraic specification in the OBJ style, it also supports rewriting logic
computation.

The basic programming statements are equations, membership assertions, and rules.
Their rewriting semantics is given by the fact that instances of the lefthand side pattern
are replaced by corresponding instances of the righthand side.

A Maude program containing only equations and membership assertions is called a
functional module. Maude’s functional modules are theories in membership equational
logic [31], a Horn logic whose atomic sentences are equalities t = t′ and membership
assertions of the form t : s, stating that a term t has the sort s. Such a logic extends
order-sorted equational logic, and supports sorts, subsort relations, subsort polymorphic
overloading of operators, and definition of partial functions with equationally defined
domains. Maude’s functional modules are assumed to be Church-Rosser and terminat-
ing. A Maude program containing also rules is called a system module. Maude’s system
modules specify rewrite theories in rewriting logic. Unconditional rewrite rules have
the form r : t → t′. Computationally, they are interpreted as local transition rules in a
possible concurrent system. Logically, they are interpreted as inference rules in a logical
system [13]. A Maude program can contain as well conditional equations, membership
assertions, or rewrite rules.

In system modules computations need not be confluent and need not be terminating,
i.e., unlike for equations, there is no assumption that all rewriting sequences will lead to
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the same final result, and for some systems there may not be any final state. Therefore
the issue of executing rewriting logic specifications of system modules in general is
considerable more subtle that executing expressions in a functional module, for which
the termination and Church-Rosser properties guarantee a unique final result regardless
of the order in which equations are applied as simplification rules. Hence, we need to
have good ways of controlling the rewriting inference process, which in principle could
go in many undesired directions, by means of adequate strategies.

The default strategy in the Maude interpreter applies the rules in a top-down rule
fair way, always reducing to canonical form using the existing equations (modulo all
combinations of associativity, commutativity, and identity) before applying any rule.
“Top-down” means that each rewrite is attempted beginning at the top of the term, so
that any position rewritten does not have a position above it that could also have been
rewritten. A limited form of fairness is achieved by keeping the rules in a circular list,
and moving a rule to the end after it has been applied [13].

The choice of appropriate strategies to control the rewriting inference process is
crucial for executing rewrite theories. In Maude, such strategies are not an extralogical
part of the language. They are instead internal strategies defined by rewrite theories at
the metalevel.

Maude efficiently supports the reflective tower through its META-LEVEL module,
which makes possible not only the declarative definitions and execution of user-definable
rewriting strategies, but also many other metaprogramming applications. In particu-
lar, it is possible to define and execute within the logic an extensible module algebra
supporting the OBJ style of parameterized programming [22], with highly generic and
reusable modules. The basic idea is that META-LEVEL is extended with new data types
for: parameterized modules; theories, with loose semantics, to state formal requirements
in parameters; views, to bind parameter theories to their instances; and module expres-
sions, instantiating, transforming, and composing parameterized modules. All such new
types and operations are defined in Maude itself. Maude also supports object-oriented
modules, with convenient syntax for object-oriented applications (but their semantics
reduces to that of system modules).

4.6 Formal Analysis of Concurrent Specifications in

Maude

Specifying in Maude a computational model, we obtain a solid foundational framework
for analysis. Besides the executable specification, thanks to generic analysis tools for
rewriting logic specifications that are efficiently implemented and currently provided as
part of the Maude system, we additionally get the following important analysis tools
for free:

1. a semi-decision procedure to find failures of safety properties in a (possibly infinite-
state) concurrent system using Maude’s search command;

2. an LTL model checker for finite-state systems;
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3. a theorem prover (Maude’s ITP [14]) that can be used to semi-automatically prove
properties.

We detail the first two items, because they are entirely automatic, and we use them
for verifying our implementation of P systems in Maude.

4.6.1 Search

Using Maude’s search command, one can search a potentially infinite state space for
behaviors of interest. Since the search is performed in a breadth-first manner, if any
safety violation exists, then it will eventually be found, i.e., this is a semi-decision pro-
cedure for finding such errors. Moreover, the command show search graph gives the
state space generated by the previous search command. This command is illustrated
in section 5.2.

4.6.2 Model Checking

When the state space of a concurrent system is finite, one can exhaustively analyze all
its possible executions and check them against temporal logic properties. Currently,
Maude provides a builtin explicit-state model checker for linear temporal logic (LTL)
comparable in speed to SPIN [18]. The LTL model checker provides a powerful tool to
detect subtle errors and to verify some desired temporal properties.

LTL was designed for expressing the temporal ordering of events. In computer
science, temporal logics keep track of the systems states, changes of the variable values,
and the order in which they occur. Intuitively, the system state is a snapshot of the
system’s execution. In this snapshot, every variable has some value. A particular
execution of the system is represented by a sequence of system states, and obviously,
time progresses during the execution, but there is no keeping track of how long the
system is in any particular state. In LTL, formulas are evaluated with respect to a
particular execution and a particular state in that execution. Time is totally ordered,
usually bounded in the past and unbounded in the future. LTL formulas allow boolean
connectives and modalities together with the operators X expressing “in the next state”,
and U expressing that one property holds until another holds (Until). These formulas
are evaluated on individual executions (computation paths). The modal path operators
are ♦ and ¤; ♦ expressing “at some future time”, and ¤ expressing “at all future times”.
They are also found as the letters F and G.
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Chapter 5

P Systems Operational Semantics:
A Small-Step Approach

In general rewrite systems have good properties for modelling (dynamical) biological
processes [21]. A key result for rewriting systems is that they are Turing complete, i.e.,
every computable process can be described by a rewriting system.

The simulation of any dynamical system - and of dynamical biological systems in
particular - by a rewrite system consists in:

• representing the states of the dynamical system by expressions (terms built from
constants representing proteins or molecules and operations representing ways in
which proteins and molecules can be brought together);

• expressing the evolution rules of the dynamical system as rewrite rules.

Finding appropriate constants, operations and rules is at the heart of building these
computational models ([21]).

In [1] we present a Maude specification for P systems using a strategy defined at
meta-level. Trying to reducing the complexity of the specification, we came to the
conclusion that the need of using the meta-level in specifying the P systems arises only
because of the encoding of the evolution rules as Maude rewriting rules. Consequently,
using an appropriate new defined data type for evolution rules (pairs of terms, for
example), we are able to encode transition P systems in Maude at the object level.

In this chapter we present a Maude specification (or rewrite theory) for P systems.
Benefiting from Maude features, these specifications not only permit to describe P
systems, but also to explore the models (executability), and, moreover, to reason about
them (Maude LTL model checker). These features are illustrated by means of two
examples: both of them computes n2, but one has n as input, while the other generates
values of the form n2 for 1 < n + n2 < max, with max as input (we explain later this
upper bound).
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5.1 Encoding P Systems in Rewriting Logic

5.1.1 Algebraic Structures

We consider the sorts Obj, Soup, Membrane, CConfiguration for object names, multi-
sets of ingredients, membranes and commited configurations, respectively. Their def-
initions and the relations between them are introduced by the following (simplified)
functional module:

(mod PSCONFIGURATION is
pr QID .
sort Label . subsort Label < Qid .
sorts Obj Soup EmptyMembraneSet Membrane MembraneSet CConfiguration .
subsort Obj < Soup .
subsort EmptyMembraneSet Membrane < MembraneSet .

op empty : -> Soup .
op __ : Soup Soup -> Soup [assoc comm id: empty] .

op empty : -> EmptyMembraneSet .

op <_|_> : Label Soup -> Membrane .
op _‘,_ : MembraneSet MembraneSet -> MembraneSet [assoc comm id: empty] .
op <_|_;_> : Label Soup MembraneSet -> Membrane .

op ‘{_‘} : Membrane -> CConfiguration .
endm)

The sort Soup represents the multiset type with two constructors: empty and . The
second constructor is required to satisfy the structural laws of associativity, commuta-
tivity, and it has the identity empty. The subsort relation Obj < Soup says that each
object defines a particular multiset. The sort Membrane has two constructors for the
two types of membranes, elementary and composite ones. The operation ‘, on a
set of membranes is required to satisfy the structural laws of associativity, commuta-
tivity and identity because the order of sibling membranes is irrelevant; what matters
is the relationship between membranes, if one is inside another one. An expression
of the form 〈L | W 〉 corresponds to a state of an elementary membrane labelled by
L and having the multiset of objects given by W , while an expression of the form
〈L | W ; M1, . . . , Mn〉 corresponds to a composite membrane labelled by L with the
current multiset of objects described by W and the state of the i-th component given
by Mi. The sort CConfiguration corresponds to a P system commited configuration;
it has no subsorts and its constructor { } : Membrane → CConfiguration has as
the only argument the skin membrane. The intended meaning consists in starting our
maximal parallel rewriting strategy only from the skin membrane in order to ensure
the processing of all membranes of the P system during a transition step.

For the communications of objects through membranes, we define the sort Target

together with two operations for sending objects out of the membrane or in a specified
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membrane, such that a pair composed of a multiset of objects and a target represents
an element of sort Message. We omit the target indication here, and an objects without
an explicit target indication is supposed to remain in the same region where the rule is
applied.

In order to deal with the membrane dissolving we add a new sort, Dissolve, and a
constant operation corresponding to the dissolving element δ.

For the evolution rules we introduce the sort MRule together with two operations
corresponding to rules with or without priorities:

op _:_->_ : Priority Soup Soup -> MRule .
op _->_ : Soup Soup -> MRule .

where Priority is a subsort of Qid, therefore is an identifier. We add a supersort of
MRule, namely MRuleSet, used for giving the evolution rules associated to a membrane,
with a concatenation operation ‘, which is associative, commutative, and has an
identity element none. For example a set of rules is given through the operator rules
as follows:

eq rules(M1) = (r1 : c -> (c, in(M4))) , (r2 : c -> (b, in(M4))) ,
(r3 : a -> (a, in(M2)) b) , (d d -> (a, in(M4))) .

In order to extract the components of a rule description we define 3 operators, prty,
lhs, and rhs, with the obvious meaning.

The partial order relation over rule priorities in a membrane is given by the oper-
ator rho through set of pairs of related priorities. For example the following equation
describes the priority relation in a membrane identified by the label M1:

eq rho(M1) = (r1 > r3) , (r2 > r3) .

We make intensive use of the order sorted equation logic implemented by Maude.
Therefore we consider the sort Soup (for multisets of objects) to be a subsort of
DissSoup (for multisets of objects and δ’s), while DissSoup is a subsort of MsgDissSoup
(for multisets of objects, δ’s, and messages). All these three sorts are subsorts of the sort
Soup?. We also define new membrane sorts, DMembrane, Membrane+ and Membrane?,
corresponding to the three new sorts, DissSoup, MsgDissSoup, and Soup?, respectively,
as well as their corresponding sorts for non-empty membrane sets. Moreover, we de-
fine a supersort of CConfiguration, namely the sort Configuration?, extended with
intermediate configurations.

5.1.2 Maude Evolution Rules

As we already emphasized, a specific feature of a P system is that it has a tree like
structure with the skin as its root, the composite membranes as its internal nodes and
the elementary membranes as its leaves. The order of the children of a node is not
important due to the associativity and commutativity properties of the concatenation
operation for membranes ‘, .

We consider two colors (operators) blue and green in order to define the semantics
of a P system in Maude:
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op blue : Membrane -> Membrane? .
op blue : MembraneSet -> MembraneSet? .
op blue : Label Soup Bool -> Soup? .
op blue : Label MRuleSet Soup Bool -> Soup?.

op green : Membrane+ -> Membrane? .
op green : MembraneSet+ -> MembraneSet? .
op green : MsgDissSoup -> Soup? .

The following rule marks the commitment of the the maximal parallel rewriting step:

rl [1] : { M } => { blue(M) } .

starting with a term of sort CConfiguration.
The operator blue traverses in a top-down manner the tree according to its struc-

ture, firing the maximal parallel rewriting process in every membrane through the blue
operator on Soup terms. The Boolean argument is used to show if a dissolving rule was
chosen during the current maximal parallel step in a membrane with dissolving rules.
We need this flag because at most one δ symbol is allowed in a membrane.

crl [3] : blue(< L | S ; neM >) => if PS == noprty
then

(if (freeDeltaRules(L) == none)
then < L | blue(L, S) ; blue(neM) >
else < L | blue(L, S, false) ; blue(neM) >
fi)

else
(if (freeDeltaRules(L) == none)
then < L | blue(L, PS, S) ; blue(neM) >
else < L | blue(L, PS, S, false) ; blue(neM) >
fi)

fi
if PS := priorities(rules(L)) .

crl [4] : blue(< L | S >) => if PS == noprty
then

(if (freeDeltaRules(L) == none)
then < L | blue(L, S) >
else < L | blue(L, S, false) >
fi)

else
(if (freeDeltaRules(L) == none)
then < L | blue(L, PS, S) >
else < L | blue(L, PS, S, false) >
fi)

fi
if PS := priorities(rules(L)) .

crl [5] : blue(neM) => blue(neM1), blue(neM2)
if neM1, neM2 := neM .
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where the operator freeDeltaRules provides the non-dissolving evolution rules of a
membrane.

The multiset of objects is divided into two parts during the maximal parallel rewrit-
ing process: blue represents the objects available to be “consumed” via evolution rules,
while the green represents the objects resulted from applying evolution rules over the
available objects (therefore the green objects are not available). When no more rule
can be applied, the blue part becomes directly green.

crl [6] : blue(L, S) =>
green(rhs(R)) blue(L, S1)

if R, RS := rules(L) /\ S2 := lhs(R) /\ S2 S1 := S .
crl [7] : blue(L, S) => green(S)

if irreducible(L, S, rules(L)) .

The predicate irreducible returns true iff the left-hand side of each evolution rule
from the membrane with the label L does not match the given soup of objects.

For evolution rules with priorities we have adopted a stronger version: if a rule with
a higher priority is used, then no rule of a lower priority can be used, even if the two
rules do not compete for objects. First we introduces two more operators:

• rmLower - given a rule Rl and a set of rules RlS from a membrane, it removes
from RlS the rules with a lower priority than of Rl’s;

• allowed - a matching rule can be applied if either it does not have a priority, or
it has a maximal priority, or it has a priority and any rule with a higher priority
does not match the current soup of objects.

crl [8] : blue(L, PS, S) =>
green(rhs(R)) blue(L, rmLower(L, prty(R), PS), S1)

if R, RS1 := rules(L) /\ S2 := lhs(R)
/\ S2 S1 := S /\ allowed(L, S, R, RS1, PS) .

crl [9] : blue(L, PS, S) => green(S)
if irreducible(L, PS, S, rules(L)) .

There are four more labelled rules 6’-9’ (corresponding to rules 6-9 above) for the case
when the membrane where the rewriting takes place has at least a dissolving rule. We
consider this case because we do not allow two or more dissolving symbols δ to appear
in a membrane.

The operator green traverses the tree in a bottom-up manner as follows:

- green multisets from (O ∪Msg(O) ∪ {δ})∗c merge into one green multiset;

- a leaf becomes green if its multiset is green;

- a set of sibling subtrees (with the roots sibling nodes) becomes green if each
subtree is green;

- a subtree becomes entirely green if:

1. the multiset of the root is green;
2. the subtrees determined by the children of the root form a green set of sibling

subtrees;
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3. there are no messages to be exchanged between the root node and its children;
4. the multisets corresponding to the children of the root do not contain δ.

vars Smd Smd1 : MsgDissSoup . var Sd : DissSoup .
var Sod : OutDissSoup . var So : OutSoup . var S’ : Soup? .
var neM’ : NeMembraneSet? . vars neM1+ neM2+ : NeMembraneSet+ .
rl [10] : < L | green(Smd) >, neM’ => green(< L | Smd >), neM’ .
rl [11] : < L1 | S’ ; < L | green(Smd) > > =>

< L1 | S’ ; green(< L | Smd >) > .
rl [12] : { < L | green(S) > } => { green(< L | S >) } .
rl [13] : < L | green(Sod) ; green(neM) > => green(< L | Sod ; neM >) .
rl [14] : green(Smd) green(Smd1) => green(Smd Smd1) .
rl [15] : green(neM1+), green(neM2+) => green((neM1+, neM2+)) .

In the communication stage of a green subtree, a node can send a message only to
its parent or to one of its children. The rules for each direction of communication (out
and in) vary on the structure of the destination membrane.

The rules for in messages are the following:

crl [16] : < L | green(Smd) ; green(neM+) > =>
< L | green(Smd2) ; green(< L1 | Smd1 S >, M2+) >

if Smd2 (S, in(L1)) := Smd /\ < L1 | Smd1 >, M2+ := neM+ .

crl [17] : < L | green(Smd) ; green(neM+) > =>
< L | green(Smd2) ; green(< L1 | Smd1 S ; neM1+ >, M2+) >

if Smd2 (S, in(L1)) := Smd /\ < L1 | Smd1 ; neM1+ >, M2+ := neM+ .

An object sent out of the skin membrane is lost. We allow this operation to be
executed only if the skin membrane and its internal membranes are green; in this way
we follow the same communication policy as for the rest of the membranes. Therefore
for out messages we have two additional rules for sending messages out of the skin
membrane:

crl [18] : < L | green(Smd) ; green(neM+) > =>
< L | green(Smd S) ; green(< L1 | Smd1 >, M2+) >

if < L1 | Smd1 (S, out) >, M2+ := neM+ .
crl [19] : < L | green(Smd) ; green(neM+) > =>

< L | green(Smd S) ; green(< L1 | Smd1 ; neM1+ >, M2+) >
if < L1 | Smd1 (S, out) ; neM1+ >, M2+ := neM+ .

rl [20] : {< L | green(So (S, out)) >} => {< L | green(So) >} .
rl [21] : {< L | green(Smd (S, out)) ; green(neM+) >} =>

{< L | green(Smd) ; green(neM+) >} .

In a P system the dissolving process occurs after the end of the communication
process. To fulfill this condition we allow dissolving only if there are no messages to be
sent (we use only variables of sort DissSoup and DMembrane). By dissolving a node, all
of its resources are transferred to its parent, the rules are lost, and all of its children
become children of its parent if it was an internal node. The skin membrane is not
allowed to be dissolved. The rules for dissolving are:
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crl [22] : < L | green(Sd) ; green(neDM) > =>
< L | green(Sd S1) ; green(neDM1) >

if < L1 | S1 delta >, neDM1 := neDM .

crl [23] : < L | green(Sd) ; green(neDM) > => < L | green(Sd S1) >
if < L1 | S1 delta > := neDM .

crl [24] : < L | green(Sd) ; green(neDM) > =>
< L | green(Sd S1) ; green((neDM1, DM2)) >

if < L1 | S1 delta ; neDM1 >, DM2 := neDM .

When the whole tree becomes green, there are no more messages or nodes to be
dissolved, and the following accomplishing rule is applied:

rl [2] : { green(M) } => { M } .

The resulting term corresponds to a configuration of the P system reachable in one
transition step from the given configuration.

In order to apply the model checker, the space of the reachable states of the P
system must be finite. Therefore we have to consider a finite subspace of reachable
states. An example is the subspace including the states with the size less than, or equal
to, a given maxSize. The size of a state is computed by the function #(X) which counts
the number of the objects that occur in X. In this sense we modify the “firing” rule [1]
replacing it by the following two rules:

crl [1] : { Mb } => { blue(Mb) }
if maxSize =/= 0 /\ (#(Mb) < maxSize) .

crl [1’] : { Mb } => { blue(Mb) }
if maxSize == 0 .

For each P system specification we give a value for maxSize as follows:

• if the P system is a generative one, then we consider a “reasonable” positive
integer; hence the computation ends when it reaches commited configurations
having the size greater than, or equal to maxSize;

• otherwise, if the P system is a non-generative one, deterministic, hence the com-
putation will end, then we consider maxSize to be 0.

5.2 Examples of P System Specifications

In this section we consider two P systems examples, and then describe and execute
their Maude specification. The first one computes n2 for a given n, while the second
one non-deterministically generates numbers of the form n2, for n ≥ 1.

Example 5.1 (cont’d example 2.1) Let Π1 be the P system presented in Example 2.1.
The description of this P system in Maude for n = 2 is given by the folowing module:
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(mod NSQUARE is
inc PSYSTEM .

ops r1 r2 : -> Priority .
ops M1 M2 M3 M4 : -> Label .
ops a c d f e : -> Obj .

op init : -> CConfiguration .
eq init = { < M1 | empty ; < M2 | empty ; < M3 | a a c f > ,

< M4 | empty > > > } .

eq rules(M4) = none .
eq freeDeltaRules(M4) = none .
eq rho(M4) = empty .

eq rules(M3) = (r1 : c a -> c d), (r2 : c -> delta), (f -> f f) .
eq freeDeltaRules(M3) = (r1 : c a -> c d), (f -> f f) .
eq rho(M3) = (r1 > r2) .

eq rules(M2) = (d -> c), (c -> a), (a -> a (e, in(M4))),
(r1 : f f -> f), (r2 : f -> delta) .

eq freeDeltaRules(M2) = (d -> c), (c -> a), (a -> a (e, in(M4))),
(r1 : f f -> f) .

eq rho(M2) = (r1 > r2) .

eq rules(M1) = none .
eq freeDeltaRules(M1) = none .
eq rho(M1) = empty .

eq maxSize = 0 .
endm)

We can use Maude commands in order to “play” with the P system specification.
For instance, we use the command rew to see the result of a given number of term
rewriting:

Maude> (rew [117] init .)
rewrites: 3138 in 60ms cpu (60ms real) (51501 rewrites/second)
rewrite in NSQUARE :
init

result Configuration? :
{< M1 | green(empty); < M2 | green(a(e,in(M4)))blue(M2,r1 r2,a f f,false);

< M4 | blue(M4,prty(none),empty,false)> > >}

which is an intermediate configuration occurred during the maximal parallel rewriting
step. The halting configuration is the following:

Maude> (rew [150] init .)
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rewrites: 3861 in 54ms cpu (54ms real) (70302 rewrites/second)
rewrite in NSQUARE :
init

result CConfiguration :
{< M1 | a a ; < M4 | e e e e > >}

when the system has only the skin membrane and the output one, and the result is
collected from the output membrane, M4: four objects, the square of the number of
objects we started with.

A simpler solution is to use the command search which performs a breadth-first
search for rewrite proofs starting with init to a final state that matches committed
configurations having only skin and output membranes:

Maude> (search init =>+ { < M1 | S1:Soup ; < M4 | S2:Soup > > } .)
rewrites: 302521 in 4312ms cpu (4312ms real) (70152 rewrites/second)
search in NSQUARE : init =>+ {< M1 | S1:Soup ; < M4 | S2:Soup > >}.

Solution 1
S1:Soup <- a a ; S2:Soup <- e e e e

No more solutions.

The search command is very useful for nondeterministic systems when there might
be more than one halting configuration.

Example 5.2 Let Π2 be the P system Π2 which non-deterministically generates values
of the form n2, for n ≥ 1. This example is taken from [39], page 71.

Π2 = (O, µ, w1, w2, w3, (R1, ρ1), (R2, ρ2), (R3, ρ3), 1),
O = {a, b, d, e, f},
µ = [1[2[3]3]2]1,

w1 = λ, R1 = ∅, ρ1 = ∅,
w2 = λ, ρ2 = {(r1, r2)},
R2 = {b → (d, here), d → (de, here), r1 : ff → (f, here), r2 : f → δ},
w3 = af,R3 = {a → (ab, here), a → (b, here)δ, f → (ff, here)}, ρ3 = ∅

The initial configuration is given in Figure 5.1.
Since no object is free in membranes 1 and 2, the only possibility to start is by

using the rules of membrane 3 together with its free objects a and f . Using the rules
a → (ab, here) and f → (ff, here) in parallel for the available occurrences of a and f ,
after n ≥ 1 steps we get n occurrences of b and 2n occurrences of f . At any moment we
can use a → (b, here)δ instead of a → ab, and consequently we get n + 1 occurrences
of b and 2n+1 occurrences of f , followed by the dissolving of membrane 3. Region
3 disappears, its rules are lost, and its objects move to region 2. According to the
priority relation, the rule ff → (f, here) is used as much as possible. In one step bn+1

are transformed in dn+1, while the number of f occurrences is divided by two. Then,
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a → (b, here)δ
f → (ff, here)

b → (d, here)
d → (de, here)

(r1 : ff → (f, here)) >
(r2 : f → δ)

Figure 5.1: The initial configuration of a P system generating n2

in the next step, n + 1 occurrences of e are produced, and the number of f occurrences
is divided again by two. At each step, further n + 1 occurrences of e are produced.
Finally, after n + 1 steps (n steps when the rule ff → (f, here) is used, and one when
using the rule f → δ), membrane 2 is dissolved, its rules are removed, and its objects
move to the skin region. The number of the objects e is the square of the number of
d. Consequently, if we count the objects e, then Π2 generates values of the form n2, for
n ≥ 1. But if we count the total number of objects from the output membrane (which
is the skin membrane), then we get n2 + n.

If we add the rule r3 : df → (f, here) in membrane 2 such that r1 > r3 and
r3 > r2, then we obtain in the halting configurations only square numbers, but we
cannot anymore determine very easy (as above) that the resulted numbers are indeed
square numbers.

The P system Π2 has the following Maude specification:

(mod NSQUARE is
inc PSYSTEM .

ops r1 r2 : -> Priority .
ops M1 M2 M3 : -> Label .
ops a b d f e : -> Obj .

op init : -> CConfiguration .
eq init = { < M1 | empty ; < M2 | empty ; < M3 | a f > > > } .

eq rules(M3) = (a -> a b), (a -> b delta), (f -> f f) .
eq freeDeltaRules(M3) = (a -> a b), (f -> f f) .
eq rho(M3) = empty .

eq rules(M2) = (b -> d), (d -> d e), (r1 : f f -> f), (r2 : f -> delta) .
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eq freeDeltaRules(M2) = (b -> d), (d -> d e), (r1 : f f -> f) .
eq rho(M2) = (r1 > r2) .

eq rules(M1) = none .
eq freeDeltaRules(M1) = none .
eq rho(M1) = empty .

eq maxSize = 15 .
endm)

The two intermediated configurations below are resulted after 25 and 45 term rewrit-
ing, respectively:

Maude> (rew [25] init .)
rewrites: 754 in 5ms cpu (5ms real) (125687 rewrites/second)
rewrite in NSQUARE :
init

result Configuration? :
{< M1 | green(empty); < M2 | green(empty); < M3 | green(f f)green(a

b f f)blue(M3,b,false)> > >}

Maude> (rew [45] init .)
rewrites: 1012 in 6ms cpu (7ms real) (144592 rewrites/second)
rewrite in NSQUARE :
init

result Configuration? :
{< M1 | green(empty); < M2 | green(empty); < M3 | green(a b f f f f

f f) blue(M3,b b f,false)> > >}

The following command gives the subspace of reachable committed configurations
(containing at most maxSize objects) starting from the initial configuration:

Maude> (search init =>+ C:CConfiguration .)

Due to its large size, the result of this command is presented in Appendix A.
However, we are interested only in the halting configurations, especially in the out-

put membranes from the halting configurations. The command below filters the sub-
space of reachable committed configurations searching only the halting configurations:

Maude> (search init =>+ { < M1 | S:Soup > } .)
rewrites: 228973 in 1656ms cpu (1656ms real) (138206 rewrites/second)
search in NSQUARE : init =>+ {< M1 | S:Soup >}.

Solution 1
S:Soup <- d e

Solution 2
S:Soup <- d d e e e e
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Solution 3
S:Soup <- d d d e e e e e e e e e

No more solutions.

Therefore there are only three halting configurations in the subspace considered,
and they give the result for the computation of n2 for n = 1, 2, 3.

We illustrate the use of LTL model checker by verifying two atomic propositions:

• isHalting, satisfied by a configuration if it is a committed configuration, and
it consists of the skin as an elementary membrane (it must be an elementary
membrane because the skin is the output membrane);

• isSquare, satisfied by a configuration if the number of objects e is the square of
the number of objects d.

(mod N2-PREDS is
including NSQUARE .
including SATISFACTION .
subsort Configuration? < State .
ops isHalting isSquare : -> Prop .
var C : Configuration? .

ceq C |= isHalting = true
if { < M1 | S:Soup > } := C .

ceq C |= isSquare = true
if #(C, d) * #(C, d) == #(C, e) .

endm)

(mod PROOF is
including N2-PREDS .
including MODEL-CHECKER .
including LTL-SIMPLIFIER .

endm)

We check the temporal formula ¤(isHalting -> isSquare) by giving the following
red command:

Maude> (red modelCheck(init, [](isHalting -> isSquare)) .)
rewrites: 235072 in 1829ms cpu (1830ms real) (128474 rewrites/second)
reduce in PROOF :
modelCheck(init,[](isHalting -> isSquare))

result Bool :
true

If we slightly modify the isSquare atomic proposition:
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ceq C |= isSquare = true
if #(C, d) * #(C, d) == #(C, e) + 1 .

then we get a counter-example. This is also detailed in Appendix A.
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Chapter 6

Operational Correspondence

In this chapter we show how the dynamics of the P systems and their corresponding
translation into Maude are related. Such a relationship between P systems operational
semantics and Maude rewriting relation is given by an operational correspondence re-
sult.

Let Π be a P system of degree n, n ≥ 1,

Π = (O, µ,w1, . . . , wn, (R1, ρ1), . . . , (Rn, ρn), i0)

having the initial configuration 〈L1 |w1 ; Mi1 , . . . , Min 〉, {i1, . . . , in} ⊆ {2, . . . , n}, with
rules(Lj) = Rj, priority(Lj) = ρj, for all membrane labels Lj, and ⇒ the transition
relation between two configurations.

We associate to Π a rewrite theory R(Π) = (Σ, E, L, R) in the way we presented
in the previous chapter. Σ is the equational signature defining sorts and operation
symbols, E is the set of Σ-equations that includes also the appropriate axioms for the
associativity, commutativity and identity attributes of operators, L is the set of rule
labels, and R is the set of rewriting rules. For two different P systems, their associated
rewrite theories differ only in the signature, more precisely in the operators that describe
the initial configuration of the system: object and priority names, membrane labels,
initial multisets of objects, sets of rules and priority relations on them.

Considering →R(Π) the rewriting relation, we denote by →+
R(Π) the transitive closure

of →R(Π), and by →∗
R(Π) the reflexive and transitive closure.

We define an encoding function Im : M(Π) → (TΣ,E)Membrane, from the set of
membranes of Π to ground terms of sort Membrane from the associated rewrite theory,
as follows:

• if M = 〈 L | w 〉, then Im(M) = < L | w >

• if M = 〈 L | w ; M1, . . . , Mn 〉, then
Im(M) = < L | w ; Im(M1) , ... , Im(Mn) >

We extend the encoding function Im over non-empty sets of sibling membranes by:

Im(M1, . . . , Mk) = Im(M1), . . . , Im(Mk), k ≥ 2
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Restricting the domain of Im to C(Π) we obtain an encoding function for configu-
ration as ground terms of sort CConfiguration:

I : C(Π) → (TΣ,E)CConfiguration

such that I(C) = {Im(C)}, for every C ∈ C(Π).

Definition 6.1 Given two terms t, t′ ∈ (TΣ,E)CConfiguration, t C-rewrites to t′, and this
is denoted by t ⇒R(Π) t′, if t →+

R(Π) t′, and any intermediate term has the least sort
Configuration?.

We denote by hasPrty(L) the truth value of the predicate priorities(rules(L)) =/=

none, and by hasDelta(L) the truth value of the predicate freeDeltaRules(L) =/=

none. Therefore if L is the label of a membrane M , the two predicates give information
about the existence of a priority relation on the evolution rules of M , and about the
existence of evolution rules with δ in their righthand side, respectively.

For the sake of presentation we define a operator blue# as follows:

blue#(L,w) =





blue(L,w) , if ¬hasPrty(L) ∧ ¬hasDelta(L)
blue(L,w, false) , if ¬hasPrty(L) ∧ hasDelta(L)
blue(L, priorities(rules(L)), w) , if hasPrty(L) ∧ ¬hasDelta(L)
blue(L, priorities(rules(L)), w, false) , if hasPrty(L) ∧ hasDelta(L)

We define a sequence of rule applications as follows:

• each label of a Maude rule is a sequence of rule applications;
• s1 + s2 is the application of one of the sequence s1 and s2;
• s1|s2 is the application of s1 followed by s2 or s2 followed by s1;
• if s is a sequence of rule applications, then s∗ = s| . . . |s︸ ︷︷ ︸

k

, with k ≥ 0, and s+ =

s| . . . |s︸ ︷︷ ︸
k

, with k ≥ 1.

Proposition 6.1 1. If w is a multiset of L-irreducible objects, then blue#(L,w) −→+

green(w) is a rewriting in R(Π).

2. If M+ is mpr/tar/δ-irreducible, then blue(Im(M+)) −→+ green(Im(M+)) is a
rewriting in R(Π).

Proof: For w a L-irreducible multiset of objects we have in R(Π) the one-step rewriting

blue#(L,w)
7+7′+9+9′−−−−−−→ green(w). We prove the second property by structural induction:

• M+ = 〈 L | w 〉. By definition, if M+ is mpr-irreducible, then w is L-irreducible.
Therefore the following is a rewriting in R(Π):

blue(Im(〈 L | w 〉)) 4−→ 〈 L | blue#(L,w) 〉 7+7′+9+9′−−−−−−→
〈 L | green(w) 〉 10+11+12−−−−−−→ green(Im(〈 L | w 〉))
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• M+ = M1, . . . , Mn, n ≥ 2. By definition, for every i ∈ [n] Mi is mpr-irreducible;
then blue(Mi) −→+ green(Mi), for every i ∈ [n]. Therefore the following is a
rewriting in R(Π):

blue(Im(M+)) = blue(Im(M1), . . . , Im(Mn))
5+−→

blue(Im(M1)), . . . , blue(Im(Mn)) −→+

green(Im(M1)), . . . , green(Im(Mn))
15+−→

green(Im(M1), . . . , Im(Mn)) = green(Im(M+))

• M+ = 〈 L | w ; N+ 〉. According to the definition of mpr-irreducibility, w is L-
irreducible, and N is mpr-irreducible. From the first part of this proposition,

blue#(L,w)
7+7′+9+9′−−−−−−→ green(w) is a rewriting in R(Π), while by inductive hy-

pothesis we have blue(N+) −→+ green(N+). Then the following is a rewriting in
R(Π):

blue(Im(〈 L | w ; N+ 〉)) 3−→ 〈 L | blue#(L,w) ; blue(Im(N+)) 〉 −→+

〈 L | green(w) ; green(Im(N+)) 〉 13−→ green(Im(〈 L | w ; N+ 〉))

Proposition 6.2 If w
mpr
=⇒L w′, then blue#(L,w) −→+ green(w′).

Proof: If w
mpr
=⇒L w′, then by axiom (R1) we have w = u1 . . . unz, (u1 −→ v1, . . . , un −→

vn) (L,w)-consistent, z L-irreducible, and w′ = v1 . . . vnz.
(i) If ¬hasPrty(L) ∧ ¬hasDelta(L), then, by choosing the same evolution rules in
Maude, we get the following rewrite in R(Π):

blue(L,w)
6−→ green(v1)blue(L, u2 . . . unz)

6−→ . . .
6−→

green(v1) . . . green(vn)blue(L, z)
7−→ green(v1) . . . green(vn)green(z)

14∗−→
green(v1 . . . vnz) = green(w′)

(ii) If ¬hasPrty(L) ∧ hasDelta(L), then the following is a rewrite in R(Π):

blue(L,w, false)
6′−→ green(v1)blue(L, u2 . . . unz, false or hasDelta(v1))

6′−→ . . .
6′−→

green(v1) . . . green(vn)blue(L, z, false or hasDelta(v1) or . . . or hasDelta(vn))
7′−→

green(v1) . . . green(vn)green(z)
14∗−→ green(v1 . . . vnz) = green(w′)

(iii) If hasPrty(L) ∧ ¬hasDelta(L), then the following is a rewrite in R(Π):

blue(L, priorities(rules(L)), w)
8−→

green(v1)blue(L, rmLower(L, prty(u1 −→ v1), priorities(rules(L))), u2 . . . unz)
8−→ . . .

8−→ green(v1) . . . green(vn)blue(L, PS, z)
9−→

green(v1) . . . green(vn)green(z)
14∗−→ green(v1 . . . vnz) = green(w′)

For every application of the Maude rule 8, the second argument of the operator blue,
namely a set of priorities, is changed by removing those priorities which are lower than
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the priority of the chosen evolution rule.
(iv) If hasPrty(L) ∧ hasDelta(L), then the following is a rewrite in R(Π):

blue(L, priorities(rules(L)), w, false)
8′−→

green(v1)blue(L, rmLower(L, prty(u1 −→ v1), priorities(rules(L)),

u2 . . . unz, false or hasDelta(v1)))
8′−→ . . .

8′−→
green(v1) . . . green(vn)blue(L, PS, z, false or hasDelta(v1) or . . . or hasDelta(vn))

9′−→
green(v1) . . . green(vn)green(z)

14∗−→ green(v1 . . . vnz) = green(w′)

where PS represents the set of remaining priorities after successive applications of the
operator rmLower.

Corollary 6.1 If w
mpr
=⇒L w′, then blue#(L,w) −→+ green(w′), and it does not exist

w′′ such that w′′ 6= w′ and blue(L, w) −→+ green(w′′) −→+ green(w′).

Proof: It results from the proof of proposition 6.2.

Proposition 6.3 If M+
mpr
=⇒ M ′

+
tar
=⇒ M ′′

+ and M ′′
+ is δ-irreducible, then blue(Im(M+)) −→+

green(Im(M ′′
+)).

Proof: The inference of M+
mpr
=⇒ M ′

+
tar
=⇒ M ′′

+ can be represented as a tree. We prove
blue(Im(M+)) −→+ green(Im(M ′′

+)) by induction on the depth of this inference tree.

We consider all possible cases for the final step of the inference M ′
+

tar
=⇒ M ′′

+:

(i) M ′
+

tar
=⇒ M ′′

+ is inferred by (C1). Then M ′
+ = 〈 L | w′ ; M ′

1, . . . , M
′
n 〉,

M ′′
+ = 〈 L | w′′ ; M ′′

1 , . . . ,M ′′
n 〉 where M ′

1, . . . , M
′
n is a tar-irreducible set of mem-

branes, and (∃i)inL(M ′
i)
(w′)here(w′)here(w(M ′′

i ))out(w(M ′′
i )) 6= empty.

We have the following rewrite in R(Π):

blue(Im(M+)) −→+ 〈 L | green(w′
h) ; green(M ′

1, . . . , M
′
n) 〉 = t

where w′
h is obtained from w′ by disclosing the here messages. If there are only

here messages, as we consider this target implicit in the Maude implementation,
then M ′′

+ = M ′
+, and the above rewriting is continued by:

t
13−→ green(〈 L | w′

h ; M ′
1, . . . , M

′
n 〉) = green(Im(M ′′

+)

Next we consider the case when there are in or out messages. By sending the
messages in the corresponding membranes we obtain the following rewrite in R(Π):

blue(Im(M+)) −→+ 〈 L | green(w′
h) ; green(M ′

1, . . . , M
′
n) 〉 16∗|17∗|18∗|19∗−−−−−−−−→

〈 L | green(w′′) ; green(M ′′
1 , . . . , M ′′

n) 〉 13−→ green(〈 L | w′′ ; M ′′
1 , . . . , M ′′

n 〉) =
green(Im(M ′′

+))
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(ii) M ′
+

tar
=⇒ M ′′

+ is inferred by (C2). Then M ′
+ = 〈 L | w′ ; M ′

1, . . . , M
′
n 〉 and

M ′′
+ = 〈 L | w′′ ; M ′′′

1 , . . . ,M ′′′
n 〉, where M ′

1, . . . , M
′
n

tar
=⇒ M ′′

1 , . . . , M ′′
n is inferred

by a shorter inference. Therefore M ′′
1 , . . . ,M ′′

n is tar-irreducible. By inductive
hypothesis the following is a rewrite in R(Π):

blue(Im(M+)) = blue(〈 L | w ; M1, . . . , Mn 〉) −→+

〈 L | green(w′
h) ; green(M ′′

1 , . . . , M ′′
n) 〉 16∗|17∗|18∗|19∗|21∗−−−−−−−−−−−→

〈 L | green(w′′) ; green(M ′′′
1 , . . . , M ′′′

n ) 〉 13−→ green(〈 L | w′′ ; M ′′′
1 , . . . , M ′′′

n 〉) =
green(Im(M ′′

+))

(iii) M ′
+

tar
=⇒ M ′′

+ is inferred by (C3). Then M ′
+ = 〈 Skin | w′ 〉 and

M ′′
+ = 〈 Skin | obj(w′)here(w′) 〉, with here(w′)out(w′) 6= empty. If out(w′) =

empty then, as the here messages were sent during the corresponding maximal
parallel step in the Maude implementation, M ′′

+ = M ′
+. Now we consider the case

when out(w′) 6= empty. Then the following is a rewrite in R(Π):

{blue(Im(M+))} = {blue(〈 Skin | w 〉)} −→+ {〈 Skin | green(w′
h) 〉} 20+−→

{〈 Skin | green(w′′) 〉} 12−→ {green(〈 L | w′′ 〉)} = {green(Im(M ′′
+))}

(iv) M ′
+

tar
=⇒ M ′′

+ is inferred by (C4). Then M ′
+ = N ′, N ′

+ and M ′′
+ = N ′′, N ′

+, where

N ′ tar
=⇒ N ′′ is inferred by a shorter inference, and N ′

+ is tar-irreducible. Let N be

a membrane such that N
mpr
=⇒ N ′. Then by inductive hypothesis the following is

a rewrite in R(Π):
blue(Im(N)) −→+ green(Im(N ′′))

We distinguish two subcases:
(a) M+ = N,N ′

+ and N ′
+ is mpr-irreducible. Then by proposition 6.1 blue(Im(N ′

+)) −→+

green(Im(N ′
+)). Therefore the following is also a rewrite in R(Π):

blue(Im(N,N ′
+))

5−→ blue(Im(N)), blue(Im(N ′
+)) −→+

green(Im(N ′′)), green(Im(N ′
+))

15−→ green(Im(N ′′, N ′
+))

(b) M+ = N, N+ and N+
mpr
=⇒ N ′

+ such that N ′
+ contains no messages, but

δ ∈ w(N ′
+). Then by inductive hypothesis blue(Im(N+)) −→+ green(Im(N ′

+)).
Therefore the following is a rewrite in R(Π):

blue(Im(N,N+))
5−→ blue(Im(N)), blue(Im(N+)) −→+

green(Im(N ′′)), green(Im(N ′
+))

15−→ green(Im(N ′′, N ′
+))

(v) M ′
+

tar
=⇒ M ′′

+ is inferred by (C5). Then M ′
+ = N ′, N ′

+ and M ′′
+ = N ′′, N ′′

+, where

N ′ tar
=⇒ N ′′ and N ′

+
tar
=⇒ N ′′

+ are inferred by shorter inferences. Let M+ = N,N+
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such that N
mpr
=⇒ N ′ and N+

mpr
=⇒ N ′

+. Then by inductive hypothesis we obtain
the following rewrites in R(Π):

blue(Im(N)) −→+ green(Im(N ′′))
blue(Im(N+)) −→+ green(Im(N ′′

+))

By composing them, we obtain the following rewrite in R(Π):

blue(Im(N,N+))
5−→ blue(Im(N)), blue(Im(N+)) −→+

green(Im(N ′′)), green(Im(N ′′
+))

15−→ green(Im(N ′′, N ′′
+))

Corollary 6.2 If M+
mpr
=⇒ M ′

+
tar
=⇒ M ′′

+ and M ′′
+ is δ-irreducible then

blue(Im(M+)) −→+ green(Im(M ′′
+)), and it does not exist M0

+ such that M0
+ 6= M ′′

+

and blue(M+) −→+ green(M0
+) −→+ green(M ′′

+).

Proposition 6.4 If M+
mpr
=⇒ M ′

+
δ

=⇒ M ′′
+, then blue(Im(M+)) −→+ green(Im(M ′′

+)).

Proof: The inference of M+
mpr
=⇒ M ′

+
δ

=⇒ M ′′
+ can be represented as a tree. We prove

blue(Im(M+)) −→+ green(Im(M ′′
+)) by induction on the depth of this inference tree.

We consider all possible cases for the final step of the inference M ′
+

δ
=⇒ M ′′

+:

(i) M ′
+

δ
=⇒ M ′′

+ is inferred by (D1). Then M ′
+ = 〈 L1 | w′

1 ; 〈 L2 | w′
2δ 〉 〉 and

M ′′
+ = 〈 L1 | w′

1w
′
2 〉. Let M+ = 〈 L1 | w1 ; 〈 L2 | w2 〉 〉. The following is a rewrite

in R(Π):

blue(Im(M+))
3−→ 〈 L1 | blue#(L1, w1) ; blue(〈 L2 | w2 〉) 〉 −→+

〈 L1 | green(w′
1) ; green(〈 L2 | w′

2δ 〉) 〉 23−→ 〈 L1 | green(w′
1w

′
2) 〉 10+11+12−−−−−−→−→

green(〈 L1 | w′
1w

′
2 〉) = green(Im(M ′′

+))

(ii) M ′
+

δ
=⇒ M ′′

+ is inferred by (D2). Then M ′
+ = 〈 L1 | w′

1 ; 〈 L2 | w′
2δ ; N ′

+ 〉 〉
and M ′′

+ = 〈 L1 | w′
1w

′
2 ; N ′

+ 〉, with 〈 L2 | w′
2δ ; N ′

+ 〉 δ-irreducible. Let M+ =
〈 L1 |w1 ; 〈 L2 |w2 ; N+ 〉 〉. As N+ is tar- and δ-irreducible, it follows that is also
mpr-irreducible, then N ′

+ = N+; hence, we have by proposition 6.1 the rewrite
blue(N+) −→+ green(N+). Then the following is a rewrite in R(Π):

blue(Im(M+))
3−→ 〈 L1 | blue#(L1, w1) ; blue(〈 L2 | w2 ; N+ 〉) 〉 −→+

〈 L1 | green(w′
1) ; blue(〈 L2 | w2 ; N+ 〉) 〉 3−→

〈 L1 | green(w′
1) ; 〈 L2 | blue#(L2, w2) ; blue(N+) 〉 〉 −→+

〈 L1 | green(w′
1) ; 〈 L2 | green(w′

2δ) ; green(N ′
+) 〉 〉 13−→

〈 L1 | green(w′
1) ; green(〈 L2 | w′

2δ ; N ′
+ 〉) 〉 24−→

〈 L1 | green(w′
1w

′
2) ; green(N ′

+) 〉 13−→ green(〈 L1 | w′
1w

′
2 ; N ′

+ 〉) =
green(Im(M ′′

+))
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(iii) M ′
+

δ
=⇒ M ′′

+ is inferred by (D3). Then M ′
+ = 〈L1 |w′

1 ; 〈L2 |w′
2 ; N ′

+ 〉 〉 and M ′′
+ =

〈L1|w′
1; 〈L2|w′′

2〉〉, where 〈L2|w′
2; N

′
+〉 δ

=⇒ 〈L2|w′′
2〉 is inferred by a shorter inference,

and w′
2 is δ-free (therefore w′′

2 is also δ-free). Let M+ = 〈L1 |w1 ; 〈L2 |w2 ; N+ 〉 〉.
Then 〈 L2 |w2 ; N+ 〉 mpr

=⇒ 〈 L2 | w′
2 ; N ′

+ 〉 δ
=⇒ 〈 L2 |w′′

2 〉. By inductive hypothesis
blue(Im(〈 L2 | w2 ; N+ 〉)) −→+ green(Im(〈 L2 | w′′

2 〉)). Therefore the following is
a rewrite in R(Π):

blue(Im(M+))
3−→ 〈 L1 | blue#(L1, w1) ; blue(Im(〈 L2 | w2 ; N+ 〉)) 〉 −→+

〈 L1 | green(w′
1) ; green(Im(〈 L2 | w′′

2 〉)) 〉 13−→
green(Im(〈 L1 | w′

1 ; 〈 L2 | w′′
2 〉 〉)) = green(Im(M ′′

+))

(iv) M ′
+

δ
=⇒ M ′′

+ is inferred by (D4). Then M ′
+ = 〈 L1 | w′

1 ; 〈 L2 | w′
2 ; N ′

+ 〉 〉 and

M ′′
+ = 〈L1 |w′

1 ; 〈L2 |w′′
2 ; N ′′

+〉〉, where 〈L2 |w′
2 ; N ′

+〉 δ
=⇒ 〈L2 |w′′

2 ; N ′′
+〉 is inferred by

a shorter inference, and w′
2 is δ-free (therefore w′′

2 is also δ-irreducible). Let M+ =

〈L1 |w1 ; 〈L2 |w2 ; N+〉〉. Then 〈L2 |w2 ; N+〉 mpr
=⇒ 〈 L2 | w′

2 ; N ′
+ 〉 δ

=⇒ 〈L2 |w′′
2 ; N ′′

+〉.
By inductive hypothesis blue(Im(〈L2 |w2 ; N+ 〉)) −→+ green(Im(〈L2 |w′′

2 ; N ′′
+ 〉)).

Therefore the following is a rewrite in R(Π):

blue(Im(M+))
3−→ 〈 L1 | blue#(L1, w1) ; blue(Im(〈 L2 | w2 ; N+ 〉)) 〉 −→+

〈 L1 | green(w′
1) ; green(Im(〈 L2 | w′′

2 ; N ′′
+ 〉)) 〉 13−→

green(Im(〈 L1 | w′
1 ; 〈 L2 | w′′

2 ; N ′′
+ 〉 〉)) = green(Im(M ′′

+))

(v) M ′
+

δ
=⇒ M ′′

+ is inferred by (D5). Then M ′
+ = 〈 L1 | w′

1 ; 〈 L2 | w′
2δ ; N ′

+ 〉 〉 and

M ′′
+ = 〈L1 |w′

1w
′′
2 〉, where 〈L2 |w′

2δ ; N ′
+ 〉 δ

=⇒ 〈L2 |w′′
2δ 〉 is inferred by a shorter

inference. Let M+ = 〈 L1 | w1 ; 〈 L2 | w2 ; N+ 〉 〉. Then by inductive hypothesis
blue(Im(〈L2 |w2 ; N+ 〉)) −→+ green(Im(〈L2 |w′′

2δ 〉)). Therefore the following is
a rewrite in R(Π):

blue(Im(M+))
3−→ 〈 L1 | blue#(L1, w1) ; blue(Im(〈 L2 | w2 ; N+ 〉)) 〉 −→+

〈 L1 | green(w′
1) ; green(Im(〈 L2 | w′′

2δ 〉)) 〉 23−→ green(〈 L1 | w′
1w

′′
2 ; ) 〉 =

green(Im(M ′′
+))

(vi) M ′
+

δ
=⇒ M ′′

+ is inferred by (D6). Then M ′
+ = 〈 L1 | w′

1 ; 〈 L2 | w′
2δ ; N ′

+ 〉 〉 and

M ′′
+ = 〈L1 |w′

1w
′′
2 ; N ′′

+ 〉, where 〈L2 |w′
2δ ; N ′

+ 〉 δ
=⇒ 〈L2 |w′′

2δ ; N ′′
+ 〉 is inferred by a

shorter inference. Let M+ = 〈L1 |w1 ; 〈L2 |w2 ; N+〉〉. Then by inductive hypothesis
blue(Im(〈L2 |w2 ; N+ 〉)) −→+ green(Im(〈L2 |w′′

2δ ; N ′′
+ 〉)). Therefore the following

is a rewrite in R(Π):

blue(Im(M+))
3−→ 〈 L1 | blue#(L1, w1) ; blue(Im(〈 L2 | w2 ; N+ 〉)) 〉 −→+

〈 L1 | green(w′
1) ; green(Im(〈 L2 | w′′

2δ ; N ′′
+ 〉)) 〉 24−→

〈 L1 | green(w′
1w

′′
2) ; green(N ′′

+) 〉 13−→ green(〈 L1 | w′
1w

′′
2 ; N ′′

+ 〉) = green(Im(M ′′
+))
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(vii) M ′
+

δ
=⇒ M ′′

+ is inferred by (D7). Then M ′
+ = 〈 L | w′ ; N1

+, N2
+ 〉 and M ′′

+ =

〈L |w′′ ; N2
+ 〉, where 〈L |w′ ; N1

+ 〉 δ
=⇒ 〈L |w′′ 〉 is inferred by a shorter inference,

and 〈L |w′ ; N2
+ 〉 is δ-irreducible (therefore the dissolving symbol δ does not occur

in N2
+). Let M+ = 〈 L | w ; N1

+, N2
+ 〉. By inductive hypothesis:

blue(Im(〈L |w ; N3
+ 〉)) −→+ 〈L | green(w′) ; green(N3

+) 〉 −→+ 〈L | green(w′′) 〉.
Therefore the following is a rewrite in R(Π):

blue(Im(M+))
3−→ 〈 L | blue#(L,w) ; blue(Im(N1

+, N2
+)) 〉 5−→

〈 L | blue#(L,w) ; blue(Im(N1
+)), blue(Im(N2

+)) 〉 −→+

〈 L | green(w′) ; green(N3
+), green(N4

+) 〉 −→+ 〈 L | green(w′′) ; green(N4
+) 〉

13−→ green(Lw′′N4
+) = green(Im(M ′′

+))

(viii) M ′
+

δ
=⇒ M ′′

+ is inferred by (D8). Then M ′
+ = 〈 L | w′ ; N3

+, N4
+ 〉 and M ′′

+ =

〈L |w′′ ; N5
+, N4

+ 〉, where 〈L |w′ ; N3
+ 〉 δ

=⇒ 〈L |w′′ ; N5
+ 〉 is inferred by a shorter

inference, and 〈 L | w′ ; N4
+ 〉 is δ-irreducible. Let M+ = 〈 L | w ; N1

+, N2
+ 〉. Then

〈 L | w ; N1
+ 〉

mpr
=⇒ 〈 L | w′ ; N3

+ 〉 δ
=⇒ 〈 L | w′′ ; N5

+ 〉. By inductive hypothesis:
blue(Im(〈L|w; N1

+〉)) −→+ 〈L|green(w′); green(N3
+)〉 −→+ 〈L|green(w′′); green(N5

+)〉.
Then the following is a rewrite in R(Π):

blue(Im(M+))
3−→ 〈 L | blue#(L,w) ; blue(Im(N1

+, N2
+)) 〉 5−→

〈 L | blue#(L,w) ; blue(Im(N1
+)), blue(Im(N2

+)) 〉 −→+

〈 L | green(w′) ; green(N3
+), green(N4

+) 〉 −→+

〈 L | green(w′′) ; green(N5
+), green(N4

+) 〉 15−→
〈 L | green(w′′) ; green(N5

+, N4
+) 〉 13−→ green(〈 L | w′′ ; N5

+, N4
+ 〉) =

green(Im(M ′′
+))

(ix) M ′
+

δ
=⇒ M ′′

+ is inferred by (D9). Then M ′
+ = 〈 L | w′ ; N3

+, N4
+ 〉 and M ′′

+ =

〈L |w′w′′w′′′ 〉, where 〈L |w′ ; N3
+ 〉 δ

=⇒ 〈L |w′w′′ 〉 and 〈L |w′ ; N4
+ 〉 δ

=⇒ 〈L |w′w′′′ 〉
are inferred by shorter inferences. Let M+ = 〈L|w; N1

+, N2
+〉. Then 〈L|w; N1

+〉
mpr
=⇒

〈L |w′ ; N3
+ 〉 δ

=⇒ 〈L |w′w′′ 〉 and 〈L |w ; N2
+ 〉

mpr
=⇒ 〈L |w′ ; N4

+ 〉 δ
=⇒ 〈L |w′w′′′ 〉.

By inductive hypothesis we have the following two rewrites in R(Π):

blue(Im(〈 L | w ; N1
+ 〉)) −→+ 〈 L | green(w′) ; green(N3

+) 〉 −→+

〈 L | green(w′w′′) 〉 10+11+12−−−−−−→ green(〈 L | w′w′′ 〉)
blue(Im(〈 L | w ; N2

+ 〉)) −→+ 〈 L | green(w′) ; green(N4
+) 〉 −→+

〈 L | green(w′w′′′) 〉 10+11+12−−−−−−→ green(〈 L | w′w′′′ 〉)
Then the following is also a rewrite in R(Π):

blue(Im(M+))
3|5−→ 〈 L | blue#(L,w) ; blue(N1

+), blue(N2
+) 〉 −→+

〈 L | green(w′) ; green(N3
+), green(N4

+) 〉 −→+ 〈 L | green(w′w′′w′′′) 〉 10+11+12−−−−−−→
green(〈 L | w′w′′w′′′ 〉) = green(Im(M ′′

+))
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(x) M ′
+

δ
=⇒ M ′′

+ is inferred by (D10). Then M ′
+ = 〈 L | w′ ; N3

+, N4
+ 〉 and M ′′

+ =

〈 L | w′w′′w′′′ ; N5
+ 〉, where 〈 L | w′ ; N3

+ 〉 δ
=⇒ 〈 L | w′w′′ 〉 and 〈 L | w′ ; N4

+ 〉 δ
=⇒

〈 L | w′w′′′ ; N5
+ 〉 are inferred by shorter inferences. Let M+ = 〈 L | w ; N1

+, N2
+ 〉.

Then 〈 L | w ; N1
+ 〉

mpr
=⇒ 〈 L | w′ ; N3

+ 〉 δ
=⇒ 〈 L | w′w′′ 〉 and 〈 L | w ; N2

+ 〉
mpr
=⇒

〈L |w′ ; N4
+ 〉 δ

=⇒ 〈L |w′w′′′ ; N5
+ 〉. By inductive hypothesis we have the following

two rewrites in R(Π):

blue(Im(〈 L | w ; N1
+ 〉)) −→+ 〈 L | green(w′) ; green(N3

+) 〉 −→+

〈 L | green(w′w′′) 〉 10+11+12−−−−−−→ green(〈 L | w′w′′ 〉)
blue(Im(〈 L | w ; N2

+ 〉)) −→+ 〈 L | green(w′) ; green(N4
+) 〉 −→+

〈 L | green(w′w′′′) ; green(N5
+) 〉 13−→ green(〈 L | w′w′′′ ; N5

+ 〉))
Then the following is also a rewrite in R(Π):

blue(Im(M+))
3|5−→ 〈 L | blue#(L,w) ; blue(N1

+), blue(N2
+) 〉 −→+

〈 L | green(w′) ; green(N3
+), green(N4

+) 〉 15−→
〈 L | green(w′) ; green(N3

+, N4
+) 〉 −→+ 〈 L | green(w′w′′) ; green(N4

+) 〉 −→+

〈 L | green(w′w′′w′′′) ; green(N5
+) 〉 13−→ green(〈 L | w′w′′w′′′ ; N5

+ 〉) =
green(Im(M ′′

+))

(xi) M ′
+

δ
=⇒ M ′′

+ is inferred by (D11). Then M ′
+ = 〈 L | w′ ; N3

+, N4
+ 〉 and M ′′

+ =

〈L|w′w′′w′′′ ; N5
+, N6

+〉, where 〈L|w′ ; N3
+〉 δ

=⇒ 〈L|w′w′′ ; N5
+〉 and 〈L|w′ ; N4

+〉 δ
=⇒

〈 L | w′w′′′ ; N6
+ 〉 are inferred by shorter inferences. Let M+ = 〈 L | w ; N1

+, N2
+ 〉.

Then 〈 L |w ; N1
+ 〉

mpr
=⇒ 〈 L |w′ ; N3

+ 〉 δ
=⇒ 〈 L |w′w′′ ; N5

+ 〉 and 〈 L |w ; N2
+ 〉

mpr
=⇒

〈L |w′ ; N4
+ 〉 δ

=⇒ 〈L |w′w′′′ ; N6
+ 〉. By inductive hypothesis we have the following

two rewrites in R(Π):

blue(Im(〈 L | w ; N1
+ 〉)) −→+ 〈 L | green(w′) ; green(N3

+) 〉 −→+

〈 L | green(w′w′′) ; green(N5
+) 〉 13−→ green(〈 L | w′w′′ ; N5

+ 〉)
blue(Im(〈 L | w ; N2

+ 〉)) −→+ 〈 L | green(w′) ; green(N4
+) 〉 −→+

〈 L | green(w′w′′′) ; green(N6
+) 〉 13−→ green(〈 L | w′w′′′ ; N6

+ 〉))
Then the following is also a rewrite in R(Π):

blue(Im(M+))
3|5−→ 〈 L | blue#(L,w) ; blue(N1

+), blue(N2
+) 〉 −→+

〈 L | green(w′) ; green(N3
+), green(N4

+) 〉 15−→
〈 L | green(w′) ; green(N3

+, N4
+) 〉 −→+

〈 L | green(w′w′′) ; green(N5
+, N4

+) 〉 −→+

〈 L | green(w′w′′w′′′) ; green(N5
+, N6

+) 〉 13−→ green(〈 L | w′w′′w′′′ ; N5
+, N6

+ 〉) =
green(Im(M ′′

+))
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Corollary 6.3 If M+
mpr
=⇒ M ′

+
δ

=⇒ M ′′
+, then blue(Im(M+)) −→+ green(Im(M ′′

+)),
and it does not exist M0

+ such that M0
+ 6= M ′′

+ and blue(M+) −→+ green(M0
+) −→+

green(M ′′
+).

Proposition 6.5 If M+
mpr
=⇒ M ′

+
tar
=⇒ M ′′

+
δ

=⇒ M ′′′
+ , then blue(Im(M+)) −→+ green(Im(M ′′′

+ )).

Proof: The inference of M+
mpr
=⇒ M ′

+
tar
=⇒ M ′′ δ

=⇒ M ′′′
+ can be represented as a tree. We

prove blue(Im(M+)) −→+ green(Im(M ′′′
+ )) by induction on the depth of this inference

tree. We consider all possible cases for the final step of the inference M ′′
+

δ
=⇒ M ′′′

+ :

(i) M ′′
+

δ
=⇒ M ′′′

+ is inferred by (D1). Then M ′′
+ = 〈 L1 | w′′

1 ; 〈 L2 | w′′
2δ 〉 〉 and

M ′′′
+ = 〈L1 |w′′

1w
′′
2 〉. Let M+ = 〈L1 |w1 ; 〈L2 |w2 〉〉 and M ′

+ = 〈L1 |w′
1 ; 〈L2 |w′

2δ 〉〉.
Then we have in R(Π):

blue(Im(M+))
3−→ 〈 L1 | blue#(L1, w1) ; blue(〈 L2 | w2 〉) 〉 = t.

As w
mpr
=⇒L1 w′ and 〈 L2 | w2 〉 mpr

=⇒ 〈 L2 | w′
2δ 〉, then the following two rewriting

exist in R(Π):
blue#(L1, w1) −→+ green(w′)

blue(〈 L2 | w2 〉) 3−→ 〈 L2 | blue#(w2) 〉 −→+ 〈 L2 | green(w′
2δ) 〉

Therefore we can continue the first rewriting as follows:

t −→+ 〈 L1 | green(w′
1) ; 〈 L2 | green(w′

2δ) 〉 〉
16∗|18∗|21∗−−−−−−→

〈 L1 | green(w′′
1) ; 〈 L2 | green(w′′

2δ) 〉 〉 23−→ 〈 L1 | green(w′′
1w

′′
2) 〉 10+11+12−−−−−−→

green(〈 L1 | w′′
1w

′′
2 〉) = green(Im(M ′′′

+ ))

(ii) M ′′
+

δ
=⇒ M ′′′

+ is inferred by (D2). Then M ′′
+ = 〈 L1 | w′′

1 ; 〈 L2 | w′′
2δ ; N ′′

+ 〉 〉
and M ′′′

+ = 〈 L1 | w′′
1w

′′
2 ; N ′′

+ 〉, with 〈 L2 | w′′
2δ ; N ′′

+ 〉 δ-irreducible. Let M+ =
〈 L1 | w1 ; 〈 L2 | w2 ; N+ 〉 〉 and M ′

+ = 〈 L1 | w′
1 ; 〈 L2 | w′

2 ; N ′
+ 〉 〉. Then:

blue(Im(M+))
3−→ 〈 L1 | blue#(L1, w1) ; blue(〈 L2 | w2 ; N+ 〉) 〉 = t.

As 〈 L2 | w2 ; N+ 〉 mpr
=⇒;

tar
=⇒ 〈 L2 | u2δ ; N ′′

+ 〉 and 〈 L2 | u2δ ; N ′′
+ 〉 is δ-irreducible,

by proposition 6.3:
blue(〈 L2 | w2 ; N+ 〉) −→+ green(〈 L2 | u2δ ; N ′′

+ 〉).
where w′′

2 is obtained from u2 by removing the out messages (if any), and adding
the objects sent from L1 (also, if any).
Therefore we continue the first rewrite in R(Π) as follows:

t −→+ 〈 L1 | green(w′
1) ; green(〈 L2 | u2δ ; N ′′

+ 〉) 〉
17∗|19∗|21∗−−−−−−→

〈 L1 | green(w′′
1) ; green(〈 L2 | w′′

2δ ; N ′′
+ 〉) 〉 24−→

〈 L1 | green(w′′
1w

′′
2) ; green(N ′′

+) 〉 13−→ green(〈 L1 | w′′
1w

′′
2 ; N ′′

+ 〉) =
green(Im(M ′′′

+ ))

(iii) M ′′
+

δ
=⇒ M ′′′

+ is inferred by (D3). Then M ′′
+ = 〈 L1 | w′′

1 ; 〈 L2 | w′′
2 ; N ′′

+ 〉 〉 and

M ′′′
+ = 〈L1 |w′′

1 ; 〈L2 |w′′
2w0 〉 〉, where 〈L2 |w′′

2 ; N ′′
+ 〉 δ

=⇒ 〈L2 |w′′
2w0 〉 is inferred
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by a shorter inference, and w′′
2 is δ-free. Let M+ = 〈L1 |w1 ; 〈L2 |w2 ; N+ 〉 〉 and

M ′
+ = 〈 L1 | w′

1 ; 〈 L2 | w′
2 ; N ′

+ 〉 〉. Then:

blue(Im(M+))
3−→ 〈 L1 | blue#(L1, w1) ; blue(〈 L2 | w2 ; N+ 〉) 〉 = t.

As 〈 L2 |w2 ; N+ 〉 mpr
=⇒ 〈 L2 |w′

2 ; N+ 〉 tar
=⇒ 〈 L2 | u2 ; N ′′

+ 〉 δ
=⇒ 〈 L2 | u2w0 〉, where

w′′
2 is obtained from u2 by removing the out messages (if any), and adding the

objects sent from L1 (also, if any), then by inductive hypothesis:

blue(〈 L2 | w2 ; N+ 〉) −→+ 〈 L2 | green(w′
2) ; green(N ′

+) 〉 −→∗

〈 L2 | green(u2) ; green(N ′′
+) 〉 −→+ 〈 L2 | u2w0 〉

We continue the first rewrite above in R(Π) as follows:

t −→+ 〈 L1 | green(w′
1) ; green(〈 L2 | green(u2w0) 〉) 〉 17∗|19∗|21∗−−−−−−→

〈 L1 | green(w′′
1) ; green(〈 L2 | w′′

2w0 〉) 〉 13−→
green(〈 L1 | w′′

1 ; 〈 L2 | w′′
2w0 〉 〉) = green(Im(M ′′′

+ ))

(iv) M ′′
+

δ
=⇒ M ′′′

+ is inferred by (D4). Then M ′′
+ = 〈 L1 | w′′

1 ; 〈 L2 | w′′
2 ; N ′′

+ 〉 〉 and

M ′′′
+ = 〈L1 |w′′

1 ; 〈L2 |w′′
2w0 ; N ′′′

+ 〉 〉, where 〈L2 |w′′
2 ; N ′′

+ 〉 δ
=⇒ 〈L2 |w′′

2w0 ; N ′′′
+ 〉 is

inferred by a shorter inference, and w′′
2 is δ-free. Let M+ = 〈L1 |w1 ; 〈L2 |w2 ; N+ 〉〉

and M ′
+ = 〈 L1 | w′

1 ; 〈 L2 | w′
2 ; N ′

+ 〉 〉. Then:

blue(Im(M+))
3−→ 〈 L1 | blue#(L1, w1) ; blue(〈 L2 | w2 ; N+ 〉) 〉 = t.

As 〈 L2 |w2 ; N+ 〉 mpr
=⇒ 〈 L2 |w′

2 ; N+ 〉 tar
=⇒ 〈 L2 | u2 ; N ′′

+ 〉 δ
=⇒ 〈 L2 | u2w0 〉, where

w′′
2 is obtained from u2 by removing the out messages (if any), and adding the

objects sent from L1 (also, if any), then by inductive hypothesis:

blue(〈 L2 | w2 ; N+ 〉) −→+ 〈 L2 | green(w′
2) ; green(N ′

+) 〉 −→∗

〈 L2 | green(u2) ; green(N ′′
+) 〉 −→+ 〈 L2 | green(u2w0) ; green(N ′′′

+ ) 〉 13−→
green(〈 L | u2w0 ; N ′′′

+ 〉
The first rewrite above continues in R(Π) as follows:

t −→+ 〈 L1 | green(w′
1) ; green(〈 L2 | green(u2w0) ; N ′′′

+ 〉) 〉 17∗|19∗|21∗−−−−−−→
〈 L1 | green(w′′

1) ; green(〈 L2 | w′′
2w0 ; N ′′′

+ 〉) 〉 13−→
green(〈 L1 | w′′

1 ; 〈 L2 | w′′
2w0 ; N ′′′

+ 〉 〉) = green(Im(M ′′′
+ ))

(v) M ′′
+

δ
=⇒ M ′′′

+ is inferred by (D5). Then M ′′
+ = 〈 L1 | w′′

1 ; 〈 L2 | w′′
2δ ; N ′′

+ 〉 〉 and

M ′′′
+ = 〈L1|w′′

1w
′′
2w0〉, where 〈L2|w′′

2δ; N ′′
+〉 δ

=⇒ 〈L2|w′′
2w0δ〉 is inferred by a shorter

inference. Let M+ = 〈L1 |w1 ; 〈L2 |w2 ; N+ 〉 〉 and M ′
+ = 〈L1 |w′

1 ; 〈L2 |w′
2 ; N ′

+ 〉 〉.
As 〈 L2 | w2 ; N+ 〉 mpr

=⇒ 〈 L2 | w′
2δ ; N ′

+ 〉 tar
=⇒ 〈 L2 | u2δ ; N ′′

+ 〉 δ
=⇒ 〈 L2 | u2w0δ 〉,

where w′′
2 is obtained from u2 by removing the out messages (if any), and adding

the objects sent from L1 (also, if any), then by inductive hypothesis:

blue(〈 L2 | w2 ; N+ 〉) −→+ 〈 L2 | green(w′
2δ) ; green(N ′

+) 〉 −→∗

〈 L2 | green(u2δ) ; green(N ′′
+) 〉 −→+ 〈 L2 | green(u2w0δ) 〉 10+11+12−−−−−−→ green(〈 L2 | u2w0δ 〉)
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Then the following is also a rewrite in R(Π):

blue(Im(M+))
3−→ 〈 L1 | blue#(L1, w1) ; blue(〈 L2 | w2 ; N+ 〉) 〉 −→+

〈 L1 | green(w′
1) ; green(〈 L2 | u2w0δ 〉) 〉 16∗|18∗|21∗−−−−−−→

〈 L1 | green(w′′
1) ; green(〈 L2 | w′′

2w0δ 〉) 〉 23−→
〈 L1 | green(w′′

1w
′′
2w0) 〉 10+11+12−−−−−−→ green(〈 L1 | w′′

1w
′′
2w0 〉) = green(Im(M ′′′

+ ))

(vi) M ′′
+

δ
=⇒ M ′′′

+ is inferred by (D6). Then M ′′
+ = 〈 L1 | w′′

1 ; 〈 L2 | w′′
2δ ; N ′′

+ 〉 〉 and

M ′′′
+ = 〈 L1 | w′′

1w
′′
2w0 ; N ′′′

+ 〉, where 〈 L2 | w′′
2δ ; N ′′

+ 〉 δ
=⇒ 〈 L2 | w′′

2w0δ ; N ′′′
+ 〉

is inferred by a shorter inference. Let M+ = 〈 L1 | w1 ; 〈 L2 | w2 ; N+ 〉 〉 and

M ′
+ = 〈 L1 | w′

1 ; 〈 L2 | w′
2 ; N ′

+ 〉 〉. As 〈 L2 | w2 ; N+ 〉 mpr
=⇒ 〈 L2 | w′

2δ ; N ′
+ 〉 tar

=⇒
〈L2 |u2δ ; N ′′

+ 〉 δ
=⇒ 〈L2 |u2w0δ ; N ′′′

+ 〉, where w′′
2 is obtained from u2 by removing

the out messages (if any), and adding the objects sent from L1 (also, if any), then
by inductive hypothesis:

blue(〈 L2 | w2 ; N+ 〉) −→+ 〈 L2 | green(w′
2δ) ; green(N ′

+) 〉 −→∗

〈 L2 | green(u2δ) ; green(N ′′
+) 〉 −→+ 〈 L2 | green(u2w0δ) ; green(N ′′′

+ ) 〉 13−→
green(〈 L2 | u2w0δ ; N ′′′

+ 〉)

Then the following is also a rewrite in R(Π):

blue(Im(M+))
3−→ 〈 L1 | blue#(L1, w1) ; blue(〈 L2 | w2 ; N+ 〉) 〉 −→+

〈 L1 | green(w′
1) ; green(〈 L2 | u2w0δ ; N ′′′

+ 〉) 〉 17∗|19∗|21∗−−−−−−→
〈 L1 | green(w′′

1) ; green(〈 L2 | w′′
2w0δ ; N ′′′

+ 〉) 〉 24−→
〈 L1 | green(w′′

1w
′′
2w0) ; green(N ′′′

+ ) 〉 13−→ green(〈 L1 | w′′
1w

′′
2w0 ; N ′′′

+ 〉) =
green(Im(M ′′′

+ ))

(vii) M ′′
+

δ
=⇒ M ′′′

+ is inferred by (D7). Then M ′′
+ = 〈 L | w′′ ; N5

+, N6
+ 〉 and M ′′′

+ =

〈 L | w′′w0 ; N6
+ 〉, where 〈 L | w′′ ; N5

+ 〉 δ
=⇒ 〈 L | w′′w0 〉 is inferred by a shorter

inference, and 〈 L | w′′ ; N6
+ 〉 is δ-irreducible (therefore the dissolving symbol δ

does not occur in N6
+). Let M+ = 〈L |w ; N1

+, N2
+ 〉 and M ′

+ = 〈L |w′ ; N3
+, N4

+ 〉.
We denote by w′

1 the messages sent from the membrane labelled by L inside
the membranes represented by N3

+, and by w′
2 the objects sent outside from the

membranes represented by N3
+. By inductive hypothesis we obtain the following

two rewrites:

blue(〈 L | w ; N1
+ 〉) −→+ 〈 L | green(w′) ; green(N3

+) 〉

and

〈 L | green(w′
1) ; green(N3

+) 〉 −→+ 〈 L | green(w′
2) ; green(N5

+) 〉 −→+

〈 L | green(w′
2) 〉
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Then the following is a rewrite in R(Π):

blue(Im(M+))
3|5−→ 〈 L | blue#(L,w) ; blue(Im(N1

+)), blue(Im(N2
+)) 〉 −→+

〈 L | green(w′) ; green(N3
+, N4

+) 〉 −→+ 〈 L | green(w′′) ; green(N5
+, N6

+) 〉 −→+

〈 L | green(w′′w0) ; green(N6
+) 〉 13−→ green(〈 L | w′′w0 ; N6

+ 〉) = green(Im(M ′′′
+ ))

(viii) M ′′
+

δ
=⇒ M ′′′

+ is inferred by (D8). Then M ′′
+ = 〈 L | w′′ ; N5

+, N6
+ 〉 and M ′′′

+ =

〈 L | w′′w0 ; N7
+, N6

+ 〉, where 〈 L | w′′ ; N5
+ 〉 δ

=⇒ 〈 L | w′′w0 ; N7
+ 〉 is inferred by a

shorter inference, and 〈L|w′′ ; N6
+〉 is δ-irreducible (therefore the dissolving symbol

δ does not occur in N6
+). Let M+ = 〈L |w ; N1

+, N2
+ 〉 and M ′

+ = 〈L |w′ ; N3
+, N4

+ 〉.
We denote by w′

1 the messages sent from the membrane labelled by L inside
the membranes represented by N3

+, and by w′
2 the objects sent outside from the

membranes represented by N3
+. By inductive hypothesis we obtain the following

two rewrites:

blue(〈 L | w ; N1
+ 〉) −→+ 〈 L | green(w′) ; green(N3

+) 〉
and

〈 L | green(w′
1) ; green(N3

+) 〉 −→+ 〈 L | green(w′
2) ; green(N5

+) 〉 −→+

〈 L | green(w′
2) ; green(N7

+ 〉
Then the following is a rewrite in R(Π):

blue(Im(M+))
3|5−→ 〈 L | blue#(L,w) ; blue(Im(N1

+)), blue(Im(N2
+)) 〉 −→+

〈 L | green(w′) ; green(N3
+, N4

+) 〉 −→+ 〈 L | green(w′′) ; green(N5
+, N6

+) 〉 −→+

〈 L | green(w′′w0) ; green(N7
+, N6

+) 〉 13−→ green(〈 L | w′′w0 ; N7
+, N6

+ 〉) =
green(Im(M ′′′

+ ))

(ix) M ′′
+

δ
=⇒ M ′′′

+ is inferred by (D9). Then M ′′
+ = 〈 L | w′′ ; N5

+, N6
+ 〉 and

M ′′′
+ = 〈L |w′′u1u2 〉, where 〈L |w′′ ; N5

+ 〉 δ
=⇒ 〈L |w′′u1 〉 and 〈L |w′′ ; N6

+ 〉 δ
=⇒

〈 L | w′′u2 〉 are inferred by shorter inferences. Let M+ = 〈 L | w ; N1
+, N2

+ 〉 and
M ′

+ = 〈L |w′ ; N3
+, N4

+ 〉. We denote by w′
1 the messages sent from the membrane

labelled by L inside the membranes represented by N3
+, and by w′′

1 the objects
sent outside from the membranes represented by N3

+. We do the same for w′
2, w′′

2 ,
and N4. By inductive hypothesis we obtain the following four rewrites:

blue(〈 L | w ; N1
+ 〉) −→+ 〈 L | green(w′) ; green(N3

+) 〉
〈 L | green(w′

1) ; green(N3
+) 〉 −→+ 〈 L | green(w′′

1) ; green(N5
+) 〉 −→+

〈 L | green(w′′
1u1) 〉

and

blue(〈 L | w ; N2
+ 〉) −→+ 〈 L | green(w′) ; green(N4

+) 〉
〈 L | green(w′

2) ; green(N4
+) 〉 −→+ 〈 L | green(w′′

2) ; green(N6
+) 〉 −→+

〈 L | green(w′′
2u2) 〉
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Then the following is a rewrite in R(Π):

blue(〈 L | w ; N1
+, N2

+ 〉) 3−→ 〈 L | blue#(L,w) ; blue(N1
+, N2

+) 〉 −→+

〈 L | green(w′) ; green(N3
+, N4

+) 〉 −→+ 〈 L | green(w′′) ; green(N5
+, N6

+) 〉 −→+

〈 L | green(w′′u1u2) 〉 10+11+12−−−−−−→ green(〈 L | w′′u1u2 〉) = green(Im(M ′′′
+ ))

(x) M ′′
+

δ
=⇒ M ′′′

+ is inferred by (D10). Then M ′′
+ = 〈 L | w′′ ; N5

+, N6
+ 〉 and

M ′′′
+ = 〈L |w′′u1u2 ; N7

+ 〉, where 〈L |w′′ ; N5
+ 〉 δ

=⇒ 〈L |w′′u1 〉 and 〈L |w′′ ; N6
+ 〉 δ

=⇒
〈 L | w′′u2 ; N7

+ 〉 are inferred by shorter inferences. Let M+ = 〈 L | w ; N1
+, N2

+ 〉
and M ′

+ = 〈 L | w′ ; N3
+, N4

+ 〉. By inductive hypothesis we obtain the following
rewrites:

blue(〈 L | w ; N1
+ 〉) −→+ 〈 L | green(w′) ; green(N3

+) 〉
〈 L | green(w′

1) ; green(N3
+) 〉 −→+ 〈 L | green(w′′

1) ; green(N5
+) 〉 −→+

〈 L | green(w′′
1u1) 〉

and

blue(〈 L | w ; N2
+ 〉) −→+ 〈 L | green(w′) ; green(N4

+) 〉
〈 L | green(w′

2) ; green(N4
+) 〉 −→+ 〈 L | green(w′′

2) ; green(N6
+) 〉 −→+

〈 L | green(w′′
2u2) ; green(N7

+) 〉

Then the following is a rewrite in R(Π):

blue(〈 L | w ; N1
+, N2

+ 〉) 3−→ 〈 L | blue#(L,w) ; blue(N1
+, N2

+) 〉 −→+

〈 L | green(w′) ; green(N3
+, N4

+) 〉 −→+ 〈 L | green(w′′) ; green(N5
+, N6

+) 〉 −→+

〈 L | green(w′′u1u2) ; green(N7
+) 〉 13−→ green(〈 L | w′′u1u2 ; N7

+ 〉) = green(Im(M ′′′
+ ))

(xi) M ′′
+

δ
=⇒ M ′′′

+ is inferred by (D11). Then M ′′
+ = 〈 L | w′′ ; N5

+, N6
+ 〉 and

M ′′′
+ = 〈 L | w′′u1u2 ; N7

+, N8
+ 〉, where 〈 L | w′′ ; N5

+ 〉 δ
=⇒ 〈 L | w′′u1 ; N7

+ 〉 and

〈 L | w′′ ; N6
+ 〉 δ

=⇒ 〈 L | w′′u2 ; N8
+ 〉 are inferred by shorter inferences. Let

M+ = 〈 L | w ; N1
+, N2

+ 〉 and M ′
+ = 〈 L | w′ ; N3

+, N4
+ 〉. By inductive hypothesis

we obtain the following rewrites:

blue(〈 L | w ; N1
+ 〉) −→+ 〈 L | green(w′) ; green(N3

+) 〉
〈 L | green(w′

1) ; green(N3
+) 〉 −→+ 〈 L | green(w′′

1) ; green(N5
+) 〉 −→+

〈 L | green(w′′
1u1) ; green(N7

+) 〉

and

blue(〈 L | w ; N2
+ 〉) −→+ 〈 L | green(w′) ; green(N4

+) 〉
〈 L | green(w′

2) ; green(N4
+) 〉 −→+ 〈 L | green(w′′

2) ; green(N6
+) 〉 −→+

〈 L | green(w′′
2u2) ; green(N8

+) 〉
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Then the following is also a rewrite in R(Π):

blue(〈 L | w ; N1
+, N2

+ 〉) 3−→ 〈 L | blue#(L,w) ; blue(N1
+, N2

+) 〉 −→+

〈 L | green(w′) ; green(N3
+, N4

+) 〉 −→+ 〈 L | green(w′′) ; green(N5
+, N6

+) 〉 −→+

〈 L | green(w′′u1u2) ; green(N7
+, N8

+) 〉 13−→ green(〈 L | w′′u1u2 ; N7
+, N8

+ 〉) =
green(Im(M ′′′

+ ))

Corollary 6.4 If M+
mpr
=⇒ M ′

+
tar
=⇒ M ′′

+
δ

=⇒ M ′′′
+ , then blue(Im(M+)) −→+ green(Im(M ′′′

+ )),
and it does not exist M0

+ such that M0
+ 6= M ′′′′

+ and blue(M+) −→+ green(M0
+) −→+

green(M ′′′
+ ).

The following results describe the relationship between P systems operational se-
mantics and Maude rewriting relation.

Theorem 6.1 [Operational Correspondence] Let Π be a P system, and C,C ′ ∈ C(Π).
If C =⇒ C ′, then there exists a C-rewriting such that I(C) −→+

R(Π) I(C ′) .

Proof: We have to consider three cases for C =⇒ C ′:

(i) C
mpr
=⇒;

tar
=⇒ C ′. Then the following is a rewriting in R(Π):

I(C) = {Im(C)} 1−→ {blue(Im(C))} Cor.6.2−→ {green(Im(C ′))} 2−→ {Im(C ′)} = I(C ′)

(ii) C
mpr
=⇒;

δ
=⇒ C ′. Then the following is a rewriting in R(Π):

I(C) = {Im(C)} 1−→ {blue(Im(C))} Cor.6.3−→ {green(Im(C ′))} 2−→ {Im(C ′)} = I(C ′)

(iii) C
mpr
=⇒;

tar
=⇒;

δ
=⇒ C ′. Then the following is a rewriting in R(Π):

I(C) = {Im(C)} 1−→ {blue(Im(C))} Cor.6.4−→ {green(Im(C ′))} 2−→ {Im(C ′)} = I(C ′)

Theorem 6.2 Let Π be a P system, and C an arbitrary configuration. If I(C) −→+
R(Π)

t is a C-rewriting in R(Π) with t ∈ (TΣ,E)CConfiguration, and this C-rewriting contains
at least one of the Maude rules 6, 6’, 8, or 8’, then there is a configuration C ′ such that
C =⇒ C ′ and t =E I(C ′).

Remark: The condition that the given C-rewrite contains at least one of the Maude
rules 6, 6’, 8, or 8’, is necessary because each of these rules applies an evolution rule in
a membrane. This way we are sure that indeed C “evolved”.
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Chapter 7

Conclusion and Further Research

In this paper we present a quick survey of P systems and rewriting logic, and, as the
main result, the operational semantics of (transition) P systems.

We give an abstract syntax of P systems, and we define a transition step by means of
three sets of inference rules corresponding to three stages: maximal parallel rewriting,
parallel communication, and parallel dissolving. This definition is provided with the ap-
propriate correctness result. At this point we have a natural or big-step like operational
semantics due to the parallel nature of the model. Translating the natural semantics of
P systems into rewriting logic, we get a certain refinement of the operational descrip-
tion similar to the small-step like. Moreover, by using an efficient implementation of
rewriting logic as Maude, we obtain an interpreter for P systems, and we can verify
the properties of systems by means of two formal tools: the search command (a semi-
decision procedure for finding failures of safety properties), and Maude’s LTL model
checker.

There is much interesting work left. One important feature is the specification of
other types of P systems and their operational semantics; a modular approach is desired.

Another interesting feature is to study the relationship with Cardelli’s Brane Calculi
[8], and the Chemical Abstract Machine style of operational semantics proposed by
Berry and Boudol [4].

A practical desired result consists in defining a Maude command for the C-rewrite
relation defined in chapter 6, therefore a command for rewriting on subsorts. This can
be done in Full Maude at meta-level.
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In G.Mauri, Gh.Păun, M.J.Perez-Jimenez, G.Rozenberg, A.Salomaa (Eds.): Mem-
brane Computing WMC5, Lecture Notes in Computer Science vol.3365, Springer,
127-146, 2005.

[2] O. Andrei, G. Ciobanu, D. Lucanu. Operational Semantics and Rewriting Logic in
Membrane Computing. Proceedings WMC6, Wien, Austria, July 2005. Accepted.

[3] O. Andrei, G. Ciobanu, D. Lucanu. Structural Operational Semantics of P Systems.
Proceedings SOS Workshop of ICALP, Lisbon, Portugal, July 2005. Accepted.

[4] G. Berry, and G. Boudol. The Chemical Abstract Machine. Theoretical Computer
Science, 96 (1992), 217-248.
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[41] Gh. Păun. Introduction to Membrane Computing, 2004.
http://www.bio.disco.unimib.it/download/MembIntro2004.pdf

[42] G. D. Plotkin. A structural approach to operational semantics, Technical report
DAIMI FN-19, Computer Science Department, Aarhus University, September
1981.

70



Appendix A

Maude Output for Example 5.2

\||||||||||||||||||/
--- Welcome to Maude ---

/||||||||||||||||||\
Maude 2.1 built: Mar 18 2004 11:31:58
Copyright 1997-2004 SRI International

Wed Jun 8 15:01:38 2005

Full Maude 2.1 (March 19th, 2004)

Maude> in pconfiguration.fm
rewrites: 5189 in 119ms cpu (132ms real) (43248 rewrites/second)
Introduced module PSCONFIGURATION

Maude> in psystem.fm
rewrites: 58450 in 443ms cpu (445ms real) (131664 rewrites/second)
Introduced module PSYSTEM

Maude> in nsquare.fm
rewrites: 4300 in 46ms cpu (46ms real) (91502 rewrites/second)
Introduced module NSQUARE

Maude> (search init =>+ C:CConfiguration .)
rewrites: 229241 in 1824ms cpu (1824ms real) (125630 rewrites/second)
search in NSQUARE : init =>+ C:CConfiguration .

Solution 1
C:CConfiguration <- {< M1 | empty ; < M2 | empty ; < M3 | a b f f > > >}

Solution 2
C:CConfiguration <- {< M1 | empty ; < M2 | b f f > >}

Solution 3
C:CConfiguration <- {< M1 | empty ; < M2 | d f > >}

Solution 4
C:CConfiguration <- {< M1 | empty ; < M2 | empty ; < M3 | a b b f f f f > > >}
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Solution 5
C:CConfiguration <- {< M1 | empty ; < M2 | b b f f f f > >}

Solution 6
C:CConfiguration <- {< M1 | d e >}

Solution 7
C:CConfiguration <- {< M1 | empty ; < M2 | d d f f > >}

Solution 8
C:CConfiguration <- {< M1 | empty ; < M2 | empty ; < M3 | a b b b f f f f f f f

f > > >}

Solution 9
C:CConfiguration <- {< M1 | empty ; < M2 | b b b f f f f f f f f > >}

Solution 10
C:CConfiguration <- {< M1 | empty ; < M2 | d d e e f > >}

Solution 11
C:CConfiguration <- {< M1 | empty ; < M2 | d d d f f f f > >}

Solution 12
C:CConfiguration <- {< M1 | d d e e e e >}

Solution 13
C:CConfiguration <- {< M1 | empty ; < M2 | empty ; < M3 | a b b b b f f f f f f

f f f f f f f f f f > > >}

Solution 14
C:CConfiguration <- {< M1 | empty ; < M2 | b b b b f f f f f f f f f f f f f f

f f > >}

Solution 15
C:CConfiguration <- {< M1 | empty ; < M2 | d d d e e e f f > >}

Solution 16
C:CConfiguration <- {< M1 | empty ; < M2 | d d d e e e e e e f > >}

Solution 17
C:CConfiguration <- {< M1 | d d d e e e e e e e e e >}

No more solutions.
Maude> (search init =>+ { < M1 | S:Soup > } .)
rewrites: 228973 in 1656ms cpu (1656ms real) (138206 rewrites/second)
search in NSQUARE : init =>+ {< M1 | S:Soup >}.

Solution 1
S:Soup <- d e

Solution 2
S:Soup <- d d e e e e
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Solution 3
S:Soup <- d d d e e e e e e e e e

No more solutions.
Maude> in mc-nsquare.fm
rewrites: 3228 in 53ms cpu (53ms real) (59786 rewrites/second)
Introduced module N2-PREDS

rewrites: 2328 in 14ms cpu (14ms real) (155231 rewrites/second)
Introduced module PROOF

Maude> (red modelCheck(init, [](isHalting -> isSquare)) .)
rewrites: 235072 in 1829ms cpu (1830ms real) (128474 rewrites/second)
reduce in PROOF :

modelCheck(init,[](isHalting -> isSquare))
result Bool :

true

Maude> in mc-nsquare-counter.fm
rewrites: 3137 in 32ms cpu (33ms real) (95077 rewrites/second)
Advisory: Module N2-PREDS redefined.
Introduced module N2-PREDS

rewrites: 2320 in 13ms cpu (14ms real) (165737 rewrites/second)
Advisory: Module PROOF redefined.
Introduced module PROOF

Maude> (red modelCheck(init, [](isHalting -> isSquare)) .)
rewrites: 122514 in 1169ms cpu (1169ms real) (104728 rewrites/second)
reduce in PROOF :

modelCheck(init,[](isHalting -> isSquare))
result ModelCheckResult :

counterexample({{< M1 | empty ; < M2 | empty ; < M3 | a f > > >},’1}{{blue(<
M1 | empty ; < M2 | empty ; < M3 | a f > > >)},’3}{{< M1 | blue(M1,empty);
blue(< M2 | empty ; < M3 | a f > >)>},’7}{{< M1 | green(empty); blue(< M2 |
empty ; < M3 | a f > >)>},’3}{{< M1 | green(empty); < M2 | blue(M2,r1 r2,
empty,false); blue(< M3 | a f >)> >},’9’}{{< M1 | green(empty); < M2 |
green(empty); blue(< M3 | a f >)> >},’4}{{< M1 | green(empty); < M2 |
green(empty); < M3 | blue(M3,a f,false)> > >},’6’}{{< M1 | green(empty); <
M2 | green(empty); < M3 | green(a b)blue(M3,f,false)> > >},’6’}{{< M1 |
green(empty); < M2 | green(empty); < M3 | green(f f)green(a b)blue(M3,(
empty).Soup,false)> > >},’14}{{< M1 | green(empty); < M2 | green(empty); <
M3 | green(a b f f)blue(M3,(empty).Soup,false)> > >},’7’}{{< M1 | green(
empty); < M2 | green(empty); < M3 | green(empty)green(a b f f)> > >},’14}{{
< M1 | green(empty); < M2 | green(empty); < M3 | green(a b f f)> > >},’11}{
{< M1 | green(empty); < M2 | green(empty); green(< M3 | a b f f >)> >},
’13}{{< M1 | green(empty); green(< M2 | empty ; < M3 | a b f f > >)>},’13}{
{green(< M1 | empty ; < M2 | empty ; < M3 | a b f f > > >)},’2}{{< M1 |
empty ; < M2 | empty ; < M3 | a b f f > > >},’1}{{blue(< M1 | empty ; < M2
| empty ; < M3 | a b f f > > >)},’3}{{< M1 | blue(M1,empty); blue(< M2 |
empty ; < M3 | a b f f > >)>},’7}{{< M1 | green(empty); blue(< M2 | empty ;
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< M3 | a b f f > >)>},’3}{{< M1 | green(empty); < M2 | blue(M2,r1 r2,empty,
false); blue(< M3 | a b f f >)> >},’9’}{{< M1 | green(empty); < M2 | green(
empty); blue(< M3 | a b f f >)> >},’4}{{< M1 | green(empty); < M2 | green(
empty); < M3 | blue(M3,a b f f,false)> > >},’6’}{{< M1 | green(empty); < M2
| green(empty); < M3 | green(a b)blue(M3,b f f,false)> > >},’6’}{{< M1 |
green(empty); < M2 | green(empty); < M3 | green(f f)green(a b)blue(M3,b f,
false)> > >},’14}{{< M1 | green(empty); < M2 | green(empty); < M3 | green(a
b f f)blue(M3,b f,false)> > >},’6’}{{< M1 | green(empty); < M2 | green(
empty); < M3 | green(f f)green(a b f f)blue(M3,b,false)> > >},’14}{{< M1 |
green(empty); < M2 | green(empty); < M3 | green(a b f f f f)blue(M3,b,
false)> > >},’7’}{{< M1 | green(empty); < M2 | green(empty); < M3 | green(
b)green(a b f f f f)> > >},’14}{{< M1 | green(empty); < M2 | green(empty);
< M3 | green(a b b f f f f)> > >},’11}{{< M1 | green(empty); < M2 | green(
empty); green(< M3 | a b b f f f f >)> >},’13}{{< M1 | green(empty); green(
< M2 | empty ; < M3 | a b b f f f f > >)>},’13}{{green(< M1 | empty ; < M2
| empty ; < M3 | a b b f f f f > > >)},’2}{{< M1 | empty ; < M2 | empty ; <
M3 | a b b f f f f > > >},’1}{{blue(< M1 | empty ; < M2 | empty ; < M3 | a
b b f f f f > > >)},’3}{{< M1 | blue(M1,empty); blue(< M2 | empty ; < M3 |
a b b f f f f > >)>},’7}{{< M1 | green(empty); blue(< M2 | empty ; < M3 | a
b b f f f f > >)>},’3}{{< M1 | green(empty); < M2 | blue(M2,r1 r2,empty,
false); blue(< M3 | a b b f f f f >)> >},’9’}{{< M1 | green(empty); < M2 |
green(empty); blue(< M3 | a b b f f f f >)> >},’4}{{< M1 | green(empty); <
M2 | green(empty); < M3 | blue(M3,a b b f f f f,false)> > >},’6’}{{< M1 |
green(empty); < M2 | green(empty); < M3 | green(b delta)blue(M3,b b f f f
f,true)> > >},’6’}{{< M1 | green(empty); < M2 | green(empty); < M3 | green(
f f)green(b delta)blue(M3,b b f f f,true)> > >},’14}{{< M1 | green(empty);
< M2 | green(empty); < M3 | green(b delta f f)blue(M3,b b f f f,true)> >
>},’6’}{{< M1 | green(empty); < M2 | green(empty); < M3 | green(f f)green(b
delta f f)blue(M3,b b f f,true)> > >},’14}{{< M1 | green(empty); < M2 |
green(empty); < M3 | green(b delta f f f f)blue(M3,b b f f,true)> > >},
’6’}{{< M1 | green(empty); < M2 | green(empty); < M3 | green(f f)green(b
delta f f f f)blue(M3,b b f,true)> > >},’14}{{< M1 | green(empty); < M2 |
green(empty); < M3 | green(b delta f f f f f f)blue(M3,b b f,true)> > >},
’6’}{{< M1 | green(empty); < M2 | green(empty); < M3 | green(f f)green(b
delta f f f f f f)blue(M3,b b,true)> > >},’14}{{< M1 | green(empty); < M2 |
green(empty); < M3 | green(b delta f f f f f f f f)blue(M3,b b,true)> > >},
’7’}{{< M1 | green(empty); < M2 | green(empty); < M3 | green(b b)green(b
delta f f f f f f f f)> > >},’14}{{< M1 | green(empty); < M2 | green(
empty); < M3 | green(b b b delta f f f f f f f f)> > >},’11}{{< M1 | green(
empty); < M2 | green(empty); green(< M3 | b b b delta f f f f f f f f >)>
>},’23}{{< M1 | green(empty); < M2 | green(b b b f f f f f f f f)> >},’11}{
{< M1 | green(empty); green(< M2 | b b b f f f f f f f f >)>},’13}{{green(<
M1 | empty ; < M2 | b b b f f f f f f f f > >)},’2}{{< M1 | empty ; < M2 |
b b b f f f f f f f f > >},’1}{{blue(< M1 | empty ; < M2 | b b b f f f f f
f f f > >)},’3}{{< M1 | blue(M1,empty); blue(< M2 | b b b f f f f f f f f
>)>},’7}{{< M1 | green(empty); blue(< M2 | b b b f f f f f f f f >)>},’4}{{
< M1 | green(empty); < M2 | blue(M2,r1 r2,b b b f f f f f f f f,false)> >},
’8’}{{< M1 | green(empty); < M2 | green(d)blue(M2,r1 r2,b b f f f f f f f
f,false)> >},’8’}{{< M1 | green(empty); < M2 | green(d)green(d)blue(M2,r1
r2,b f f f f f f f f,false)> >},’14}{{< M1 | green(empty); < M2 | green(d
d)blue(M2,r1 r2,b f f f f f f f f,false)> >},’8’}{{< M1 | green(empty); <
M2 | green(d)green(d d)blue(M2,r1 r2,f f f f f f f f,false)> >},’14}{{< M1
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| green(empty); < M2 | green(d d d)blue(M2,r1 r2,f f f f f f f f,false)>
>},’8’}{{< M1 | green(empty); < M2 | green(f)green(d d d)blue(M2,r1,f f f f
f f,false)> >},’14}{{< M1 | green(empty); < M2 | green(d d d f)blue(M2,r1,f
f f f f f,false)> >},’8’}{{< M1 | green(empty); < M2 | green(f)green(d d d
f)blue(M2,r1,f f f f,false)> >},’14}{{< M1 | green(empty); < M2 | green(d d
d f f)blue(M2,r1,f f f f,false)> >},’8’}{{< M1 | green(empty); < M2 |
green(f)green(d d d f f)blue(M2,r1,f f,false)> >},’14}{{< M1 | green(
empty); < M2 | green(d d d f f f)blue(M2,r1,f f,false)> >},’8’}{{< M1 |
green(empty); < M2 | green(f)green(d d d f f f)blue(M2,r1,empty,false)> >},
’14}{{< M1 | green(empty); < M2 | green(d d d f f f f)blue(M2,r1,empty,
false)> >},’9’}{{< M1 | green(empty); < M2 | green(empty)green(d d d f f f
f)> >},’14}{{< M1 | green(empty); < M2 | green(d d d f f f f)> >},’11}{{<
M1 | green(empty); green(< M2 | d d d f f f f >)>},’13}{{green(< M1 | empty
; < M2 | d d d f f f f > >)},’2}{{< M1 | empty ; < M2 | d d d f f f f > >},
’1}{{blue(< M1 | empty ; < M2 | d d d f f f f > >)},’3}{{< M1 | blue(M1,
empty); blue(< M2 | d d d f f f f >)>},’7}{{< M1 | green(empty); blue(< M2
| d d d f f f f >)>},’4}{{< M1 | green(empty); < M2 | blue(M2,r1 r2,d d d f
f f f,false)> >},’8’}{{< M1 | green(empty); < M2 | green(d e)blue(M2,r1 r2,
d d f f f f,false)> >},’8’}{{< M1 | green(empty); < M2 | green(d e)green(d
e)blue(M2,r1 r2,d f f f f,false)> >},’14}{{< M1 | green(empty); < M2 |
green(d d e e)blue(M2,r1 r2,d f f f f,false)> >},’8’}{{< M1 | green(empty);
< M2 | green(d e)green(d d e e)blue(M2,r1 r2,f f f f,false)> >},’14}{{< M1
| green(empty); < M2 | green(d d d e e e)blue(M2,r1 r2,f f f f,false)> >},
’8’}{{< M1 | green(empty); < M2 | green(f)green(d d d e e e)blue(M2,r1,f f,
false)> >},’14}{{< M1 | green(empty); < M2 | green(d d d e e e f)blue(M2,
r1,f f,false)> >},’8’}{{< M1 | green(empty); < M2 | green(f)green(d d d e e
e f)blue(M2,r1,empty,false)> >},’14}{{< M1 | green(empty); < M2 | green(d d
d e e e f f)blue(M2,r1,empty,false)> >},’9’}{{< M1 | green(empty); < M2 |
green(empty)green(d d d e e e f f)> >},’14}{{< M1 | green(empty); < M2 |
green(d d d e e e f f)> >},’11}{{< M1 | green(empty); green(< M2 | d d d e
e e f f >)>},’13}{{green(< M1 | empty ; < M2 | d d d e e e f f > >)},’2}{{<
M1 | empty ; < M2 | d d d e e e f f > >},’1}{{blue(< M1 | empty ; < M2 | d
d d e e e f f > >)},’3}{{< M1 | blue(M1,empty); blue(< M2 | d d d e e e f f
>)>},’7}{{< M1 | green(empty); blue(< M2 | d d d e e e f f >)>},’4}{{< M1 |
green(empty); < M2 | blue(M2,r1 r2,d d d e e e f f,false)> >},’8’}{{< M1 |
green(empty); < M2 | green(d e)blue(M2,r1 r2,d d e e e f f,false)> >},’8’}{
{< M1 | green(empty); < M2 | green(d e)green(d e)blue(M2,r1 r2,d e e e f f,
false)> >},’14}{{< M1 | green(empty); < M2 | green(d d e e)blue(M2,r1 r2,d
e e e f f,false)> >},’8’}{{< M1 | green(empty); < M2 | green(d e)green(d d
e e)blue(M2,r1 r2,e e e f f,false)> >},’14}{{< M1 | green(empty); < M2 |
green(d d d e e e)blue(M2,r1 r2,e e e f f,false)> >},’8’}{{< M1 | green(
empty); < M2 | green(f)green(d d d e e e)blue(M2,r1,e e e,false)> >},’14}{{
< M1 | green(empty); < M2 | green(d d d e e e f)blue(M2,r1,e e e,false)>
>},’9’}{{< M1 | green(empty); < M2 | green(e e e)green(d d d e e e f)> >},
’14}{{< M1 | green(empty); < M2 | green(d d d e e e e e e f)> >},’11}{{< M1
| green(empty); green(< M2 | d d d e e e e e e f >)>},’13}{{green(< M1 |
empty ; < M2 | d d d e e e e e e f > >)},’2}{{< M1 | empty ; < M2 | d d d e
e e e e e f > >},’1}{{blue(< M1 | empty ; < M2 | d d d e e e e e e f > >)},
’3}{{< M1 | blue(M1,empty); blue(< M2 | d d d e e e e e e f >)>},’7}{{< M1
| green(empty); blue(< M2 | d d d e e e e e e f >)>},’4}{{< M1 | green(
empty); < M2 | blue(M2,r1 r2,d d d e e e e e e f,false)> >},’8’}{{< M1 |
green(empty); < M2 | green(d e)blue(M2,r1 r2,d d e e e e e e f,false)> >},
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’8’}{{< M1 | green(empty); < M2 | green(d e)green(d e)blue(M2,r1 r2,d e e e
e e e f,false)> >},’14}{{< M1 | green(empty); < M2 | green(d d e e)blue(M2,
r1 r2,d e e e e e e f,false)> >},’8’}{{< M1 | green(empty); < M2 | green(d
e)green(d d e e)blue(M2,r1 r2,e e e e e e f,false)> >},’14}{{< M1 | green(
empty); < M2 | green(d d d e e e)blue(M2,r1 r2,e e e e e e f,false)> >},
’8’}{{< M1 | green(empty); < M2 | green(delta)green(d d d e e e)blue(M2,r1
r2,e e e e e e,true)> >},’14}{{< M1 | green(empty); < M2 | green(d d d
delta e e e)blue(M2,r1 r2,e e e e e e,true)> >},’9’}{{< M1 | green(empty);
< M2 | green(e e e e e e)green(d d d delta e e e)> >},’14}{{< M1 | green(
empty); < M2 | green(d d d delta e e e e e e e e e)> >},’11}{{< M1 | green(
empty); green(< M2 | d d d delta e e e e e e e e e >)>},’23}{{< M1 | green(
d d d e e e e e e e e e)>},’12}{{green(< M1 | d d d e e e e e e e e e >)},
’2},{{< M1 | d d d e e e e e e e e e >},’1}{{blue(< M1 | d d d e e e e e e
e e e >)},’4}{{< M1 | blue(M1,d d d e e e e e e e e e)>},’7}{{< M1 | green(
d d d e e e e e e e e e)>},’12}{{green(< M1 | d d d e e e e e e e e e >)},
’2})

Maude>
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