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Biological intuition

Graphs are suitable for describing the structure of complex systems and graph transformations for modeling their
dynamic evolution.

We are interested in a particular representation of molecular complexes as graphs and of reaction patterns as
graph transformations:

• the behavior of a protein is given by its functional domains / sites on the surface

• two proteins can interact by binding or changing the states of sites

• bound proteins form complexes that have a graph-like structure

•membranes can also form molecular complexes, called tissues

Port graphs are graphs with multiple edges and loops, where

• nodes have explicit connection points, called ports, and

• the edges attach to ports of nodes.

A port graph rewrite rule is a pair of port graphs L ⇒ R with a correspondence between elements of L and
elements of R. If we consider an arrow node embedding this correspondence, then a port graph rewrite rule is also
port graph.

We used term rewriting to provide an operational semantics for port graph rewriting [AK07].

A molecular graph is a particular type of port graph as described in the following table:

Molecular graph Port graph

protein node

site port with maximum degree 1

bond edge

Any transformation of molecular complexes is represented as a molecular graph rewrite rule which is a par-
ticular port graph rewrite rule, hence a port graph.

Port graphs represent a unifying structure for representing both molecular complexes and the reaction patterns

on them.

We illustrate a fragment of the EGFR signalling cascade [DL04]. The protagonists of this model are the signal protein
EGF, the transmembrane protein EGFR, and the adapter protein SHC. A protein or node is graphically represent
as a box with an unique identifier and a name placed outside the box. A site is represented as a filled, empty, or
slashed circle on the surface of the box if its state is respectively bound, free, or hidden. The molecular graph G below
represents the initial state of the system modeling a fragment of the EGFR signaling cascade, while G′ represents a
subsequent state.

G

2
1

2
1

2
1

2
1

4 13 2
4 13 2

12

4 13 2

12

4 13 2

1

1

1

1
2

2 2

2:EGF 1.2:EGF.EGF

6:EGFR

3.4:EGF.EGF

7:SHC 7:SHC

5:EGFR5:EGFR

1:EGF 3:EGF 4:EGF

6:EGFR

G’

2

The signalling information is propagated from the outside of the cell to its interior following the reaction patterns
depicted below as molecular graph rewrite rules:
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A higher-order biochemical calculus

The chemical model of computation was introduced by the Γ language [BM86]:

• based on a chemical solution where molecules interact freely according to (conditional) reaction rules

• uses multisets for modeling the chemical solutions

• uses multiset rewrite rules for modeling the reaction rules

• extended to the CHemical Abstract Machine (CHAM) [BB92], the γ-calculus and HOCL [BFR06].

We extend the chemical model with high-level features by considering a molecular graph structure for the data and
molecular graph rewrite rules for the computation rules. The result is a molecular graph rewriting calculus
with higher-order capabilities which generalizes γ-calculus through a more powerful abstraction power that
considers for matching not only a variable but a port graph with variables. It also encompasses the rewriting calculus
(the ρ-calculus) [CK01] and the term graph rewriting calculus (the ρg-calculus) [BBCK05].

Molecular Graphs M
Abstractions A ::= M ⇒ G

Graphs G ::= X | M | A | G G | ε
Simple Worlds (States) V ::= Y | [G]

Syntax
where the juxtaposition corresponds to a commutative operator, while [ ] corresponds to a permutative variadic oper-
ator. All entities enumerated in the syntax of the calculus above have a port graph structure.

Due to the intrinsic parallel nature of rewriting on disjoint redexes and decentralized rule application, we model a kind
of Brownian motion, a basic principle in the chemical paradigm. An interaction takes place in a system by heating it
up. This process isolates an abstraction and a molecular graph for application by connecting them to an application
node @. All steps computing the application of abstractions to a molecular graph, including the matching and the
replacement operations, are expressible using port graph transformations by considering some more auxiliary nodes
and extending the reduction relation.

(Heating) [X A M ] 7−→ [X A@M ]

(Application/Success) A@M 7−→ G if M →A G

(Application/Fail) A@M 7−→ A M otherwise

Semantics

By introducing an explicit object (node) for failure, stk, we gain in expressivity:

(Application/Fail′) A@M 7−→ stk if M is A − irreducible

Expressing control mechanisms in the calculus

Instead of this highly non-deterministic and non-terminating behaviour of abstraction application, one may want to
introduce some control to compose or choose the abstractions to apply, possibly exploiting failure information. The
formalism permitting such concept in a rewriting-based framework is represented by the rewriting strategies.

The basic strategies are the molecular graph rewrite rules and the identity (id) and failure (fail) strategies. Based on
them, strategies expressing the control can be constructed, like the sequence (seq), the left-biased choice (first), the
application of a strategy only if it is successful (try), and the repeating strategy (repeat). All these strategies can
be described as abstractions, therefore they become objects of the calculus:

id , X ⇒ X

fail , X ⇒ stk

seq(S1, S2) , X ⇒ S2@(S1@X)

first(S1, S2) , X ⇒ (S1@X) (stk ⇒ (S2@X))@(S1@X)

try(S) , first(S, id)

repeat(S) , try(seq(S, repeat(S)))

Based on strategies, we can increase the expressivity of the calculus by considering for instance:

1. Failure catching: if S@M reduces to the failure construct stk, then the strategy try(stk ⇒ S M ) restores the
initial entities subject to reduction.

(Heating′) [X S M ] 7−→ [X seq(S, try(stk ⇒ S M ))@M ]

2. Persistent strategies: S! applies S to an object and, if successful, replicates itself.

S! , seq(S, first(stk ⇒ stk, Y ⇒ Y S!))

Possible extensions

•One possible refinements concerns the management of a structure of all possible results issued from the appli-
cation rule.

•Verification issues:

– identifying conditions on abstractions for accessibility of stable states of modeled systems, or for imposing
fairness on the application of abstractions;

– integrating verification techniques in the calculus.

•Another interesting feature worth and quite natural to be defined in the calculus represents the possibility of modi-
fying or deleting abstractions as objects of the calculus, with application in modeling cellular dedifferentiation
for instance.
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