
Submitted to:
13th Workshop on Programming Language Approaches to Concurrency-
Communication-cEntric Software.

© A.H. Alsubhi, & O.Dardha
This work is licensed under the
Creative Commons Attribution License.

Coconut: Typestates for C++

Arwa Hameed Alsubhi
University of Glasgow

arwaalsubhi99@gmail.com

Ornela Dardha
University of Glasgow

ornela.dardha@glasgow.ac.uk

This paper introduces typestates in C++ by creating a typestates library, as a tool, which provides
templates for protocol definitions, and then statically check that objects of the class are behaving
accordingly. This project is expected to aid programmers by helping them detect violations of pro-
tocols that they themselves define, making the programming process more flexible, practical, and
trouble-free. The tool is available in this Github repository [1].

1 Introduction

Typestate, as a concept, has been applied to many object-oriented languages; it is a protocol specification
to verify that operations on objects are performed in order. Recently, new languages were mainly created
to integrate typestates; such as Fugue, Plaid and Obsidian [11, 7, 10], while others extended existing
languages with typestate tools like Mungo in Java, Papaya in Scala, Typestates Pattern in Rust and more
[5, 14, 15, 12, 9, 8]. Although C++ is one the most commonly used programming languages, unfortu-
nately, there is only one attempt to implement typestate, as an expressive code for a finite state machine
[2]. However, it handles the checking for violations by using an intermediate wrapper class, which is
impractical; therefore, this project aims to smoothly do the checking process without an intermediate
function or class to provide simplicity and a better user interface.

2 Methods

The approach of this project is to build a static library to be a typestate tool in C++. The library uses
features and techniques such as Templates and Namespaces which are provided by C++ language [18,
16]. This is explained in detail in the tool’s demo video [6] and this Tutorial website [4].

2.1 Protocol templates

We will go over the implementation with a known example File reading process. if we have a file class
with three methods Open(), Read(), and Close(), the Open() method should be called before other meth-
ods. So, the protocol would be written in a form of a state machine with the use of the enumeration for
defining all possible states. As for transitions between states, they would be defined by using templates
in the library. Using templates Meta-programming concept in C++ allows the reshaping of different data
structures, and it has many other features [17]. The templates are extracted as in listing 1.

1 using TypestateTool :: map_transition;

2 using TypestateTool :: map_protocol;

Listing 1: Extracting templates

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


2 Coconut: Typestates for C++

After extracting the templates, the transitions between states are written as in listing 2. By using these
templates, the compiler will generate copies of the protocol templates implementations and save them at
compile-time. Then, these generated copies would be analyzed and used in the checker Class.

1 using File_protocol= map_protocol <map_transition <FileState ::CLOSED , FileState ::

OPEN , &File::Open >,

2 map_transition <FileState ::OPEN , FileState ::READ_MODE , &File::Read >,

3 map_transition <FileState ::READ_MODE , FileState ::READ_MODE , &File::Read >,

4 map_transition <FileState ::READ_MODE , FileState ::CLOSED , &File::Close >

5 >;

Listing 2: Protocol Definition

2.2 Protocol checker

A Checker class in the library is built to do typestates checking. However, to perform the checking, the
defined protocol first is linked to the class via defining a Maroc Directive function [3] and it is called in
the library Assign to Class() as displayed in listing 3.

1 Assign_to_Class(File , File_protocol);

Listing 3: Linking a protocol to class

Later, to verify that the implementation of a File object in listing 4 is according to the protocol, the
Checker class uses a function called Check transition() which takes the object implementation and
the defined protocol (File protocol) as parameters. However, the Check transition() function has
a pointer which is a technique that points to the function’s address in the main memory [13].

1 int main() { File file = File();

2 file.Open(); file.Read(); file.Read();file.Close ();return 0;}

Listing 4: Object implementation

This pointer firstly points to the first state that is defined by the user in the first define transition. In
the File class example, the pointer would initially point to a CLOSED state. Then it moves between
states according to the object implementation. However, every time before the pointer moves, the
Check transition() function checks if it was a valid transition or not. For example, file.Open() moves
from the CLOSED state to an OPEN state, which is a valid transition, so the pointer would move to the
OPEN state as it is explained in Appendix 4.1. However, if we start with file.Read() or File.Close(), the
pointer would not move and the Check transition() function would not let the program compile see
Appendix 4.2.

3 Results, Discussion and Future Work

To conclude, the Coconut tool is a typestates tool which was developed for the C++ language. However,
some of examples are run to test the effectiveness of the Coconut tool and to compare its features with
other typestates tools. In terms of effectiveness, these examples showed that the tool was in fact a useful
typestate tool capable of checking violations for defined protocols in most cases. Nevertheless, there are
few cases where some bugs exist; however, they could mainly because of the inconsistent movements of
the pointer in the Checker class, and they would be tackled in the future work. Regarding the features
of programming languages, the Coconut tool supports some features that other tools like Mungo and
Papaya support, such as branching and recursion. However, some features are not yet part of the tool but
they would be included in the future, such as using fields to store objects that have a protocol.



A.H. Alsubhi, & O.Dardha 3

References

[1] Coconut tool. https://github.com/ArwaAlsubhiM/CPP_Typestate.

[2] Fluent c++. URL: https://www.fluentcpp.com//.

[3] Preprocessor macros (c/c++). URL: https://docs.microsoft.com/en-us/cpp/

preprocessor/macros-c-cpp?view=msvc-170.

[4] Tutorial website for typestates in c++. https://arwaalsubhi99.wixsite.com/

typestateuesrtesting/.

[5] The typestate pattern in rust - cliffle. URL: http://cliffle.com/blog/rust-typestate/.

[6] Typestates in c++. https://youtu.be/UqdHB17yRtQhttps://youtu.be/UqdHB17yRtQ.

[7] Jonathan Aldrich, Robert Bocchino, Ronald Garcia, Mark Hahnenberg, Manuel Mohr, Karl Naden,
Darpan Saini, Sven Stork, Joshua Sunshine, Éric Tanter, et al. Plaid: a permission-based pro-
gramming language. In Proceedings of the ACM international conference companion on Object
oriented programming systems languages and applications companion, pages 183–184, 2011. doi:
http://dx.doi.org/10.1145/2048147.2048197.

[8] Kevin Bierhoff, Nels E Beckman, and Jonathan Aldrich. Practical api protocol checking with access
permissions. In European Conference on Object-Oriented Programming, pages 195–219. Springer,
2009. doi: http://dx.doi.org/10.1007/978-3-642-03013-0_10.

[9] Eric Bodden and Laurie Hendren. The clara framework for hybrid typestate analysis. International
Journal on Software Tools for Technology Transfer, 14(3):307–326, 2012. doi: http://dx.doi.
org/10.1007/s10009-010-0183-5.

[10] Michael Coblenz. Obsidian: a safer blockchain programming language. In 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-C), pages 97–99. IEEE,
2017. doi: http://dx.doi.org/10.1109/ICSE-C.2017.150.

[11] Robert DeLine and Manuel Fähndrich. Typestates for objects. In European Conference on Object-
Oriented Programming, pages 465–490. Springer, 2004. doi: http://dx.doi.org/10.1007/

978-3-540-24851-4_21.

[12] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James R Larus,
and Steven Levi. Language support for fast and reliable message-based communication in singu-
larity os. In Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems 2006, pages 177–190, 2006. doi: https://dl.acm.org/doi/abs/10.1145/1217935.
1217953.

[13] Lars Haendel. The function pointer tutorials. newty. de [online], pages 1–13, 2005. URL:
http://www. newty. de/fpt/functor. html.

[14] Mathias Jakobsen, Alice Ravier, and Ornela Dardha. Papaya: Global typestate analysis of aliased
objects. In 23rd International Symposium on Principles and Practice of Declarative Programming,
pages 1–13, 2021. doi: http://dx.doi.org/10.1145/3479394.3479414.

[15] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J Gay. Typechecking protocols
with mungo and stmungo: A session type toolchain for java. Science of Computer Programming,
155:52–75, 2018. doi: http://dx.doi.org/10.1016/j.scico.2017.10.006.

https://github.com/ArwaAlsubhiM/CPP_Typestate
https://www.fluentcpp.com//
https://docs.microsoft.com/en-us/cpp/preprocessor/macros-c-cpp?view=msvc-170
https://docs.microsoft.com/en-us/cpp/preprocessor/macros-c-cpp?view=msvc-170
https://arwaalsubhi99.wixsite.com/typestateuesrtesting/
https://arwaalsubhi99.wixsite.com/typestateuesrtesting/
http://cliffle.com/blog/rust-typestate/
https://youtu.be/UqdHB17yRtQ 
http://dx.doi.org/10.1007/978-3-642-03013-0_10
http://dx.doi.org/10.1007/s10009-010-0183-5
http://dx.doi.org/10.1007/s10009-010-0183-5
http://dx.doi.org/10.1109/ICSE-C.2017.150 
http://dx.doi.org/10.1007/978-3-540-24851-4_21 
http://dx.doi.org/10.1007/978-3-540-24851-4_21 
https://dl.acm.org/doi/abs/10.1145/1217935.1217953
https://dl.acm.org/doi/abs/10.1145/1217935.1217953
http://dx.doi.org/10.1145/3479394.3479414 
http://dx.doi.org/10.1016/j.scico.2017.10.006


4 Coconut: Typestates for C++

[16] Ray Lischner. C++ In a Nutshell: A Desktop Quick Reference. ” O’Reilly Media, Inc.”, 2003. URL:
https://books.google.co.uk/books?hl=en&lr=&id=Q4iP1mkfdtsC&oi=fnd&pg=PT7&

dq=C%2B%2B+In+a+Nutshell:+A&ots=w0k7cAPU2s&sig=bQCaw42M0TG2esaegy7uxvfzqZU&

redir_esc=y#v=onepage&q=C%2B%2B%20In%20a%20Nutshell%3A%20A&f=false.

[17] Zoltán Porkoláb, József Mihalicza, and Ádám Sipos. Debugging c++ template metaprograms.
In Proceedings of the 5th international conference on Generative programming and component
engineering, pages 255–264, 2006. doi: https://dl.acm.org/doi/abs/10.1145/1173706.
1173746.

[18] David Vandevoorde and Nicolai M Josuttis. C++ Templates: The Complete Guide, Portable Doc-
uments. Addison-Wesley Professional, 2002. URL: https://books.google.co.uk/books/
about/C++_Templates.html?id=yQU-NlmQb_UC&redir_esc=y.

4 Appendices

4.1 First Appendix

Figure 1: Check transition() function approach

https://books.google.co.uk/books?hl=en&lr=&id=Q4iP1mkfdtsC&oi=fnd&pg=PT7&dq=C%2B%2B+In+a+Nutshell:+A&ots=w0k7cAPU2s&sig=bQCaw42M0TG2esaegy7uxvfzqZU&redir_esc=y#v=onepage&q=C%2B%2B%20In%20a%20Nutshell%3A%20A&f=false
https://books.google.co.uk/books?hl=en&lr=&id=Q4iP1mkfdtsC&oi=fnd&pg=PT7&dq=C%2B%2B+In+a+Nutshell:+A&ots=w0k7cAPU2s&sig=bQCaw42M0TG2esaegy7uxvfzqZU&redir_esc=y#v=onepage&q=C%2B%2B%20In%20a%20Nutshell%3A%20A&f=false
https://books.google.co.uk/books?hl=en&lr=&id=Q4iP1mkfdtsC&oi=fnd&pg=PT7&dq=C%2B%2B+In+a+Nutshell:+A&ots=w0k7cAPU2s&sig=bQCaw42M0TG2esaegy7uxvfzqZU&redir_esc=y#v=onepage&q=C%2B%2B%20In%20a%20Nutshell%3A%20A&f=false
https://dl.acm.org/doi/abs/10.1145/1173706.1173746
https://dl.acm.org/doi/abs/10.1145/1173706.1173746
https://books.google.co.uk/books/about/C++_Templates.html?id=yQU-NlmQb_UC&redir_esc=y
https://books.google.co.uk/books/about/C++_Templates.html?id=yQU-NlmQb_UC&redir_esc=y


A.H. Alsubhi, & O.Dardha 5

4.2 Second Appendix

Figure 2: Check transition() function produce Error


	Introduction
	Methods
	Protocol templates
	Protocol checker

	Results, Discussion and Future Work
	Appendices
	First Appendix
	Second Appendix 


