
On duality relations for session types

Giovanni Bernardi1, Ornela Dardha2, Simon J. Gay2, and Dimitrios Kouzapas2,3

1 IMDEA Software Institute, Madrid, Spain
bernargi@tcd.ie

2 School of Computing Science, University of Glasgow, UK
{Ornela.Dardha, Simon.Gay, Dimitrios.Kouzapas}@glasgow.ac.uk

3 Department of Computing, Imperial College London, UK

Abstract. Session types are a type formalism used to describe communication
protocols over private session channels. Each participant in a binary session owns
one endpoint of a session channel. A key notion is that of duality: the endpoints of
a session channel should have dual session types in order to guarantee communi-
cation safety. Duality relations have been independently defined in different ways
and different works, without considering their effect on the type system. In this
paper we systematically study the existing duality relations and some new ones,
and compare them in order to understand their expressiveness. The outcome is
that those relations are split into two groups, one related to the naı̈ve inductive
duality, and the other related to a notion of mutual compliance, which we borrow
from the literature on contracts for web-services.

1 Introduction

A session is a private connection between a finite number of participants, and a binary
session involves exactly two participants. A binary session can be thought of as a private
communication channel, say a, with two endpoints, respectively a+ and a−. Each partic-
ipant in a binary session owns one of the session endpoints and uses it to communicate
with the other participant.

Session types are type-theoretic specifications of communication protocols. They
can be incorporated into a programming language type system so that the correctness
of the communication operations in a program can be verified by static type checking.
In this paper we focus on types for binary sessions, that is binary session types [12].

A typical formalism to study binary sessions is the π-calculus, where session chan-
nels are identified by private names a, b, c, . . ., and their endpoints are distinguished
syntactically, a+, a−, For instance, consider two agents A and B which communicate
over a session c according to the following protocol: A sends an integer to B and then
receives a boolean value from B. In the π-calculus with session types this is written as

(νc : S)
(

c+![4].c+?[v : bool].0 | c−?[n : int].c−![false].0
)

where the protocol for A is described by the session type S = ! [int]; ? [bool]; end.
This type describes only half of the overall protocol, namely what takes place in c+.
The other half of the protocol takes place in c−, and is described by the session type
T = ? [int]; ! [bool]; end which models the protocol for agent B.

1

In the syntax of types, output is denoted by !, input is denoted by ?, and end denotes
the type of the successfully terminated session. The “;” models the continuation of the
session type. Moreover, it is possible to define types with a branching structure in which
one agent selects from a set of possibilities offered by the other agent.

A session type system checks that i) the communication operations in A match
the type S ; ii) the communication operations in B match the type T ; and iii) S and
T are related by an appropriate duality relation: S D T , which intuitively describes
opposite behaviours between two communicating agents. The above three steps ensure
that communications within sessions are error-free.

The duality relation is a distinctive feature of session type systems, with no clear
analogue in, for example, λ-calculus type systems. Recently Bernardi and Hennessy [2]
have shown that duality relations have a non-trivial impact on the type systems, there-
fore should be carefully defined. This is the case in particular in the presence of non-tail
recursive session types, like µX. ![X].end. The following example exhibits a safe pro-
cess that uses the aforementioned non-tail recursive session type.

Example 1. Consider the following processes,

P = (νt :]Tb) (νu :]S) ((νb : Tb) (t![b+].u![b−].0) | !R)

R = t?[x : Tx].u?[y : Ty].(νa : Ta) (x![a+].0 | y?[z : Tz].t![z].u![a−].0)

where !R denotes the replication of R.
Intuitively, process P is safe because its reductions never lead to communication

errors. By following the type system presented in the next section, the type derivation
tree for P requires the type Ta to be µX. ![X].end, which is non-tail recursive (see [2,
Section 5.2]). �

Beyond the obvious point that duality should reverse the direction of messages,
existing papers on session types do not give explicit justification for the exact way in
which they define duality, and different authors follow different intuitions.

The aim of this paper is to study the existing duality relations in a systematic way;
we contrast and compare a number of these relations as follows.

First, we compare the duality relations in a set-theoretic way, and we show that they
can be classified in two groups, one related to a symmetric notion of testing, called
“peer compliance”, and the other related to the standard inductive duality defined by
Honda et al. [12].

Second, we show that the type system of Gay and Hole [10] is robust with respect
to the dualities in the peer compliance group, in the sense that its typing relation is the
same for all syntactic duality relations in that group. This means that type-checkers im-
plementing the type system can use the smallest duality in the peer compliance group.

Structure of the paper: In Section 2 we define the π-calculus with sessions based
on [10]. It presents the statics and the dynamics of the calculus. We then consider several
syntax-oriented definitions of duality in the presence of recursive types. In Section 3
we recall the behavioural theory of session types defined in [2]. In Section 4 we make
a set-theoretic comparison of all the duality relations, establish a hierarchy with respect
to inclusion, and consider the duality relation as a parameter of the type system. We
discuss related work in Section 5, and conclude the paper in Section 6.

2

2 The π-calculus with sessions

In this section we introduce the π-calculus with session types: the syntax of types and
terms, the operational semantics and the typing discipline which enjoys type preserva-
tion and type safety [10], thus guaranteeing error-free communications.

2.1 Session Types

Let I, J,K range over I = { X ⊆ N | X finite, non-empty }, and let LSType be the
language of terms defined by the grammar (a):

(a) S ,T ::= end | X | ?[T].S | ![T].S | &〈li : S i〉i∈I | ⊕ 〈li : S i〉i∈I | µX.S

(b) M,N ::= S |]M | X | µX.M

where the labels li in terms are pairwise distinct. Let SType be the set of session type
terms which are closed (they contain no free type variables) and guarded (they contain
a non-recursive type constructor between every type variable and its µ binder). We refer
to the terms in SType as session types [2, Appendix A].

Type end is the type of a terminated session channel; ?[T].S and ![T].S indicate
respectively the types for receiving and sending a message of type T and continuation
of type S . Branch and select, &〈li : S i〉i∈I and ⊕〈li : S i〉i∈I are sets of labelled session
types indicating, respectively, external and internal choice. X and µX.S model recursive
session types.

The language of type terms is given by the grammar (b) above.We refer to the set of
closed and guarded type terms as types. A type can be a session type, a standard shared
channel type, a type variable or a recursive type.

In the present paper session types are higher-order, and their messages do not con-
tain shared channel types. We use the pure higher-order session types approach to re-
spect the semantic model defined in later Section 3.

Usually, the typing discipline of session types includes a duality function which
constructs a specific dual type for any given session type. The following is the definition
of inductive duality [12].

Definition 1 (Inductive Duality). The inductive duality function is defined as:

X = X ?[T].S = ![T].S &〈 li :S i 〉i∈I = ⊕〈 li :S i 〉i∈I µX.S = µX.S
end = end ![T].S = ?[T].S ⊕〈 li :S i 〉i∈I = &〈 li :S i 〉i∈I �

Although standard and broadly used, in [2, 3] it was observed that inductive duality
is not adequate in the presence of recursive session types, as it does not commute with
the unfolding of non-tail-recursive types such as µX. ![X].end, which in general are
necessary (see Example 1 in the Introduction).

In order to overcome this inadequacy, Bono and Padovani [3], and Bernardi and
Hennessy [2] independently defined an alternative function, called by the latter authors
complement, and here denoted as cplt. In the following we give the definition of the
complement function on session type terms, by adapting the corresponding one in [2].

3

Definition 2 (Complement Function). The function cplt : LSType −→ LSType is defined
as:
cplt(?[T].S) = ![T].cplt(S) cplt(X) = X
cplt(![T].S) = ?[T].cplt(S) cplt(end) = end

cplt(&〈 li :S i 〉i∈I) = ⊕〈 li :cplt(S i) 〉i∈I cplt(µX.S) = µX.cplt(S bµX.S /Xc)
cplt(⊕〈 li :S i 〉i∈I) = &〈 li :cplt(S i) 〉i∈I �

The complement relies on a syntactic substitution b−/−c, which acts only on the carried
types. The details are in [2, Section 5] and the formal definition is as follows,

?[T].S ′bS /Xc = ?[T
{

S /X

}
].(S ′bS /Xc) YbS /Xc = Y

![T].S ′bS /Xc = ![T
{

S /X

}
].(S ′bS /Xc) endbS /Xc = end

&〈 li :S i 〉i∈Ib
S /Xc = &〈 li :S ib

S /Xc 〉i∈I (µY.S ′)bS /Xc = µY.(S ′bS /Xc) if Y , X
⊕〈 li :S i 〉i∈Ib

S /Xc = ⊕〈 li :S ib
S /Xc 〉i∈I (µX.S ′)bS /Xc = µX.S ′

In the presence of recursive types and their unfoldings, another standard approach is
to define duality to be a relation rather than a function. For instance, µX.? [int]; X and
! [int]; µX.! [int]; X model dual behaviours and should be considered dual types. How-
ever, this duality is not captured by the complement function. For this reason we define
in the following the co-inductive duality relation [10]. In order to define co-inductive
duality, we first have to define unfolding of terms and the subtyping relation.

The unfolding function unf unfolds a recursive type until the first type construc-
tor different from µX.− is reached. Formally, unf is defined on syntactic terms as the
smallest relation that satisfies the following inference rules:

S
{
µX.S /X

}
unf S ′

µX.S unf S ′ S unf S
S , µX.S ′

The relation unf is by definition a partial function on terms of the language LSType, and
it is defined on every closed and guarded term [2, Lemma A.8].

Definition 3 (Subtyping). Let F : P(SType2) −→ P(SType2) be the functional defined
so that (T, S) ∈ F (R) whenever all the following conditions hold:

(i) if unf(T) = end then unf(S) = end

(ii) if unf(T) = ![Tm].T ′ then unf(S) = ![S m].S ′ and S m R Tm and T ′ R S ′

(iii) if unf(T) = ?[Tm].T ′ then unf(S) = ?[S m].S ′ and Tm R S m and T ′ R S ′

(iv) if unf(T) = ⊕〈 li :Ti 〉i∈I then unf(S) = ⊕〈 l j : S j 〉 j∈J , J ⊆ I, T j R S j for all j ∈ J
(v) if unf(T) = &〈 li :Ti 〉i∈I then unf(S) = &〈 l j :S j 〉 j∈J , I ⊆ J, Ti R S i for all i ∈ I

If R ⊆ F (R), then we say that R is a type simulation. Standard arguments ensure that
there exists the greatest solution of the equation X = F (X). Let 4sbt = νX.F (X), and
let =sbt be the equivalence generated by 4sbt. We call 4sbt the subtyping relation. �

Observe that the relation 4sbt defined above is less general than the original one in [10],
in that it is not defined on channel types, and less general than the one in [2] in that
here we do not have base types. Both are insignificant restrictions since subtyping on
standard channel types and base types can be easily integrated into our framework.

4

Definition 4 (Co-inductive Duality, Syntactic Compliance). Let G : P(SType2) ×
P(SType2)×P(I2) −→ P(SType2) be the functional defined so that (T, S) ∈ G(R, B, C)
whenever all the following conditions hold:

(i) If unf(T) = end then unf(S) = end

(ii) If unf(T) = ? [Tm]; T ′ then unf(S) = ! [S m]; S ′, T ′ R S ′, and Tm B S m

(iii) If unf(T) = ! [Tm]; T ′ then unf(S) = ? [S m]; S ′, T ′ R S ′, and Tm B S m

(iv) If unf(T) = ⊕〈 li : Ti 〉i∈I then unf(S) = &〈 l j : S j 〉 j∈J , I C J, Ti R S i for all i ∈ I
(v) If unf(T) = &〈 li : Ti 〉i∈I then unf(S) = ⊕〈 l j : S j 〉 j∈J , J C I, S j R T j for all j ∈ J

Standard techniques ensure that for every B and C there exists the greatest solution
of the equation X = G(X, B, C). We let ⊥c = νX.G(X, =sbt, =), and let dualsbt =

νX.G(X, 4sbt, ⊆). We call ⊥c coinductive duality and dualsbt syntactic compliance. �

In Definition 3 and Definition 4 we treat recursion explicitly, because we do not take
the widespread approach whereby (?) “a type can be freely replaced by its unfolding”.
In general assuming (?) is inconsistent, as shown in the following example.

Example 2. Here we prove a false equality by assuming (?) and using the function
#−height(T) of [13], which counts the number of top-most recursive constructors in T .
For instance, the equalities (a) #−height(µX.end) = 1, (b) #−height(end) = 0 and (c)
#−height(µX.end) = #−height(µX.end) are true. Thanks to (?), in the right-hand side of
(c) we replace µX.end with end, thereby obtaining #−height(µX.end) = #−height(end).
Now (a) and (b) imply the equality 1 = 0, which is false. �

2.2 Session Processes

Our language is the π-calculus with session types, defined in [10]. We do not allow
standard channels as messages, but this restriction is enforced by the syntax of types,
not by modifications to the language. We also restrict messages to be monadic, for
notational convenience and to match the semantic model of session types in Section 3.
The syntax of session processes is defined by the following grammar:

P,Q ::= 0 | (P | Q) | !P | xp?[y : M].P | xp![yp].P | (νx : M) P | x . {li : Pi}i∈I | x / l.P

Let x, y, z . . . range over names, and l1, l2, . . . over labels. Names may be polarised in
order to distinguish between the endpoints of a channel, occurring as x+ or x− or simply
as x. We write xp for a general polarised name, where p is +, −, or empty. Duality
on polarities, written p, exchanges + and −. Process (νx:T)P binds x in P and process
xp ? [y:T]; P binds y in P. In (νx:T)P, both x+ and x− may occur in P, and both are bound.
In xp ? [y:T]; P, only y (unpolarised) may occur in P. If a name is not bound in P then it
is free in P. fn(P) denotes the set of free names in P. For simplicity, binding occurrences
of names are annotated with types. We work up to α-equivalence and we assume the
convention that all bound names are distinct from each other and from all free names.
A process P can be a terminated process 0; a parallel composition of processes P | Q;
a replicated process !P; an input xp?[y : M].P or an output xp![yp].P on a polarised
channel xp with continuation P; a restriction (νx : M) P, where name x can be either a

5

xp ? [y:S]; P | x p̄ ! [zq]; Q
x,
−→ P

{
zq
/y

}
| Q R-Com

P
α,l
−→ P′

R-Par
P | Q

α,l
−→ P′ | Q

p is either + or − j ∈ I
R-Select

xp . {li : Pi}i∈I | x p̄ / l j.Q
x,l j
−→ P j | Q

P′ ≡ P P
α,l
−→ Q Q ≡ Q′

R-Cong
P′

α,l
−→ Q′

P
α,l
−→ P′ α , x M not session type

R-New
(νx : M)P

α,l
−→ (νx : M)P′

P
x,l
−→ P′

R-NewS
(νx : S)P

τ,
−→ (νx : tail(S , l))P′

Fig. 1. The reduction relation

session channel or a standard channel and finally a branching x . {li : Pi}i∈I or selection
x / l.P, modelling respectively, the external and internal choice.

The operational semantics of processes is given in terms of a reduction relation and
structural congruence [10] and is presented in Figure 1. The explanation of the fairly
standard rules can be found in [10]. The substitution of polarised names for unpolarised
variables in rule R-Com is an adaptation of Stoughton’s general approach [14], and rule
R-NewS uses the auxiliary tail function defined as follows,

tail(? [T]; S ,) = S tail(&〈 li : S i 〉i∈I , l j) = S j

tail(! [T]; S ,) = S tail(⊕〈 li : S i 〉i∈I , l j) = S j tail(µX.S , l) = tail(S
{
µX.S /X

}
, l)

Reductions are annotated with labels of the form α, l, which indicate the channel
name and branching / selection label, if any, being involved in each reduction.

2.3 Type System

In this section we present the typing discipline for the π-calculus with sessions. An en-
vironment Γ is a partial function from optionally polarised names to types. We adopt the
standard convention that Γ, xp : M is defined if xp < dom(Γ). Moreover, the “,” operator
on environments is defined in a way that respects the polarity of names [10]. An envi-
ronment Γ is unlimited if it contains no session types; completed if every session type
in Γ is end; and D-balanced, for some duality relation D, if whenever x+ : S ∈ Γ and
x− :S ′ ∈ Γ then S D S ′. Typing judgements are of the form Γ ` P, meaning “process P
is well-typed in the environment Γ”. The type system is given in Figure 2. It uses the +

operator on environments which combines two type environments without duplication
of polarised session channels. The type system differs from the original one in [10] in
that subtyping relation is removed from the typing rules and is instead included in the
subsumption rule, T-SubsS for session types. Rule T-Nil states that the terminated pro-
cess 0 is well-typed in any completed environment Γ. Rule T-Par is standard and uses
the + operator to combine two environments. Rule T-Rep states that process !P is well-
typed if process P is well-typed in the same unlimited environment Γ. Rules T-New and

6

Γ completed
T-Nil

Γ ` 0

Γ1 ` P Γ2 ` Q
T-Par

Γ1 + Γ2 ` P | Q

Γ ` P Γ unlimited
T-Rep

Γ ` !P

Γ, x : M ` P M is not a session type
T-New

Γ ` (νx : M)P

Γ, x+ :S , x− :S ′ ` P S ⊥c S ′
T-NewS

Γ ` (νx :S)P

Γ, xp:S , y:T ` P
T-InS

Γ, xp: ? [T]; S ` xp ? [y:T]; P

Γ, xp:S ` P
T-OutS

(Γ, xp: ! [T]; S) + yq:T ` xp ! [yq]; P

Γ, x:] S , y:S ` P
T-In

Γ, x:] S ` x ? [y:S]; P

Γ, x:] S ` P
T-Out

(Γ, x:] S) + yq:S ` x ! [yq]; P

∀i ∈ I (Γ, xp:S i ` Pi)
T-Offer

Γ, xp:&〈li : S i〉i∈I ` xp . {li : Pi}i∈I

Γ, xp:S ` P
T-Choose

Γ, xp: ⊕ 〈l : S 〉 ` xp / l.P

Γ, xp : S ` P T 4sbt S
T-SubsS

Γ, xp : T ` P

Fig. 2. Typing rules

T-NewS type the restriction process where the new name x is a shared channel and a
session channel, respectively. In the latter, the premise of the rule ensures that the op-
posite endpoints of the session channel x have dual types according to ⊥c. Typing rules
for input and output processes are duplicated in order to distinguish between actions
on session channels and shared channels. Rule T-InS typechecks an input process that
receives messages of a session type T on a session channel xp of type ? [T]; S . Rule
T-In typechecks an input process that receives messages of type S on a shared channel
x of type] S . Rules T-OutS and T-Out typecheck the output process sending messages
on session channel xp and shared channel x, respectively and follow the same line as
the typing rules for input processes. Rule T-Offer typechecks branching xp . {li : Pi}i∈I

under the assumption that xp has type &〈li : S i〉i∈I . Rule T-Choose typechecks selection
xp / l.P under the assumption that xp has type ⊕〈l : S 〉. Notice that the types of the ses-
sion channel xp in the previous two rules are exactly what is required for the processes
to be well-typed. However, by using subtyping and rule SubsS it is possible to obtain
subtypes in breadth and in depth for branch and select types.

The type system enjoys the properties of type preservation and type safety. The
proofs can be found in the online version of the paper [1].

Theorem 1 (Type Preservation).

1. If Γ ` P and P
τ,
−→ Q then Γ ` Q.

2. If Γ, x+:S , x−:S ′ ` P, S ⊥c S ′, and P
x,l
−→ Q then Γ, x+:tail(S , l), x−:tail(S ′, l) ` Q.

3. If Γ, x:T ` P and P
x,
−→ Q then Γ, x:T ` Q.

7

To state the type safety result, we first define safe processes. Given a type environ-
ment Γ, we say that a process P is Γ-safe whenever:

1. If P ≡ (ν̃u:T̃)(x ? [y:V]; P1 | x ! [zq]; P2 | Q) then among Γ, ũ:T̃ we have x:] U and
zq:W with W 4sbt U 4sbt V .

2. If P ≡ (ν̃u:T̃)(xp ? [y:V]; P1 |xp ! [zq]; P2 |Q) with p = + or p = − then x+, x− < fn(Q)
and among Γ, ũ:T̃ we have xp: ? [U]; S and xp: ! [U′]; S ′ with U =sbt U′ and zq:W
with W 4sbt U 4sbt V .

3. If P ≡ (ν̃u:T̃)(xp . {li : Pi}i∈I | xp/l j.Q | R) then j ∈ I and x+, x− < fn(R).

Intuitively a process is Γ-safe whenever it contains no data mismatches between the
data expected in the inputs, and the data sent by the outputs. Type safety follows from
Proposition 3 and a more general result, Theorem 4, which are given in Section 4.

Corollary 1. For every process P and ⊥c-balanced Γ, if Γ ` P then P is Γ-safe.

3 A behavioural theory for session types

Bernardi and Hennessy [2] developed a behavioural theory for session types, in terms of
session contracts, which gives an extensional meaning to subtyping (Theorem 2 in [2]).

In this section we recall some of their definitions and results, which are needed to
give our contribution in the next section. We also consider the traces performed by ses-
sion contracts, and show that complementation of a contract corresponds to exchanging
inputs and outputs in its traces (Lemma 1).

The grammar for the language LSCts of session contract terms is

ρ, σ ::= 1 | !(σ).σ | ?(σ).σ | x | µx.σ |
∑
i∈I

?li.σi |
⊕

i∈I

!li.σi

where we assume the labels li to be pairwise distinct. We use SCts to denote the set
of contract terms which are guarded and closed. We refer to these terms as session
contracts, or just contracts.

In order to define the operational meaning of contracts we define the set of visible
actions, Act, ranged over by λ, as the union of two sets, namely { ?l, !l | l ∈ L }, and
{ ?(σ), !(σ) | σ ∈ SCts }. We use Actτ to denote the set Act∪{ τ }. We define judgements
of the form σ1

µ
−→ σ2, where µ ∈ Actτ and σ1, σ2 ∈ SCts, by using standard axioms.

∑
i∈I?li.σi

?li
−→ σi µx.σ

τ
−→ σ { µx.σ/x } λ.σ

λ
−→ σ

⊕
i∈I!li.σi

τ
−→!li.σi

|I| > 1 ⊕
i∈I!li.σi

!li
−→ σi

|I| = 1

We also have the predicate 1
X
−→, which intuitively means that 1 is the satisfied contract.

In order to define the peer compliance relation [2] between contracts ρ, σ, we need
to define when these contracts can interact. This is accounted for by judgements of the

8

form ρ || σ
τ
−→B ρ

′ || σ′ which are inferred using the following rules.

ρ
τ
−→ ρ′

ρ || σ
τ
−→B ρ

′ || σ

σ
τ
−→ σ′

ρ || σ
τ
−→B ρ || σ

′

ρ
λ1
−→ ρ′ σ

λ2
−→ σ′

ρ || σ
τ
−→B ρ

′ || σ′
λ1 ./B λ2

The rules are standard, except for the interaction relation ./B, which in turn is
parameterised by a relation σ1 B σ2 between contracts. Intuitively, B determines
when the contract σ1 can be accepted when σ2 is required, and we use ./B to ac-
count for higher-order interactions. The relation ./B is defined as the union of the sets
{ (?l, !l), (!l, ?l), | l ∈ L }, and { (?(σ2), !(σ1)), (!(σ1), ?(σ2)) | σ1 B σ2 }.

Definition 5 (B-Peer Compliance). Let Cp2p : P(SCts2) × P(SCts2) −→ P(SCts2) be

the rule functional defined so that (ρ, σ) ∈ Cp2p(R,B) whenever (i) if ρ || σ
τ

6−→B then

ρ
X
−→, and σ

X
−→; and (ii) if ρ || σ

τ
−→B ρ

′ || σ′ then ρ′ R σ′.
Fix a B. If R ⊆ Cp2p(R,B), then we say that R is a B-coinductive peer compliance.

Standard arguments ensure that there exists the greatest solution of the equation X =

Cp2p(X,B); we call this solution the B-peer compliance, and we denote it aB
p2p. �

Definition 6 (Peer Subcontract Preorder). For everyB, we write σ1 v
B σ2 whenever

ρ aB
p2p σ1 implies ρ aB

p2p σ2 for every ρ. We also letPre denote the collection of preorders
over the set SCts, and let F p2p : Pre −→ Pre be the function defined by F p2p(B) = vB.
We let @∼ be νX.F p2p(X), and we refer to @∼ as the peer subcontract preorder. �

The full abstraction result depends on a bijection M between session types and
session contracts, which maps end to 1, branch types &〈 − 〉 to external sums

∑
, choice

types ⊕〈− 〉 to internal sums
⊕

, and leaves the variables and recursion µ−.− essentially
unchanged (see [1, Appendix B]).

Theorem 2 (Full Abstraction [2]). For every T, S ∈ SType, S 4sbt T if and only if
M(S) @∼ M(T).

In view of Theorem 2, S 4sbt T means that the contracts ρ in @∼-peer compliance with
M(S) are in @∼-peer compliance also with M(T). In other words, the contract M(T)
satisfies all the contracts satisfied byM(S), if the higher-order interactions among con-
tracts are prescribed by @∼.

The proof of Theorem 2 relies on the complement function comp =M·cplt. We will
need the property that the contract comp(σ) performs the traces of σ, but with inputs
and outputs exchanged. To prove this, let

s
=⇒ denote the least relation that satisfies

the following conditions, (i) σ
ε

=⇒ σ for every σ, (ii) σ
λs

=⇒ σ′ if σ
λ
−→ σ′′ and

σ′′
s

=⇒ σ′, and (iii) σ
s

=⇒ σ′ if σ
τ
−→ σ′′ and σ′′

s
=⇒ σ′. We write σ

s
=⇒ when

σ
s

=⇒ σ′ for some contract σ′.
Given a visible action λ, we flip it to λ by exchanging ! and ?. To exchange inputs

and outputs along finite traces we extend · inductively to flip : Act? −→ Act?.

Lemma 1. For every ρ ∈ SCts and s ∈ Act?, ρ
s

=⇒ if and only comp(ρ)
flip(s)
=⇒ .

9

4 Dualities for session types

In this section we present the set-theoretical comparison of various duality relations de-
fined so far in the literature. These relations are divided into two groups: the first group
contains the dualities related to the B-peer compliance obtained by instantiating the
parameter B with the peer preorder @∼; the second group contains the dualities defined
using the inductive duality. We call the first group “peer compliance hierarchy” and the
second group “naı̈ve recursion dualities”.

4.1 Peer compliance hierarchy

We use the peer subcontract preorder to single out one B-peer compliance relation.

Definition 7 (Peer Compliance). Let aap2p = aA
p2p where A = @∼, and call aap2p the peer

compliance relation. �

The next result gives a syntactic characterisation of peer compliance which also
accounts for the mapping between contracts and session types.

Lemma 2 (Syntactic Characterisation of Compliance). For all session types S ,T,
S dualsbt T if and only ifM(S) aap2p M(T).

The characterisation given by the previous lemma eases the comparison between the
peer compliance and the other dualities for session types. Now we proceed with the
formal comparison.

Co-inductive duality is contained in syntactic compliance. This follows mainly from
the set inclusion =sbt ⊆ 4sbt and from Definition 4.

Corollary 2. ⊥c ⊆ dual
sbt.

The converse inclusion does not hold. The reason is that ⊥c requires branch or select
to have the same set of labels, whereas dualsbt relates also choice types whose sets of
labels are in a set inclusion relation.

Example 3. Here we exhibit two types such that S dualsbt T and S 6⊥c T . Let
S = &〈 moka : end 〉 and T = &〈 moka : end, tea : end 〉. To prove that S dualsbt T
it suffices to observe that R ⊆ G(R, 4sbt, ⊆), where R= { (S , T), (end, end) }.

The reason why S 6⊥c T is that by definition ⊥c requires the sets of labels in S and
T to be equal and this is false, because { moka } , { moka, tea }. �

Next we consider a duality relation based on the finite traces performed by session
contracts. Let fTr(σ) = { s ∈ Act? | σ

s
=⇒ }.

Definition 8 (Trace-Oriented Duality). Write ρ Φ σ whenever fTr(ρ) = flip(fTr(σ)). If
ρ Φ σ we say that ρ and σ have dual finite traces. �

Note that the definition of multiparty compatibility in [8] is more general than Defini-
tion 8, in that it also accounts for the participants of sessions. However, in the setting of
binary session types, our relation Φ and multiparty compatibility coincide up-to minor
syntactic annotations.

10

The co-inductive duality ⊥c — moduloM— is strictly larger than the trace-based
duality. This is true because the traces of a contract ρ and of its unfolding, unf(ρ), are
the same, as shown in the following.

Lemma 3. For every session contract ρ, fTr(ρ) = fTr(unf(ρ)).

Proposition 1. For every session types S ,T, ifM(S) ΦM(T) then S ⊥c T.

The converse inclusion is false: the coinductive duality ⊥c - modulo M - is not con-
tained in the relationΦ. As we show in the next example, the reason is that trace equality
does not compare contracts modulo unfolding.

Example 4. We show two types T1 and T2 such that T1 ⊥c T2 and M(T1) Φ M(T2)
is false. Let S 1 be ?[end].S 2 where S 2 = µX. ?[end].X, and let T1 = ![S 1].end, and
T2 = ?[T2].end.

First we prove that T1 ⊥c T2. Definition 4 requires us to exhibit a suitable co-
inductive duality, namely R= { (T1, T2), (end, end) }, and a suitable co-inductive sub-
typing, namely S ∪ S−1, where S= { (S 1, S 2), (S 2, S 2), (end, end) }.

Now we show that M(T1) Φ M(T2) is false. It suffices to exhibit a trace s ∈

fTr(M(T1)) such that s < flip(fTr(M(T2))). Notice thatM(T1)
!(σ1)
=⇒ with σ1 =M(S 1), so

!(σ1) ∈ fTr(M(T1)), and that fTr(M(T2)) = { ε, ?(σ2) } andσ2 =M(S 2) ,M(S 1) = σ1,
so ?(σ1) < flip(fTr(M(T2))). �

The trace-oriented duality is strictly larger than the complement function. This
is true for two reasons, one is that the complementary contracts have flipped traces
(see Lemma 1); the other is that the trace-oriented duality relates contracts with their
unfoldings, whereas the complement function does not (see Example 5).

Corollary 3. For all ρ ∈ SCts, ρ Φ comp(ρ).

Example 5. We exhibit two contracts ρ and σ such that ρ Φ σ and (ρ, σ) <comp. Let
ρ = µx.?(1).x and σ =!(1).µx.!(1).x. Plainly ρ and σ have the same finite traces up-to an
application of flip(·), thus µx.?(1).x Φ?(end)x.µx.?(1).x. However, comp(µx.?(1).x) =

µx.!(1).x ,!(1).µx.!(1).x, so (ρ, σ) < comp. �

Finally, we relate complement, subtyping and syntactic compliance.

Proposition 2. dualsbt = cplt · 4sbt = 4sbt · cplt.

Figure 3 summarises the results of this section, where the symbols =M, and ⊆M
stand for set equality and set inclusion up-to encoding viaM, respectively.

4.2 Naı̈ve recursion dualities

The duality functions (·) and cplt do not relate types modulo unfolding, for instance
in general cplt(T) , cplt(unf(T)). To overcome this limitation, Vallecillo et al. [16]
defined a compatibility relation by composing inductive duality with subtyping. Gay
and Vasconcelos [11] took a similar approach, but defined compatibility differently.

11

comp (Φ (M ⊥c (dual
sbt =M aap2p

=

cplt · 4sbt = 4sbt · cplt

Fig. 3. Hierarchy of duality relations

Definition 9 (Compatibility [16, 11]).
Let ./ = {(T, S) | T 4sbt S }, and � = {(T, S) | T 4sbt S }. �

As far as we know, the relations ./ and �were intended to coincide and to be symmetric.
However, by considering the type µX. ![X].end and its inductive dual, we find that ./
and � are different, and that neither relation is symmetric:

µX. ![X].end � ?[µX. ?[X].end].end ?[µX. ?[X].end].end 6� µX. ![X].end
µX. ![X].end 6./ ?[µX. ?[X].end].end ?[µX. ?[X].end].end ./ µX. ![X].end

The lack of symmetry contradicts Proposition 3.3 in [16] and Proposition 3 in [11].
Proposition 2 ensures that if one defines compatibility in terms of complement in-

stead of in terms of inductive duality then the resulting relations are equivalent, and
coincide with the relation dualsbt, which is symmetric. Lemma 2 and the inclusion
aap2p · @∼ ⊆ aap2p suggest that the peer compliance aap2p captures the intuition behind the
compatibility relations.

4.3 The typing relation as a function of duality

In order to show the impact that different dualities have on the typing relation `, we
parameterise its definition by a binary relationD on session types. Let `D be the relation
defined by the rules in Fig. 2, where rule T-NewS is replaced by the following rule,

Γ, x+ : S , x− : S ′ `D P S D S ′

Γ `D (νx : S)P T-NewS’

The relation `D is a function ofD and it is monotone.

Proposition 3. For everyD ⊆ D′⊆ SType2, `D ⊆ `D′ .

Considering the hierarchy in Figure 3, from comp (M⊥c and the definitions of cplt
andM we have cplt (⊥c; also ⊥c (dual

sbt. Proposition 3 then yields:

Corollary 4. For every Γ and P, Γ `cplt P implies Γ `⊥c P, and Γ `⊥c P implies
Γ `dualsbt P.

The difference between cplt and ⊥c is that ⊥c includes arbitrary unfolding, and the
difference between ⊥c and dualsbt is that dualsbt includes subtyping. Since the rule
T-SubsS allows the use of subtyping relation in the derivation trees, also the converse of
Corollary 4 is true:

12

Theorem 3. Γ `cplt P if and only if Γ `⊥c P if and only if Γ `dualsbt P.

Example 6. Here we show that Theorem 3 is false if in T-SubsS we replace 4sbt with the
equivalence =sbt. Let T = ⊕〈 a :end 〉, S = &〈 a :end, b :end 〉, P = (νx:S)(x+.{a :0, b :0} |
x− /a.0), and let the symbol `′

D
denote the type relation given by the rules in Figure 2,

where T-NewS’ is used in place of T-NewS. The derivation of `′
dualsbt

P exists, because
S dualsbt T , while a derivation of `′⊥c

P does not exist, because S ⊥c T is false. �

Type safety is true also for the dualities cplt and dualsbt.

Theorem 4. For every process P, if Γ `dualsbt P and Γ is dualsbt-balanced, then P is
Γ-safe

Two immediate consequences are Corollary 1, previously stated, and the analogous
result for cplt. The proof that cplt is a safe duality is essential, and was not given in
[2].

5 Related Work

Session types: The concept of a session type originated in the work of Honda et al.
[15, 12]. There is now a substantial literature, which has been surveyed by Dezani and
de’Liguoro [9]. Subtyping for recursive session types was proposed in [10], and full
abstraction for that subtyping was achieved in [2]. Another semantic theory of session
types is defined in [5], and it is independent of the theory of [10].

Subtyping: Recent work by Chen et al. [6] has considered preciseness of subtyp-
ing, meaning the combination of soundness and completeness. A subtyping relation is
complete if it is the largest safe subtyping relation for a given type system. Given the
connections between subtyping and duality (e.g. Proposition 2), the results about pre-
ciseness are likely to be relevant for finding the largest safe duality. On the other hand,
if one removes subtyping from the type system, then the choice of duality relation be-
comes relevant and impacts the resulting typing relation. We leave the investigation of
the relation between subtyping and duality for future work.

Complement and inductive duality: The only difference between the complement
function and the inductive duality lies in the treatment of recursive terms. Although
apparently small, this difference leads to noticeable differences in the typing relations
(see [2, Section 5]). In turn, the different treatment of recursion boils down to the use
of the substitution b·/·c. This substitution was first proposed in [3], where it is called
inner substitution. The reason why [3, 2] use this substitution is to inductively construct
the duals of types like µX. ![X].end. This is borne out in [3, Proposition 3.1 (2)] and
[2, Theorem 5.10]. The duality of [3] is syntactically defined, whereas the B-mutual
compliances are operationally defined. As a consequence the proof of Proposition 3.1
(2) is simpler than the proof of [2, Theorem 5.10]. Also, while [3] uses the fact that
complement and unfold commute, the authors of [2] prove this result.

Further dualities: One extensional duality which we have not considered in this
comparison is the one of [5, Definition 2.5]. The reason for this omission is that the
framework of that paper is significantly different from ours. However, we leave the
comparison with the dualities we studied here and the one of [5] for future work.

13

Two other approaches to defining duality emerged from the connection between
session types and propositions [4, 17]. In the intuitionistic setting of Caires and Pfen-
ning [4], duality boils down to the cut-rule, according to which the dual of requiring a
behaviour A (on the left of a judgement) is an offer of A (on the right of a judgment).
This implicit duality is in contrast with the situation in the classical setting studied by
Wadler [17], where duality of session types amounts to duality on propositions: every
proposition A has an inductively defined explicit dual A⊥.

Finally, an interesting aspect of duality on session types is its relation to the opposite
input / output channel capabilities in the standard π-calculus. In [7] the authors study an
encoding of binary session types into linear channel π-types. Due to the continuation-
passing style of the encoding, the duality on session types reduces to merely opposite
input / output linear channel capabilities, but only in the outermost level of the type,
with the carried types being (syntactically) equal.

6 Conclusion and Future Work

The duality relation is an essential and distinctive feature of session type systems. How-
ever, the questions of how to define duality, and of the effect of duality on the typing
relation, have not received careful attention; different authors have used different defi-
nitions for various reasons of convenience without considering the consequences. Par-
ticular care is needed in the presence of recursive types, and the informal convention
of working “up to unfolding” is problematic. In the present paper, we have begun a
systematic study of duality relations, and we have made the following contributions.

First, we have emphasised the problems of treating session types “up to unfolding”,
and we have carefully defined a session type system without this assumption.

Second, we have explicitly considered a range of duality relations and established
their relationships. We have included several existing relations defined on the syntax of
session types, and some new relations derived from a semantic model of session types.

Third, we have considered the duality relation as a parameter of the session type
system, and studied the typing relations resulting from different choices of duality rela-
tion. The result is that the type system is robust, in the sense that the choice of duality
relation among the syntax-based relations does not matter.
Future work. The model of session types developed in [2] does not account for stan-
dard channel types. This is a severe limitation, because in settings based on that model,
standard channels cannot be sent over session channels. This limitation applies to the
present paper. We plan to investigate how to extend the model of [2] to channel types.

If a duality D allows unsafe processes to be typed, then there is no point in using it,
so the obvious basis for judging a duality relation D is the definition of safe process. In
turn, once we fix the set of safe processes S, an obvious question is: what is the greatest
duality D such that `D P implies P ∈ S? To the best of our knowledge this problem has
never been investigated. Once such a greatestD is found, a similar problem is to find the
smallest duality d such that `d=`D. An answer to this problem might have worthwhile
practical consequences: for example, an algorithm to decide d may be more efficient
than one to decide D. Identifying D and d would also answer the open question of what
should be the canonical definition of duality for session types.

14

Acknowledgements. Bernardi was supported by the Portuguese FCT project
PTDC/EIA-CCO/122547/2010. Dardha, Gay and Kouzapas are supported by the UK
EPSRC project From Data Types to Session Types: A Basis for Concurrency and Dis-
tribution (ABCD) (EP/K034413/1). Kouzapas is also supported by an EPSRC Doctoral
Prize Fellowship. The research reported in this paper was made possible by a Short-
Term Scientific Mission grant to Bernardi from COST Action IC1201: Behavioural
Types for Reliable Large-Scale Software Systems (BETTY).

References

1. G. Bernardi, O. Dardha, S. J. Gay, and D. Kouzapas. On dual-
ity relations for session types. Online version, 2014. Available at
http://www.dcs.gla.ac.uk/˜ornela/my papers/BDGK14-Extended.pdf.

2. G. Bernardi and M. Hennessy. Using higher-order contracts to model session types. CoRR,
abs/1310.6176, 2013.

3. V. Bono and L. Padovani. Typing copyless message passing. Logical Methods in Computer
Science, 8(1), 2012.

4. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In CONCUR,
pages 222–236, 2010.

5. G. Castagna, M. Dezani-Ciancaglini, E. Giachino, and L. Padovani. Foundations of session
types. In A. Porto and F. J. López-Fraguas, editors, PPDP, pages 219–230. ACM, 2009.

6. T. Chen, M. Dezani-Ciancaglini, and N. Yoshida. On the preciseness of subtyping in session
types. In Proceedings of the 16th International Symposium on Principles and Practice of
Declarative Programming (PPDP), 2014.

7. O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In PPDP, pages 139–150.
ACM, 2012.

8. P.-M. Deniélou and N. Yoshida. Multiparty compatibility in communicating automata: Char-
acterisation and synthesis of global session types. In ICALP, Springer LNCS 7966, pages
174–186, 2013.

9. M. Dezani-Ciancaglini and U. de’Liguoro. Sessions and session types: An overview. In
C. Laneve and J. Su, editors, WS-FM, Spring LNCS 6194, volume 6194 of Lecture Notes in
Computer Science, pages 1–28. Springer, 2009.

10. S. J. Gay and M. Hole. Subtyping for session types in the pi calculus. Acta Inf., 42(2-3):191–
225, 2005.

11. S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types. J. Funct.
Program., 20(1):19–50, 2010.

12. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for
structured communication-based programming. In ESOP, Springer LNCS 1381, pages 122–
138, 1998.

13. B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
14. A. Stoughton. Substitution revisited. Theor. Comput. Sci., 59:317–325, 1988.
15. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing system.

In PARLE, Springer LNCS 817, pages 398–413, 1994.
16. A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of software components

using session types. Fundam. Inform., 73(4):583–598, 2006.
17. P. Wadler. Propositions as sessions. In ICFP, pages 273–286, 2012.

15

A Recursive types

In this section we show in the setting of [10] there are error-free programs that need
recursive session-types to be well-typed. This is due to the subsumption of types. In
[10] subsumption is borne out by the side conditions of the typing rules for inputs and
outputs, whereas in this paper subsumption is treated with an rule of its own.

For simplicity here we use the typing rules of [10].
Consider the process P = a?[x+ : S].x+/ { l }.a![x+].0, which is trivially error-free

(i.e. safe) because it does not engage in any communication. To prove that P is well-
typed we have to show an inference tree whose root is Γ ` P for some Γ. To construct
the tree we need to apply rules with side conditions on subtyping, and to satisfy these
conditions we solve a system of disequations. This last step is where recursive types are
necessary.

The derivation tree to type P is the following one,

a :]T ` 0
[T-Nil]

a :]T, x+ : S ′ ` a![x+].0
S ′ 4sbt T [T-Out]

a :]T, x+ : ⊕ 〈 l : S ′ 〉 ` x+/{ l }.a![x+].0
[T-Choose]

a :]T ` a?[x+ : S].x+/{ l }.a![x+].0
T 4sbt ⊕〈 l : S ′ 〉 [T-In]

The inference tree above exists only if we exhibit two session-types T and S ′ such that

S ′ 4sbt T, T 4sbt ⊕〈 l : S ′ 〉

One obvious way to solve the disequations above is to let S ′ = T , and to find a T such
that T 4sbt ⊕〈 l : T 〉. A suitable session-type is µX. ⊕ 〈 l : X 〉.

B Mapping between session types and session contracts

M(S) =

1 if S = end,

!t.M(S ′) if S = ![t].S ′,
?t.M(S ′) if S = ?[t].S ′,
!(M(T)).M(S ′) if S = ![T].S ′,
?(M(T)).M(S ′) if S = ?[T].S ′,∑

i∈[1;n]?li.M(S i) if S = &〈 l1 : S 1, . . . , ln : S n 〉,⊕
i∈[1;n]!li.M(S i) if S = ⊕〈 l1 : S 1, . . . , ln : S n 〉,

µx.M(S ′) if S = µX.S ′,
x if S = X

Lemma 4 (Properties ofM).
For every S ,T ∈ LSType and ρ, σ ∈ LSCts,

a) M(S
{

T /X

}
) = (M(S))

{
M(T)/M(X)

}
b) M−1(ρ { σ/x }) = (M−1(ρ))

{
M−1(σ)/M−1(x)

}
16

c) unf(M(T)) =M(unf(T))
d) unf(M−1(σ)) =M−1(unf(σ))
e) unf(M−1(σ)) = T iff unf(σ) =M(T)

Proof. See [2, Lemma 4.1].

C Proofs for traces of session contracts

Lemma 5. For every ρ, σ, x ∈ LSCts, if σ is closed and x is not free in the messages of
ρ, then comp(ρ { σ/x }) = comp(ρ)

{
comp(σ)/x

}
.

Proof. See the proof of [2, Lemma A.13].

The next lemma is the operational version of [2, Lemma 5.5], so the proof here
relies on the same techniques used in the proof of Lemma 5.5 there.

Lemma 6. Let ρ = µx.ρ′. Then comp(ρ)
τ
−→ comp(ρ′ { ρ/s })

Proof. The operational semantics of contracts lets us infer the silent move comp(ρ)
τ
−→

ρ̂, where
ρ̂ = comp(ρ′bρ/xc)

{
µx.comp(ρ′bρ/xc)/x

}
In turn the definition of complement guarantees that

ρ̂ = comp(ρ′bρ/xc)
{

comp(ρ)/x

}
Lemma 5 allows us to move the right-most substitution in ρ̂ inside the application of
the complement function, thereby obtaining ρ̂ = comp((ρ′bρ/xc) { ρ/x }). Now part ii) of
[2, Lemma A.11] implies that ρ̂ = comp(ρ′ { ρ/x }), thus comp(ρ)

τ
−→ comp(ρ′ { ρ/x }).

Lemma 7. For every ρ ∈ SCts,

a) if ρ
λ
−→ ρ′ then comp(ρ)

τ
−→ ρ̂

λ
−→ comp(ρ′) or comp(ρ)

λ
−→ comp(ρ′)

b) if comp(ρ)
λ
−→ ρ′′ then ρ

τ
−→ ρ̂

λ
−→ ρ′ or ρ

λ
−→ ρ′ and ρ′′ = comp(ρ′)

Proof. Fix a session contract ρ. To prove part (a) suppose that ρ
λ
−→ ρ′. Either 1) λ =?l

for some label l, or 2) λ has some other form.
In the first case ρ =

∑
i∈I?li.ρi for index set I, and l = lk, ρ′ = ρk for some k ∈ I.

The definition of complement ensures that comp(ρ) =
⊕

i∈I!li.comp(ρi). If I contains

more than one element, then comp(ρ)
τ
−→!l.comp(ρ′)

λ
−→ comp(ρ′), whereas if I has

only one element then it is k, so comp(ρ)
λ
−→ comp(ρ′)

In the second case the syntax of session contracts ensures that ρ = λ.ρ′, thus by def-

inition comp(ρ) = λ.comp(ρ′). The last equality lets us infer comp(ρ)
λ
−→ comp(ρ′).

The proof of b) is similar to the proof of a), so we omit it.

17

The previous lemma is not true for silent moves. For instance the session contract
ρ =!l1. 1 ⊕ !l2. 1 performs the internal move ρ

τ
−→!l1. 1, whereas its complement

is stable, comp(ρ) =?l1. 1 + ?l2. 1
τ

6−→.

Lemma 8. For every ρ ∈ SCts and s ∈ Act?, ρ
s

=⇒ if and only comp(ρ)
flip(s)
=⇒ .

Proof. Fix a session contract ρ. We have to show two implications, namely that for
every s ∈ Act?,

a) if ρ
s

=⇒ then comp(ρ)
flip(s)
=⇒ ,

b) if comp(ρ)
flip(s)
=⇒ then ρ

s
=⇒.

As the proof of b) is similar to the proof of a) we prove only the implication in a).
The proof is by induction on the derivation of ρ

s
=⇒.

Base case In the base case the derivation is ρ
ε

=⇒ ρ′, and we have to prove that
comp(ρ)

ε
=⇒. This is true because comp(ρ)

ε
=⇒ comp(ρ).

Inductive cases There are two subcases to consider.
Suppose that the derivation of ρ

s
=⇒ is due to ρ

λ
−→ ρ′′ and ρ′′

s′
=⇒ ρ′ for some λ

and s′.
The derivation of ρ′′

s′
=⇒ ρ′ is shorter than the one of ρ

s
=⇒, thus the inductive

hypothesis ensures that comp(ρ′′)
flip(s′)
=⇒ . Since ρ

λ
−→ ρ′′, part (a) of Lemma 7 implies

that either 1) comp(ρ)
λ
−→ comp(ρ′), or 2) comp(ρ)

τ
−→ ρ̂

λ
−→ comp(ρ′). Recall

part (ii) and part (iii) of the definition of weak traces. In case 1) part (ii) lets us infer

comp(ρ)
λflip(s′)
=⇒ . In the case 2), we use part (ii) to infer ρ̂

λflip(s′)
=⇒ , and then part (iii) to

infer comp(ρ)
λflip(s′)
=⇒ . In both cases we have derived comp(ρ)

flip(s)
=⇒ .

Now suppose that the derivation of ρ
s

=⇒ is due to ρ
τ
−→ ρ′′ and ρ′′

s
=⇒ ρ′. The

silent move ρ
τ
−→ ρ′′ can be due to either a step of unfolding or an internal choice.

In the first case we have ρ = µx.ρ̂ and ρ′′ = ρ̂ { ρ/x }. Lemma 6 ensures that

comp(ρ)
τ
−→ comp(ρ′′), and the inductive hypothesis implies that comp(ρ′′)

flip(s)
=⇒ ,

thus part (iii) of the definition of weak traces let us infer comp(ρ)
flip(s)
=⇒ .

In the second case we have ρ =
⊕

i∈I!li.ρi, and the set I contains more than one

element. The assumption on the derivation of ρ
s

=⇒ implies that ρ′′ =!lk.ρk for some
k ∈ I. Since ρ′′ is stable, ρ′′

s
=⇒ must have been derived because s =!lk s′ for some

s′, and because ρk
s′

=⇒. Since the derivation of ρk
s′

=⇒ is shorter than the derivation

of ρ
s

=⇒, we apply the inductive hypothesis, which states that comp(ρk)
flip(s′)
=⇒ . Now

consider comp(ρ), which by defintion equals
∑

i∈I?li.comp(ρi). Plainly,

comp(ρ)
?lk
−→ comp(ρk)

18

so thanks to the inductive hypothesis we infer comp(ρ)
?lkflip(s′)

=⇒ . But

flip(s) = flip(!lk s′) =?lkflip(s′)

so we have shown that comp(ρ)
flip(s)
=⇒ .

D Proofs for the Peer compliance hierarchy

Lemma 9. The functional G is monotone in its first and second parameters:

a) For every B ⊆ SType2 and C ⊆ I2, if R ⊆ R′ then G(R, B, C) ⊆ G(R′, B, C).
b) For every R ⊆ SType2 and C ⊆ I2, if B ⊆ B′ then G(R, B, C) ⊆ G(R, B′, C).

Lemma 10. For every R,B and B′ such that B ⊆ B′, G(R, B, =) ⊆ G(R, B′, ⊆)

Lemma 11. For every session types S ,T, if S dualsbt T then S cplt· 4sbt T.

Proof. (Sketch)
(⇒): Define R = {(cplt(S),T) | S dualsbt T } and prove that R is a type simulation.
(⇐): Prove that cplt· 4sbt is a syntactic compliance relation.

Lemma 12. For every S ,T ∈ SType, if S dualsbt T then eitherM(S) || M(T)
τ
−→@
∼

,

orM(S)
X
−→ andM(T)

X
−→.

Proof. Fix two session types S and T such that S dualsbt T . If either of them has
a top-most recursion, µX.−, then by applying rule [I-Left] or rule [I-Right] we derive
M(S) || M(T)

τ
−→@
∼

.
Suppose now that the types S and T have no top-most recursion, then

unf(S) = S , unf(T) = T (1)

We proceed by case analysis on the syntax of S and T , and we discuss only few cases,
for the reasoning is similar in all of them but one (which we discuss).

(a) If S = end then the hypothesis S dualsbt T , Definition 4, and (1) imply that

T = end, thusM(S)
X
−→ andM(T)

X
−→.

(b) If S = ?[S m].S ′ the the hypothesis and Definition 4 imply that T = ![Tm].T ′,
with Tm 4sbt S m. An applicatio nof M(−) leads to M(S) =?(M(S m)).MS ′ and
M(T) =!(M(Tm)).M(T ′). Theorem 2 ensures that M(Tm) @∼ M(S m), and so we
proveM(S) || M(T)

τ
−→@
∼

with an application of rule [I-Synch],

M(S)
?(M(S m))
−→ M(S ′) M(T)

!(M(Tm))
−→ M(T ′)

M(S) || M(T)
τ
−→@
∼
M(S ′) || M(T ′)

!(M(Tm)) ./@
∼

?(M(S m))

19

(c) If S = ⊕〈 l1 : S 1, . . . ln : S n 〉, thenM(S) =
⊕

i∈[1;n]!li.M(S i). If n = 1 then we

reason as in case (b). If n > 1 then the silent move M(S) || M(T)
τ
−→@
∼

follows
from an application of rule [I-Left],

M(S)
τ
−→!l1.M(S 1)

M(S) || M(T)
τ
−→@
∼

!l1.M(S 1) || M(T)

(d) If S = &〈 l1 : S 1, . . . ln : S n 〉 then the hypothesis S dualsbt T ensures that T =

⊕〈 l1 : Ti, . . . lm : Tm 〉 with m ≤ n and S i dual
sbt Ti for every i ∈ [1; m]. It follows

thatM(T) =
⊕

i∈[1;m]!li.M(Ti). If m = 1 then we proceed as in case (b) otherwise
we proceed as in case (c).

Lemma 13. For every S ,T ∈ SType, S dualsbt T impliesM(S) aap2p M(T).

Proof. To prove that two contracts are in aap2p it suffices to show a @∼-coinductive com-
pliance. We prove that the image of dualsbt viaM is such a compliance. Let

R= { (M(S), M(T)) | S dualsbt T }

Fix a pair ρ R σ. By construction we know that there exists some S and T such
that ρ = M(S), σ = M(T), and S dualsbt T . To prove that R is a @∼-coinductive
compliance, we have to show that R satisfies two obligations.

Suppose that ρ || σ
τ

6−→@
∼

, we have to show that ρ
X
−→ and σ

X
−→. This follows from

Lemma 12.
Now suppose that ρ || σ

τ
−→@
∼
ρ′ || σ′, we are required to show that ρ′ R σ′. In turn

this follows if we exhibit two session types S ′ and T ′ such that ρ′ =M(S ′), σ =M(T ′)
and S ′ dualsbt T ′.

We proceed by case analysis on the rule in Section 3used to derive the τ move. If
[I-Left] was applied then σ′ = σ and ρ

τ
−→ ρ′. In this case we let T ′ = T , and we have

to discuss two subcases, for the silent move of ρ || σ may have been inferred by using
either [a-Unfold] or [a-Int].

In the first case ρ = µx.ρ̂ and ρ′ = ρ̂ { ρ/x }. The equality ρ = M(S) ensures that
S = µX.Ŝ for some Ŝ such that M(ρ̂) = Ŝ . Let S ′ = Ŝ

{
S /X

}
; Lemma 4 ensures

that ρ′ = M(S ′). By definition unf(S) = unf(Ŝ
{

S /X

}
), thus unf(S) = unf(S ′), which

implies that S ′ dualsbt T . The last fact and ρ′ =M(S ′) imply that ρ′ R σ′.
In the second case ρ =

⊕
i∈[1;n]!li.ρi with n ≥ 2, and S = ⊕〈 l1 : S 1, . . . , ln : S n 〉

where ρi =M(S i) for every i ∈ [1; n]. The rule [a-Int] ensures that ρ′ =!lk.ρk for some
k ∈ [1; n], and so ρ′ = M(S ′) where S ′ = ⊕〈 lk : S k 〉. Since S dualsbt T , we know
that unf(T) =

∑
j∈[1;m]?lj.T j with n ≤ m and S i dual

sbt Ti for every i ∈ [1; n]. It
follows that k ∈ [1; m] and that S k dual

sbt Tk, so S ′ dualsbt T . In turn this ensures
that ρ′ R σ′.

If rule [I-Right] was applied then the argument is similar to the one we used for rule
[I-Left], but dwells on σ rather than ρ.

20

If rule [I-Synch] was applied then ρ = λ1.ρ
′ and σ = λ2.σ

′. Depending on the
particular form of λ1 we have different cases to discuss, but the reasoning for all of
them is similar, so we suppose that λ1 =?(σ1

m) for some σ1
m and dwell on this case.

Thanks to the definition of ./@
∼

we know that λ2 =!(σ2
m) for some σ2

m such that

σ2
m
@
∼ σ

1
m. Since σ

λ2
−→

Let M1 =M−1(σ1
m) and let M2 =M−1(σ2

m). Since λ1.ρ
′ = ρ =M(S), it follows that

S = ?[M1].S ′ where ρ′ = M(S ′); similarly the equalities λ2.σ
′ = σ = M(T) imply

that T = ![M2].T ′, for some T ′ such that σ′ =M(T ′). Now S dualsbt T implies that
S ′ dualsbt T ′, and so ρ′ R σ′.

Lemma 14. For every session type S ,T,M(S) aap2p M(T) implies S dualsbt T.

Proof. It is enough to show that the following relation is a coinductive syntactic com-
pliance,

R= { (S , T) | M(S) aap2p M(T) }

Fix a pair S R T ; by by construction we know thatM(S) aap2p M(T), which in turn
implies that unf(S) aap2p unf(T).

To prove that S and T satisfy one of the conditions in Definition 4 we reason by
case analysis on the unfolding of S . We discuss only three cases.

Suppose that unf(S) = end; we have to prove that unf(T) = end. This follows from
Lemma 15.

Suppose that unf(S) = ![S m].S ′. We are required to prove that unf(T) = ?[Tm].T ′,
that S m 4sbt Tm, and that S ′ R T ′. We use the properties of M(−) and of the
compliance to gather all the information that we need. Part (c) of Lemma 4 ensures
that M(unf(S)) = unf(M(S)), thus unf(M(S)) =!(ρm).ρ′ where ρm = M(S m) and

ρ′ =M(S ′). Since unf(M(S))
X
6−→ and unf(M(S)) aap2p unf(M(T)), it must be the case

that
unf(M(S)) || unf(M(T))

τ
−→@
∼
ρ′ || σ′ (2)

In turn this ensures that unf(M(T))
λ
−→ σ′, and that !(ρm) ./@

∼
λ. It follows that λ =

?(σm) for someσm such that ρm @∼ σm, thus unf(M(T)) =?(σm).σm. Part (c) of Lemma 4
and an application ofM−1(−) lead to unf(T) = ?[Tm].T ′, where Tm = M−1(σm) and
T ′ =M−1(σ′).

We still have to prove that S m 4sbt Tm and that S ′ R T ′. This first fact follows
fromM(S m) = ρm @∼ σm =M(Tm), and Theorem 2. The second fact follows from (2),
part (ii), and the equalitiesM(S ′) = ρ′ andM(T ′) = σ′.

Suppose that unf(S) = &〈 l1 : S 1, . . . , ln : S n 〉. We have to show that a) unf(T) =

⊕〈 l1 : T1, . . . , lm : Tm 〉 with m ≤ n, and that b) S i R Ti for every i ∈ [1; m].
Thanks to part (c) of Lemma 4, unf(M(S)) =

∑
i∈[1;n]?li.ρi with ρi = M(Ti) for

every i ∈ [1; n]. Let A be the set of stable derivatives of unf(M(T)), formally

A = { σ̂ | σ̂
τ

6−→, unf(M(T)) =⇒ σ̂ }

ensures that session contracts converge4, thus the set A is not empty.
4 A proof of convergence for the more general language of contracts can be found in [?,

Lemma 3.10]

21

Fix a σ̂ ∈ A. Since unf(M(S)) || unf(M(T)) =⇒ unf(M(S)) || σ̂, and

unf(M(S))
X
6−→, the definition of compliance implies that

unf(M(S)) || σ̂
τ
−→@
∼

Since σ̂ and unf(M(S)) are both stable, the τ move above must be due to rule [p-
Synch]. It follows that σ̂ =!lk.σk for some k ∈ [1; m]. Since the only assumption on
σ̂ is that it is in A, for every σ̂ ∈ A, there exists a k ∈ [1; m] such that σ̂ =!lk.σk for

some σk. Let J = { k ∈ [1; n] | σ̂
!lk
−→ for some σ̂ ∈ A }. By definition unf(M(T)) =⇒

σ̂ for every σ̂ ∈ A, thus the syntax of session contracts ensures that unf(M(T)) =⊕
j∈J!lj.σ j. Let m = max J; an application of part (c) of Lemma 4 and one of the

inverse ofM(−) ensure that unf(T) = ⊕〈 l1 : T1, . . . , lm : Tm 〉, where σ j = M(T j) for
every j ∈ J.

We have to prove that for every j ∈ J, S j R T j. Fix a j ∈ J, we use rule [p-Synch]
to infer unf(M(S)) || unf(M(T))

τ
−→ ρ j || σ j. SinceM(S j) = ρ j aap2p σ j =M(T j), the

definition of R ensures that S j R T j.

Lemma 15. For every B, if 1 aB
p2p σ then unf(σ) = 1

Proof. Let σ′ be a stable contract such that σ −→n
σ′ for some n ∈ N. The reductions

ρ || σ =⇒ ρ || σ′, Definition 7 and the hypothesis 1 aB
p2p σ ensure that 1 aB

p2p σ
′. Since

both 1 and σ′ are stable and 1 can not interact, part (i) of Definition 7 must be true,

thus σ′
X
−→. In turn this means that σ′ = 1. The proof that unf(σ) = 1 follows from

induction on n.

Lemma 16. If ρ = µx.ρ′, then fTr(ρ) = fTr(ρ′ { ρ/x }).

Proof. We have to show two set inclusions,

a) fTr(ρ′ { ρ/x }) ⊆ fTr(ρ)
b) fTr(ρ) ⊆ fTr(ρ′ { ρ/x })

To prove a), suppose that s ∈ fTr(ρ′ { ρ/x }). By definition, ρ′ { ρ/x }
s

=⇒ for some
s ∈ Act?. Since ρ

τ
−→ ρ′ { ρ/x }, the transitivity of =⇒ ensures that ρ

s
=⇒, thus s ∈ fTr(ρ).

To prove b) let s ∈ fTr(ρ). Either s is empty then s ∈ fTr(ρ′ { ρ/x }) beacase

ρ′ { ρ/x } =⇒ ρ′ { ρ/x }. Suppose then that s = λs′ with s′ ∈ Act?, and ρ
λs′

=⇒. The

operational semantics of session contracts (Section 3) ensures that ρ
λ

6−→, thus there

exists a ρ′′ such that ρ =⇒ ρ′′
λs′

=⇒. Since the only action performed by ρ is an internal
move, namely ρ

τ
−→ ρ′ { ρ/x }, it follows that ρ

τ
−→ ρ′ { ρ/x } =⇒ ρ′′. But this implies

that ρ′ { ρ/x }
λs

=⇒, thus s ∈ fTr(ρ′ { ρ/x }).

Lemma 17. For every session contract ρ, fTr(ρ) = fTr(unf(ρ)).

22

Proof. We reason by induction on the derivation of unf(ρ).
In the base case, unf(ρ) = ρ because ρ has no top-most recursion. Since ρ equals its

unfolding, it follows that fTr(ρ) = fTr(unf(ρ)).
In the inductive case the derivation of the unfolding of ρ terminates with an appli-

cation of the rule
...

ρ′ { ρ/x } unf σ
ρ unf σ

and ρ = µx.ρ′. Since the derivation of unf(ρ′ { ρ/x }) is shorter than than the derivation of
unf(ρ) we can apply the inductive hypothesis, which ensures that fTr(ρ′ { ρ/x }) = fTr(σ).
As Lemma 16 ensures that fTr(ρ) = fTr(ρ′ { ρ/x }), we obtain the equality fTr(ρ) = fTr(σ).
Now unf(ρ) = σ let us conclude that fTr(ρ) = fTr(σ).

Proposition 4. For every session types S ,T, ifM(S) ΦM(T) then S ⊥c T.

Proof. Let
R= { (S , T) | M(S) ΦM(T), S ,T ∈ SType }

if we prove that R is a coinductive duality, then the result will follow.
Pick a pair S R T and let ρ =M(unf(S)) and σ =M(unf(T)). The definition of R

ensures thatM(S) ΦM(T), and so part (c) of Lemma 4, and Lemma 3 let us infer the
equality

fTr(σ) = fTr(M(unf(T)))
= fTr(unf(M(T)))
= fTr(M(T))
= flip(fTr(M(S)))
= flip(fTr(unf(M(S))))
= flip(fTr(M(unf(S))))
= flip(fTr(ρ))

(3)

We proceed by case analysis on unf(S) according to Definition 4; we discuss only
three cases, for the other cases are proven with arguments analogous to the ones we
show here.

i) Suppose that unf(S) = end. We are required to prove that unf(T) = end. An appli-
cation of the definitions lead to fTr(ρ) = fTr(1) = { ε }. Now (3) above ensures that
fTr(σ) = { ε }, and the definition of flip implies that fTr(σ) = { ε }. In turn this means
that σ = 1, so an application ofM−1(−) to both sides of the equality leads to the
fact that we are after, unf(T) = end.

ii) Suppose that unf(S) = ?[S m].S ′; in this case we have to prove three facts, namely
that a) unf(T) = ![Tm].T ′, that b) S m =sbt Tm and that c) S ′ R T ′. Plainly, ρ =

?(ρm).ρ′ with ρm =M(S m) and ρ′ =M(S). We first apply the definitions of fTr(−),
M(−), and Lemma 4

fTr(ρ) = { ?(ρm)s | s ∈ fTr(ρ′) }

This equality and (3) above imply that

fTr(σ) = { !(ρm)s | s ∈ flip(fTr(ρ′)) }

23

thus M(σ)
!(ρm)
=⇒ . Thanks to the restrictive syntac of session contracts, the weak

action !(ρm) can be performed only ifM(σ) = !(ρm).σ′ for some σ′. Part (d) of
Lemma 4 ensures that unf(T) = ![S m].T ′ with σ′ = M(T ′). We have proven a),
and since =sbt is reflexive S m =sbt S m, thus we have proven also b).
We still have to show c), that is S ′ R T ′. It suffices to prove that flip(fTr(ρ′)) =

fTr(σ′). Let σ = M(unf(T)). Above we have prove that fTr(σ) = { !(ρm)s | s ∈
flip(fTr(ρ′)) }, and by definition fTr(σ) = { !(ρm)s | s ∈ fTr(σ′) }, thus

{ !(ρm)s | s ∈ flip(fTr(ρ′)) } = { !(ρm)s | s ∈ fTr(σ′) } (4)

Let A = { ?(ρm)s | s ∈ fTr(ρ′) } and B = { ?(ρm)s | s ∈ fTr(σ′) }.
Now pick a s ∈ flip(fTr(ρ′)). Plainly ?(ρm)s ∈ A, thus (4) ensures that ?(ρm)s ∈ B,
which in turn means that s ∈ fTr(σ′). This argument can be applied also the the
traces in fTr(σ′), so it follows that flip(fTr(ρ′)) = fTr(σ′).

iii) Suppose that unf(S) = &〈 l1 : S 1, . . . , ln : S n 〉. We are required to prove that a)
unf(T) = ⊕〈 l1 : T1, . . . ln : Tn 〉, and b) S i R Ti for every i ∈ [1; n]. By applying
the suitable definitions we obtain the next equality,

fTr(ρ) = { ?lisi | li ∈ [1; n], si ∈ fTr(M(S i)) }

and so (3) above ensures that

fTr(σ) = { !liflip(si) | li ∈ [1; n], si ∈ fTr(M(S i)) }
= { !lisi | li ∈ [1; n], si ∈ flip(fTr(M(S i))) }

(5)

Since i ∈ [1; n], ε ∈∈ flip(fTr(M(S i))), the last equality ensures that σ
!li
=⇒, and in

turn the seyntax of session contracts implies that σ =
⊕

i∈[1;n]!li.σi. By suitably
applyingM−1(−) and Lemma 4 we obtain unf(T) = ⊕〈 l1 : T1, . . . , ln : Tn 〉 where
M(Ti) = σi for every i ∈ [1; n]. This proves a).
We have to prove b), namely that S i R Ti for every i ∈ [1; n]. Pick an i ∈ [1; n], to
show that S i R Ti we are required to prove that fTr(M(S i)) = flip(fTr(M(Ti))), that
is fTr(ρi) = flip(fTr(σi)).
By definition

fTr(σ) = { !lisi | si ∈ fTr(σi) }

so (5) above leads to the equality

{ !lisi | ∈ [1; n], si ∈ fTr(σi) } = { !lisi | i ∈ [1; n], si ∈ flip(fTr(M(S i))) }

We prove that fTr(ρi) = flip(fTr(σi)) by reasoning as we did in case ii) of this proof.

E Proofs of expressiveness of dualities

Theorem 5. For all Γ and P, is Γ `dualsbt P then Γ `cplt P.

Proof. The proof is done by induction on the typing derivation for Γ `dualsbt P.

24

– All the cases from (T-Nil), (T-Par), (T-Rep) and (T-New) to (T-InS), (T-OutS), (T-
In), (T-Out), (T-Offer) and (T-Choose) are straightforward, since they do not use a
duality relation.
Hence the only interesting case is the following one.

– Case (T-NewS):

...
Γ, x+ : S , x− : S ′ `dualsbt P S dualsbt S ′

Γ `dualsbt (νx : S)P

The inductive hypothesis ensures that there exists a derivation tree of

...
Γ, x+ : S , x− : S ′ `cplt P

By Proposition 2 since S dualsbt S ′ then S cplt◦ 4sbt S ′. The latter means that ∃T
such that S cpltT and T 4sbt S ′. As T is a subtype of S , by applying the Substitution
Lemma 18 we obtain the derivation of

...
Γ, x+ : S , x− : T `cplt P

We conclude the case with an application of rule (T-NewS),

...
Γ, x+ : S , x− : T `cplt P S cpltT

Γ `cplt P

Corollary 5. For all Γ and P, if Γ `dualsbt P then Γ `⊥c P.

Proof. This follows from Theorem 3, Proposition 3 and the inclusion cplt ⊂ ⊥c.

F Soundness

Lemma 18 (Substitution). If Γ, x:T ` P and T ′ 4sbt T and Γ + yp:T ′ is defined then
Γ + yp:T ′ ` P

{
yp
/x

}
Proof. By induction on the derivation of Γ, x:T ` P, with a case analysis on the last rule
used. We type the case for T-OutS where it is analysed in several subcases.

1. x is not involved in the output.

Γ, zq:S ` P′

Γ, zq: ! [T ′′]; S ` zq ! [w]; P′

From the induction hypothesis we get that

(Γ, zq:S) + yp:T ′ ` P′
{

yp
/x

}
25

we apply rule T-OutS

(Γ, zq: ! [T ′′]; S) + y:T ′ ` zq ! [w]; P′
{

yp
/x

}
as required.

2. x is the output name. In this case the derivation ends with

Γ, zq:S ` P′

Γ, zq: ! [T]; S , x:T ` zq ! [x]; P′

By the induction hypothesis we have

(Γ, zq:S) + y:T ′ ` P′
{

yp
/x

}
with P′ = P′

{
yp
/x

}
because x < fn(P′). We apply rule T-OutS:

(Γ, zq: ! [T ′]; S) + yp:T ′ ` zq ! [yp]; P′

It is a given that T ′ 4sbt T so if we apply rule Subs we get:

(Γ, zq: ! [T]; S) + yp:T ′ ` zq ! [yp]; P′

as required.
3. x is the session channel used for output. In this case T = ! [T1]; S 1. Because T ′ 4sbt

T we have T ′ = ! [T2]; S 2 with S 2 4sbt S 1 and T1 4sbt T2. The type derivation ends
with

Γ, x:S 1 ` P′

(Γ, x: ! [T1]; S 1) + zq:T1 ` x ! [zq]; P′

By the induction hypothesis we have

Γ + yp:S 2 ` P′
{

yp
/x

}
We apply T-OutS:

Γ + yp: ! [T1]; S 2 + zq:T1 ` y ! [zq]; P′
{

yp
/x

}
Given that T1 4sbt T2, the derivation ends with an application of Subs:

Γ + yp: ! [T2]; S 2 + zq:T1 ` y ! [zq]; P′
{

yp
/x

}
as required.

Theorem 1 (Type Preservation).

1. If Γ ` P and P
τ,
−→ Q then Γ ` Q.

2. If Γ, x+:S , x−:S ′ ` P, S ⊥c S ′, and P
x,l
−→ Q then Γ, x+:tail(S , l), x−:tail(S ′, l) ` Q.

3. If Γ, x:T ` P and P
x,
−→ Q then Γ, x:T ` Q.

26

Proof. The proof for parts 1 and 3 can be found in [10], due to the fact that the cur-
rent typing system is based on the Gay and Hole typing system. The presence of the
subsumption rule though differantiates the proof for part 2.

The proof is done with induction on the derivation of the reduction.
2. We focus on the case R-Com where we have

xp ? [y:T]; P | x p̄ ! [zq]; Q
x,
−→ P

{
zq
/y

}
| Q

and the form of the environment Γ, x+:S , x− : S ′ means that p is either + or ; without loss
of generality assume p = +. The derivation of Γ, x+:S , x− : S ′ ` xp ? [y:T]; P|x p̄ ! [zq]; Q
ends as follows; note that S must be of the form ? [T ′]; S 1? with T ′ 4sbt T and S ′ must
be of the form ! [T ′]; S 2 with S 1 ⊥c S 2, and Γ1 + Γ2 = Γ, and Γ3 + zq:T ′′ = Γ2, and
T ′′ 4sbt T ′.

Γ1, x+:S 1 ` P

Γ1, x+: ? [T]; `x+ ? [y:T]; P T ′ 4sbt T

Γ1, x+: ? [T ′]; `x+ ? [y:T]; P

Γ3, x−:S 2 ` Q

Γ2, x−: ? [T]; S 2 ` x− ! [zq]; Q T ′ 4sbt T

Γ2, x−: ? [T ′]; S 2 ` x− ! [zq]; Q

Γ, x+: ? [T ′]; ,x−: ? [T ′]; S 2 ` x+ ? [y:T]; P | x− ! [zq]; Q

By the transitivity of 4sbt we get T ′′ 4sbt T and by Lemma 18 we get

(Γ1, x+:S 1) + zq:T ′′ ` P
{

zq
/y

}
We apply rule T-Par to get

(Γ1, x+:S 1) + zq:T ′′ + Γ3, x−:S 2 ` P
{

zq
/y

}
| Q

which is the required judgement since (Γ1, x+:S 1) + zq:T ′′ + Γ3, x−:S 2 = Γ.

27

