
Recursive Session Types Revisited

Ornela Dardha

School of Computing Science
University of Glasgow

September 1, 2014

Gentle Intro

• Session types are a type formalism used to model structured
communication-based programming.

• Suitable for designing protocols in a concurrent and
distributed scenario.

• Guarantee privacy, communication safety and session fidelity.

Session Types in Practice: Equality Test

server
def
= x1?(v).x1?(w).x1!〈v == w〉.0

client
def
= x2!〈3〉.x2!〈5〉.x2?(eq).0

The system is given by

(νx1x2)
(
server | client

)

Where
x1 : ?Int.?Int.!Bool.end

and
x2 : !Int.!Int.?Bool.end

Session Types in Practice: Equality Test

server
def
= x1?(v).x1?(w).x1!〈v == w〉.0

client
def
= x2!〈3〉.x2!〈5〉.x2?(eq).0

The system is given by

(νx1x2)
(
server | client

)
Where

x1 : ?Int.?Int.!Bool.end

and
x2 : !Int.!Int.?Bool.end

Session Types in Practice: Equality Test

server
def
= x1?(v).x1?(w).x1!〈v == w〉.0

client
def
= x2!〈3〉.x2!〈5〉.x2?(eq).0

The system is given by

(νx1x2)
(
server | client

)
Where

x1 : ?Int.?Int.!Bool.end

and
x2 : !Int.!Int.?Bool.end

Session Types in Practice: Equality Test

server
def
= x1?(v).x1?(w).x1!〈v == w〉.0

client
def
= x2!〈3〉.x2!〈5〉.x2?(eq).0

The system is given by

(νx1x2)
(
server | client

)
Where

x1 : ?Int.?Int.!Bool.end

and
x2 : !Int.!Int.?Bool.end

Session Types in Practice: Equality Test

server
def
= x1?(v).x1?(w).x1!〈v == w〉.0

client
def
= x2!〈3〉.x2!〈5〉.x2?(eq).0

The system is given by

(νx1x2)
(
server | client

)
Where

x1 : ?Int.?Int.!Bool.end

and
x2 : !Int.!Int.?Bool.end

Session Types in Practice: Equality Test

server
def
= x1?(v).x1?(w).x1!〈v == w〉.0

client
def
= x2!〈3〉.x2!〈5〉.x2?(eq).0

The system is given by

(νx1x2)
(
server | client

)
Where

x1 : ?Int.?Int.!Bool.end

and
x2 : !Int.!Int.?Bool.end

Session Types in Practice: Equality Test

server
def
= x1?(v).x1?(w).x1!〈v == w〉.0

client
def
= x2!〈3〉.x2!〈5〉.x2?(eq).0

The system is given by

(νx1x2)
(
server | client

)
Where

x1 : ?Int.?Int.!Bool.end

and
x2 : !Int.!Int.?Bool.end

Research Timeline

Milner, Parrow, Walker 1989/1992

Honda 1993

Takeuchi, Honda, Kubo 1994

Honda, Vasconcelos, Kubo 1998

To be continued...

Milner 1993

Pierce, Sangiorgi 1993

Kobayashi, Pierce, Turner 1996

Sangiorgi 1998

On standard types for π- calculus

•]T : channel used in input/output to transmit data of type T .

• iT/oT : channel used only in input/output to transmit data of
type T . [PS96]

• `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [KPT96]

• 〈lj : Tj〉j∈J : labelled disjoint union of types. [Sangio97]

On standard types for π- calculus

•]T : channel used in input/output to transmit data of type T .

• iT/oT : channel used only in input/output to transmit data of
type T . [PS96]

• `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [KPT96]

• 〈lj : Tj〉j∈J : labelled disjoint union of types. [Sangio97]

On standard types for π- calculus

•]T : channel used in input/output to transmit data of type T .

• iT/oT : channel used only in input/output to transmit data of
type T . [PS96]

• `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [KPT96]

• 〈lj : Tj〉j∈J : labelled disjoint union of types. [Sangio97]

On standard types for π- calculus

•]T : channel used in input/output to transmit data of type T .

• iT/oT : channel used only in input/output to transmit data of
type T . [PS96]

• `iT/`oT : channel used only in input/output and exactly once
to transmit data of type T . [KPT96]

• 〈lj : Tj〉j∈J : labelled disjoint union of types. [Sangio97]

Key words for standard π- types

For session-typed π- calculus:

1 Sequentiality

2 Duality

3 Connection

4 Branch/Select

1 Linearity forces a π channel to be used exactly once.

2 Capability of input/output of the same π channel split
between two partners.

3 Restriction construct permits the creation of fresh private π
channels.

4 Variant type permits choice.

Key words for standard π- types

For session-typed π- calculus:

1 Sequentiality

2 Duality

3 Connection

4 Branch/Select

1 Linearity forces a π channel to be used exactly once.

2 Capability of input/output of the same π channel split
between two partners.

3 Restriction construct permits the creation of fresh private π
channels.

4 Variant type permits choice.

Bridging the two worlds

To which extent session constructs are more complex and more
expressive than the standard π- calculus constructs?

Research Timeline

Milner, Parrow, Walker 1989/1992

Kobayashi 2007

Gay, Gesbert, Ravara 2008

Demangeon, Honda 2011

Dardha, Giachino, Sangiorgi 2012

This paper

Honda 1993

Takeuchi, Honda, Kubo 1994

Honda, Vasconcelos, Kubo 1998

To be continued...

Milner 1993

Pierce, Sangiorgi 1993

Kobayashi, Pierce, Turner 1996

Sangiorgi 1998

Research Timeline

Milner, Parrow, Walker 1989/1992

Kobayashi 2007

Dardha, Giachino, Sangiorgi 2012

This paper

Honda 1993

Takeuchi, Honda, Kubo 1994

Honda, Vasconcelos, Kubo 1998

To be continued...

Milner 1993

Pierce, Sangiorgi 1993

Sangiorgi 1998

Kobayashi, Pierce, Turner 1996

Encoding session types into standard π- types

Key idea of the encoding

Encoding is based on:

1 Linearity of π- calculus channel types;

2 Input/Output channel capabilities;

3 Continuation-Passing principle.

4 Variant types for the π- calculus.

Intuition of the encoding

• Session types are encoded as linear channel types.

• ? and ! are encoded as `i and `o .

• &{lj : Sj}j∈J and ⊕{lj : Sj}j∈J are encoded as 〈lj : Sj〉j∈J
• Continuation of a session type becomes carried type:

from breadth to depth.

• Dual operations in continuation become equal when carried.

Why is this interesting?

Benefits of the encoding:

1 Large reusability of standard typed π- calculus theory.

2 Derivation of properties for session π- calculus from the
standard typed π- calculus. (e.g. SR, TS)

3 Elimination of redundancy in the syntax of types and terms
and in the theory.

4 Encoding is robust (subtyping, polymorphism, higher-order).

5 Expressivity result for session types.

Motivation for this paper

• Limitation of “Session types revisited” [DGS12]:
no infinite behaviours, no recursive session types.

• This work adds recursive session types and their encoding.

• Syntax of session types augmented with
type variable X and recursive type construct µX .S .

Motivation for this paper

• Recursive session types and inductive duality · don’t go well
together. (e.g µX .!X).

• · does not commute with unfolding of recursive types.

• “Session types revisited”, revisited: we use
the complement function cplt() in the encoding.
[BP12, BH13]

A bit more technical...

Session Types: Syntax

S ::= end termination
!T .S send
?T .S receive
⊕{lj : Sj}j∈J select
&{lj : Sj}j∈J branch

T ::= S session type
]T standard channel type
Bool boolean type

Linear Types: Syntax

τ ::= ∅[] channel with no capability

`i [T̃] linear input

`o [T̃] linear output

`][T̃] linear connection

T ::= τ linear channel type
〈lj : Tj〉j∈J variant type
]T standard channel type
Bool boolean type

Encoding Session Types: Formally

JendK def
= ∅[]

J!T .SK def
= `o [JT K, JSK]

J?T .SK def
= `i [JT K, JSK]

J⊕{lj : Sj}j∈JK
def
= `o [〈lj : JSjK〉j∈J]

J&{lj : Sj}j∈JK
def
= `i [〈lj : JSjK〉j∈J]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = ?Int.?Int.!Bool.end

Then
JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

Encoding Finite Session Types: Example

Let
S = !Int.!Int.?Bool.end

Then
JSK = `o [Int, `i [Int, `o [Bool, ∅[]]]]

Remark

The encoding of dual types is as follows:

JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

and
JSK = `o [Int, `i [Int, `o [Bool, ∅[]]]]

Remark
duality on session types boils down to opposite capabilities (i/o) of
channel types, only in the outermost level!

Remark

The encoding of dual types is as follows:

JSK = `i [Int, `i [Int, `o [Bool, ∅[]]]]

and
JSK = `o [Int, `i [Int, `o [Bool, ∅[]]]]

Remark
duality on session types boils down to opposite capabilities (i/o) of
channel types, only in the outermost level!

Properties of the Encoding

Theorem (On types)

Encoding preserves typability of programs.

Theorem (On reductions)

Encoding preserves evaluation of programs.

Lemma (On duality relation)

Encoding of dual session types gives dual linear π- types.

Deriving properties from the encoding

Theorem (Subject Reduction)

Proof.
‘On types’, ‘On reductions’ and Subject Reduction in linearly-typed
π- calculus.

Adding recursive session types...

Recursive Session Types: Syntax

S ::= end termination
!T .S send
?T .S receive
⊕{lj : Sj}j∈J select
&{lj : Sj}j∈J branch

X ,X type variable
µX .S recursive type

T ::= S session type
]T standard channel type
Bool boolean type

X ,X type variable
µX .T recursive type

Recursive Linear Types: Syntax

τ ::= ∅[] channel with no capability

`i [T̃] linear input

`o [T̃] linear output

`][T̃] linear connection

T ::= τ linear channel type
〈lj : Tj〉j∈J variant type
]T standard channel type
Bool boolean type

X ,X type variable
µX .T recursive type

Encoding (Recursive) Session Types:
Formally

JendK def
= ∅[]

J!T .SK def
= `o [JT K, JSK]

J?T .SK def
= `i [JT K, JSK]

J⊕{lj : Sj}j∈JK
def
= `o [〈lj : JSjK〉j∈J]

J&{lj : Sj}j∈JK
def
= `i [〈lj : JSjK〉j∈J]

JX K def
= X

JX K def
= X

JµX .SK def
= µX .JSK

Encoding (Recursive) Session Types:
Formally

JendK def
= ∅[]

J!T .SK def
= `o [JT K, JJcplt(S)KK]

J?T .SK def
= `i [JT K, JSK]

J⊕{lj : Sj}j∈JK
def
= `o [〈lj : JJcplt(Sj)KK〉j∈J]

J&{lj : Sj}j∈JK
def
= `i [〈lj : JSjK〉j∈J]

JX K def
= X

JX K def
= X

JµX .SK def
= µX .JSK

Properties of the extended encoding

• cplt(·) and · coincide for finite session types.

• This encoding is a conservative extension of the former.

• Faithfulness of the encoding still holds.

• Equality of carried types means type equality.
Previously, syntactic identity.

Encoding Recursive Session Types:
Example

JUK = JµX .&{l : X}K
= µX .J&{l : X}K
= µX .`i [〈l : JX K〉]
= µX .`i [〈l : X 〉] = υ

JT K = JµX .⊕ {l : X}K
= µX .J⊕{l : X}K
= µX .`o [〈l : Jcplt(X)K〉]
= µX .`o [〈l : X 〉] = τ

Let’s discuss duality

• unf(U) = &{l : µX .&{l : X}} dual of
unf(T) = ⊕{l : µX .⊕ {l : X}}

• unf(υ) = `i [〈l : υ〉] = `i [〈l : µX .`i [〈l : X 〉]〉] dual of
unf(τ) = `o [〈l : picplt(τ)〉] = `o [〈l : µX .`i [〈l : picplt(τ)〉]〉]

• (because X{τ/X} = picplt(τ) and
picplt(τ) = µX .`i [〈l : picplt(τ)〉])

Conclusions and Future Work 1/2

• Understanding the complexity and expressivity of
(recursive) session types.

• Presented an encoding of (recursive) session types into
(recursive) linear π- types.

• The encoding is a conservative extension of the former one
on finite session types.

• There is also an encoding of processes!

Conclusions and Future Work 2/2

• The encoding allows derivation of basic properties (SR, TS...)
of session π from standard typed π.

• The encoding allows elimination of redundancy in the syntax
of session types and terms.

• Recursion and asynchrony.

• Case studies: polymorphism, higher-order.

Questions?

References I

G. Bernardi, O. Dardha, S. J. Gay, and D. Kouzapas.
On duality relations for session types.
To appear in Proc. of TGC, 2014.

G. Bernardi and M. Hennessy.
Using higher-order contracts to model session types.
CoRR, abs/1310.6176, 2013.

O. Dardha.
Recursive session types revisited, 2014.
Online extened version at http://www.dcs.gla.ac.uk/

~ornela/my_papers/D14-Extended.pdf.

http://www.dcs.gla.ac.uk/~ornela/my_papers/D14-Extended.pdf
http://www.dcs.gla.ac.uk/~ornela/my_papers/D14-Extended.pdf

References II

O. Dardha.
Type Systems for Distributed Programs: Components and
Sessions.
PhD thesis, University of Bologna, 2014.
http://www.dcs.gla.ac.uk/~ornela/my_papers/

DardhaPhDThesis.pdf.

O. Dardha, E. Giachino, and D. Sangiorgi.
Session types revisited.
In PPDP, pages 139–150, New York, NY, USA, 2012. ACM.

http://www.dcs.gla.ac.uk/~ornela/my_papers/DardhaPhDThesis.pdf
http://www.dcs.gla.ac.uk/~ornela/my_papers/DardhaPhDThesis.pdf

Encoding Session Processes: Formally

Jx!〈v〉.PKf = (νc)fx !〈v , c〉.JPKf,{x 7→c}
Jx?(y).PKf = fx?(y , c).JPKf,{x 7→c}
Jx / lj .PKf = (νc)fx !〈lj c〉.JPKf,{x 7→c}
Jx . {li : Pi}i∈I Kf = fx?(y). case y of {li c . JPiKf,{x 7→c}}i∈I
J(νxy)PKf = (νc)JPKf,{x ,y 7→c}

Milner, Parrow and Walker 1989/1992
A calculus of mobile processes

Kobayashi 2007
Type systems for concurrent programs

Gay, Gesbert and Ravara 2008
Session types as generic process types

Demangeon and Honda 2011
Full abstraction in a subtyped pi-calculus

with linear types

Dardha, Giachino and Sangiorgi 2012
Session types revisited

Dardha 2014
Recursive session types revisited

Honda 1993
Types for dyadic interaction

Takeuchi, Honda and Kubo 1994
An interaction based language and its typing system

Honda, Vasconcelos and Kubo 1998
Language primitives and type discipline for

structured communication-based programming

To be continued...

Milner 1993
The polyadic pi-calculus: a tutorial

Pierce and Sangiorgi 1993
Typing and subtyping for mobile processes

Sangiorgi 1998
An interpretation of typed objects

into typed pi-calculus

Kobayashi, Pierce and Turner 1996
Linearity and the pi-calculus

Properties of the encoding

Theorem (Correctness of the Encoding)

Γ ` P if and only if JΓKf ` JPKf .

Theorem (Operational Correspondence)

Let P be a session process. The following hold.

1 If P → P ′ then JPKf →↪→ JP ′Kf ,
2 If JPKf → Q then, ∃ P ′, E [·] such that E [P]→ E [P ′] and

Q ↪→ JP ′Kf ′ , where f ′ is the updated f after reduction and
fx = fy for all (νxy) ∈ E [·].

Operational Semantics of Session π-
calculus

(R-Com) (νxy)(x!〈v〉.P | y?(z).Q)→ (νxy)(P | Q[v/z])

(R-Sel) (νxy)(x / lj .P | y . {li : Pi}i∈I)→ (νxy)(P | Pj) j ∈ I

Encoding Session Processes: Formally

Jx!〈v〉.PKf = (νc)fx !〈v , c〉.JPKf,{x 7→c}
Jx?(y).PKf = fx?(y , c).JPKf,{x 7→c}
Jx / lj .PKf = (νc)fx !〈lj c〉.JPKf,{x 7→c}
Jx . {li : Pi}i∈I Kf = fx?(y). case y of {li c . JPiKf,{x 7→c}}i∈I
J(νxy)PKf = (νc)JPKf,{x ,y 7→c}
JP | QKf = JPKf | JQKf
J∗PKf = ∗JPKf
J0Kf = 0

Encoding Replication: Example

JPKf = J∗
(
a?(x).x / l .a!〈x〉.0

)
Kf

= ∗J
(
a?(x).x / l .a!〈x〉.0

)
Kf

= ∗
(
a?(x).Jx / l .a!〈x〉.0Kf

)
= ∗
(
a?(x).(νc)x!〈l c〉.Ja!〈x〉.0Kf,{x 7→c}

)
= ∗
(
a?(x).(νc)x!〈l c〉.a!〈c〉.0

)

Encoding Replication: Example

JQKf = J∗
(
b?(x).x . {l : b!〈x〉.0}

)
Kf

= ∗J
(
b?(x).x . {l : b!〈x〉.0}

)
Kf

= ∗
(
b?(x).Jx . {l : b!〈x〉.0}

)
Kf

= ∗
(
b?(x).x?(y).case y of {l c . Jb!〈x〉.0}Kf,{x 7→c}}

)
= ∗
(
b?(x).x?(y).case y of {l c . b!〈c〉.0}}

)

	Introduction
	Encoding by example
	Properties of the encoding
	Conclusions

