

Recursive Session Types Revisited

Ornela Dardha

School of Computing Science University of Glasgow

September 1, 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Gentle Intro

- Session types are a type formalism used to model structured communication-based programming.
- Suitable for designing protocols in a concurrent and distributed scenario.
- Guarantee privacy, communication safety and session fidelity.

server
$$\stackrel{\text{def}}{=} x_1?(v).x_1?(w).x_1!\langle v == w \rangle.\mathbf{0}$$

client $\stackrel{\text{def}}{=} x_2!\langle 3 \rangle.x_2!\langle 5 \rangle.x_2?(eq).\mathbf{0}$

The system is given by

 $(\nu x_1 x_2)$ (server | client)

server
$$\stackrel{\text{def}}{=} x_1?(v).x_1?(w).x_1!\langle v == w \rangle.\mathbf{0}$$

client $\stackrel{\text{def}}{=} x_2!\langle 3 \rangle.x_2!\langle 5 \rangle.x_2?(eq).\mathbf{0}$

The system is given by

 $(\nu x_1 x_2)$ (server | client)

Where

x₁:?Int.?Int.!Bool.end

and

x₂: !Int.!Int.?Bool.end

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

server
$$\stackrel{\text{def}}{=} x_1?(v).x_1?(w).x_1! \langle v == w \rangle.\mathbf{0}$$

client $\stackrel{\text{def}}{=} x_2! \langle 3 \rangle.x_2! \langle 5 \rangle.x_2?(eq).\mathbf{0}$

The system is given by

 $(\nu x_1 x_2)$ (server | client)

Where

x₁: **?Int**. **?Int**. **!**Bool.end

and

x₂: !Int.!Int.?Bool.end

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

server
$$\stackrel{\text{def}}{=} x_1?(v).x_1?(w).x_1! \langle v == w \rangle.\mathbf{0}$$

client $\stackrel{\text{def}}{=} x_2! \langle 3 \rangle.x_2! \langle 5 \rangle.x_2?(eq).\mathbf{0}$

The system is given by

 $(\nu x_1 x_2)$ (server | client)

Where

x₁: **?Int**. **!**Bool.end

and

x₂: !Int.!Int.?Bool.end

server
$$\stackrel{\text{def}}{=} x_1?(v).x_1?(w).x_1!\langle v == w \rangle.0$$

client $\stackrel{\text{def}}{=} x_2!\langle 3 \rangle.x_2!\langle 5 \rangle.x_2?(eq).0$

The system is given by

 $(\nu x_1 x_2)$ (server | client)

Where

x₁:?Int.?Int.!Bool.end

and

x₂: !Int.!Int.?Bool.end

server
$$\stackrel{\text{def}}{=} x_1?(v).x_1?(w).x_1!\langle v == w \rangle.\mathbf{0}$$

client $\stackrel{\text{def}}{=} x_2!\langle 3 \rangle.x_2!\langle 5 \rangle.x_2?(eq).\mathbf{0}$

The system is given by

 $(\nu x_1 x_2)$ (server | client)

Where

x₁:?Int.?Int.!Bool.end

and

x₂: !Int.!Int.?Bool.end

server
$$\stackrel{\text{def}}{=} x_1?(v).x_1?(w).x_1!\langle v == w \rangle.\mathbf{0}$$

client $\stackrel{\text{def}}{=} x_2!\langle 3 \rangle.x_2!\langle 5 \rangle.x_2?(eq).\mathbf{0}$

The system is given by

 $(\nu x_1 x_2)$ (server | client)

Where

x₁:?Int.?Int.!Bool.end

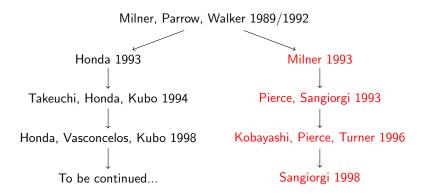
and

x₂: !Int.!Int.?Bool.end

Research Timeline

イロト 不得 トイヨト イヨト

э



(ロ)、(型)、(E)、(E)、 E) の(の)

• *‡T*: channel used in input/output to transmit data of type *T*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- $\sharp T$: channel used in input/output to transmit data of type T.
- *iT*/*oT*: channel used *only* in input/output to transmit data of type *T*. [PS96]

- #*T*: channel used in input/output to transmit data of type *T*.
- *iT*/*oT*: channel used *only* in input/output to transmit data of type *T*. [PS96]
- \$\ell_i T / \ell_o T\$: channel used only in input/output and exactly once to transmit data of type \$\T\$. [KPT96]

- #*T*: channel used in input/output to transmit data of type *T*.
- *iT*/*oT*: channel used *only* in input/output to transmit data of type *T*. [PS96]
- \$\ell_i T / \ell_o T\$: channel used only in input/output and exactly once to transmit data of type \$\ell\$. [KPT96]

• $\langle I_j : T_j \rangle_{j \in J}$: labelled disjoint union of types. [Sangio97]

Key words for standard π -types

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For session-typed π -calculus:

- Sequentiality
- 2 Duality
- 3 Connection
- 4 Branch/Select

Key words for standard π -types

For session-typed π -calculus:

- Sequentiality
- 2 Duality
- 3 Connection
- 4 Branch/Select
- 1 Linearity forces a π channel to be used exactly once.
- **2** Capability of input/output of the same π channel split between two partners.
- **3** Restriction construct permits the creation of fresh private π channels.

4 Variant type permits choice.

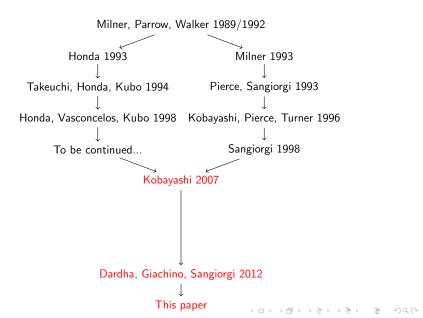
Bridging the two worlds

To which extent session constructs are more complex and more expressive than the standard π - calculus constructs?

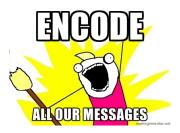
Research Timeline



Research Timeline



Encoding session types into standard π -types



Key idea of the encoding

Encoding is based on:

- **1** Linearity of π calculus channel types;
- Input/Output channel capabilities;
- **3** Continuation-Passing principle.
- **4** Variant types for the π -calculus.

Intuition of the encoding

- Session types are encoded as linear channel types.
- ? and ! are encoded as ℓ_i and ℓ_o .
- $\{I_j : S_j\}_{j \in J}$ and $\bigoplus\{I_j : S_j\}_{j \in J}$ are encoded as $\langle I_j : S_j \rangle_{j \in J}$
- Continuation of a session type becomes carried type: from breadth to depth.
- Dual operations in continuation become equal when carried.

Why is this interesting?

Benefits of the encoding:

- **1** Large reusability of standard typed π -calculus theory.
- 2 Derivation of properties for session π -calculus from the standard typed π -calculus. (e.g. SR, TS)
- **3** Elimination of redundancy in the syntax of types and terms and in the theory.
- 4 Encoding is robust (subtyping, polymorphism, higher-order).
- **5** Expressivity result for session types.

Motivation for this paper

- Limitation of "Session types revisited" [DGS12]: no infinite behaviours, no recursive session types.
- This work adds recursive session types and their encoding.
- Syntax of session types augmented with type variable X and recursive type construct μX.S.

Motivation for this paper

- Recursive session types and inductive duality don't go well together. (e.g μX.!X).
- - does not commute with unfolding of recursive types.
- "Session types revisited", revisited: we use the complement function cplt() in the encoding. [BP12, BH13]

A bit more technical...

Session Types: Syntax

Linear Types: Syntax

$$\tau ::= \emptyset[] \\ \ell_i[\tilde{T}] \\ \ell_o[\tilde{T}] \\ \ell_{\sharp}[\tilde{T}] \end{cases}$$

channel with no capability linear input linear output linear connection

$$T ::= \begin{array}{c} \tau \\ \langle l_j : T_j \rangle_{j \in J} \\ \sharp T \\ Bool \end{array}$$

linear channel type variant type standard channel type boolean type

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

Encoding Session Types: Formally

Let

S = ?Int.?Int.!Bool.end

Then

$$\llbracket S \rrbracket = \ell_i [\texttt{Int}, \ell_i [\texttt{Int}, \ell_o [\texttt{Bool}, \emptyset []]]]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let

S =**?Int.?Int.!**Bool.end

Then

$$\llbracket S \rrbracket = \ell_i [\texttt{Int}, \ell_i [\texttt{Int}, \ell_o [\texttt{Bool}, \emptyset []]]]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let

S = ?Int.?Int.!Bool.end

Then

 $\llbracket S \rrbracket = \ell_i [\texttt{Int}, \ell_i [\texttt{Int}, \ell_o [\texttt{Bool}, \emptyset []]]]$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let

S = ?Int.?Int.!Bool.end

Then

 $[\![S]\!] = \ell_i[\texttt{Int}, \ell_i[\texttt{Int}, \ell_o[\texttt{Bool}, \emptyset[]]]]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let

S = ?Int.?Int.!Bool.end

Then

 $\llbracket S \rrbracket = \ell_i [\texttt{Int}, \ell_i [\texttt{Int}, \ell_o [\texttt{Bool}, \emptyset []]]]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let

$\overline{S} = !Int.!Int.?Bool.end$

Then

$$[\![\overline{S}]\!] = \ell_o[\texttt{Int}, \ell_i[\texttt{Int}, \ell_o[\texttt{Bool}, \emptyset[]]]]$$

Remark

The encoding of dual types is as follows:

$$\llbracket S \rrbracket = \ell_i [\texttt{Int}, \ell_i [\texttt{Int}, \ell_o [\texttt{Bool}, \emptyset []]]]$$

 and

$$[\![\overline{S}]\!] = \ell_o[\texttt{Int}, \ell_i[\texttt{Int}, \ell_o[\texttt{Bool}, \emptyset[]]]]$$

Remark

The encoding of dual types is as follows:

$$\llbracket S \rrbracket = \ell_i [\texttt{Int}, \ell_i [\texttt{Int}, \ell_o [\texttt{Bool}, \emptyset []]]]$$

and

$$[\![\overline{S}]\!] = \ell_o[\texttt{Int}, \ell_i[\texttt{Int}, \ell_o[\texttt{Bool}, \emptyset[]]]]$$

Remark

duality on session types boils down to opposite capabilities (i/o) of channel types, only in the outermost level!

Properties of the Encoding

Theorem (On types)

Encoding preserves typability of programs.

Theorem (On reductions)

Encoding preserves evaluation of programs.

Lemma (On duality relation)

Encoding of dual session types gives dual linear π -types.

Deriving properties from the encoding

Theorem (Subject Reduction)

Proof.

'On types', 'On reductions' and Subject Reduction in linearly-typed π - calculus.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Adding recursive session types...

・ロト ・ 雪 ト ・ ヨ ト

э

Recursive Session Types: Syntax

$$S ::= end$$

$$!T.S$$

$$?T.S$$

$$\oplus \{I_j : S_j\}_{j \in J}$$

$$\& \{I_j : S_j\}_{j \in J}$$

$$X, \overline{X}$$

$$\mu X.S$$

$$T ::= S$$

$$\sharp T$$
Bool

$$X, \overline{X}$$

$$\mu X.T$$

termination send receive select branch type variable recursive type

session type standard channel type boolean type type variable recursive type

Recursive Linear Types: Syntax

$$\tau ::= \emptyset[] \\ \ell_i[\widetilde{T}] \\ \ell_o[\widetilde{T}] \\ \ell_{\sharp}[\widetilde{T}] \end{cases}$$

channel with no capability linear input linear output linear connection

$$T ::= \tau$$

$$\langle l_j : T_j \rangle_{j \in J}$$

$$\sharp T$$
Bool
$$X, \overline{X}$$

$$\mu X. T$$

linear channel type variant type standard channel type boolean type type variable recursive type

・ロト ・ 西ト ・ モト ・ モー ・ つへぐ

Encoding (Recursive) Session Types: Formally

 $[end] \stackrel{\text{def}}{=} \emptyset[]$ $\llbracket T.S \rrbracket \stackrel{\text{def}}{=} \ell_o \llbracket T \rrbracket, \llbracket \overline{S} \rrbracket \end{bmatrix}$ $[?T.S] \stackrel{\text{def}}{=} \ell_i[[T], [S]]$ $\llbracket \oplus \{I_i : S_i\}_{i \in J} \rrbracket \stackrel{\text{def}}{=} \ell_o[\langle I_i : \llbracket \overline{S_i} \rrbracket \rangle_{i \in J}]$ $\llbracket \& \{I_i : S_i\}_{i \in J} \rrbracket \stackrel{\text{def}}{=} \ell_i [\langle I_i : \llbracket S_i \rrbracket \rangle_{i \in J}]$ $\llbracket X \rrbracket \stackrel{\text{def}}{=} X$ $\llbracket \overline{X} \rrbracket \stackrel{\text{def}}{=} \overline{X}$ $\llbracket \mu X.S \rrbracket \stackrel{\text{def}}{=} \mu X.\llbracket S \rrbracket$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Encoding (Recursive) Session Types: Formally

 $[end] \stackrel{\text{def}}{=} \emptyset[]$ $\llbracket T.S \rrbracket \stackrel{\text{def}}{=} \ell_o[\llbracket T \rrbracket, \llbracket [\operatorname{cplt}(S) \rrbracket]]$ $[?T.S] \stackrel{\text{def}}{=} \ell_i[[T], [S]]$ $\llbracket \oplus \{I_i : S_i\}_{i \in J} \rrbracket \stackrel{\text{def}}{=} \ell_o[\langle I_i : \llbracket [\operatorname{cplt}(S_i) \rrbracket] \rangle_{i \in J}]$ $\llbracket \& \{I_j : S_j\}_{j \in J} \rrbracket \stackrel{\text{def}}{=} \ell_i [\langle I_j : \llbracket S_j \rrbracket \rangle_{i \in J}]$ $\llbracket X \rrbracket \stackrel{\text{def}}{=} X$ $\llbracket \overline{X} \rrbracket \stackrel{\text{def}}{=} \overline{X}$ $\llbracket \mu X.S \rrbracket \stackrel{\text{def}}{=} \mu X.\llbracket S \rrbracket$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Properties of the extended encoding

- $cplt(\cdot)$ and $\overline{\cdot}$ coincide for finite session types.
- This encoding is a conservative extension of the former.
- Faithfulness of the encoding still holds.
- Equality of carried types means type equality. Previously, syntactic identity.

Encoding Recursive Session Types: Example

$$\begin{bmatrix} \boldsymbol{U} \end{bmatrix} = \llbracket \mu \boldsymbol{X} \cdot \boldsymbol{\&} \{\boldsymbol{I} : \boldsymbol{X} \} \rrbracket$$
$$= \mu \boldsymbol{X} \cdot \llbracket \boldsymbol{\&} \{\boldsymbol{I} : \boldsymbol{X} \} \rrbracket$$
$$= \mu \boldsymbol{X} \cdot \ell_i \llbracket \langle \boldsymbol{I} : \llbracket \boldsymbol{X} \rrbracket \rangle \rrbracket$$
$$= \mu \boldsymbol{X} \cdot \ell_i \llbracket \langle \boldsymbol{I} : \llbracket \boldsymbol{X} \rrbracket \rangle \rrbracket$$

$$\llbracket \mathbf{T} \rrbracket = \llbracket \mu X. \oplus \{I : X\} \rrbracket$$
$$= \mu X. \llbracket \oplus \{I : X\} \rrbracket$$
$$= \mu X. \ell_o[\langle I : \llbracket cplt(X) \rrbracket \rangle]$$
$$= \mu X. \ell_o[\langle I : \overline{X} \rangle] = \tau$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Let's discuss duality

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• UNF $(U) = \& \{ l : \mu X . \& \{ l : X \} \}$ dual of UNF $(T) = \oplus \{ l : \mu X . \oplus \{ l : X \} \}$

• UNF(
$$v$$
) = $\ell_i[\langle I : v \rangle] = \ell_i[\langle I : \mu X.\ell_i[\langle I : X \rangle]\rangle]$ dual of
UNF(τ) = $\ell_o[\langle I : picplt(\tau) \rangle] = \ell_o[\langle I : \mu X.\ell_i[\langle I : picplt(\tau) \rangle]\rangle]$

• (because
$$\overline{X}{\tau/X}$$
 = picplt(τ) and
picplt(τ) = $\mu X.\ell_i[\langle I : picplt(\tau) \rangle]$)

Conclusions and Future Work 1/2

- Understanding the complexity and expressivity of (recursive) session types.
- Presented an encoding of (recursive) session types into (recursive) linear π- types.
- The encoding is a conservative extension of the former one on finite session types.

• There is also an encoding of processes!

Conclusions and Future Work 2/2

- The encoding allows derivation of basic properties (SR, TS...) of session π from standard typed π .
- The encoding allows elimination of redundancy in the syntax of session types and terms.
- Recursion and asynchrony.
- Case studies: polymorphism, higher-order.

Questions?

<ロ> (四) (四) (三) (三) (三)

References I

- G. Bernardi, O. Dardha, S. J. Gay, and D. Kouzapas.
 On duality relations for session types.
 To appear in Proc. of TGC, 2014.
- G. Bernardi and M. Hennessy. Using higher-order contracts to model session types. *CoRR*, abs/1310.6176, 2013.
 - 0. Dardha.

Recursive session types revisited, 2014. Online extened version at http://www.dcs.gla.ac.uk/ ~ornela/my_papers/D14-Extended.pdf.

References II

O. Dardha.

Type Systems for Distributed Programs: Components and Sessions.

PhD thesis, University of Bologna, 2014. http://www.dcs.gla.ac.uk/~ornela/my_papers/ DardhaPhDThesis.pdf.

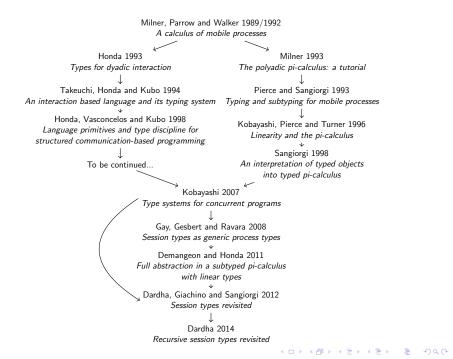
🔋 O. Dardha, E. Giachino, and D. Sangiorgi.

Session types revisited.

In PPDP, pages 139–150, New York, NY, USA, 2012. ACM.

Encoding Session Processes: Formally

$$\begin{split} \llbracket x! \langle v \rangle . P \rrbracket_{f} &= (\boldsymbol{\nu} c) f_{x}! \langle v, c \rangle . \llbracket P \rrbracket_{f, \{x \mapsto c\}} \\ \llbracket x?(y) . P \rrbracket_{f} &= f_{x}?(y, c) . \llbracket P \rrbracket_{f, \{x \mapsto c\}} \\ \llbracket x \lhd l_{j} . P \rrbracket_{f} &= (\boldsymbol{\nu} c) f_{x}! \langle l_{j-c} \rangle . \llbracket P \rrbracket_{f, \{x \mapsto c\}} \\ \llbracket x \rhd \{l_{i} : P_{i}\}_{i \in I} \rrbracket_{f} &= f_{x}?(y). \text{ case } y \text{ of } \{l_{i-c} \rhd \llbracket P_{i} \rrbracket_{f, \{x \mapsto c\}}\}_{i \in I} \\ \llbracket (\boldsymbol{\nu} xy) P \rrbracket_{f} &= (\boldsymbol{\nu} c) \llbracket P \rrbracket_{f, \{x, y \mapsto c\}} \end{aligned}$$



Properties of the encoding

Theorem (Correctness of the Encoding) $\Gamma \vdash P$ if and only if $\llbracket \Gamma \rrbracket_f \vdash \llbracket P \rrbracket_f$.

Theorem (Operational Correspondence)

Let P be a session process. The following hold.

1 If
$$P \to P'$$
 then $\llbracket P \rrbracket_f \to \hookrightarrow \llbracket P' \rrbracket_f$,

2 If $\llbracket P \rrbracket_f \to Q$ then, $\exists P', \mathcal{E}[\cdot]$ such that $\mathcal{E}[P] \to \mathcal{E}[P']$ and $Q \hookrightarrow \llbracket P' \rrbracket_{f'}$, where f' is the updated f after reduction and $f_x = f_y$ for all $(\nu xy) \in \mathcal{E}[\cdot]$.

Operational Semantics of Session π -calculus

$\begin{aligned} (\text{R-COM}) & (\nu xy)(x!\langle v\rangle.P \mid y?(z).Q) \to (\nu xy)(P \mid Q[v/z]) \\ (\text{R-SEL}) & (\nu xy)(x \triangleleft l_j.P \mid y \triangleright \{l_i : P_i\}_{i \in I}) \to (\nu xy)(P \mid P_j) \ j \in I \end{aligned}$

Encoding Session Processes: Formally

$$\begin{split} \llbracket x! \langle v \rangle . P \rrbracket_{f} &= (\nu c) f_{x}! \langle v, c \rangle . \llbracket P \rrbracket_{f, \{x \mapsto c\}} \\ \llbracket x?(y) . P \rrbracket_{f} &= f_{x}?(y, c) . \llbracket P \rrbracket_{f, \{x \mapsto c\}} \\ \llbracket x \lhd l_{j} . P \rrbracket_{f} &= (\nu c) f_{x}! \langle l_{j-c} \rangle . \llbracket P \rrbracket_{f, \{x \mapsto c\}} \\ \llbracket x \lhd l_{i} : P_{i} \rbrace_{i \in I} \rrbracket_{f} &= f_{x}?(y) . \text{ case } y \text{ of } \{l_{i-c} \rhd \llbracket P_{i} \rrbracket_{f, \{x \mapsto c\}} \}_{i \in I} \\ \llbracket (\nu xy) P \rrbracket_{f} &= (\nu c) \llbracket P \rrbracket_{f, \{x, y \mapsto c\}} \\ \llbracket P \mid Q \rrbracket_{f} &= \llbracket P \rrbracket_{f} \mid \llbracket Q \rrbracket_{f} \\ \llbracket * P \rrbracket_{f} &= * \llbracket P \rrbracket_{f} \end{bmatrix}$$

Encoding Replication: Example

<□ > < @ > < E > < E > E のQ @

$$\begin{split} \llbracket P \rrbracket_f &= \llbracket * (a?(x).x \triangleleft I.a! \langle x \rangle. \mathbf{0}) \rrbracket_f \\ &= * \llbracket (a?(x).x \triangleleft I.a! \langle x \rangle. \mathbf{0}) \rrbracket_f \\ &= * (a?(x).\llbracket x \triangleleft I.a! \langle x \rangle. \mathbf{0} \rrbracket_f) \\ &= * (a?(x).(\nu c)x! \langle I_{-}c \rangle.\llbracket a! \langle x \rangle. \mathbf{0} \rrbracket_{f,\{x \mapsto c\}}) \\ &= * (a?(x).(\nu c)x! \langle I_{-}c \rangle.a! \langle c \rangle. \mathbf{0}) \end{split}$$

Encoding Replication: Example

<□ > < @ > < E > < E > E のQ @

$$\begin{split} \llbracket Q \rrbracket_f &= \llbracket * (b?(x).x \triangleright \{I : b! \langle x \rangle. \mathbf{0}\}) \rrbracket_f \\ &= * \llbracket (b?(x).x \triangleright \{I : b! \langle x \rangle. \mathbf{0}\}) \rrbracket_f \\ &= * (b?(x).\llbracket x \triangleright \{I : b! \langle x \rangle. \mathbf{0}\}) \rrbracket_f \\ &= * (b?(x).x?(y). \text{case } y \text{ of } \{I_-c \triangleright \llbracket b! \langle x \rangle. \mathbf{0}\} \rrbracket_{f,\{x \mapsto c\}}\}) \\ &= * (b?(x).x?(y). \text{case } y \text{ of } \{I_-c \triangleright b! \langle c \rangle. \mathbf{0}\} \rrbracket_f \end{split}$$