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Gentle Intro

• Concurrent/Distributed Systems using Session Types.

• Progress is a fundamental property of safe processes.

• A program having progress does not get “stuck”, i.e., a state
that is not designated as a final value and that the language
semantics does not tell how to evaluate further.
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Gentle Intro: Comparing Properties of
Communication

• Deadlock-Freedom: communications eventually succeed,
unless the whole process diverges. (Standard π)

• Lock-Freedom: communications eventually succeed even if the
whole process diverges. (Standard π)

• Progress: In-session communications eventually succeed,
provided that a suitable context can be found. (Session π)



Deadlock-freedom vs. lock-freedom

• Consider the process:

P = (νx1x2)(νy1y2)
(
x1?(z).y1!〈z〉 | y2?(w).x1!〈w〉

)
It is deadlocked and hence locked!

• Consider the process:

Q = (νx1x2)(x1?(z) | Ω)

It is deadlock-free but locked!
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What about progress?

• Deadlock- and lock-freedom checked for closed systems.

• (Session-based) systems may be open-ended: participants
missing; join the system dynamically.

• Compositional formulation of progress for open-ended systems.

• Intuitively: an (open) process has progress if it can reduce
within all adequate execution contexts, called catalysers,
providing the missing participants.
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Research Question

Compositionality of progress leads back to lock-freedom; both
inspect the behaviour of subprocesses.

What is the relationship between lock-freedom and progress, in
particular for open-ended systems?



How to achieve progress?

• Progress through typed closure

• Progress through untyped closure

• Progress through lock-freedom typing discipline



Progress through typed closure



Progress for closed processes

Theorem (Lock-freedom ⇔ Closed Progress)

Let P be a well-typed, closed process.
P is lock-free if and only if P has progress.

Intuition:

• A closed lock-free process reduces on → has progress.

• A closed process with progress has all its participants →
is locked-free.



Progress for open processes

• Progress and lock-freedom do not coincide for open processes.

• Define catalysers by using characteristic processes.

• Wrap an open process using catalysers, until all session
communications are closed.

• We call this procedure: typed closure.



Catalyesers and Characteristic Processes

C [·] = (νxy)([·] | P)

P = y / {l1.0, l2.y !〈false〉.0}

C [·] is a catalyser by composing the characteristic process
P of session type T = ⊕{l1 : end, l2 : !Bool.end}



Example of typed closure

Consider
P = x!〈true〉.x?(z).0

P can be typed under Γ = x : !Bool.?Bool.end.
Its typed closure is

tclose(P) = (νxy)(P | y?(w).y !〈true〉.0)



Progress for open processes

Theorem (Progress ⇔ Closed Lock-Free)

If P is well-typed then
P has progress if and only if tclose(P) is lock-free.

Intuition:

1 tclose(P) is lock-free if and only if tclose(P) has progress.

2 tclose(P) has progress if and only if P has progress.



Progress through untyped closure



Co-process vs. Catalyser

• Typing is useful for defining adequate contexts for checking
progress, i.e., catalysers.

• Adequate contexts can be defined without a typing discipline.

• Based on the structure of the process, as opposed to the
typing environment for catalysers.

• We build a co-process; define untyped closure.



Co-process and untyped closure

co[x!〈v〉.P]f =

{
co[P]f if x 6∈ dom(f )

fx?(y).co[P]f otherwise

co[(νxy)P]f = co[P]f x , y 6∈ dom(f )

co[P | Q]f = co[P]f | co[Q]f

The untyped closure of P, uclose(P), is:

(νx̃fx)(P | co[P]f )

where dom(f ) = fn(P).



Progress through untyped closure:
adequacy of uclose

Theorem
Let P be well-typed,
uclose(P) is lock-free if and only if tclose(P) is lock-free.

Corollary

Let P be well-typed.
uclose(P) is lock-free if and only if P has progress.

Untyped closure is a conservative extension of typed closure:
preserves the connection of progress and lock-freedom.



Progress through types for
lock-freedom



Static-analysis for progress

• Checking progress reduces to checking whether the closure
(typed or untyped) is lock-free.

• Static analysis for lock-freedom lifted to static analysis for
progress.

• E.g., we use Kobayashi’s typing discipline for lock-freedom in
the standard π- calculus.

• We hence use an encoding of session π- calculus to the
standard typed π- calculus.



Typing Progress

Theorem (Typing Progress)

Let P be a well-typed process in the π-calculus with sessions. If
∅ `LF Juclose(P)Kf , then P has progress.



Progress in Practice: “Bad” Process

Consider

(νx1x2)(νy1y2)
(
x1?(z).y1!〈z〉 | y2?(w).x1!〈w〉

)

By encoding we obtain the process:

(νx)(νy)
(
x?(z).y !〈z〉 | y?(w).x!〈w〉

)

The type system for lock-freedom rejects it!
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Progress in Practice: “Good” Process

Consider the process

(νab)(νcd)
(
a?(x).c!〈x〉.c?(y).a!〈y〉 | b!〈1〉.d?(z).d!〈1〉.b?(z)

)

By the encoding we obtain the process:

(νk)(νl)

 k?(x , c1). (νc2)
(
l!〈x , c2〉. c2?(y). c1!〈y〉

)
|

(νc1)
(
k!〈1, c1〉. l?(z , c2). c2!〈1〉. c1?(z)

) 
The type system for lock-freedom accepts it!



Progress in Practice: “Good” Process

Consider the process

(νab)(νcd)
(
a?(x).c!〈x〉.c?(y).a!〈y〉 | b!〈1〉.d?(z).d!〈1〉.b?(z)

)
By the encoding we obtain the process:

(νk)(νl)

 k?(x , c1). (νc2)
(
l!〈x , c2〉. c2?(y). c1!〈y〉

)
|

(νc1)
(
k!〈1, c1〉. l?(z , c2). c2!〈1〉. c1?(z)

) 
The type system for lock-freedom accepts it!



Conclusions and Future Work

• Relating progress to lock-freedom in π- calculus with session
types.

• Progress as compositional form of lock-freedom.

• Progress obtained through:
• typed closure, using catalysers
• untyped closure, using co-processes
• types and type system for lock-freedom in standard typed π-

calculus

• Examples show we have a more accurate analysis for progress.

• Extend progress analysis to multiparty session types; extend
encoding first!



Thank You!!



The Model

Terms:

P,Q ::= x!〈v〉.P (output)
x?(y).P (input)
x / {li .Pi}i∈I (selection)
x . {li : Pi}i∈I (branching)
P | Q (parallel)
(νxy)P (restriction)
0 (inaction)
recX .P (rec)
X (rec var)



The Model

Types:

q ::= lin (linear)
un (unrestricted)

p ::= !T .U (send)
?T .U (receive)
⊕{li : Ti}i∈I (select)
&{li : Ti}i∈I (branch)

T ,U ::= q p (qualified pretype)
end (termination)
µt.T (recursive type)
t (rec var)



Lock-Freedom

Definition (Lock-Freedom for Sessions [3])

A process P0 is lock-free if for any fair reduction sequence
P0 → P1 → P2 → . . ., we have that

1 Pi ≡ (νx̃y)(x!〈v〉.Q | R), for i ≥ 0, implies that there exists

n ≥ i such that Pn ≡ (νx̃ ′y ′)(x!〈v〉.Q | y?(z).R1 | R2) and

Pn+1 ≡ (νx̃ ′y ′)(Q | R1[v/z ] | R2);

2 Pi ≡ (νx̃y)(x / lj .Q | R), for some i ≥ 0, implies that there
exists n ≥ i such that
Pn ≡ (νx̃ ′y ′)(x / lj .Q | y . {lk : Rk}k∈I∪{j} | S) and

Pn+1 ≡ (νx̃ ′y ′)(Q | Rj | S).



Definition (Characteristic Process [1])

Given a type T , its characteristic process LT Mxg is inductively
defined on the structure of T as:

(inVal) Lq?1.UMxg = x?(y).LUMxg
(outVal) Lq!1.UMxg = x!〈Unit〉.LUMxg

(inSess) Lq′?(qp).UMxg = x?(y).(LUMxg | LqpMyg )

(outSess) Lq′!(qp).UMxg = (νzw)(x!〈z〉.(LUMxg | LqpMwg ))

(inSum) Lq&{li : (qipi )i}i∈I Mxg = x . {li : Lqipi Mxg}i∈I
(outSum) Lq ⊕ {li : (qipi )i}i∈I Mxg = x / {li : Lqipi Mxg}i∈I

(end) LendMxg = 0

(recVar) LtMxg = g(t)

(rec) Lµt.T Mxg = recX .LT Mxg ,{t7→X}



Definition (Catalyser)

A catalyser C [·] is a context such that:

C [·] ::= [·] | (νxy)C [·] | C [·] | LqpMxg

Definition (./)

The duality ./{x ,y} is defined as follows:

x!〈v〉.P ./{x ,y} y?(z).Q

x / {li .Pi}i∈I ./{x ,y} y . {li : Qi}i∈I

Definition (Evaluation Context)

E [·] ::= [·] | P | (νxy)E [·] | E [·] | E [·] | recX .E [·]



Progress

Definition (Progress)

A process P has progress if for all catalysers C [·] such that C [P] is
well-typed, C [P]→∗ E [R] (where R is an input or an output)
implies that there exist C′ [·], E ′ [·][·] and R ′ such that
C′ [E [R]]→∗ E ′ [R][R ′] and R ./{x ,y} R

′ for some x and y such that
(νxy) is a restriction in C′ [E [R]].



Kobayashi’s types for lock-freedom

(actions) α ::= ? | !

(usage types) U ::= 0 | αoc.U | U1 | U2 | t | µt.U

(channel types) T ::= [T̃ ] U | 〈l T 〉i∈I | 1



Kobayashi’s typing rules for lock-freedom

Γ, ỹ : T̃ `LF P
(LF-In)

x : [T̃ ] ?0c ; Γ `LF x?(ỹ).P

Γ, x : [T̃ ] U `LF P rel(U)
(LF-Res)

Γ `LF (νx)P

Theorem (Lock-Freedom [3])

If Γ `LF P and rel(Γ), then P is lock-free.



Encoding Sessions [2]

Jx!〈v〉.PKf = (νc)fx !〈v , c〉.JPKf,{x 7→c}

Jx?(y).PKf = fx?(y , c).JPKf,{x 7→c}

Jx . {li : Pi}i∈I Kf = fx?(y). case y of {li c . JPiKf,{x 7→c}}i∈I
J(νxy)PKf = (νc)JPKf,{x ,y 7→c}
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