
Progress as Compositional
Lock-Freedom

Ornela Dardha
(joint work with Marco Carbone and Fabrizio Montesi)

School of Computing Science
University of Glasgow

June 3, 2014

Gentle Intro

• Concurrent/Distributed Systems using Session Types.

• Progress is a fundamental property of safe processes.

• A program having progress does not get “stuck”, i.e., a state
that is not designated as a final value and that the language
semantics does not tell how to evaluate further.

Gentle Intro

• Concurrent/Distributed Systems using Session Types.

• Progress is a fundamental property of safe processes.

• A program having progress does not get “stuck”, i.e., a state
that is not designated as a final value and that the language
semantics does not tell how to evaluate further.

Gentle Intro

• Concurrent/Distributed Systems using Session Types.

• Progress is a fundamental property of safe processes.

• A program having progress does not get “stuck”, i.e., a state
that is not designated as a final value and that the language
semantics does not tell how to evaluate further.

Gentle Intro: Comparing Properties of
Communication

• Deadlock-Freedom: communications eventually succeed,
unless the whole process diverges. (Standard π)

• Lock-Freedom: communications eventually succeed even if the
whole process diverges. (Standard π)

• Progress: In-session communications eventually succeed,
provided that a suitable context can be found. (Session π)

Deadlock-freedom vs. lock-freedom

• Consider the process:

P = (νx1x2)(νy1y2)
(
x1?(z).y1!〈z〉 | y2?(w).x1!〈w〉

)
It is deadlocked and hence locked!

• Consider the process:

Q = (νx1x2)(x1?(z) | Ω)

It is deadlock-free but locked!

Deadlock-freedom vs. lock-freedom

• Consider the process:

P = (νx1x2)(νy1y2)
(
x1?(z).y1!〈z〉 | y2?(w).x1!〈w〉

)
It is deadlocked and hence locked!

• Consider the process:

Q = (νx1x2)(x1?(z) | Ω)

It is deadlock-free but locked!

What about progress?

• Deadlock- and lock-freedom checked for closed systems.

• (Session-based) systems may be open-ended: participants
missing; join the system dynamically.

• Compositional formulation of progress for open-ended systems.

• Intuitively: an (open) process has progress if it can reduce
within all adequate execution contexts, called catalysers,
providing the missing participants.

What about progress?

• Deadlock- and lock-freedom checked for closed systems.

• (Session-based) systems may be open-ended: participants
missing; join the system dynamically.

• Compositional formulation of progress for open-ended systems.

• Intuitively: an (open) process has progress if it can reduce
within all adequate execution contexts, called catalysers,
providing the missing participants.

What about progress?

• Deadlock- and lock-freedom checked for closed systems.

• (Session-based) systems may be open-ended: participants
missing; join the system dynamically.

• Compositional formulation of progress for open-ended systems.

• Intuitively: an (open) process has progress if it can reduce
within all adequate execution contexts, called catalysers,
providing the missing participants.

What about progress?

• Deadlock- and lock-freedom checked for closed systems.

• (Session-based) systems may be open-ended: participants
missing; join the system dynamically.

• Compositional formulation of progress for open-ended systems.

• Intuitively: an (open) process has progress if it can reduce
within all adequate execution contexts, called catalysers,
providing the missing participants.

Research Question

Compositionality of progress leads back to lock-freedom; both
inspect the behaviour of subprocesses.

What is the relationship between lock-freedom and progress, in
particular for open-ended systems?

How to achieve progress?

• Progress through typed closure

• Progress through untyped closure

• Progress through lock-freedom typing discipline

Progress through typed closure

Progress for closed processes

Theorem (Lock-freedom ⇔ Closed Progress)

Let P be a well-typed, closed process.
P is lock-free if and only if P has progress.

Intuition:

• A closed lock-free process reduces on → has progress.

• A closed process with progress has all its participants →
is locked-free.

Progress for open processes

• Progress and lock-freedom do not coincide for open processes.

• Define catalysers by using characteristic processes.

• Wrap an open process using catalysers, until all session
communications are closed.

• We call this procedure: typed closure.

Catalyesers and Characteristic Processes

C [·] = (νxy)([·] | P)

P = y / {l1.0, l2.y !〈false〉.0}

C [·] is a catalyser by composing the characteristic process
P of session type T = ⊕{l1 : end, l2 : !Bool.end}

Example of typed closure

Consider
P = x!〈true〉.x?(z).0

P can be typed under Γ = x : !Bool.?Bool.end.
Its typed closure is

tclose(P) = (νxy)(P | y?(w).y !〈true〉.0)

Progress for open processes

Theorem (Progress ⇔ Closed Lock-Free)

If P is well-typed then
P has progress if and only if tclose(P) is lock-free.

Intuition:

1 tclose(P) is lock-free if and only if tclose(P) has progress.

2 tclose(P) has progress if and only if P has progress.

Progress through untyped closure

Co-process vs. Catalyser

• Typing is useful for defining adequate contexts for checking
progress, i.e., catalysers.

• Adequate contexts can be defined without a typing discipline.

• Based on the structure of the process, as opposed to the
typing environment for catalysers.

• We build a co-process; define untyped closure.

Co-process and untyped closure

co[x!〈v〉.P]f =

{
co[P]f if x 6∈ dom(f)

fx?(y).co[P]f otherwise

co[(νxy)P]f = co[P]f x , y 6∈ dom(f)

co[P | Q]f = co[P]f | co[Q]f

The untyped closure of P, uclose(P), is:

(νx̃fx)(P | co[P]f)

where dom(f) = fn(P).

Progress through untyped closure:
adequacy of uclose

Theorem
Let P be well-typed,
uclose(P) is lock-free if and only if tclose(P) is lock-free.

Corollary

Let P be well-typed.
uclose(P) is lock-free if and only if P has progress.

Untyped closure is a conservative extension of typed closure:
preserves the connection of progress and lock-freedom.

Progress through types for
lock-freedom

Static-analysis for progress

• Checking progress reduces to checking whether the closure
(typed or untyped) is lock-free.

• Static analysis for lock-freedom lifted to static analysis for
progress.

• E.g., we use Kobayashi’s typing discipline for lock-freedom in
the standard π- calculus.

• We hence use an encoding of session π- calculus to the
standard typed π- calculus.

Typing Progress

Theorem (Typing Progress)

Let P be a well-typed process in the π-calculus with sessions. If
∅ `LF Juclose(P)Kf , then P has progress.

Progress in Practice: “Bad” Process

Consider

(νx1x2)(νy1y2)
(
x1?(z).y1!〈z〉 | y2?(w).x1!〈w〉

)

By encoding we obtain the process:

(νx)(νy)
(
x?(z).y !〈z〉 | y?(w).x!〈w〉

)

The type system for lock-freedom rejects it!

Progress in Practice: “Bad” Process

Consider

(νx1x2)(νy1y2)
(
x1?(z).y1!〈z〉 | y2?(w).x1!〈w〉

)

By encoding we obtain the process:

(νx)(νy)
(
x?(z).y !〈z〉 | y?(w).x!〈w〉

)

The type system for lock-freedom rejects it!

Progress in Practice: “Good” Process

Consider the process

(νab)(νcd)
(
a?(x).c!〈x〉.c?(y).a!〈y〉 | b!〈1〉.d?(z).d!〈1〉.b?(z)

)

By the encoding we obtain the process:

(νk)(νl)

 k?(x , c1). (νc2)
(
l!〈x , c2〉. c2?(y). c1!〈y〉

)
|

(νc1)
(
k!〈1, c1〉. l?(z , c2). c2!〈1〉. c1?(z)

) 
The type system for lock-freedom accepts it!

Progress in Practice: “Good” Process

Consider the process

(νab)(νcd)
(
a?(x).c!〈x〉.c?(y).a!〈y〉 | b!〈1〉.d?(z).d!〈1〉.b?(z)

)
By the encoding we obtain the process:

(νk)(νl)

 k?(x , c1). (νc2)
(
l!〈x , c2〉. c2?(y). c1!〈y〉

)
|

(νc1)
(
k!〈1, c1〉. l?(z , c2). c2!〈1〉. c1?(z)

) 
The type system for lock-freedom accepts it!

Conclusions and Future Work

• Relating progress to lock-freedom in π- calculus with session
types.

• Progress as compositional form of lock-freedom.

• Progress obtained through:
• typed closure, using catalysers
• untyped closure, using co-processes
• types and type system for lock-freedom in standard typed π-

calculus

• Examples show we have a more accurate analysis for progress.

• Extend progress analysis to multiparty session types; extend
encoding first!

Thank You!!

The Model

Terms:

P,Q ::= x!〈v〉.P (output)
x?(y).P (input)
x / {li .Pi}i∈I (selection)
x . {li : Pi}i∈I (branching)
P | Q (parallel)
(νxy)P (restriction)
0 (inaction)
recX .P (rec)
X (rec var)

The Model

Types:

q ::= lin (linear)
un (unrestricted)

p ::= !T .U (send)
?T .U (receive)
⊕{li : Ti}i∈I (select)
&{li : Ti}i∈I (branch)

T ,U ::= q p (qualified pretype)
end (termination)
µt.T (recursive type)
t (rec var)

Lock-Freedom

Definition (Lock-Freedom for Sessions [3])

A process P0 is lock-free if for any fair reduction sequence
P0 → P1 → P2 → . . ., we have that

1 Pi ≡ (νx̃y)(x!〈v〉.Q | R), for i ≥ 0, implies that there exists

n ≥ i such that Pn ≡ (νx̃ ′y ′)(x!〈v〉.Q | y?(z).R1 | R2) and

Pn+1 ≡ (νx̃ ′y ′)(Q | R1[v/z] | R2);

2 Pi ≡ (νx̃y)(x / lj .Q | R), for some i ≥ 0, implies that there
exists n ≥ i such that
Pn ≡ (νx̃ ′y ′)(x / lj .Q | y . {lk : Rk}k∈I∪{j} | S) and

Pn+1 ≡ (νx̃ ′y ′)(Q | Rj | S).

Definition (Characteristic Process [1])

Given a type T , its characteristic process LT Mxg is inductively
defined on the structure of T as:

(inVal) Lq?1.UMxg = x?(y).LUMxg
(outVal) Lq!1.UMxg = x!〈Unit〉.LUMxg

(inSess) Lq′?(qp).UMxg = x?(y).(LUMxg | LqpMyg)

(outSess) Lq′!(qp).UMxg = (νzw)(x!〈z〉.(LUMxg | LqpMwg))

(inSum) Lq&{li : (qipi)i}i∈I Mxg = x . {li : Lqipi Mxg}i∈I
(outSum) Lq ⊕ {li : (qipi)i}i∈I Mxg = x / {li : Lqipi Mxg}i∈I

(end) LendMxg = 0

(recVar) LtMxg = g(t)

(rec) Lµt.T Mxg = recX .LT Mxg ,{t7→X}

Definition (Catalyser)

A catalyser C [·] is a context such that:

C [·] ::= [·] | (νxy)C [·] | C [·] | LqpMxg

Definition (./)

The duality ./{x ,y} is defined as follows:

x!〈v〉.P ./{x ,y} y?(z).Q

x / {li .Pi}i∈I ./{x ,y} y . {li : Qi}i∈I

Definition (Evaluation Context)

E [·] ::= [·] | P | (νxy)E [·] | E [·] | E [·] | recX .E [·]

Progress

Definition (Progress)

A process P has progress if for all catalysers C [·] such that C [P] is
well-typed, C [P]→∗ E [R] (where R is an input or an output)
implies that there exist C′ [·], E ′ [·][·] and R ′ such that
C′ [E [R]]→∗ E ′ [R][R ′] and R ./{x ,y} R

′ for some x and y such that
(νxy) is a restriction in C′ [E [R]].

Kobayashi’s types for lock-freedom

(actions) α ::= ? | !

(usage types) U ::= 0 | αoc.U | U1 | U2 | t | µt.U

(channel types) T ::= [T̃] U | 〈l T 〉i∈I | 1

Kobayashi’s typing rules for lock-freedom

Γ, ỹ : T̃ `LF P
(LF-In)

x : [T̃] ?0c ; Γ `LF x?(ỹ).P

Γ, x : [T̃] U `LF P rel(U)
(LF-Res)

Γ `LF (νx)P

Theorem (Lock-Freedom [3])

If Γ `LF P and rel(Γ), then P is lock-free.

Encoding Sessions [2]

Jx!〈v〉.PKf = (νc)fx !〈v , c〉.JPKf,{x 7→c}

Jx?(y).PKf = fx?(y , c).JPKf,{x 7→c}

Jx . {li : Pi}i∈I Kf = fx?(y). case y of {li c . JPiKf,{x 7→c}}i∈I
J(νxy)PKf = (νc)JPKf,{x ,y 7→c}

References

M. Carbone and S. Debois.
A graphical approach to progress for structured
communication in web services.
In Proc. of ICE’10, pages 13–27, 2010.

O. Dardha, E. Giachino, and D. Sangiorgi.
Session types revisited.
In PPDP, pages 139–150, 2012.

N. Kobayashi.
A type system for lock-free processes.
Inf. Comput., 177(2):122–159, 2002.

	Introduction
	Progress through typed closure
	Progress through untyped closure
	Progress through types for lock-freedom
	Examples
	Conclusions and Future Work

