University
of Glasgow

)

Progress as Compositional
Lock-Freedom
Ornela Dardha
(joint work with Marco Carbone and Fabrizio Montesi)

School of Computing Science
University of Glasgow

June 3, 2014

Gentle Intro

e Concurrent/Distributed Systems using Session Types.

Gentle Intro

e Concurrent/Distributed Systems using Session Types.

e Progress is a fundamental property of safe processes.

Gentle Intro

e Concurrent/Distributed Systems using Session Types.
e Progress is a fundamental property of safe processes.

e A program having progress does not get “stuck”, i.e., a state
that is not designated as a final value and that the language
semantics does not tell how to evaluate further.

Gentle Intro: Comparing Properties of
Communication

e Deadlock-Freedom: communications eventually succeed,
unless the whole process diverges. (Standard 7)

e Lock-Freedom: communications eventually succeed even if the
whole process diverges. (Standard)

e Progress: In-session communications eventually succeed,
provided that a suitable context can be found. (Session)

Deadlock-freedom vs. lock-freedom

e Consider the process:

P = (uxle)(uylyz)(x1?(2). 1 z) | y2?(w).xi N (w))

It is deadlocked and hence locked!

Deadlock-freedom vs. lock-freedom

e Consider the process:
P = (uxle)(uylyz)(x1?(2). 1 z) | y2?(w).xi N (w))
It is deadlocked and hence locked!
e Consider the process:
Q = (vx1x)(x1?(2) | Q)

It is deadlock-free but locked!

What about progress?

e Deadlock- and lock-freedom checked for closed systems.

What about progress?

e Deadlock- and lock-freedom checked for closed systems.

e (Session-based) systems may be open-ended: participants
missing; join the system dynamically.

What about progress?

e Deadlock- and lock-freedom checked for closed systems.

e (Session-based) systems may be open-ended: participants
missing; join the system dynamically.

e Compositional formulation of progress for open-ended systems.

What about progress?

Deadlock- and lock-freedom checked for closed systems.

(Session-based) systems may be open-ended: participants
missing; join the system dynamically.

Compositional formulation of progress for open-ended systems.
Intuitively: an (open) process has progress if it can reduce

within all adequate execution contexts, called catalysers,
providing the missing participants.

Research Question

Compositionality of progress leads back to lock-freedom; both
inspect the behaviour of subprocesses.

What is the relationship between lock-freedom and progress, in
particular for open-ended systems?

How to achieve progress?

e Progress through typed closure
e Progress through untyped closure

e Progress through lock-freedom typing discipline

Progress through typed closure

Progress for closed processes

Theorem (Lock-freedom < Closed Progress)

Let P be a well-typed, closed process.
P is lock-free if and only if P has progress.

Intuition:
e A closed lock-free process reduces on — has progress.

e A closed process with progress has all its participants —
is locked-free.

Progress for open processes

Progress and lock-freedom do not coincide for open processes.

Define catalysers by using characteristic processes.

Wrap an open process using catalysers, until all session
communications are closed.

We call this procedure: typed closure.

Catalyesers and Characteristic Processes

Cll = (xy)[1IP)
P = y<{h.0, h.y!(false).0}

C[‘] is a catalyser by composing the characteristic process
P of session type T = @{h : end, h : 'Bool.end}

Example of typed closure

Consider
P = x!(true).x?(z).0

P can be typed under ' = x : |Bool.7Bool.end.
Its typed closure is

tclose(P) = (vxy)(P | y?(w).y!(true).0)

Progress for open processes

Theorem (Progress < Closed Lock-Free)

If P is well-typed then
P has progress if and only if tclose(P) is lock-free.

Intuition:
@ tclose(P) is lock-free if and only if tclose(P) has progress.
@® tclose(P) has progress if and only if P has progress.

Progress through untyped closure

Co-process vs. Catalyser

Typing is useful for defining adequate contexts for checking
progress, i.e., catalysers.

Adequate contexts can be defined without a typing discipline.
Based on the structure of the process, as opposed to the
typing environment for catalysers.

We build a co-process; define untyped closure.

Co-process and untyped closure

co[P], if x & dom(f)
f?(y).co[P]; otherwise

co[x!(v).P], = {

co[(vxy)P]; = co[P]; x,y ¢ dom(f)
co[P | Q] = co[P]; | co[Q];
The untyped closure of P, uclose(P), is:

(vxt)(P | co[Pl;)

where dom(f) = fn(P).

Progress through untyped closure:
adequacy of uclose

Theorem
Let P be well-typed,
uclose(P) is lock-free if and only if tclose(P) is lock-free.

Corollary

Let P be well-typed.
uclose(P) is lock-free if and only if P has progress.

Untyped closure is a conservative extension of typed closure:
preserves the connection of progress and lock-freedom.

Progress through types for
lock-freedom

Static-analysis for progress

Checking progress reduces to checking whether the closure
(typed or untyped) is lock-free.

Static analysis for lock-freedom lifted to static analysis for
progress.

E.g., we use Kobayashi's typing discipline for lock-freedom in
the standard 7- calculus.

We hence use an encoding of session 7- calculus to the
standard typed 7- calculus.

Typing Progress

Theorem (Typing Progress)

Let P be a well-typed process in the w-calculus with sessions. If
() Fir [uclose(P)] s, then P has progress.

Progress in Practice: “Bad” Process

Consider

(vxe)wyy) (1 22)xl(z) | ya?(w)xt(w))

Progress in Practice: “Bad” Process

Consider

(vxe)wyy) (1 22)xl(z) | ya?(w)xt(w))

By encoding we obtain the process:

@x)(wy)(<(2) yNz) | y?(w).xK(w))

The type system for lock-freedom rejects it!

Progress in Practice: “Good” Process

Consider the process

(uab)(ucd)(a?(x).c!<x>.c?(y).a!<y> | b!<1>.d?(z).d!<1>.b?(z)>

Progress in Practice: “Good” Process

Consider the process

(Vab)(ucd)(a?(x).c!(x).c?(y).a!(y) | b!<1>.d?(z).d!<1>.b?(z)>

By the encoding we obtain the process:

k? X,C1). (VC I X,C2). C2? . C1!
w7)(1x, e2). @?(). alty)) |
(Vcl)(k!<1, c). 17(z,). ! (1). Cl?(z)>

The type system for lock-freedom accepts it!

Conclusions and Future Work

Relating progress to lock-freedom in - calculus with session
types.

Progress as compositional form of lock-freedom.

Progress obtained through:

o typed closure, using catalysers

e untyped closure, using co-processes

e types and type system for lock-freedom in standard typed n-
calculus

Examples show we have a more accurate analysis for progress.

Extend progress analysis to multiparty session types; extend
encoding first!

Thank Youll

Terms:

P,Q

x!(v).P
x?(y).P
X<l{/,'.P,'},'€/
X D> {/,' : Pi}iEI
P|Q
(vxy)P

0

recX.P

X

The Model

(output)
(input)
(selection)
(branching)
(parallel)
(restriction)
(inaction)
(rec)

(rec var)

Types:

T,U

lin

un

IT.U

T.U

®{li: Titier
&{l; : Ti}tiel

qp
end

ut. T
t

The Model

(linear)
(unrestricted)

(send)
(receive)
(select)
(branch)

(qualified pretype)
(termination)
(recursive type)
(rec var)

Lock-Freedom

Definition (Lock-Freedom for Sessions [3])
A process Py is lock-free if for any fair reduction sequence
Py — P1 — P, — ..., we have that
0 P = (vxy)(x!{(v).Q | R), for i > 0, implies that there exists
n > i such that P, = (w?’?’)(x!(v).Q | y?(2).R1 | R2) and
Phri1 = (vxX'y)(Q | Riv/z] | R2);
® P = (vxy)(x</;.Q | R), for some i > 0, implies that there
exists n > i such that
P, = (Vx’y’lxq Q1 y>{lk: Re}reugy | S) and
Poy1=wx'y')(Q | R; | S).

Definition (Characteristic Process [1])

X

Given a type T, its characteristic process (T|

defined on the structure of T as:

is inductively

(INVAL) (q71.U)gz = x?(y)-(UDg
(OUTVAL) (g'1.U)z = x!(Unit).(U)g
(INSESS) (g'?(ap)-Uly = x?(y)-((U)5 | (ar)g)
(OUTSESS) (g"(ap)-U)g = (vazw)(x!(z).((UDg | (ap)g))
(INSum) (q&{li : (qipi)iticilly = x> {1 : (qipilg}ier
(ouTSUM) (g {li: (q,pl)/}:ell)g =x<{li : (qipilg}ier
(END) (]end[)g
(RECVAR) (ths = g(t)
(REC) (ut.Thg = recX.(TDy 11 x)

Definition (Catalyser)
A catalyser C[-] is a context such that:

Cll== [1 | (wy)Cl] | CLTI (apDg

Definition ()
The duality >,y is defined as follows:
xHv). Py y?(2).Q
X A{li-Pi}ier Xy Y > {2 Qities

Definition (Evaluation Context)

EMl== TP [(my)el] | ELIE[] | reeX.E[]

Progress

Definition (Progress)

A process P has progress if for all catalysers C[-] such that C[P] is
well-typed, C[P] —* £[R] (where R is an input or an output)
implies that there exist C'[-], £'[-][-] and R’ such that

C'[E[R]] —* E'[R][R'] and R >,y R’ for some x and y such that
(vxy) is a restriction in C'[E[R]].

Kobayashi's types for lock-freedom

(actions) Q'
(usage types) U= 0| a2U | Uy |Up | t | ptU
(channel types) To= [TIU | (T | 1

7!

Kobayashi's typing rules for lock-freedom

Fy:ThwP
x 1 [T] 79T b x2(7).P

(LF-IN)

Fx:[T] Uk P orel(U)
F I_LF (I/X)P

(LF-RES)

Theorem (Lock-Freedom [3])
IfT Fip P and rel(T), then P is lock-free.

[xXv).Pl ¢
[x?(y)-Pls
Ix>{li: Pi}icils
[(vxy)Pls

Encoding Sessions [2]

(ve) fxiv, €).[Pl s (xscy

Sy, €) [Pl gxmc)

fx(y). casey of {l;_c> [Pi]txsc)ticl
(VO)Ply ixyscy

References

[M. Carbone and S. Debois.
A graphical approach to progress for structured
communication in web services.
In Proc. of ICE’10, pages 13-27, 2010.

[§ O. Dardha, E. Giachino, and D. Sangiorgi.
Session types revisited.
In PPDP, pages 139-150, 2012.

[@ N. Kobayashi.
A type system for lock-free processes.
Inf. Comput., 177(2):122-159, 2002.

	Introduction
	Progress through typed closure
	Progress through untyped closure
	Progress through types for lock-freedom
	Examples
	Conclusions and Future Work

