
Submitted to:
BEAT 2014

© O. Dardha
This work is licensed under the
Creative Commons Attribution License.

Recursive Session Types Revisited

Ornela Dardha∗

School of Computing Science, University of Glasgow, UK

Ornela.Dardha@glasgow.ac.uk

Session types model structured communication-based programming. In particular, binary session
types for the π- calculus describe communication between exactly two participants in a distributed
scenario. Adding sessions to the π-calculus means augmenting it with type and term constructs. In
a previous paper, we tried to understand to which extent the session constructs are more complex
and expressive than the standard π- calculus constructs. Thus, we presented an encoding of binary
session π- calculus to the standard typed π- calculus by adopting linear and variant types and the
continuation-passing principle. In the present paper, we focus on recursive session types and we
present an encoding into recursive linear π- types. This encoding is a conservative extension of the
former in that it preserves the results therein obtained. Most importantly, it adopts a new treatment of
the duality relation, which in the presence of recursive types has been proven to be quite challenging.

1 Introduction

Session types are a type formalism used to model structured communication-based programming for dis-
tributed systems. In particular, binary session types for the π-calculus describe communication between
exactly two participants in such scenario [6, 8, 11, 12]. When sessions are added to the standard typed π-
calculus, the syntax of types and terms is augmented with ad-hoc constructs, added on top of the already
existing ones. This yields a duplication of type and term constructs, e.g. restriction of session channels
and restriction of standard π- channels or, recursive session types and recursive standard π- types [6].
Most importantly, this redundancy is also propagated in the theory of session types: various properties
are proven for session types as well as for standard π- types. In a previous work [5], we focused on a
subset of binary session types, namely the finite ones, and posed the following question:

To which extent session constructs are more complex and more expressive
than the standard π-calculus constructs?

We answered this question by showing an encoding of finite binary session types into finite linear π-
types and of finite session processes into finite standard π-processes. In the present paper, we extend the
encoding to an infinite setting, namely to recursive session types and replicated processes, and pose the
same question. We encode recursive session types into recursive linear π- types and replicated session
processes into replicated standard π- processes. We show that the current encoding i) is sound and
complete with respect to typing derivations, intuitively meaning: “a session process is well-typed if and
only if its encoding is well-typed”; and ii) satisfies the operational correspondence property, intuitively
meaning: “a session process and its encoding reduce to processes still related by the encoding”.

The interest and benefits of this encoding are mainly in expressivity and reusability for a larger setting
than the one adopted in [5]. The encoding is an expressivity result for recursive types. Its faithfulness,
proved by i) and ii), permits reusability of already existing theory for standard typed π- calculus: e.g.,

∗The author is supported by the UK EPSRC project From Data Types to Session Types: A Basis for Concurrency and
Distribution (ABCD) (EP/K034413/1).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Recursive Session Types Revisited

subject reduction or type safety for session π-calculus can be obtained as corollaries from the encoding
and the corresponding properties in the standard typed π-calculus.

The present encoding is not just an extension of the former, it presents novelties and differences
with respect to [5], as listed below. Duality is a fundamental notion of session types, as it describes
compatible behaviours between communicating parties. The most used duality is the inductive duality
function · [8, 12]. Recent work [2] has shown the inadequacy of · in the presence of recursive types,
because it does not commute with unfolding. As a consequence, using relations like subtyping or type
equivalence becomes challenging, because these relations explicitly use unfolding of recursive types. In
the light of such discovery, the present encoding adopts the complement function cplt() defined in [2],
which is shown to be adequate, instead of ·, adopted in the former encoding. Since cplt() and · coincide
for finite session types, the encoding in [5] remains sound and the present encoding is a conservative
extension of the former, in that it preserves all the properties that the former encoding satisfies. For
completeness, the present one is extended to standard variables and hence non session π- processes: in
this case the encoding is an homomorphism and no linearity is required. On top of cplt(), we present
the co-inductive duality relation, which is shown to contain the complement [1], and is used in the type
system for session π-calculus [3,6]. This permits us to give a definition of complement and co-inductive
duality for linear π-calculus types, which is another contribution of the present paper.
Structure of the paper. In § 2 we present the syntax of types and terms for both the session π-calculus
and the standard types π-calculus. In § 3 we present the encoding of recursive session types and session
processes and we state the main results for the encoding. In § 4 we give a detailed example of the
encoding of a well-typed replicated process which uses recursive session types. We conclude in § 5. The
proofs of the result herein presented can be found in the online version of the paper [3].

2 The Model

2.1 Background on π-calculus with sessions

Syntax. The syntax of the π-calculus with session types [6, 12] is given in Figure 1.

P,Q ::= x!〈v〉.P (output) | x?(y).P (input) | x / l j.P (selection)
x . {li : Pi}i∈I (branching) | P | Q (parallel) | (νxy)P (session res.)
∗P (replication) | (νx)P (channel res.) | 0 (inaction)

v ::= x (variable) | 1 (unit value)

Figure 1: π-calculus with sessions, syntax.

P,Q range over processes, x,y over variables, v over values and l over labels. A value is a variable
or 1. A process is an output x!〈v〉.P which sends v on x with continuation P; an input x?(y).P which
receives a value on x and proceeds as P; a selection x / l j.P which selects l j on x and proceeds as P; a
branching x . {li : Pi}i∈I which offers a set of labelled processes on x, with labels being all different; a
parallel composition P | Q of P,Q; replicated ∗P which spawns copies of P; a session restriction (νxy)P
or a standard channel restriction (νx)P; or 0, the terminated process. Session restriction differs from
the standard one: (νxy) states that x and y, called co-variables, are the opposite endpoints of a session
channel and are bound in P. It models session creation and the connection phase [8, 11].
Session types. The syntax of types for the π-calculus with sessions [6] is given in Figure 2.

O. Dardha 3

S ::= !T.S (send) | ?T.S (receive) | ⊕{li : S i}i∈I (select)
&{li : S i}i∈I (branch) | X (type var.) | X (dual type var.)
end (termination) | µX.S (rec. session type)

T ::= S (session type) |]T (channel type) | X (type variable)
µX.T (recursive type) | Unit (unit type)

Figure 2: π-calculus with sessions, types.

S ranges over session types and T over types. A session type can be !T.S or ?T.S which respectively,
sends or receives a value of type T and continuation S ; select ⊕{li : S i}i∈I or branch &{li : S i}i∈I which
are sets of labelled session types indicating respectively, internal and external choice, with labels being
all different; a (dualised) type variable X,X, or recursive session type µX.S or the terminated type end.
A type can be a session type S ; a standard channel type]T ; a type variable X or recursive type µX.T or
a unit type Unit. Recursive (session) types are required to be guarded, meaning that in µX.T , variable X
may occur free in T only under at least one of the other type constructs. To work with recursive types we
need the unfolding function (unf) which unfolds a recursive type until the first type constructor different
from µX is reached (see [3]). Finally, we use SType to denote the set of closed (no free type variables)
and guarded session types.
On duality for session types. Below we give an adaptation of the complement function [2] to X,X.

Definition 2.1 (Complement function for session types). The complement function is defined as:

cplt(?T.S) = !T.cplt(S) cplt(X) = X
cplt(!T.S) = ?T.cplt(S) cplt(X) = X
cplt(&{li : S i}i∈I) = ⊕{li : cplt(S)i}i∈I cplt(µX.S) = µX.cplt(S bµX.S /Xc)
cplt(⊕{li : S i}i∈I) = &{li : cplt(S)i}i∈I cplt(end) = end

It uses a syntactic substitution b−/−c, which acts only on carried types and is formally defined in [1–
3]. Below we give the definition of standard type substitution for (dualised) type variables [7].

X{S/X} = S Y{S/X} = Y If X , Y
X{S/X} = cplt(S) Y{S/X} = Y If X , Y

However, when describing opposite behaviours between communicating parties, in this paper we adopt
the co-inductive duality relation ⊥s by following [6]. The benefits of this approach are: i) ⊥s commutes
with unfolding [2] and hence it is adequate; ii) as stated in [6], since it is a relation it captures dual
behaviours that ·,cplt() do not capture, like µX.?Unit.X and !Unit.µX.!Unit.X. iii) as stated in [1], it
contains cplt(). Before defining ⊥s , we need the notion of type equivalence and hence subtyping. For
simplicity, we omit subtyping on base types and on standard channel types, which are given in [2, 6].

Definition 2.2 (Subtyping and type equivalence for session types [6]). A relation R ⊆ SType×SType is
a type simulation if (T,S) ∈ R implies the following:
i) if unf(T) = end then unf(S) = end

ii) if unf(T) = ?Tm.T ′ then unf(S) = ?S m.S ′ and Tm R S m and T ′ R S ′

iii) if unf(T) = !Tm.T ′ then unf(S) = !S m.S ′ and S m R Tm and T ′ R S ′

iv) if unf(T) = &{li : Ti}i∈I then unf(S) = &{l j : S j} j∈J , I ⊆ J, Ti R S i, ∀i ∈ I
v) if unf(T) = ⊕{li : Ti}i∈I then unf(S) = ⊕{l j : S j} j∈J , J ⊆ I, T j R S j, ∀ j ∈ J

4 Recursive Session Types Revisited

The subtyping relation �s is defined by T �s S if and only if there exists a type simulation R such that
(T,S) ∈ R . The type equivalence relation =s is defined by T =s S if and only if T �s S and S �s T.

Definition 2.3 (Co-inductive duality for session types [6]). A relation R ∈ SType×SType is a duality
relation if (T,S) ∈ R implies the following conditions:
i) If unf(T) = end then unf(S) = end

ii) If unf(T) = ?Tm.T ′ then unf(S) = !S m.S ′ and T ′ R S ′ and Tm =s S m

iii) If unf(T) = !Tm.T ′ then unf(S) = ?S m.S ′ and T ′ R S ′ and Tm =s S m

iv) If unf(T) = &{li : Ti}i∈I then unf(S) = ⊕{li : S i}i∈I and ∀i ∈ I, Ti R S i

v) If unf(T) = ⊕{li : Ti}i∈I then unf(S) = &{li : S i}i∈I and ∀i ∈ I, Ti R S i

The co-inductive duality relation⊥s is defined by T⊥s S iff ∃ R , a duality relation such that (T,S) ∈ R .

Proposition 2.4. Let T,S ∈ SType, cplt(T) = S =⇒ T⊥s S .

Proposition 2.5 (Idempotence). Let T,S ,U ∈ SType. If T⊥s S and S⊥s U then T =s U.

By Proposition 2.4 and Proposition 2.5 we have the following.

Proposition 2.6. Let T,S ,U ∈ SType. If cplt(T) = S and cplt(S) = U then T =s U.

2.2 Background on standard π-calculus

Syntax. The syntax of the polyadic π-calculus [10] is given in Figure 3.

P,Q ::= x!〈ṽ〉.P (output) | x?(ỹ).P (input) | P | Q (parallel)
(νx)P (channel res.) | ∗P (repl.) | casevof {li xi .Pi}i∈I (case)
0 (inaction)

v ::= x (variable) | 1 (unit val.) | l v (variant val.)

Figure 3: Standard π-calculus, syntax.

P,Q range over processes, x,y over variables, l over labels and v over values, i.e., variables, 1, or variant
values. A process can be an output x!〈ṽ〉.P which sends ṽ on x and proceeds as P; an input x?(ỹ).P which
receives a sequence of values on x, substitutes them for ỹ in P; a parallel composition P | Q of P,Q;
replicated ∗P; a restriction (νx)P which creates a new channel x and binds it in P; a casevof {li xi .Pi}i∈I

which offers a set of labelled processes, with labels being all different; or inaction 0.

Standard π-types. The syntax of π-types [9, 10] is defined in Figure 4.

τ ::= ∅[] (no capability) |][T̃] (connection)
`i [T̃] (linear input) | `o [T̃] (linear output) | `] [T̃] (linear connection)

T ::= τ (channel type) | 〈li : Ti〉i∈I (variant type) | X (type var.)
X (dual type var.) | Unit (unit type) | µX.T (recursive type)

Figure 4: Standard π-calculus, types.

τ ranges over channel types and T over types. A channel type is a type with no capability ∅[], meaning it
cannot be used further; a connection][T̃], indefinitely used; a linear input `i [T̃], a linear output `o [T̃] or
the combination of both, i.e., a linear connection `] [T̃] used exactly once [9] according to its capability.

O. Dardha 5

A type can be a channel type τ; a variant 〈li : Ti〉i∈I being a set of labelled types, with labels being all
different; a (dualised) type variable X,X or recursive type µX.T or Unit. Again, we require recursive
types to be guarded and use PType to denote the set of closed (no free type variables) and guarded
standard π-types. To conclude, the definition of unfolding is the same as in the previous section.

On duality for linear types. Inspired by duality on session types, below we give the definition of
complement function picplt() and co-inductive duality relation ⊥p for linear π-types.

Definition 2.7 (Complement function for linear π-types). The complement function is defined as:

picplt(`i [T̃]) = `o [T̃] picplt(X) = X
picplt(`o [T̃]) = `i [T̃] picplt(X) = X
picplt(µX.T) = µX.picplt(T bµX.T/Xc) picplt(∅[]) = ∅[]

The definition of type substitution for linear types is the same as in the previous section, where cplt()
is replaced by picplt(). Before defining ⊥p , we give a co-inductive definition of subtyping and type
equivalence for linear π- types. For simplicity, we omit the subtyping on base types, standard channel
types, or variant types which can be found in the literature [10].

Definition 2.8 (Subtyping and type equivalence for linear π-types). A relation R ⊆ PType×PType is a
type simulation if (T,S) ∈ R implies the following:
i) if unf(T) = ∅[] then unf(S) = ∅[]
ii) if unf(T) = `i [T̃] then unf(S) = `i [S̃] and T̃ R S̃
iii) if unf(T) = `o [T̃] then unf(S) = `o [S̃] and T̃ R S̃
The subtyping relation �s is defined by T �p S if and only if there exists a type simulation R such that
(T,S) ∈ R . The type equivalence relation =p is defined by T =p S if and only if T �p S and S �p T.

Definition 2.9 (Co-inductive duality for linear π- types). A relation R ∈ PType× PType is a duality
relation if (T,S) ∈ R implies the following conditions:
i) If unf(T) = ∅[] then unf(S) = ∅[]
ii) If unf(T) = `i [T̃] then unf(S) = `o [S̃] and T̃ =p S̃
iii) If unf(T) = `o [T̃] then unf(S) = `i [T̃]and T̃ =p S̃
The co-inductive duality relation⊥p is defined by T⊥p S iff ∃ R , a duality relation such that (T,S) ∈ R .

Proposition 2.10. Let T,S ∈ PType, picplt(T) = S =⇒ T⊥p S .

Proposition 2.11 (Idempotence). Let T,S ,U ∈ PType. If T⊥p S and S⊥p U then T =p U.

Proposition 2.12. Let T,S ,U ∈ PType. If picplt(T) = S and picplt(S) = U then T =p U.

3 Encoding recursive session types

Below we give the encoding of recursive session types into recursive linear π-types and of session π-pro-
cesses into standard π-processes. It is based on the notions of: linearity, variant types and continuation-
passing principle. To preserve communication safety and privacy of session types, we use linear chan-
nels. To encode internal and external choice, we adopt variant types and the case process. To preserve
the sequentiality of session types and hence session fidelity, we adopt the continuation-passing principle.

Types encoding. The encoding of session types is presented in Figure 5. Type end is encoded as the
channel type with no capability ∅[]; output !T.S and input ?T.S session types are encoded as linear output
`o [~T�,~cplt(S)�] and linear input `i [~T�,~S �] channel types carrying the encoding of type T and of

6 Recursive Session Types Revisited

~end�
def
= ∅[]

~!T.S � def
= `o [~T�,~cplt(S)�]

~?T.S � def
= `i [~T�,~S �]

~⊕{li : S i}i∈I�
def
= `o [〈li : ~cplt(S i)�〉i∈I]

~&{li : S i}i∈I�
def
= `i [〈li : ~S i�〉i∈I]

~X� def
= X

~X� def
= X

~µX.S � def
= µX.~S �

~x� f
def
= fx

~x!〈v〉.P� f
def
= (νc) fx!〈v,c〉.~P� f ,{x 7→c}

~x?(y).P� f
def
= fx?(y,c).~P� f ,{x 7→c}

~x / l j.P� f
def
= (νc) fx!〈l j c〉.~P� f ,{x 7→c}

~x . {li : Pi}i∈I� f
def
= fx?(y). caseyof {li c .~Pi� f ,{x 7→c}}i∈I

~(νxy)P� f
def
= (νc)~P� f ,{x,y 7→c}

~P | Q� f
def
= ~P� f | ~Q� f

~(νx)P� f
def
= (νx)~P� f

~∗P� f
def
= ∗~P� f

~0� f
def
= 0

Figure 5: Encoding of session types and terms

continuation type cplt(S) and S , respectively. cplt(S) is adopted in the output since it is the type of a
channel as seen by the receiver, namely the communicating counterpart. Select ⊕{li : S i}i∈I and branch
&{li : S i}i∈I are encoded as linear output `o [〈li : ~cplt(S i)�〉i∈I] and linear input `i [〈li : ~S i�〉i∈I] types
carrying a variant type with the encoded continuation types; the reason for cplt(S i) is the same as before.
The encoding of a (dualised) type variable and a recursive session type is an homomorphism.
Terms encoding. The encoding of session π-terms, presented in Figure 5, uses a partial function f from
variables to variables which performs a renaming of linear variables into new linear variables to respect
their nature of being used exactly once and it is the identity function over standard variables. The formal
definition can be found in [3]. A variable x is encoded as fx; an output x!〈v〉.P is encoded as an output
on fx of v and the freshly created channel c which replaces x in the encoding of P. The encoding of an
input x?(y).P is an input on fx with placeholders y and the continuation channel c used in ~P� f ,{x 7→c}.
The encodings of selection x / l j.P and branching x . {li : Pi}i∈I are the output and input processes on fx,
respectively. The output carries a variant value l j c where l j is the selected label and c the new channel to
be used in the continuation. The input has a continuation of a case, offering the encoded processes of the
branching. The session restriction process (νxy)P is encoded as the restriction on c which replaces both
of the endpoint x,y in the encoding of P. The rest of the equations states that the encoding of parallel
composition, standard channel restriction and replication is an homomorphism and the encoding of the
inaction process is the identity function.
Results of the encoding. The proofs of the following results can be found in [3]. The following two
lemmas relate the encoding of equal and dual session types to equal and dual linear π-types.

Lemma 3.1 (Encoding =s). T,S ∈ SType and T =s S . If ~T� = τ, then ~S � = σ and τ =p σ.

Lemma 3.2 (Encoding ⊥s). T,S ∈ SType and T⊥s S . If ~unf(T)� = τ then, ~unf(S)� = σ and τ⊥p σ.

Lemma 3.3 (Value Typing). Γ ` v : T if and only if ~Γ� f ` ~v� f : ~T�. 1

Theorem 3.4 (Process Typing). Γ ` P if and only if ~Γ� f ` ~P� f .

Theorem 3.5 (Operational Correspondence). Let P be a session process. The following hold.

1. If P→ P′ then ~P� f →↪→ ~P′� f ,

1The encoding is extended to typing environments Γ and the details can be checked in [3].

O. Dardha 7

2. If ~P� f → Q then, ∃ P′,E[·] such that E[P]→E[P′] and Q ↪→ ~P′� f ′ , where f ′ is the updated f
after reduction and fx = fy for all (νxy) ∈ E[·].

↪→ denotes ≡ possibly extended with a case reduction; E[·] is an evaluation context.

4 Example of encoding

We present an error-free process which requires recursive session types. We let a,b range over standard
channels and x,y,z,v,w range over session channels; we associate a type to a variable in an object position
in input or restriction as in [6]. The typing rules and the operational semantics can be found in [3].

Let P = ∗
(
a?(x : T).x/ l.a!〈x〉.0

)
be a replicated process that on a standard channel a receives a session

channel x on which selects l and proceeds as a!〈x〉. We have the following typing derivation for P:

a :]T ` 0 S �s T
T-Nil

a :]T, x : S ` a!〈x〉.0 T-Out

a :]T, x : ⊕{l : S } ` x / l.a!〈x〉.0 T �s ⊕{l : S }
T-Select

a :]T ` a?(x : T).x / l.a!〈x〉.0 un(a :]T) T-In

a :]T ` ∗
(
a?(x : T).x / l.a!〈x〉.0

) T-Rep

For this derivation to hold, T and S need to be such that T �s ⊕{l : S } and S �s T . The simplest way to
solve this system of subtyping in-equations is to have S = T , which requires T = µX.⊕{l : X}.

Let Q = ∗
(
b?(x : U).x . {l : b!〈x〉.0}

)
; it has dual behaviour to P and the typing derivation is similar to

above, with T-Select replaced by T-Branch. We now have the in-equations U �s &{l : S ′} and S ′ �s U.
We let U = µX.&{l : X}. By Definition 2.3, we have U⊥s T . We now close P and Q with two auxiliary
output processes, a!〈v〉.0 and b!〈w〉.0, where v,w are to be co-variables. Then, we have:

∅ ` S ys =(νa :]T)(νb :]U)(νvw : T)
(
a!〈v〉.0 | b!〈w〉.0 | P | Q

)
≡→(νa :]T)(νb :]U)(νvw : T)

(
v / l.a!〈v〉.0 | w . {l : b!〈w〉.0} | P | Q

)
→(νa :]T)(νb :]U)(νvw : T)

(
a!〈v〉.0 | b!〈w〉.0 | P | Q

)
= S ys→∗

The encoding of types is as follows. Since U⊥s T by Lemma 3.2 we have υ⊥p τ.

~U� = ~µX.&{l : X}� = µX.~&{l : X}� = µX.`i [〈l : ~X�〉] = µX.`i [〈l : X〉] = υ

~T� = ~µX.⊕{l : X}� = µX.~⊕{l : X}� = µX.`o [〈l : ~cplt(X)�〉] = µX.`o [〈l : X〉] = τ

Duality of session types boils down to opposite capabilities in the outermost level (`i, `o) and the same
carried type, where in [5] same means syntactic identity and in the present means type equivalence.
Unfolding is performed in order to test linear type duality and the type equivalence of the carried type.

~P� f = ~∗
(
a?(x).x / l.a!〈x〉.0

)
� f = ∗~

(
a?(x).x / l.a!〈x〉.0

)
� f = ∗

(
a?(x).~x / l.a!〈x〉.0� f

)
= ∗

(
a?(x).(νc)x!〈l c〉.~a!〈x〉.0� f ,{x 7→c}

)
= ∗

(
a?(x).(νc)x!〈l c〉.a!〈c〉.0

)
~Q� f = ~∗

(
b?(x).x . {l : b!〈x〉.0}

)
� f = ∗~

(
b?(x).x . {l : b!〈x〉.0}

)
� f = ∗

(
b?(x).~x . {l : b!〈x〉.0}

)
� f

= ∗
(
b?(x).x?(y).caseyof {l c .~b!〈x〉.0}� f ,{x 7→c}}

)
= ∗

(
b?(x).x?(y).caseyof {l c .b!〈c〉.0}}

)
∅ ` ~S ys� f =(νa)(νb)(νz)~

(
a!〈v〉.0 | b!〈w〉.0 | P | Q

)
� f ,{v,w7→z} = (νa)(νb)(νz)

(
a!〈z+〉.0 | b!〈z−〉.0 | ~P� f | ~Q� f

)
≡(νa)(νb)(νz)

(
a!〈z+〉.0 | b!〈z−〉.0 | a?(x).(νc)x!〈l c〉.a!〈c〉.0 | b?(x).x?(y).caseyof {l c .b!〈c〉.0}} |

∗
(
a?(x).(νc)x!〈l c〉.a!〈c〉.0

)
| ∗

(
b?(x).x?(y).caseyof {l c .b!〈c〉.0}}

))

8 Recursive Session Types Revisited

→(νa)(νb)(νz)
(
(νc)z+!〈l c−〉.a!〈c+〉.0 | z−?(y).caseyof {l c− .b!〈c−〉.0}} | ~P� f | ~Q� f

)
→(νa)(νb)(νz)

(
(νc).a!〈c+〉.0 | case l c− of {l c− .b!〈c−〉.0}} | ~P� f | ~Q� f

)
↪→(νa)(νb)

(
(νc).a!〈c+〉.0 | b!〈c−〉.0}} | ~P� f | ~Q� f

)
≡ ~S ys� f →

∗

5 Conclusions and Future Work

In this paper we present an encoding of recursive session types into recursive linear types and session
processes into corresponding π- processes. The encoding is a conservative extension of the one given
in [5]. It uses cplt() instead of · , because the latter is inadequate in the presence of recursive types [1,2].
Since these two functions coincide for finite session types, the encoding in [5] remains sound. We prove
the faithfulness of the present encoding with respect to typing derivations and operational semantics,
following the same line of [4,5]. As long as future work is concerned, we would like to test our encoding
under different dualities for sessions presented in [1]. Moreover, as in [5] we would like to extend the
present encoding to advanced features like polymorphism or higher-order, or multiparty session types.
Acknowledgements. The author would like to thank Simon J. Gay, Elena Giachino and Davide San-
giorgi for the inspiring and very useful discussions.

References
[1] Giovanni Bernardi, Ornela Dardha, Simon J. Gay & Dimitrios Kouzapas (2014): On duality relations for

session types. To appear in Proc. of TGC.
[2] Giovanni Bernardi & Matthew Hennessy (2013): Using higher-order contracts to model session types. CoRR

abs/1310.6176. Available at http://arxiv.org/abs/1310.6176.
[3] Ornela Dardha (2014): Recursive Session Types Revisited.
http://www.dcs.gla.ac.uk/˜ornela/my_papers/D14-Extended.pdf.

[4] Ornela Dardha (2014): Type Systems for Distributed Programs: Components and Sessions. Ph.D. thesis,
University of Bologna. http://www.dcs.gla.ac.uk/˜ornela/my_papers/DardhaPhDThesis.pdf.

[5] Ornela Dardha, Elena Giachino & Davide Sangiorgi (2012): Session types revisited. In: PPDP, ACM, New
York, NY, USA, pp. 139–150, doi:10.1145/2370776.2370794.

[6] Simon Gay & Malcolm Hole (2005): Subtyping for Session Types in the Pi Calculus. Acta Informatica
42(2-3), pp. 191–225, doi:10.1007/s00236-005-0177-z.

[7] Simon J. Gay (2008): Bounded polymorphism in session types. Mathematical Structures in Computer Science
18(5), pp. 895–930, doi:10.1017/S0960129508006944.

[8] Kohei Honda, Vasco Vasconcelos & Makoto Kubo (1998): Language primitives and type disciplines for
structured communication-based programming. In: ESOP’98, LNCS 1381, springer, Heidelberg, Germany,
pp. 22–138, doi:10.1007/BFb0053567.

[9] Naoki Kobayashi, Benjamin Pierce & David Turner (1996): Linear Types and π-calculus. In: POPL, 21(5),
ACM Press, New York, NY, USA, pp. 358–371, doi:10.1145/330249.330251.

[10] Davide Sangiorgi & David Walker (2001): The π-calculus - a theory of mobile processes. Cambridge Uni-
versity Press.

[11] Kaku Takeuchi, Kohei Honda & Makoto Kubo (1994): An Interaction-based Language and its Typing System.
In: PARLE’94, pp. 398–413, doi:10.1007/3-540-58184-7 118.

[12] Vasco T. Vasconcelos (2012): Fundamentals of session types. Information Computation 217, pp. 52–70,
doi:10.1016/j.ic.2012.05.002.

http://arxiv.org/abs/1310.6176
http://www.dcs.gla.ac.uk/~ornela/my_papers/D14-Extended.pdf
http://www.dcs.gla.ac.uk/~ornela/my_papers/DardhaPhDThesis.pdf
http://dx.doi.org/10.1145/2370776.2370794
http://dx.doi.org/10.1007/s00236-005-0177-z
http://dx.doi.org/10.1017/S0960129508006944
http://dx.doi.org/10.1007/BFb0053567
http://dx.doi.org/10.1145/330249.330251
http://dx.doi.org/10.1007/3-540-58184-7_118
http://dx.doi.org/10.1016/j.ic.2012.05.002

O. Dardha 9

A Appendix

A.1 Operational Semantics

Session π- calculus. The operational semantics of the π-calculus with sessions is given in terms of a
binary reduction relation→ over processes defined by the rules in Figure 6.

(R- StndCom) x!〈v〉.P | x?(z).Q→ P | Q[v/z]
(R-Com) (νxy)(x!〈v〉.P | y?(z).Q)→ (νxy)(P | Q[v/z])
(R-Sel) (νxy)(x / l j.P | y . {li : Pi}i∈I)→ (νxy)(P | P j) j ∈ I

Figure 6: π-calculus with sessions, semantics.

Rule (R-StndCom) is the communication rule on a standard channel x. Rule (R-Com) is the rule for
communication on session channel endpoints: the output process sends a value v on x, whether the input
process receives it on y and substitutes the placeholder z with it. A key difference with the previous
communication rule is that the subject of the output (x) and the subject of the input (y) are two co-
variables, created and bound together by the (ν) construct. A consequence of this is that communication
happens only in bound variables. After the communication the restriction still persists in order to enable
further possible communications. Rule (R-Sel) is similar to the previous one: communication occurs
on co-variables being under a session restriction. The selection process selects a label among the ones
offered by the branching process and then continues as P, whether the branching process continues as
the P j of the selected label. The reduction relation is closed under the usual contexts: session restriction,
channel restriction, parallel composition and usual structural congruence ≡ [6, 12].

Standard π-calculus. The operational semantics of the standard π-calculus is given in terms of a binary
reduction relation→ over processes defined by the rules in Figure 7.

(Rπ-Com) x!〈ṽ〉.P | x?(z̃).Q→ P | Q[ṽ/z̃]

(Rπ-Case) case l j vof {li xi .Pi}i∈I → P j[v/x j] j ∈ I

Figure 7: Standard π-calculus, semantics.

Rule (Rπ-Com) is the communication rule: the output process sends a sequence of values ṽ on x and the
input process receives it and substitutes the sequence of placeholders z̃. Rule (Rπ-Case), is often called
a case normalization since it does not require a counterpart to reduce. The case process reduces to P j

substituting x j with the value v, if the label l j, among the offered ones, is selected. As usual, the reduction
relation is closed under channel restriction, parallel composition and usual structural congruence ≡ [10].

A.2 Typing Rules

Session π-calculus. Typing rules for the π-calculus with session types are given in Figure 8.

Standard π-calculus. Typing rules for the π-calculus with linear types are given in Figure 9.

10 Recursive Session Types Revisited

T-In
Γ1 ` x : ?T.S Γ2, x : S ,y : T ` P

Γ1 ◦Γ2 ` x?(y).P

T-Out
Γ1 ` x : !T.S Γ2 ` v : T Γ3, x : S ` P

Γ1 ◦Γ2 ◦Γ3 ` x!〈v〉.P

T-Branch
Γ1 ` x : &{li : S i}i∈I Γ2, x : S i ` Pi ∀i ∈ I

Γ1 ◦Γ2 ` x . {li : Pi}i∈I

T-Select
Γ1 ` x : ⊕{li : S i}i∈I Γ2, x : S j ` P j ∈ I

Γ1 ◦Γ2 ` x / l j.P

T-Par
Γ1 ` P Γ2 ` Q

Γ1 ◦Γ2 ` P | Q

T-SessRes
Γ, x : T,y : S ` P T⊥s S

Γ ` (νxy)P

T-Res
Γ, x : T ` P

Γ ` (νx)P

T-Rep
Γ ` P un(Γ)

Γ ` ∗P

T-Nil
un(Γ)

Γ ` 0

Figure 8: π-calculus with sessions, typing rules.

Tπ-Inp
Γ1 ` x : `i [T̃] Γ2, ỹ : T̃ ` P

Γ1]Γ2 ` x?(ỹ).P

Tπ-Out
Γ1 ` x : `o [T̃] Γ̃2 ` ṽ : T̃ Γ3 ` P

Γ1] Γ̃2]Γ3 ` x!〈ṽ〉.P

Tπ-Case
Γ1 ` v : 〈li : Ti〉i∈I Γ2, xi : Ti ` Pi ∀i ∈ I

Γ1]Γ2 ` casevof {li xi .Pi}i∈I

Tπ-Variant
Γ ` v : T j j ∈ I

Γ ` l j v : 〈li : Ti〉i∈I

Tπ-Par
Γ1 ` P Γ2 ` Q

Γ1]Γ2 ` P | Q

Tπ-Res
Γ, x : `α [T̃] ` P

Γ ` (νx)P

Tπ-Rep
Γ ` P un(Γ)

Γ ` ∗P

Tπ-Nil
un(Γ)

Γ ` 0

Figure 9: π-calculus with linear types, typing rules.

A.3 Results on duality

This part of the appendix is dedicated to duality and results related to this notion. The complement
function, as previously stated, uses a syntactic substitution b−/−c, which acts only on carried types and is
formally defined in [1, 2]. We report it in the following:

?T.S ′bS /Xc = !T.(S ′bS /Xc) if T is a base type
!T.S ′bS /Xc = !T.(S ′bS /Xc) if T is a base type
?T.S ′bS /Xc = ?T {S/X}.(S ′bS /Xc) YbS /Xc = X if Y , X
!T.S ′bS /Xc = !T {S/X}.(S ′bS /Xc) endbS /Xc = end

&{li : S i}i∈Ib
S /Xc = &{li : S ib

S /Xc}i∈I (µY.S ′)bS /Xc = µY.(S ′bS /Xc) if Y , X
⊕{li : S i}i∈Ib

S /Xc = ⊕{li : S ib
S /Xc}i∈I (µX.S ′)bS /Xc = µX.S ′

We give now the proofs of the results presented in the main part of the paper.
Proposition A.1. Let T,S ∈ SType, cplt(T) = S =⇒ T⊥s S .

Proof. Follows from [1]. Intuitively, it holds since the former is a function and the latter a relation and
both are defined by following the same idea. �

O. Dardha 11

Proposition A.2 (Idempotence). Let T,S ,U ∈ SType. If T⊥s S and S⊥s U then T =s U.

Proof. Suppose T⊥s S and S⊥s U. To prove that T =s U, we need to construct a relation R such that
(T,U) ∈ R and R and R −1 are type simulation relations, which by Definition 2.2, it means to show
that R is a type equivalence relation. Let R = { (T ′,U′) | ∃S ′.T ′⊥s S ′,S ′⊥s U′ }. We show that R is
a type equivalence relation. Let (T,U) ∈ R , so by definition of R , ∃S such that T⊥s S and S⊥s U.

If unf(T) = end then, since T⊥s S we have unf(S) = end and since S⊥s U we have unf(U) = end

which concludes the case.
If unf(T) = ?Tm.Tn then, since T⊥s S we have unf(S) = !S m.S n and Tm =s S m, Tn⊥s S n. On the

other hand, since S⊥s U we have unf(U) = ?Um.Un and S m =s Um and S n⊥s Un. By transitivity of =s

we have Tm =s Um and since Tn⊥s S n and S n⊥s Un by definition of R we have that Tn R Un which
concludes this case. The case of unf(T) = !Tm.Tn is symmetric to the previous one, where ? is exchanged
with !.

If unf(T) = &{li : Ti}i∈I then, since T⊥s S we have unf(S) = ⊕{li : S i}i∈I and ∀i ∈ I, Ti⊥s S i, and since
S⊥s U we have unf(U) = &{li : Ui}i∈I and ∀i ∈ I.S i⊥s Ui. By definition of R since ∀i ∈ I we have that
Ti⊥s S i and S i⊥s Ui then ∀i ∈ I, Ti⊥s Ui which concludes this case. The case of unf(T) = ⊕{li : Ti}i∈I is
symmetric to the previous one, where & is exchanged with ⊕. �

Proposition A.3. Let T,S ∈ PType, picplt(T) = S =⇒ T⊥p S .

Proof. The proof follows the same line as Proposition A.1. �

Proposition A.4 (Idempotence). Let T,S ,U ∈ PType. If T⊥p S and S⊥p U then T =p U.

Proof. The proof follows the same line as Proposition A.2. �

A.4 Results on encoding

Formally, the unfolding function is defined as follows:

S {µX.S/X} unf S ′

µX.S unf S ′ S unf S S , µX.S ′

Formally function f is defined as follows:

f , {x 7→ c} def=

 f ∪{x 7→ c} if x < dom(f)(
f \ {x 7→ f (x)}

)
∪{x 7→ c} otherwise

In order to prove the following results, the encoding is extended to typing contexts in the expected way.
It is presented in Figure 10. Notice that, the ‘,’ operator on session typing contexts is interpreted as the

~∅� f
def
= ∅ (E-Empty)

~Γ, x : T� f
def
= ~Γ� f] fx : ~T� (E-Gamma)

Figure 10: Encoding of typing contexts

‘]’ operator on linear typing contexts. This is the case because the (dual) co-variables are interpreted as
the same (linear) channel, which in order to be used for communication, must have connection capability.
Hence, by using the] the dual capabilities of linear channels can be “summed-up” into the connection
capability: `i] `o = `].

12 Recursive Session Types Revisited

Lemma A.5 (Encoding equal types). Let T,S ∈ SType be such that T =s S . If ~T� = τ, then ~S � = σ

and τ =p σ.

Proof. Suppose T =s S and ~T� = τ and ~S � = σ. To prove τ =p σ, we need to construct a relation R
such that (τ,σ) ∈ R and R and R −1 are type simulation relations, which by Definition 2.8, it means to
show that R is a type equivalence relation. Let R = {(τ′,σ′) | ∃T ′,S ′. T ′ =s S ′,~T� = τ′,~S � = σ′}.
We show that R is a type simulation. Let (τ,σ) ∈ R , by definition of R it means that ∃T,S such that
T =s S and ~T� = τ and ~S � = σ.

If unf(T) = end then unf(S) = end. By encoding we have ~end�= ∅[]. We conclude by Definition 2.8
on type equivalence for linear π-types.

If unf(T) = ?Tm.T ′ then unf(S) = ?S m.S ′ and Tm =s S m and T ′ =s S ′. By encoding we have
~?Tm.T ′� = `i [~Tm�,~T ′�] and let ~Tm� = τm, ~T ′� = τ′ and ~?S m.S ′� = `i [~S m�,~S ′�] and let
~S m� = σm, ~S ′� = σ′. Since Tm =s S m and T ′ =s S ′, by definition of R it means that (τm,σm) ∈ R
and (τ′,σ′) ∈ R which concludes this case by Definition 2.8. The case of unf(T) = !Tm.T ′ and
unf(S) = !S m.S ′ is symmetric to the previous one, where ? is replaced by !.

If unf(T) = &{li : Ti}i∈I then unf(S) = &{li : S i}i∈I , and ∀i ∈ I, Ti =s S i. By encoding we have
~&{li : Ti}i∈I� = `i [〈li : ~Ti�〉i∈I] and ~&{li : S i}i∈I� = `i [〈li : ~S i�〉i∈I]. Let ∀i ∈ I. ~Ti� = τi and ~S i� =σi.
By definition of R we have ∀i ∈ I.(τi,σi) ∈ R and we conclude by Definition 2.8. The case of unf(T) =

⊕{li : Ti}i∈I and unf(S) = ⊕{li : S i}i∈I is symmetric to the previous one, where & is replaced by ⊕. �

Lemma A.6 (Encoding of dual types). Let T,S ∈ SType, such that T⊥s S . If ~unf(T)� = τ then,
~unf(S)� = σ and τ⊥p σ.

Proof. The proof is done by case analysis on the unfolding of session types T,S .

• If unf(T) = end then unf(S) = end.
By the encoding we have ~end� = ∅[]. We conclude by the duality of ∅[] in Definition 2.9.

• If unf(T) = ?Tm.T ′ then unf(S) = !S m.S ′ and T ′⊥s S ′ and Tm =s S m.
By the encoding we have ~?Tm.T ′� = `i [~Tm�,~T ′�] and ~!S m.S ′� = `o [~S m�,~cplt(S ′)�] and let
cplt(S ′) = U. By Proposition 2.4, S ′⊥s U, by assumption T ′⊥s S ′ then by Proposition 2.5 we have
that T ′ =s U. By Lemma 3.1 we have ~Tm� =p ~S m� and ~T ′� =p ~U� = ~cplt(S ′)� and by duality
on π-types, Definition 2.9, we have `i [~Tm�,~T ′�]⊥p `o [~S m�,~U�], which concludes the case.

• If unf(T) = !Tm.T ′ then unf(S) = ?S m.S ′ and T ′⊥s S ′ and Tm =s S m.
By the encoding we have ~!Tm.T ′� = `o [~Tm�,~cplt(T ′)�] and let cplt(T ′) = U and ~?S m.S ′� =

`i [~S m�,~S ′�]. By Proposition 2.4, T ′⊥s U; and since T ′⊥s S ′ then by Proposition 2.5 we have
that U =s S ′. Hence, by Lemma 3.1 we have ~U� =p ~S ′�. By assumption Tm =s S m hence by
Lemma 3.1 we have ~Tm� =p ~S m�. By Definition 2.9 we have `o [~Tm�,~U�]⊥p `i [~S m�,~S ′�],
which concludes the case.

• If unf(T) = &{li : Ti}i∈I then unf(S) = ⊕{li : S i}i∈I and ∀i ∈ I, Ti⊥s S i.
By encoding we have ~&{li : Ti}i∈I� = `i [〈li : ~Ti�〉i∈I] and ~⊕{li : S i}i∈I� = `o [〈li : ~cplt(S i)�〉i∈I]
and let ∀i ∈ I,cplt(S i) = Ui. By Proposition 2.4 we have ∀i ∈ I, S i⊥s Ui and since by assumption
∀i ∈ I, Ti⊥s S i, then by Proposition 2.5 we have that ∀i ∈ I, Ti =s Ui. By Lemma 3.1 we have
∀i ∈ I,~Ti� =p ~Ui�. By Definition 2.9 we have `i [〈li : ~Ti�〉i∈I]⊥p `o [〈li : ~Ui�〉i∈I].

• If unf(T) = ⊕{li : Ti}i∈I then unf(S) = &{li : S i}i∈I and ∀i ∈ I, Ti⊥s S i.
By encoding we have that ~⊕{li : Ti}i∈I� = `o [〈li : ~cplt(Ti)�〉i∈I] and let ∀i ∈ I,cplt(Ti) = Ui and

O. Dardha 13

~&{li : S i}i∈I� = `i [〈li : ~S i�〉i∈I]. By Proposition 2.4 we have ∀i ∈ I, Ti⊥s Ui and since by assump-
tion ∀i ∈ I, Ti⊥s S i, by Proposition 2.5 we have that ∀i ∈ I, S i =s Ui. By Lemma 3.1 we have
∀i ∈ I,~S i� =p ~Ui�. By Definition 2.9 we have `o [〈li : ~Ui�〉i∈I]⊥p `i [〈li : ~S i�〉i∈I].

�

The following results state that soundness and completeness of the encoding with respect to typing
values (Lemma A.7) and typing processes (Theorem A.8), as well as the operational correspondence
(Theorem A.10).

The encoding of typing environments Γ is given in Figure 10. The following proofs follow exactly
the same line as in [4].

Lemma A.7 (Value Typing). Γ ` v : T if and only if ~Γ� f ` ~v� f : ~T�.

Proof. We split the proof as follows. We consider only the case for variables, the case for value 1 is
similar.

• (only if): The proof is done by induction on the derivation Γ ` v : T , by analysing the last rule
applied.
Case (T-Var):

un(Γ)

Γ, x : T ` x : T

To prove ~Γ, x : T� f ` ~x� f : ~T�. By (E-Gamma) and the encoding of variables it means ~Γ� f] fx :
~T� ` fx : ~T�. By rule (Tπ-Var) we obtain the result.

• (if): The proof is done by induction on the structure of the value v
Case v = x:
By the encoding of variables we have ~x� f = fx and assume ~Γ� f ` fx : ~T�. By (Tπ-Var), typing
rule for variables in the standard π- calculus, this means that (fx : ~T�) ∈ ~Γ� f and hence ~Γ� f =

Γπ1, fx : ~T� which by (E-Gamma) means that Γ = Γ1, x : T , where Γπ1 = ~Γ1� f . By (Tπ- Var) we
have un(~Γ′� f). By the encoding of types also un(Γ′) holds. By rule (T-Var) we obtain the result.

�

Theorem A.8 (Process Typing). Γ ` P if and only if ~Γ� f ` ~P� f .

Proof. We split the proof as follows.

• (only if): The proof is done by induction on the the derivation Γ ` P, by analysing the last typing
rule applied. We consider the most important case, where the duality relation is checked explicitly.
The rest of the cases can be seen in [4].
Case (T-Res):

Γ, x : T,y : S ` P T⊥s S
(T-Res)

Γ ` (νxy)P

To prove that ~Γ� f ` ~(νxy)P� f , which by encoding of restriction means ~Γ� f ` (νc)~P� f ,{x,y 7→c}.
We distinguish the following two cases:

– Suppose T , end, and hence S , end. By induction hypothesis ~Γ, x : T,y : S � f ′ ` ~P� f ′ ,
for some function f ′ such that dom(f ′) = dom(Γ)∪ {x,y} and let f ′(x) = f ′(y) = c and let
f = f ′ − {x 7→ c,y 7→ c}. By applying (E-Gamma), the typing judgement becomes ~Γ� f] c :
~T�] c : ~S � ` ~P� f ,{x,y 7→c}, namely ~Γ� f] c : ~T�]~S � ` ~P� f ,{x,y 7→c}. By the typing rules,

14 Recursive Session Types Revisited

[4, 6], we notice that the types adopted are unfolded, i.e., no recursive type of the form
µX.T occurs in the rules. Hence, by Lemma A.6, and by the idempotence of unfolding,
namely unf(unf(T)) = unf(T) we have ~T� = τ and ~S � = σ and τ⊥p σ. -The unfolding
function is given at the beginning of this section.- Since T , end, S , end, we have that
~T� = `α [W] and ~S � = `α [W] and hence c : `] [W], where W denote the (tuple of) carried
type which is irrelevant and if a = i then α = o and opposite otherwise. Since variable c owns
both capabilities it means that c < dom(~Γ� f). Hence, ~Γ� f ,c : ~T�] ~S � ` ~P� f ,{x,y 7→c}. By
applying rule (Tπ-Res1) we obtain ~Γ� f ` (νc)~P� f ,{x,y7→c} which concludes this case.

– Suppose T = S = end. By induction hypothesis ~Γ, x : end,y : end� f ′ ` ~P� f ′ , for some func-
tion f ′ such that dom(f ′) = dom(Γ)∪ {x,y} and let f ′(x) = f ′(y) = c and let f = f ′ − {x 7→
c,y 7→ c}. By applying equation (E-Gamma), the typing judgement becomes ~Γ� f] c :
~end�]c : ~end� ` ~P� f ,{x,y 7→c}, namely ~Γ� f]c : ∅[]]c : ∅[] ` ~P� f ,{x,y 7→c} which by the com-
bination of unrestricted π-types means ~Γ� f]c : ∅[] ` ~P� f ,{x,y 7→c}. Notice that c < dom(~Γ� f),
otherwise]would not have been defined. Hence we obtain ~Γ� f ,c : ∅[] ` ~P� f ,{x,y 7→c}. Notice
that c < ~P� f ,{x,y 7→c}, since x,y < FV(P) being x,y terminated channels. Then, by rule (Tπ-
Res2) we obtain ~Γ� f ` (νc)~P� f ,{x,y 7→c} which concludes this case.

• (if): The proof is done by induction on the structure of P. We show a different case from restric-
tion. The details of other cases can be checked in [4].
Case x?(y).P:
By equation (E-Input) we have ~x?(y).P� f

def
= fx?(y,c).~P� f ,{x 7→c} and assume ~Γ� f `

fx?(y,c).~P� f ,{x 7→c} which by rule (Tπ-Inp) means:

Γπ1 ` fx : `i[T π,Uπ] Γπ2,y : T π,c : Uπ ` ~P� f ,{x 7→c}

~Γ� f ` fx?(y,c).~P� f ,{x 7→c}

where ~Γ� f = Γπ1] Γπ2. By Auxiliary Lemma in [4] Γπ1 = ~Γ1� f and Γπ2 = ~Γ2� f , such that Γ =

Γ1 ◦Γ2, and dom(f) = dom(Γ1) ∪ dom(Γ2). By Auxiliary Lemma in [4] we have Γ1 ` x : ?T.U.
By induction hypothesis Γ2,y : T, x : U ` P where T π = ~T�, Uπ = ~U� and by the encoding of P
we notice that c substitutes x. By applying (T-Inp) we obtain Γ1 ◦Γ2 ` x?(y).P.

�

Before giving the Operational Correspondence we give the following definition.

Definition A.9 (Evaluation Context). An evaluation context is a process with a hole [·] and is produced
by the following grammar:

E[·] def= [·] | (νxy) E[·]

Theorem A.10 (Operational Correspondence). Let P be a session process. The following hold.

1. If P→ P′ then ~P� f →↪→ ~P′� f ,

2. If ~P� f →≡ Q then, ∃ P′,E[·] such that E[P]→E[P′] and Q→∗≡ ~P′� f ′ , where f ′ is the updated
f after the communication and fx = fy for all (νxy) ∈ E[·].

Proof. The proof of this theorem, for both cases, follows exactly the same line as in the author’s Ph.D.
thesis. We refer the reader to [4] for the details. �

	Introduction
	The Model
	Background on - calculus with sessions
	Background on standard - calculus

	Encoding recursive session types
	Example of encoding
	Conclusions and Future Work
	Appendix
	Operational Semantics
	Typing Rules
	Results on duality
	Results on encoding

