
Type Systems for Distributed Programs:
Session Communication

Ornela Dardha

School of Computing Science, University of Glasgow
Ornela.Dardha@glasgow.ac.uk

Abstract

Distributed systems are everywhere around us and guaranteeing their
correctness is of paramount importance. It is natural to expect that these
systems interact and communicate among them to achieve a common task.

In this work, we develop techniques based on types and type systems for
the verification of correctness, consistency and safety properties related to
communication in complex distributed systems. We study advanced safety
properties related to communication, like deadlock or lock freedom and
progress. We study session types in the π- calculus describing distributed
systems and communication-centric computation. Most importantly, we de-
fine an encoding of the session π- calculus into the standard typed π- calcu-
lus in order to understand the expressive power of these concurrent calculi.
We show how to derive in the session π-calculus basic properties, like type
safety or complex ones, like progress, by exploiting this encoding.

1 Introduction
Context and Motivation Complex software systems, in particular distributed
ones, are everywhere around us and are at the basis of our everyday activities.

These systems are highly mobile and dynamic: programs or devices may move
and may often execute in networks owned and operated by other parties; new
devices or pieces of software may be added; the operating environment or the
software requirements may change over time.

These systems are also heterogeneous and open: the pieces that form a system
may be quite different from each other, built by different people or industries,
even using different infrastructures or programming languages; the constituents
of a system only have a partial knowledge of the overall system, and may only
know, or be aware of, a subset of the entities that operate in the system.

Ornela.Dardha@glasgow.ac.uk

The computational units of a software system, often referred to as components,
are supposed to interact and communicate with each other following some prede-
fined patterns or protocols. Hence, it is important to understand how correctness
and safety criteria can be enforced. In the communication setting, the notion of
safety comes as a collection of several requirements, including basic properties
like privacy, guaranteeing that the communication means is owned only by the
communicating parties, or communication safety, guaranteeing that the protocol
has the expected structure. Stronger safety properties related to communication
may be desirable such as deadlock freedom, guaranteeing that the system does not
get stuck, or progress, guaranteeing that every engaged communication or proto-
col satisfies all the requested interactions. Enforcing each of the previous safety
requirements is a difficult task, which becomes even more difficult if one wants to
enforce a combination of them. In many distributed systems, in particular, safety
critical systems, a combination of these properties is required.

Goals and Methodology The goal of this work is to develop powerful tech-
niques based on formal methods for the verification of correctness, consistency
and safety properties related to communication in complex distributed systems.

In particular, static analysis techniques based on types and type systems ap-
pear to be an adequate methodology, as they stand at the formal basis of useful
programming tools. Before using them in a practical setting, a rigorous develop-
ment of such techniques is needed, which is more easily done on models and core
languages, such as concurrent calculi.

The reason why we have adopted types in our work is twofold.
i) Type systems are an adequate means to guarantee safety properties. Their

benefits are well-known in sequential programming, starting from early detec-
tion of programming errors to facilitating code optimisation and readability. In
concurrent and distributed programming the previous benefits still hold and in
addition other properties, typical of these systems, can be guaranteed by using
types and type systems. In particular, there has been a considerable effort over
the last 20 years in the development of types for processes, mainly in the π- cal-
culus [28, 33, 27, 35, 37] or variants of it, which is the calculus mostly used to
model concurrent and distributed scenarios. For instance, types have been pro-
posed to ensure termination, so that when we interrogate a well-typed process
we are guaranteed that an answer is eventually produced [36, 26], or deadlock
freedom, ensuring that a well-typed process never reaches a deadlocked state,
meaning that communications will eventually succeed, unless the whole process
diverges [25, 26], or a stronger property, that of lock freedom [23, 26] ensuring
that communication of well-typed processes will succeed, (under fair scheduling),
even if the whole process diverges.

ii) There are several types and type system proposals for communication, start-
ing from the standard channel types in the typed π- calculus to the behavioural
types [19, 38, 20, 18, 5, 40], generally defined for (variants) of the π-calculus. The
standard channel types are foundational. They are simple, expressively powerful
and robust and they are well-studied in the literature. Moreover, they are at the
basis of behavioural types, which were defined later in time. In this paper we con-
centrate on the standard channel types, especially variant types and linear channel
types [35, 27, 37] and on the session types, the latter being a formalism used to
describe and model protocols for distributed systems as type abstractions. We
focus on session types because they guarantee several safety properties, such as
privacy of the communication channel, communication safety and session fidelity,
ensuring that the type of the transmitted data and the structure of the session type
are as expected. However, as previously stated, we are also interested in studying
stronger properties, such as deadlock and lock freedom of communicating partic-
ipants and progress of a session. Again, these properties can be guaranteed by
using session types.

Contributions (and Structure of the Paper) The contributions of this paper
are as follows.

• We present an encoding (§ 3) of the session typed π-calculus into the stan-
dard typed π-calculus, by showing that the type and term primitives of the
former can be obtained by using the primitives of the latter. The goal of
the encoding is to understand the expressive power of session types and to
which extent they are more sophisticated and complex than the standard π-
calculus types. The importance of the encoding is foundational, since

– The encoding is proved faithful as it allows the derivation of properties
of the session π-calculus, for e.g., subject reduction, by exploiting the
theory of the standard typed π-calculus.

– The encoding is proved robust by extending it to handle non trivial fea-
tures like, subtyping (in § 4), polymorphism (in § 5) and higher-order
communication (in § 6), and by using it to derive new properties in the
session π- calculus due to these new features from the corresponding
ones in the standard typed π-calculus.

– The encoding is an expressiveness result for the standard π- calculus.
There are many more expressiveness results in the untyped settings as
opposed to expressiveness results in the typed ones.

• We study advanced safety properties related to communication in complex
distributed systems. We concentrate on (dyadic) session types and study

properties like deadlock freedom, lock freedom and progress (§ 7). We
study the relation among these properties (§ 7.1) and present a type system
for guaranteeing the progress property by exploiting our encoding (§ 8).

The rest of this paper is organised as follows: we start with a background on
the π-calculus in§ 2. We first present session types (§ 2.1) and then the standard
types (§ 2.2). In § 9 we discuss the related work and we conclude in § 10.

Origin of the Results This work is based on the author’s PhD thesis titled “Type
Systems for Distributed Programs: Components and Sessions” 1 [10], and on pre-
vious published papers, which are joint works with Elena Giachino and Davide
Sangiorgi [12] and Marco Carbone and Fabrizio Montesi [6]. The complete proofs
of all the results presented here can be found in [10]. The author’s PhD thesis stud-
ies session communication, presented in the remainder of this paper, and dynamic
reconfiguration, which is not included here for space limits. The problem of dy-
namic reconfiguration, i.e., changing at runtime the communication patterns, is
based on a joint work with Elena Giachino and Michaël Lienhardt [11]. We de-
sign a type system for a component-based, concurrent object-oriented calculus to
statically ensure consistency and reliability of dynamic reconfigurations. The type
system statically tracks runtime information about the objects, and it can be seen
as a technique that can be applied to other calculi and frameworks for purposes
related to tracking runtime information at compile time.

2 Background on the π-calculus
In this section we give an overview of the theory of the π- calculus with session
types and standard types, focusing on linear channel types and variant types.

2.1 Session Types
Type Syntax Types are produced by two separate syntactic categories: one for
session types and the other for standard π-types, including session types and pre-
sented in Fig. 1. Let S range over session types and T over types. Session types
can be: end, the type of a terminated session; ?T.S and !T.S indicating respec-
tively session types used to receive and send a value of type T and proceed accord-
ing to type S . Branch and select are sets of labelled session types. &{li : S i}i∈I

indicates the external choice. Dually, ⊕{li : S i}i∈I indicates the internal choice,

1Winner of the “Best Italian PhD thesis in Theoretical Computer Science 2015” awarded by
the Italian Chapter of EATCS.

T ::= S (session type)
]T (channel type)
Unit (unit type)
. . . other constructs

S ::= end (termination)
!T.S (send)
?T.S (receive)
⊕{li : S i}i∈I (select)
&{li : S i}i∈I (branch)

P,Q ::= x!〈v〉.P (output) 0 (inaction)
x?(y).P (input) P | Q (composition)
x / l j.P (selection) (νxy)P (session restriction)
x . {li : Pi}i∈I (branching)

v ::= x (variable) ? (unit value)

Figure 1: Syntax for the π-calculus with session types

only one of the labels must be chosen. Types T include session types, standard
channel types, Unit type and possibly other type constructs.

Language Syntax The syntax of terms is given in Fig. 1. Session commu-
nication occurs on co-variables [40], specifying the two opposite endpoints of
a communication channel and are created and bound together by the restriction
construct. Our results can be applied to all the different syntaxes in session types
theory. Let P,Q range over processes and v over values. A process can be an
output x!〈v〉.P which sends a value v on channel x and proceeds as P; an input
x?(y).P which receives on channel x a value for the placeholder y in P; a selection
x / l j.P on x of label l j and continuation P; an offering x . {li : Pi}i∈I on x of a set
of processes labelled with labels li for i ∈ I; the terminated process 0; the parallel
composition of two processes and the session restriction (νxy)P.

Duality A key notion of session types is duality, which relates opposite (i.e.,
complementary) behaviours. Duality stands at the basis of communication safety
and session fidelity. Given a session type T , its dual type T is defined as follows:

end , end
!T.S , ?T.S
?T.S , !T.S

⊕{li : S i}i∈I , &{li : S i}i∈I

&{li : S i}i∈I , ⊕{li : S i}i∈I

Typing Rules Typing contexts, ranged over by Γ,Γ′, are sets of typing assign-
ments of the form x : T . We let dom(Γ) denote the domain of Γ. Given a typing
context Γ and a process P, a typing judgement is of the form Γ ` P, meaning that P

(T-Nil)

x : end ` 0

(T-Par)
Γ1 ` P Γ2 ` Q

Γ1 ◦ Γ2 ` P | Q

(T-Res)
Γ, x : T, y : T ` P

Γ ` (νxy)P

(T-In)
Γ1 ` x : ?T.S Γ2, x : S , y : T ` P

Γ1 ◦ Γ2 ` x?(y).P

(T-Out)
Γ1 ` x : !T.S

Γ2 ` v : T Γ3, x : S ` P

Γ1 ◦ Γ2 ◦ Γ3 ` x!〈v〉.P

(T-Brch)
Γ1 ` x : &{li : Ti}i∈I

Γ2, x : Ti ` Pi ∀i ∈ I

Γ1 ◦ Γ2 ` x . {li : Pi}i∈I

(T-Sel)
Γ1 ` x : ⊕{li : Ti}i∈I

Γ2, x : T j ` P ∃ j ∈ I

Γ1 ◦ Γ2 ` x / l j.P

Figure 2: Typing rules for the π-calculus with session types

(R-Com) (νxy)(x!〈v〉.P | y?(z).Q)→ (νxy)(P | Q[v/z])
(R-Case) (νxy)(x / l j.P | y . {li : Pi}i∈I)→ (νxy)(P | P j) j ∈ I
(R-Res) P→ Q =⇒ (νxy)P→ (νxy)Q
(R-Par) P→ Q =⇒ P | R→ Q | R

(R-Struct) P ≡ P′, P→ Q, Q′ ≡ Q =⇒ P′ → Q′

Figure 3: Semantics for the π-calculus with session types

is well typed in Γ. Typing rules are given in Fig. 2. Rule (T-Nil) states that the ter-
minated process is well typed under a terminated channel. Rule (T-Par) types the
parallel composition of two processes under the composition of the corresponding
typing contexts, by using the context split operator ◦, which performs a combi-
nation of types and deals with linearity of session types [40]. Rule (T-Res) types
the restriction process under the assumption that the endpoints of the restricted
channel have dual types. Rules (T-In) and (T-Out) type the receiving and sending
of a value over a channel x, respectively. Finally, rules (T-Brch) and (T-Sel) are
generalisations of input and output over a labelled set of processes.

Operational Semantics The operational semantics is a binary relation −→ over
processes and is given in Fig. 3. Rule (R-Com) states that two processes com-
municate on two co-variables, and the value received replaces the input place-
holder. Rule (R-Case) is similar: the communicating processes have prefixes that

T ::= `o [T̃] (linear output) 〈li : Ti〉i∈I (variant type)
`i [T̃] (linear input)][T̃] (connection)
`] [T̃] (linear connection) Unit (unit type)
∅[] (no capability) . . . (other constructors)

P,Q ::= x!〈ṽ〉.P (output) 0 (inaction)
x?(ỹ).P (input) P | Q (composition)
(νx)P (restriction) case v of {li_(xi) . Pi}i∈I (case)

v ::= x (variable) ? (unit value)
l_v (variant value)

Figure 4: Syntax for the standard typed π-calculus

are co-variables, and the label received selects the continuation on the recipient
side. Rules (R-Res), (R-Par), and (R-Struct) are standard, stating that communica-
tion can happen respectively, under restriction, parallel composition, and by using
the structural congruence relation, which can be found in [40, 37].

Properties We recall some basic properties of the session type system [40]. The
first lemma states type preservation of a process under structural congruence and
the second theorem states type preservation of a process under reduction.

Lemma 1 (Type Preservation for ≡). If Γ ` P and P ≡ P′, then Γ ` P′.

Theorem 1 (Subject Reduction for Sessions). If Γ ` P and P→ Q, then Γ ` Q.

2.2 π-Types

Type Syntax We now consider the standard typed polyadic π-calculus [37] and
focus on linear types and variant types, which are used in the encoding. The
syntax of types, ranged over by T , is given in Fig. 4. Linear types `i [T̃] and
`o [T̃] denote channels used exactly once to receive and send values of type T̃ ,
respectively. `] [T̃] denotes both sending and receiving once values of type T̃ . We
use α, β to range over the i, o or] capabilities. The variant type 〈li : Ti〉i∈I is a
labelled form of disjoint union of types. Type ∅[] denotes a channel that cannot be
used for communication and type]T denotes a standard channel type. Other type
constructs, like ground types and recursive types, can be added to the syntax.

(Tπ-Inact)

x : ∅[] ` 0

(Tπ-Par)
Γ1 ` P Γ2 ` Q

Γ1] Γ2 ` P | Q

(Tπ-Res1)
Γ, x : `] [T̃] ` P

Γ ` (νx)P

(Tπ-Res2)
Γ ` P

Γ ` (νx)P

(Tπ-Inp)
Γ1 ` x : `i [T̃] Γ2, ỹ : T̃ ` P

Γ1] Γ2 ` x?(ỹ).P

(Tπ-Out)
Γ1 ` x : `o [T̃] Γ̃2 ` ṽ : T̃ Γ3 ` P

Γ1] Γ̃2] Γ3 ` x!〈ṽ〉.P

(Tπ-LVal)
Γ ` v : T j j ∈ I

Γ ` l j_v : 〈li : Ti〉i∈I

(Tπ-Case)
Γ1 ` v : 〈li : Ti〉i∈I Γ2, xi : Ti ` Pi ∀i ∈ I

Γ1] Γ2 ` case v of {li_(xi) . Pi}i∈I

Figure 5: Typing rules for the standard typed π-calculus

We define a notion of duality on π-types by the following rules, which will be
used in § 3.

`i [T̃] = `o [T̃] `o [T̃] = `i [T̃] ∅[] = ∅[]

Language syntax The syntax of terms of the π-calculus is given in Fig. 4. A
process is an output x!〈ṽ〉.P which sends a tuple of values ṽ on channel x and
proceeds as P; an input x?(ỹ).P which receives on x a tuple of values to substitute
ỹ in P; a channel restriction (νx)P which creates a new name x and binds it with
scope P; the terminated process 0; the parallel composition of two processes P,Q
and case v of {li_(xi) . Pi}i∈I which offers different behaviours depending on which
variant value is received. Values are the unit value, names and variant values l_v .

Typing Rules The typing rules are given in Fig. 5. They make use of a commu-
tative combination operator] which is defined on types as follows.

`i [T̃]] `o [T̃] , `] [T̃]
T] T , T
T] S , undef otherwise

The operation lifts naturally to typing contexts.
Rule (Tπ- Inact) states that the terminated process is well typed under a termi-

nated channel. Rule (Tπ-Par) states that the parallel composition of two processes
is well typed in the combination of typing contexts used to type each of the pro-
cesses. Rule (Tπ-Res1) states that (νx)P is well typed if P is well typed under the

(Rπ-Com) x!〈ṽ〉.P | x?(z̃).Q→ P | Q[ṽ/z̃]
(Rπ-Case) case l j_v of {li_(xi) . Pi}i∈I → P j[v/x j] j ∈ I

Figure 6: Semantics for the standard typed π-calculus

same typing context augmented with x : `] [T̃]. Rule (Tπ- Res2) states that (νx)P
is well typed if P is well typed under the same typing context. Rules (Tπ-Inp) and
(Tπ- Out) state that the input and output processes are well-typed if x is a linear
channel used in input and output, respectively and the carried types are compati-
ble with the types of ỹ and ṽ. A variant value l_v is of type 〈l_T 〉 if v is of type T .
Process case v of {li_(xi) . Pi}i∈I is well typed if value v has variant type and every
process Pi is well typed assuming xi has type Ti.

Operational Semantics The operational semantics for the standard π-calculus
is given in Fig. 6. Rule (Rπ-Com) describes communication under the same channel
x. Rule (Rπ-Case) states that case l j_v of {li_(xi) . Pi}i∈I reduces to P j, substituting
x j with the value v, if the label l j is chosen. There are also rules (Rπ-Res) (Rπ-Par)
and (Rπ-Struct) that capture reduction under restriction, parallel composition and
structural congruence, respectively. Since they are standard we omit them.

Properties We recall some basic properties of the type system with linear π-
types, taken from [37].

Lemma 2 (Type preservation for ≡). If Γ ` P and P ≡ P′, then Γ ` P′.

Definition 1 (Closed typing context). A typing context is closed if Γ(x) , `] [T̃],
for all x ∈ dom(Γ).

Theorem 2 (Subject reduction for Linear Processes). If Γ ` P with Γ closed and
P→ P′, then Γ ` P′.

By analysing and combining the definition of closed typing context with the
statement of the subject reduction property for linear π-types, we notice that since
the typing context has no linear channel owning both capabilities (condition ,
`] [T̃]), if a process reduces it is either due to a case reduction or a communication
on a restricted channel owning both capabilities of input and output.

3 Encoding session types into standard π-types
Session types guarantee privacy, communication safety and session fidelity. The
interpretation of session types into standard π-types should take into account these

JendK , ∅[] (E-End)

J!T.S K , `o [JTK, JS K] (E-Out)
J?T.S K , `i [JTK, JS K] (E-Inp)

J⊕{li : S i}i∈IK , `o [〈li : JS iK〉i∈I] (E-Select)
J&{li : S i}i∈IK , `i [〈li : JS iK〉i∈I] (E-Branch)

Jx!〈v〉.PK f , (νc) fx!〈v, c〉.JPK f ,{x 7→c} (E-Output)
Jx?(y).PK f , fx?(y, c).JPK f ,{x 7→c} (E-Input)
Jx / l j.PK f , (νc) fx!〈l j_c〉.JPK f ,{x 7→c} (E-Selection)

Jx . {li : Pi}i∈IK f , fx?(y). case y of {li_(c) . JPiK f ,{x 7→c}}i∈I (E-Branching)
JP | QK f , JPK f | JQK f (E-Composition)

J(νxy)PK f , (νc)JPK f ,{x,y7→c} (E-Restriction)

Figure 7: Encoding of types and terms

fundamental properties. In order to guarantee privacy and communication safety
we adopt linear channels that are used exactly once. Privacy is ensured since the
linear channel is used at most once and so it is known only to the interacting
parties. Communication safety is ensured since the linear channel is used at least
once and so the input/output actions are necessarily performed. Session fidelity
is guaranteed by adopting the so called continuation-passing style. We start by
giving first the encoding of types and then the encoding of terms. We conclude
the section by proving the correctness of the encoding w.r.t typing and reduction.

3.1 Encoding of Session Types
The encoding of session types into linear π-types is given in Fig. 7. The encoding
of standard π- types is an homomorphism, i.e., J]TK ,]JTK and JUnitK , Unit.
Type end is a interpreted as a channel type with no capabilities, meaning that it
cannot be used further for communications. ?T.S is interpreted as the linear input
channel type carrying a pair of values whose types are the encoding of T and of
S . The encoding of !T.S is similar. In this case the continuation S is dualised
for it to match the type of the receiver. This will be shown later by an example
of the encoding. The branch and the select types are generalisations of input and
output types, respectively. Consequently, they are interpreted as linear input and
linear output channels carrying variant types having the same labels l1 . . . ln and
the encoding of S 1 . . . S n and of S 1 . . . S n, respectively. Again, the reason for
duality is the same as for the output type.

Consider the dual types S and S from the introduction. Their encoding is

JS K = `i [Int, `i [Int, `o [Unit, ∅[]]]]

and
JS K = `o [Int, `i [Int, `o [Unit, ∅[]]]]

Notice that duality on session types boils down to opposite capabilities of linear
types only at the outermost level. The carried types are exactly the same due to
the dualisation of the continuation type in the encoding of output and select.

3.2 Encoding of Session Processes

The encoding of the session π- calculus processes into the standard π-calculus
processes is defined in Fig. 7. It is parametrised by a function f used to rename
linear channels. Once a linear π- channel is used, it cannot be used again for
transmission. To enforce session structure via the continuation-passing principle,
the linear channels are renamed at every step of communication: a new channel is
created and sent to continue the rest of the session. We use dom(f) to denote the
domain of function f . We use fx as an abbreviation for f (x). Formally, the update
of a function f is defined as follows:

f , {x 7→ c} ,
{

f ∪ {x 7→ c} if x < dom(f)(
f \ {x 7→ fx}

)
∪ {x 7→ c} otherwise

In the encoding of the output process, a new channel c is created and sent together
with the payload v along the channel fx; the encoding of the continuation process
P is parametrised by f where name x is updated to c. Similarly, the input process
listens on channel fx and receives a value, that substitutes variable y and a fresh
channel c that substitutes x in the continuation process encoded in f updated with
x renamed to c. The encoding of a session restriction process (νxy)P is a linear
channel restriction process (νc)JPK f ,{x 7→c} with the new name c used to substitute x
and y in the encoding of P. The selection process x / l.P is encoded as the process
that first creates a new channel c and then sends on fx a variant value l_c, where
l is the selected label. Channel c is going to be used for the next interaction. The
encoding of a branching process receives on fx a value, typically a variant value
l_c, to substitute the placeholder in the case process. The value l_c, as for the
selection, is composed by the label l, that the partner has chosen and the channel
c to be used in the continuation processes. Note that the name c is bound in
any process JPiK f ,{x→c} The encoding of the other processes is a homomorphism,
namely J0K f , 0 and JP | QK f , JPK f | JQK f .

We now consider a simple example: the equality test

server , x?(v1).x?(v2).x!〈v1 == v2〉.0
client , y!〈3〉.y!〈5〉.y?(eq).0

The system is given by
(νxy)(server | client)

The server and the client communicate on a session channel by owning an end-
point x and y, respectively. The server receives two integers in sequence v1 and
v2 and sends back either ? or false depending on whether these values are equal
or not. The client behaves dually: it sends to the server two integers values 3 and
5 and waits for a boolean answer. After this communication, they both terminate.
The encodings of server and client processes are:

JserverK f = z(v1, c).c(v2, c′).(νc′′)c′〈v1 == v2, c′′〉.0
JclientK f = (νc)z〈3, c〉.(νc′)c〈5, c′〉.c′(eq, c′′).0

Initially, by (E-Restriction) function f renames x and y to a new name z, and after
that, before every output action, a new channel is created and sent to the partner
together with the payload: first channel c, then c′ and at the end c′′ are created to
accommodate the continuation of the communication. The endpoints x and y are
respectively typed with S and S previously introduced and encoded.

3.3 Properties of the Encoding
In this section we show how to derive properties in the session π- calculus, like
subject reduction, by using our encoding and the corresponding properties in the
standard typed π-calculus. We first extend the encoding to typing contexts in the
expected way:

J∅K f , ∅ (E-Empty)
JΓ, x : TK f , JΓK f] fx : JTK (E-Gamma)

We first present the soundness and completeness of the encoding w.r.t typing
processes: a session process P is well typed in a session typing context Γ, if and
only if the encoding of P is also well typed in the encoding of Γ.

Theorem 3. JΓK f ` JPK f if and only if Γ ` P.

We will show now the operational correspondence. This property states that
the encoding of processes is sound and complete w.r.t the operational semantics of
the π-calculus with and without sessions. Before stating the theorem, we introduce
the notion of evaluation context, which is defined as follows.

Definition 2 (Evaluation Context). An evaluation context is a process with a hole
[·] and is produced by the following grammar:

E[·] ::= [·] | (νxy) E[·]

Let ↪→ denote ≡ extended with a case normalisation, namely a reduction by
using (Rπ-Case).

We are ready now to formally state the operational correspondence property.
It is given by the following theorem.

Theorem 4 (Operational Correspondence). Let P be a session process. The fol-
lowing hold.

1. If P→ P′ then JPK f →↪→ JP′K f ,

2. there are P′,E[·] such that E[P]→ E[P′] and Q ↪→ JP′K f ′ , for some f ′ and
fx = fy for all x, y such that (νxy) appears in E[·].

The proofs of the above theorems can be found in [10].

3.4 Session Communication by Encoding
We now show how we can use the encoding and the properties from the linear π-
calculus to derive the analogous properties in the π- calculus with session types,
e.g., the subject reduction property. We start with an auxiliary lemma, stating that
the encoding of processes is sound and complete w.r.t to structural equivalence.

Lemma 3. P ≡ P′ if and only if JPK f ≡ JP′K f .

The following state how type preservation under ≡ and subject reduction are
obtained by using the encoding.

Proof of Lemma 1: If Γ ` P and P ≡ P′, then Γ ` P′.

Proof. By Theorem 3, we have JΓK f ` JPK f . By Lemma 3, JPK f ≡ JP′K f and, by
Lemma 2, JΓK f ` JP′K f . We conclude by Theorem 3. �

Proof of Theorem 1: If Γ ` P and P→ P′, then Γ ` P′.

Proof. Assume Γ ` P and P → P′. By Theorem 3 on completeness of encoding
we have JΓK f ` JPK f . By point 1. of Theorem 4 we have JPK f →↪→ JP′K f . �

In the following we test our encoding on a few extensions: subtyping, para-
metric and bounded polymorphism and higher-order communication and show its
robustness.

T̃ ≤ T̃ ′
(Sπ-ii)

`i [T̃] ≤ `i [T̃ ′]

T̃ ′ ≤ T̃
(Sπ-oo)

`o [T̃] ≤ `o [T̃ ′]

T <: T ′ S <: S ′
(S-Inp)

?T.S <: ?T ′.S ′
T ′ <: T S <: S ′

(S-Out)
!T.S <: !T ′.S ′

Figure 8: Subtyping rules for π types (≤) and for session types (<:).

4 Subtyping

Subtyping relation on channel types has been studied for the standard π-types [33,
37] as well as session types [18]. In this section we show that the ordinary subtyp-
ing of the π-calculus is enough to derive subtyping in session types. Some of the
subtyping rules for both systems are presented in Fig. 8. Rules (Sπ-ii) and (Sπ-
oo) state that input channels are co-variant and output channels are contra-variant
in the types of values they transmit. Rules (S-Inp) and (S-Out) state subtyping in
input and output session types, respectively. As for linear π- types, the input is
co-variant whilst the output is contra-variant.

In the session π-calculus with subtyping, one must deal both with subtyping
on standard π-types and subtyping on session types. This introduces overhead
in the theory, which becomes even more noticeable in the presence of recursive
types, for example. We use the encoding, as in the previous section, to derive basic
properties of session types, and remove the overhead in the theory. For Theorem 3
to remain valid, we have to take the subtyping relation into account. Therefore, it
is important to prove the validity of subtyping w.r.t the encoding of types.

The following theorem states the soundness and completeness of the encoding
of types w.r.t subtyping in session types and linear π-types.

Theorem 5. T <: T ′ if and only if JTK ≤ JT ′K.

The proof can be found in [10]. We can derive the main results on subtyping,
such as subtyping being a preorder, as corollaries by using our encoding and The-
orem 5, in the same way as we did with subject reduction in the previous section.

5 Polymorphism

In this section we study two forms of polymorphisms: parametric and bounded.
Let us first consider parametric polymorphism.

5.1 Parametric Polymorphism
This form of polymorphism has not been studied in session types. The following
syntax is an extension of the one presented in § 2.1.

T ::= . . . | X (type variable)
| 〈X; T 〉 (polymorphic type)

P ::= . . . | open v as (X; x) in P (unpack process)
v ::= . . . | 〈T ; v〉 (polymorphic value)
∆ ::= ∆, X | ∅ (type variable environment)

We extend the syntax of types with the type variable X and the polymorphic type
〈X; T 〉. The syntax of session types remains unchanged. We introduce the poly-
morphic value 〈T ; v〉 and the unpack process open v as (X; x) in P, the same con-
structs as in the polymorphic π-calculus [34, 37]. We consider an additional typing
context ∆ containing polymorphic type variables. We extend the syntax of types
and terms of the standard typed π-calculus, presented in § 2.2, with the same poly-
morphic type and term constructs as above. The typing rules are similar on both
calculi and the same holds for the operational semantics. They can be checked
in [37, 10].

Since the syntax of session types is unchanged, the encoding of session types
remains as before. The encoding of the added types and terms is an homomor-
phism and is given in the following.

JXK , X (E-PolyVar)
J〈X; T 〉K , 〈X; JTK〉 (E-PolyType)
J〈T ; v〉K f , 〈JTK; fv〉 (E-PolyVal)

Jopen v as (X; x) in PK f , open fv as (X; fx) in JPK f (E-Unpack)

The encoding of typing contexts is given by:

J∅K f , ∅ (E-Empty)
JΓ, x : TK f , JΓK f] fx : JTK (E-Gamma)

JΓ; ∆K f , JΓK f ; ∆ (E-Delta)

We encode Γ as in § 3.3 and on ∆ the encoding is the identity function, since the
encoding of type variables is the identity function.

To complete Theorem 3 it suffices to add the case for the polymorphic values
and the unpack of processes using the following lemmas.

Lemma 4 (Typing Polymorphic Values by Encoding). Γ; ∆ ` 〈T ′; v〉 : 〈X; T 〉 if
and only if JΓ; ∆K f ` J〈T ′; v〉K f : J〈X; T 〉K.

Lemma 5 (Typing Unpack by Encoding). Γ; ∆ ` open v as (X; x) in P if and only
if JΓ; ∆K f ` Jopen v as (X; x) in PK f .

To complete Theorem 4 about the operational correspondence, it suffices to
add the case for unpack in the expected way.

5.2 Bounded Polymorphism
We now consider bounded polymorphism, studied in [16]. It has not been studied
in the standard typed π-calculus yet, hence we add it and show how we can derive
bounded polymorphism in session types passing through π types. In [16] lower
and upper bounds are added to branch and select labels. In this paper we adopt
a simpler version and add only upper bounds to branch and select labels. Type B
stands for basic types e.g., integer, boolean. . ., as opposed to channel types.

S ::= . . . | ⊕ {li(Xi <: Bi) : Ti}i∈I (bounded polymorphic select)
| &{li(Xi <: Bi) : Ti}i∈I (bounded polymorphic branch)

P ::= . . . | x / l j(B).P (bounded polymorphic selection)
| x . {li(Xi <: Bi) : Pi}i∈I (bounded polymorphic branching)

In order to have bounded polymorphism also in the standard π-calculus, we add
upper bounds to labels in the variant type and the case process, as shown in the
following.

T ::= . . . | 〈li(Xi ≤ Bi)_Ti〉i∈I (bounded polymorphic variant)
P ::= . . . | case v of {li(Xi ≤ Bi)_xi . P}i∈I (bounded polymorphic case)
v ::= . . . | l(B)_v (bounded polymorphic variant value)

The typing rules are similar on both calculi and the same holds for the opera-
tional semantics. They can be checked in [16, 10]. The encoding is once again a
homomorphism and the relevant cases are given in the following.

J⊕{li(Xi <: Bi) : Ti}i∈IK , `o [〈li(Xi ≤ Bi)_JTiK〉i∈I] (E-BPolySel)
J&{li(Xi <: Bi) : Ti}i∈IK , `i [〈li(Xi ≤ Bi)_JTiK〉i∈I] (E-BPolyBrch)

(E-BPolySelection)
Jx / l j(B).PK f , (νc) fx!〈l j(B)_c〉.JPK f ,{x 7→c}

(E-BPolyBranching)
Jx . {li(Xi <: Bi) : Pi}i∈IK f , fx?(y). case y of {li(Xi ≤ Bi)_c . JPiK f ,{x 7→c}}i∈I

By using the encoding and the bounded polymorphism in the standard π-calculus,
we can derive bounded polymorphism in the session π- calculus. Again, prop-
erties like subject reduction and others related to polymorphism are derived as
corollaries. To complete Theorem 3 and Theorem 4, it suffices to add the case for
bounded branching and selection. The modifications to the typing judgements are
as in parametric polymorphism.

Lemma 6 (Soundness). If JΓ; ∆K f ` JQK f , then Γ; ∆ ` Q, where either Q =

x / l j(B).P, or Q = x . {li(Xi ≤ Bi) : Pi}i∈I .

Lemma 7 (Completeness). If Γ; ∆ ` Q, then JΓ; ∆K f ` JQK f , where either Q =

x / l j(B).P, or Q = x . {li(Xi ≤ Bi) : Pi}i∈I

6 Higher-Order Communication

Higher-Order π-calculus (HOπ) models mobility of processes that can be sent and
received and thus can be run locally [37]. Higher-order session π-calculus has the
same benefits. In this section we use HOπ to provide sessions with higher-order
communication by exploiting the encoding, as we did in the previous sections.

The syntax of types and terms for the HOπ with sessions [29] and without
sessions [37] is given by the following grammar.

σ ::= . . . | T (general type)
| ♦ (process type)

T ::= . . . | T → σ (functional type)

| T
1
→ σ (linear functional type)

P ::= . . . | PQ (application)
| v (values)

v ::= . . . | λx : T.P (abstraction)

We let ♦ denote the type of a process, and σ range over a type T or ♦. The new
types added to T are the functional type T → σ, assigned to a functional term that

can be used without any restriction and the linear functional type T
1
→ σ, assigned

to a term that should be used exactly once. The reason for linear functional types
is that a function may contain free session channels. We extend the syntax of
processes with call-by-value λ-calculus primitives, namely abstraction (λx : T.P)
and application (PQ).

The encoding of types and terms is a homomorphism on the higher-order con-
structs added on both calculi. Note that there is also a modification in the rule
(E-Output). A value can be an abstraction, hence it needs to be encoded.

JT
1
→ σK , JTK

1
→ JσK (E-LinFunType)

JT → σK , JTK→ JσK (E-FunType)
Jλx : T.PK f , λx : JTK.JPK f (E-Abstraction)

JPQK f , JPK f JQK f (E-Application)
Jx!〈v〉.PK f , (νc) fx!〈JvK f , c〉.JPK f ,{x 7→c} (E-Output)

(T-HoAbs1)
Φ, x : T ; Γ;S ` P : σ

if T = T ′
1
→ σ then x ∈ S

Φ; Γ;S − {x} ` λx : T.P : T → σ

(T-HoAbs2)
Φ; Γ, x : T ;S ` P : σ

Φ; Γ;S ` λx : T.P : T → σ

(T-HoApp)

Φ; Γ1;S1 ` P : T
1
→ σ Φ; Γ2;S2 ` Q : T

if T = T ′ → σ′ then un(Γ2) and S2 = ∅

Φ; Γ1 ◦ Γ2;S1 ∪ S2 ` PQ : σ

Figure 9: Typing rules for the HOπ with and without sessions

Typing judgements, in π-calculus with and without sessions are of the form
Φ; Γ;S ` v : T , where Φ associates variables to value types, except ses-
sion types; Γ associates variables to session types; S denotes the set of linear
functional variables. A typing judgement is well-formed if S ⊆ dom(Φ) and
dom(Φ) ∩ dom(Γ) = ∅. The new typing rules are presented in Fig. 9. We present
the encoding of typing contexts in the following.

J∅K f , ∅ (E-Empty)
JΓ, x : TK f , JΓK f] fx : JTK (E-Gamma)
JΦ; Γ;SK f , JΦK; JΓK f ;S (E-HOContext)
JΦ, x : TK , JΦK, x : JTK (E-Phi)

The following result gives the correctness of the encoding w.r.t typing for higher-
order communication. The proof can be found in [10].

Theorem 6. JΦ; Γ;SK f ` JPK f : JσK if and only if Φ; Γ;S ` P : σ.

The result of the operational correspondence for the higher-order communica-
tion is, as before, given by Theorem 4.

7 Progress and Lock Freedom for Sessions
The notion of progress is fundamental for safe programs. Intuitively, it means that
a safe program never gets “stuck”. The most basic property related to progress
in concurrency is deadlock freedom: a process is deadlock-free if all its commu-
nications are eventually performed, unless the whole process diverges [25, 26].

Observe that in a deadlock-free process some subprocesses can get stuck. For
instance, consider the following process:

P = (νx)
(
x?(y).0 | Ω)

where Ω is a diverging process executing an infinite series of internal actions.
Even though the subterm x?(y).0 will never reduce, process P is deadlock-free. In
order to cope with this limitation of the deadlock freedom property, lock freedom
has been proposed as a stronger property that requires every input/output action
to be eventually executed under fair process scheduling, even if the whole pro-
cess diverges [23, 26]. Different techniques have been proposed for guaranteeing
deadlock- and lock freedom, mostly based on type systems [23, 25, 26].

In this section we study progress and lock freedom in the session π- calculus
and their relation. Later on, we will use our encoding in order to obtain progress
from the standard π-calculus. We start with some definitions. Below, we assume
that reduction sequences are fair, as formalised in [23].

Definition 3 (Lock-Freedom for Session π-Calculus). A process P0 is lock-free if
for any fair reduction sequence P0 → P1 → P2 → . . ., we have

1. Pi ≡ (νx̃y)(x!〈v〉.Q | R), for i ≥ 0, implies that there exists n ≥ i such that
Pn ≡ (νx̃′y′)(x!〈v〉.Q | y?(z).R1 | R2) and Pn+1 ≡ (νx̃′y′)(Q | R1[v/z] | R2);

2. Pi ≡ (νx̃y)(x / l j.Q | R), for some i ≥ 0, implies that there exists n ≥ i such
that Pn ≡ (νx̃′y′)(x/l j.Q | y.{lk : Rk}k∈I∪{ j} | S) and Pn+1 ≡ (νx̃′y′)(Q | R j | S).

For simplicity, above we have omitted the cases for input and branching, which
have the expected definitions.

In order to give the formal definition for the progress property, we need some
auxiliary notions. An evaluation context is a process with a hole [·] and is pro-
duced by the following grammar:

E[·] ::= [·] | P | (νxy) E[·] | E[·] | E[·]

Given a type T , its characteristic process JTKx is the simplest process that can
inhabit a type and is inductively defined on the structure of T . We present some
cases in the following (the full definition is given in [7, 6]).

(inVal) J?Unit.S Kx = x?(y).JS Kx

(inSess) J?T.S Kx = x?(y).(JS Kx | JTKy)

(outSess) J!T.S Kx = (νzw)(x!〈z〉.(JS Kx | JTKw))

Finally, a catalyser is a context with only characteristic processes.

Definition 4 (Catalyser). A catalyser C[·] is a context produced by the following
grammar:

C[·] ::= [·] | (νxy) C[·] | C[·] | JTKx

We illustrate the catalysers by the following example.

Example 1. Consider

C[·] = (νwx)(νuy)([·] | P1 | P2)

P1 = x?(z).(z!〈?〉.0 | 0)

P2 = y / l2.y!〈?〉.0

The context C[·] is a catalyser obtained by composing the characteristic processes
P1 and P2 of the session types T1 = ?(!Unit.end).end and T2 = ⊕{l1 : end, l2 :
!Unit.end}, respectively. �

Finally, we define ./{x,y}, a binary relation over processes which relates pro-
cesses prefixed by co-actions. This operator, differently from the original one
in [3], is parametrised by a pair of variables {x, y}, which are co-variables.

Definition 5 (./{x,y}). The duality ./{x,y} between input and output processes is de-
fined as follows:

x!〈v〉.P ./{x,y} y?(z).Q
x / {li : Pi}i∈I ./{x,y} y . {li : Qi}i∈I

We are now ready to give the formal definition of progress, based on [3, 7].

Definition 6 (Progress). A process P has progress if for all C[·] such that C[P] is
well typed, C[P] →∗ E[R] (where R is an input or an output) implies that there
exist C′[·], E′[·][·] and R′ such that C′[E[R]] →∗ E′[R][R′] and R ./{x,y} R′ for
some x and y such that (νxy) is a restriction in C′[E[R]].

7.1 Progress meets Lock Freedom
In this section we study the relation between progress and lock freedom for the
session π-calculus: first for closed terms and later for open ones.

Properties of Closed Terms Lock freedom and progress are tightly related for
closed terms, i.e., processes with no free variables, as the following shows.

Theorem 7 (Lock freedom and Progress). Let P be a session-typed closed pro-
cess. Then, P lock-free if and only if P has progress.

It follows as a corollary from Theorem 7 that lock freedom and progress prop-
erties coincide for closed terms.

Corollary 1 (Progress ⇔ Lock freedom). Let P be a well-typed closed process.
Then P is lock-free if and only if P has progress.

Properties of open terms Differently from the case of the closed terms, lock
freedom and progress intuitively do not coincide in the case of open terms.

For example, consider the following process:

P = x!〈?〉.x?(z).0

where x is an open session with a missing participant. Process P has progress, by
following Definition 6 but it is locked since it does not respect Definition 3.

Although the two properties do not coincide in the case of open terms, we can
still relate progress to lock freedom. The idea is to use catalysers in order to re-
duce the problem of checking progress for open terms to the problem of checking
progress (and lock freedom) for closed terms. The intuition for using catalysers
is that when a process is open, its type can provide us with some information
about how such a process can be put in a context such that the final composition
is closed. We formalise this idea with the notion of closure given below.

Definition 7 (Closure). Let P be such that Γ ` P. Then, the closure of P, denoted
by close(P), is the process C[P] where

C[·] = (νx̃y)
(

[·] |
∏

xi:Ti∈Γ

JTiKyi
)

Notice that, in the definition above all xi in the sequence x̃y correspond exactly
to the domain of Γ. The yi in x̃y are all different from xi and are the variables
used to create the characteristic processes from every type Ti. Below, we give an
example of how the closure of a process works.

Example 2. Consider the open process previously shown

P = x!〈?〉.x?(z).0

We can type P in a typing context Γ = x : !Unit.?Unit.end. Then, the closure of
P is defined as:

close(P) = (νxy)([P] | y?(z).y!〈?〉.0)

�

We now establish that checking the progress property for a process P is equiv-
alent to checking the progress property for its closure:

Theorem 8 (Closure Progress⇔ Progress). If P is a session-typed process, then
close(P) has progress if and only if P has progress.

Our main result is that the progress property of a process P and the lock free-
dom property of the closure of P coincide:

Theorem 9. (Progress ⇔ Closed Lock-Free) If P is well typed then P has
progress if and only if close(P) is lock-free.

Proof. It follows immediately from Theorem 8 and Corollary 1. �

8 Progress by Encoding and Lock Freedom

In this section we will describe a new way of guaranteeing progress in session
π- calculus, namely by using our encoding of session types into linear types and
the type system for lock freedom in the standard π-calculus [23, 26]. We start by
giving a background on the new types and type system for lock freedom.

Usage Types by Kobayashi

U ::= ioκ .U (used in input) ∅ (not usable)
oo
κ .U (used in output) (U1 | U2) (used in parallel)

T ::= U[T̃] (channel types) 〈li : Ti〉i∈I (variant type)

Let α range over input i or output o actions, where for simplicity, we have removed
`. The usage ∅ describes a channel that cannot be used at all, and we will often
omit it. Usages ioκ .U and oo

κ .U describe channels that can be used once for input
and output, respectively and then used according to the continuation usage U.
The obligation o and capability κ range over the set of natural numbers. The
usage U1 | U2 describes a channel that is used according to U1 by one process and
U2 by another processes in parallel.

Obligation and capability describe inter-channel dependencies. Citing [23, 25,
26], their relation may be described as:

• An obligation of level n must be fulfilled by using only capabilities of level
less than n. Said differently, an action of obligation n must be prefixed by
actions of capabilities less than n.

• For an action with capability of level n, there must exist a co-action with
obligation of level less than or equal to n.

Before commenting on the typing rules, we present some auxiliary notions. First,
the composition operation on types, denoted | , is based on the composition of
usages and is defined as follows:

〈li : Ti〉i∈I | 〈li : Ti〉i∈I = 〈li : Ti〉i∈I U1[T̃] | U2[T̃] = (U1 | U2)[T̃]

The generalisation of | to typing contexts, denoted (Γ1 | Γ2)(x), is defined as
expected. The unary operation ↑ t applied to usage U lifts its obligation level up
to t; it is inductively defined as:

↑ t ∅ = ∅ ↑ t αo
κ .U = αmax(o,t)

κ .U ↑ t (U1 | U2) = (↑t U1 | ↑
t U2)

The ↑ t is extended to types and typing contexts as expected. The notion of duality
on usage types is the same as the one presented in § 2.2 on linear types. Operator
“ ; ” in ∆ = x : [T]αo

κ ; Γ, used in rules (Tπ-In) and (Tπ-Out), is such that the
following hold, where y , x:

dom(∆) = {x} ∪ dom(Γ) ∆(x) =

αo
κ .U[T̃] if Γ(x) = U[T̃]

αo
κ[T̃] if x < dom(Γ)

∆(y) =↑κ+1 Γ(y)

The final required notion is that of a reliable usage. It builds upon the follow-
ing definition:

Definition 8. Let U be a usage. The input and output obligation levels (resp.
capability levels) of U, written obi(U) and obo(U) (resp. capi(U) and capo(U)),
are defined as follows:

obα(αo
κ .U) = o

capα(αo
κ .U) = κ

obα(U1 | U2) = min(obα(U1), obα(U2))
capα(U1 | U2) = min(capα(U1), capα(U2))

The definition of reliable usages depends on a reduction relation on usages,
noted U → U′. Intuitively, U → U′ means that if a channel of usage U is used
for communication, then after the communication occurs, the channel should be
used according to usage U′. Thus, e.g., ioκ .U1 | io

′

κ′ .U2 reduces to U1 | U2.

Definition 9 (Reliability). We write conα(U) when obα(U) ≤ capα(U). We write
con(U) when coni(U) and cono(U) hold. Usage U is reliable, noted rel(U), if
con(U′) holds ∀U′ such that U →∗ U′.

Typing Rules The typing rules for the standard π- calculus with usage types
are in Fig. 10, and are taken from Kobayashi’s work [26]. Rule (Uπ- Res) states
that process (νx)P is well typed if the usage for x is reliable (cf. Definition 9).
Rule (Uπ-Par) states that the parallel composition of processes is well typed in the

(Uπ-Res)
Γ, x : U[T̃] ` P rel(U)

Γ ` (νx)P

(Uπ-Par)
Γ1 ` P Γ2 ` Q

Γ1 | Γ2 ` P | Q

(Uπ-In)
Γ, ỹ : T̃ ` P

x : i0κ[T̃] ; Γ ` x?(ỹ).P

(Uπ-Out)
Γ1 ` ṽ : T̃ Γ2 ` P

x : o0
κ[T̃] ; (Γ1 | Γ2) ` x!〈ṽ〉.P

Figure 10: Typing rules for the π-calculus with usage types

composition of their corresponding typing contexts. Rules (Uπ- In) and (Tπ- Out)
type input and output processes in a typing context where the “ ; ” operator is used
in order to increase the obligation level of the channels in continuation P. The rest
of the rules is the same as in Fig. 5.

The next theorems imply that well-typed processes by the type system in
Fig. 10 are deadlock-free.

Theorem 10 (Type Preservation for Usage Types). If Γ ` P and P → Q, then
Γ′ ` Q for some Γ′ such that Γ→ Γ′.

Theorem 11 (Lock Freedom). If ∅ ` P, then P→ Q for some Q.

Corollary 2. If ∅ ` P, then P is lock-free.

A Type System for Progress In this section we use the encoding of session
types into usage types, the results of the previous section relating progress and
lock freedom and the type system for lock freedom by Kobayashi to guarantee
progress in the π-calculus with sessions. The encoding of session types into usage
types is the same as in Fig. 7.

We start with an auxiliary lemma which follow directly from the encoding and
the definition of lock freedom in the π-calculus with and without sessions.

Lemma 8. A session process P is lock-free if and only if JPK f is lock-free.

Theorem 12 (Progress in Sessions). Let P be a session process such that Γ ` P.
If ∅ ` Jclose(P)K f , then P has progress.

Proof. Let Γ ` P and ∅ ` Jclose(P)K f . Then, by Theorem 11 and Corollary 2 this
means that Jclose(P)K f is lock-free. By Lemma 8 also close(P) is lock-free. By
Theorem 9 we have that P has progress. �

To conclude, we consider below a corner-case example to illustrate our tech-
nique and also to compare it with already existing works in the literature.

Example 3. Consider the session process

(νa1a2)(νb1b2)
(

a1?(x). b1!〈x〉. b1?(y). a1!〈y〉 | a2!〈?〉. b2?(z). b2!〈?〉. a2?(z)
)

This process satisfies the progress property, but it is rejected by the type systems
in [3] and [7]. This is because, in the two processes in parallel, there is a circular
dependency between channels that such type systems cannot handle. Let us now
consider its encoding in the π-calculus, given as the process:

(νa)(νb)

 a?(x, c1). (νc2)
(

b!〈x, c2〉. c2?(y). c1!〈y〉
)
|

(νc1)
(
a!〈?, c1〉. b?(z, c2). c2!〈?〉. c1?(z)

)
This process is well typed in Kobayashi’s type system. The types assigned to
the channels are: a : [Unit,T1] i00 | o

0
0 and b : [Unit,T2] o1

1 | i
1
1 such that T1 =

[Unit] o1
3 | i

3
1 and T2 = [Unit] i20 | o

0
2. Hence, we conclude that it has progress. �

9 Related Work
Encoding and Expressiveness Results The idea of encoding session types into
π-calculus linear types is not new. Kobayashi [26] was the first to propose such
an encoding, but he did not prove any properties and did not investigate its robust-
ness; moreover, as certain key features of session types do not clearly show up in
the encoding, like duality, the faithfulness of the encoding was unclear. Later on,
Dardha et al. [12] studied such encoding by showing its soundness and complete-
ness w.r.t typing and reduction. Advanced features, such as subtyping, polymor-
phism and higher-order communication are introduced to prove the robustness of
the encoding. In [10, 9], the author investigates also recursion. The interesting
part of [9] is the use of the complement function as opposed to the inductive du-
ality function · since the latter does not commute with the unfolding of recursive
session types, as shown in [2, 1]. Demangeon and Honda [14] provide a subtyping
theory for a π-calculus augmented with branch and select constructs and show an
encoding of the session π-calculus. They prove soundness and full abstraction of
the encoding. The main differences w.r.t our work are: i) the target language is
closer to the session π-calculus having branch and select constructs, and a refined
subtyping theory is provided; instead, we use the variant construct and focus on
the encoding of the session π-calculus into the standard typed π-calculus in order
to exploit the theory of the latter. ii) We study the encoding in a systematic way as
a means to formally derive session types and their properties, in order to provide

a methodology for the treatment of session types and their extensions without the
need to establish the underlying theory.

Other expressiveness results regarding session types include the work by
Caires and Pfenning [4]. They present a type system for the π-calculus that corre-
sponds to the standard sequent calculus proof system for dual intuitionistic linear
logic. They give an interpretation of intuitionistic linear logic propositions as a
form of session types. Another work is Wadler’s [41] that, following [4], pro-
poses a calculus where propositions of classical linear logic correspond to session
types.

Igarashi and Kobayashi [22] have developed a generic type system (GTS) for
the π-calculus from which several type systems can be obtained as instances of the
generic one, by varying certain parameters. Gay, Gesbert and Ravara [17] define
an interpretation from session types and terms into GTS by proving operational
correspondence and correctness of the encoding. However, as the authors state,
the encoding they present is very complex and deriving properties of sessions
passing through GTS would be more difficult than proving them directly.

Progress, Deadlock Freedom and Lock Freedom Progress for session π-cal-
culus has been studied by several works [15, 3, 7, 30, 8, 6]. In [30] the author
defines a session type system for the progress property by using Kobayashi’s obli-
gation and capability levels. In [15, 3, 8] progress is studied for multiparty session
types. Padovani studies the linear π- calculus and the encoding of session types
into linear π- calculus types to define a type reconstruction algorithm for session
types in [32] and to guarantee deadlock freedom for session π-processes in [31].
A very recent work [13] studies the formal relationship between the class of dead-
lock free session processes induced by the correspondence of session types with
linear logic [4] and the class of deadlock free session processes induced by the
encoding and Kobayashi’s type system for deadlock freedom [25].

10 Conclusions and Future Work
This paper is based on the works by Dardha et al. [10, 12, 6]. It first studies an en-
coding of the session π-calculus into the standard π-calculus. This encoding was
first proposed by Kobayashi [26] and later on studied by Dardha et al. [12, 10].
It uses linear types, variant types and the continuation-passing principle. Linear
types [27] force a channel to be used exactly once. Variant types [35, 37] are a
labelled form of disjoint union of types. We show that the encoding is faithful,
in that it allows us to derive properties of the session π- calculus by exploiting
the corresponding ones of the linear π- calculus. We then show that the encod-
ing is robust, by analysing a few non-trivial extensions to session types, namely

subtyping, polymorphism and higher-order communication. Finally, we test our
encoding on more advanced properties, by following [6, 10], such as progress and
lock freedom. In this matter, we start by proving that, for closed terms, i.e., terms
with no free variables, lock freedom and progress coincide on the session π- cal-
culus. For open terms, i.e., terms containing free variables, we show that these
notions do not coincide. However, we define a procedure for closing a process
by using the notions of catalyser and characteristic process. Then, we prove that
progress and lock freedom coincide for close(P), which implies progress for P,
thus making progress a compositional form of lock freedom. Ultimately, we use
our encoding and the type system for lock freedom in standard π-calculus [23], to
obtain a more accurate analysis of progress in the session π-calculus, as shown in
[6, 10].

The benefits of the encoding include the elimination of the redundancy intro-
duced both in the syntax of types and terms in the session π- calculus, and the
derivation of properties (such as subject reduction) as straightforward corollaries
by exploiting the corresponding ones in the standard typed π-calculus, thus elimi-
nating also the redundancy in the proofs. Moreover, the robustness of the encoding
allows us to easily obtain extensions of the session π- calculus by exploiting the
theory of the standard π-calculus, which permits large reusability. In particular,
this holds for more advanced properties like progress and lock freedom.

As future work, we would like to investigate whether our approach can be
taken a step further, by accommodating the notion of causality needed to capture
multiparty communication behaviour [21]. Next, we would like to implement a
tool that given in input a session process, performs the encoding into standard
typed π- calculus process and uses Kobayashi’s tool TyPiCal [39] to check for
lock freedom. Hence, by our theoretical results on the matter, we can conclude if
the original process satisfies the progress property or not.

Acknowledgements I am grateful to Davide Sangiorgi, who supervised my PhD
thesis on which this paper is based. The research for this work was carried out
while I was a PhD student at the University of Bologna and part of the INRIA
Focus Team, and during my one-year visit at the IT University of Copenhagen,
hosted by Marco Carbone. I am also thankful to all my co-authors mentioned in
the introduction, from whom I learned a lot.

Currently, I am a postdoc at the University of Glasgow and supported by the
UK EPSRC project From Data Types to Session Types: A Basis for Concurrency
and Distribution (ABCD) (EP/K034413/1).

References
[1] Giovanni Bernardi, Ornela Dardha, Simon J. Gay, and Dimitrios Kouzapas. On

duality relations for session types. In TGC’14, volume 8902 of LNCS, pages 51–66.
Springer, 2014.

[2] Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts to model
session types (extended abstract). In CONCUR’14, volume 8704 of LNCS, pages
387–401. Springer, 2014.

[3] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola
Dezani-Ciancaglini, and Nobuko Yoshida. Global progress in dynamically inter-
leaved multiparty sessions. In CONCUR’08, volume 5201 of LNCS, pages 418–433.
Springer, 2008.

[4] Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions.
In CONCUR’10, volume 6269 of LNCS, pages 222–236. Springer, 2010.

[5] Luís Caires and Hugo Torres Vieira. Conversation types. Theor. Comput. Sci.,
411(51-52):4399–4440, 2010.

[6] Marco Carbone, Ornela Dardha, and Fabrizio Montesi. Progress as composi-
tional lock-freedom. In COORDINATION’14, volume 8459 of LNCS, pages 49–64.
Springer, 2014.

[7] Marco Carbone and Søren Debois. A graphical approach to progress for structured
communication in web services. In ICE’10, volume 38 of EPTCS, pages 13–27,
2010.

[8] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko
Yoshida. Inference of global progress properties for dynamically interleaved mul-
tiparty sessions. In COORDINATION’13, volume 7890 of LNCS, pages 45–59.
Springer, 2013.

[9] Ornela Dardha. Recursive session types revisited. In BEAT’14, volume 162 of
EPTCS, pages 27–34, 2014.

[10] Ornela Dardha. Type Systems for Distributed Programs: Components and Sessions.
Thesis, Università degli studi di Bologna, May 2014.

[11] Ornela Dardha, Elena Giachino, and Michael Lienhardt. A type system for compo-
nents. In SEFM’13, volume 8137 of LNCS, pages 167–181. Springer, 2013.

[12] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In
PPDP’12, pages 139–150, New York, NY, USA, 2012. ACM.

[13] Ornela Dardha and Jorge A. Pérez. Comparing deadlock-free session typed pro-
cesses. In EXPRESS/SOS’15, volume 190 of EPTCS, pages 1–15, 2015.

[14] Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-calculus
with linear types. In CONCUR’11, volume 6901 of LNCS, pages 280–296. Springer,
2011.

[15] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko Yoshida. On
progress for structured communications. In TGC’07, volume 4912, pages 257–275.
Springer, 2008.

[16] Simon J. Gay. Bounded polymorphism in session types. Mathematical Structures
in Computer Science, 18(5):895–930, 2008.

[17] Simon J. Gay, Nils Gesbert, and António Ravara. Session types as generic process
types. In EXPRESS/SOS’14, volume 160 of EPTCS, pages 94–110, 2014.

[18] Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus.
Acta Informatica, 42(2-3):191–225, 2005.

[19] Kohei Honda. Types for dyadic interaction. In CONCUR’93, volume 715 of LNCS,
pages 509–523. Springer, 1993.

[20] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language prim-
itives and type discipline for structured communication-based programming. In
ESOP’98, volume 1381 of LNCS, pages 122–138. Springer, 1998.

[21] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous ses-
sion types. In POPL’08, pages 273–284. ACM, 2008.

[22] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus.
Theo. Comput. Sci., 311(1-3):121–163, 2004.

[23] Naoki Kobayashi. A type system for lock-free processes. Information and Compu-
tation, 177(2):122–159, 2002.

[24] Naoki Kobayashi. Type systems for concurrent programs. In 10th Anniversary
Colloquium of UNU/IIST, pages 439–453, 2002.

[25] Naoki Kobayashi. A new type system for deadlock-free processes. In CONCUR’06,
volume 4137 of LNCS, pages 233–247. Springer, 2006.

[26] Naoki Kobayashi. Type systems for concurrent programs. Extended version of [24],
Tohoku University, 2007.

[27] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-
calculus. In POPL’96, pages 358–371. ACM, 1996.

[28] Robin Milner. The polyadic pi-calculus: a tutorial. Technical report, Logic and
Algebra of Specification, 1991.

[29] Dimitris Mostrous and Nobuko Yoshida. Two session typing systems for higher-
order mobile processes. In TLCA’07, volume 4583 of LNCS, pages 321–335.
Springer, 2007.

[30] Luca Padovani. From lock freedom to progress using session types. In PLACES’13,
volume 137 of EPTCS, pages 3–19, 2013.

[31] Luca Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In CSL-
LICS’14, pages 72:1–72:10. ACM, 2014.

[32] Luca Padovani. Type Reconstruction for the Linear π-Calculus with Composite
and Equi-Recursive Types. In FoSSaCS’14, volume 8412 of LNCS, pages 88–102.
Springer, 2014.

[33] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile pro-
cesses. In LICS’93, pages 376–385. IEEE Computer Society, 1993.

[34] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equivalence in the polymor-
phic pi-calculus. In POPL’97, pages 242–255. ACM, 1997.

[35] Davide Sangiorgi. An interpretation of typed objects into typed pi-calculus. Infor-
mation and Computation, 143(1):34–73, 1998.

[36] Davide Sangiorgi. Termination of processes. Mathematical Structures in Computer
Science, 16(1):1–39, 2006.

[37] Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile processes.
Cambridge University Press, 2001.

[38] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based language
and its typing system. In PARLE’94, volume 817 of LNCS, pages 398–413. Springer,
1994.

[39] TYPICAL. Type-based static analyzer for the pi-calculus. http://www-kb.is.s.
u-tokyo.ac.jp/~koba/typical/.

[40] Vasco Thudichum Vasconcelos. Fundamentals of session types. Information and
Computation, 217:52–70, 2012.

[41] Philip Wadler. Propositions as sessions. In ICFP’12, pages 273–286. ACM, 2012.

http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/
http://www-kb.is.s.u-tokyo.ac.jp/~koba/typical/

	Introduction
	Background on the - calculus
	Session Types
	- Types

	Encoding session types into standard - types
	Encoding of Session Types
	Encoding of Session Processes
	Properties of the Encoding
	Session Communication by Encoding

	Subtyping
	Polymorphism
	Parametric Polymorphism
	Bounded Polymorphism

	Higher-Order Communication
	Progress and Lock Freedom for Sessions
	Progress meets Lock Freedom

	Progress by Encoding and Lock Freedom
	Related Work
	Conclusions and Future Work

