
A New Linear Logic for Deadlock-Free
Session-Typed Processes ?

Ornela Dardha and Simon J. Gay

School of Computing Science, University of Glasgow, United Kingdom
{Ornela.Dardha,Simon.Gay}@glasgow.ac.uk

Abstract. The π-calculus, viewed as a core concurrent programming
language, has been used as the target of much research on type systems
for concurrency. In this paper we propose a new type system for deadlock-
free session-typed π-calculus processes, by integrating two separate lines
of work. The first is the propositions-as-types approach by Caires and
Pfenning, which provides a linear logic foundation for session types and
guarantees deadlock-freedom by forbidding cyclic process connections.
The second is Kobayashi’s approach in which types are annotated with
priorities so that the type system can check whether or not processes
contain genuine cyclic dependencies between communication operations.
We combine these two techniques for the first time, and define a new
and more expressive variant of classical linear logic with a proof assign-
ment that gives a session type system with Kobayashi-style priorities.
This can be seen in three ways: (i) as a new linear logic in which cyclic
structures can be derived and a Cycle-elimination theorem generalises
Cut-elimination; (ii) as a logically-based session type system, which is
more expressive than Caires and Pfenning’s; (iii) as a logical foundation
for Kobayashi’s system, bringing it into the sphere of the propositions-
as-types paradigm.

1 Introduction

The Curry-Howard correspondence, or propositions-as-types paradigm, provides
a canonical logical foundation for functional programming [42]. It identifies types
with logical propositions, programs with proofs, and computation with proof
normalisation. It was natural to ask for a similar account of concurrent pro-
gramming, and this question was brought into focus by the discovery of linear
logic [24] and Girard’s explicit suggestion that it should have some connection
with concurrent computation. Several attempts were made to relate π-calculus
processes to the proof nets of classical linear logic [1,8], and to relate CCS-like
processes to the ∗-autonomous categories that provide semantics for classical
linear logic [2]. However, this work did not result in a convincing propositions-
as-types framework for concurrency, and did not continue beyond the 1990s.
? Supported by the UK EPSRC grant EP/K034413/1, “From Data Types to Session
Types: A Basis for Concurrency and Distribution (ABCD)”, and by COST Action
IC1201, “Behavioural Types for Reliable Large-Scale Software Systems (BETTY)”.

1

fro
m

 A
n-

2

a0

b0

A n-1

A0

A
1

P0

a
1

b
1

P
1

a n-1

b n-1

P n-1
c0d0

d
1

c
1

c n-1

d n-1

data transmission

collector process

to A
2

agent
process

Fig. 1. Cyclic Scheduler

Meanwhile, Honda et al. [26,27,38] developed session types as a formalism for
statically checking that messages have the correct types and sequence according
to a communication protocol. Research on session types developed and matured
over several years, eventually inspiring Caires and Pfenning [12] to discover a
Curry-Howard correspondence between dual intuitionistic linear logic [7] and a
form of π-calculus with session types [38]. Wadler [41] subsequently gave an al-
ternative formulation based on classical linear logic, and related it to existing
work on session types for functional languages [23]. The Caires-Pfenning ap-
proach has been widely accepted as a propositions-as-types theory of concurrent
programming, as well as providing a logical foundation for session types.

Caires and Pfenning’s type system guarantees deadlock-freedom by forbid-
ding cyclic process structures. It provides a logical foundation for deadlock-free
session processes, complementing previous approaches to deadlock-freedom in
session type systems [9,15,21,22]. The logical approach to session types has been
extended in many ways, including features such as dependent types [39], fail-
ures and non-determinism [11], sharing and races [6]. All this work relies on the
acyclicity condition. However, rejecting cyclic process structures is unnecessar-
ily strict: they are a necessary, but not sufficient, condition for the existence of
deadlocked communication operations. As we will show in Ex. 1 (Fig. 1), there
are deadlock-free processes that can naturally be implemented in a cyclic way,
but are rejected by Caires and Pfenning’s type system.

Our contribution is to define a new logic, priority-based linear logic (PLL),
and formulate it as a type system for priority-based CP (PCP), which is a more
expressive class of processes than Wadler’s CP [41]. This is the first Curry-
Howard correspondence that allows cyclic interconnected processes, while still
ensuring deadlock-freedom. The key idea is that PLL includes conditions on
inter-channel dependencies based on Kobayashi’s type systems [29,30,32]. Our
work can be viewed in three ways: (i) as a new linear logic in which cyclic proof
structures can be derived; (ii) as an extension of Caires-Pfenning type systems so
that they accept more processes, while maintaining the strong logical foundation;
(iii) as a logical foundation for Kobayashi-style type systems.

An example of a deadlock-free cyclic process is Milner’s well-known scheduler
[35], described in the following Ex. 1.

2

Example 1 (Cyclic Scheduler, Fig. 1). A set of agents A0, ..., An−1, for n > 1,
is scheduled to perform a certain task in cyclic order, starting with agent A0.
For all i ∈ {1, ..., n− 1}, agent Ai sends the result of computation to a collector
process Pi, before transmitting further data to agent A(i+1) mod n. At the end
of the round, A0 sends the final result to P0. Here we define a finite version of
Milner’s scheduler, which executes one round of communication.

Sched , ...(νaibi)...(νcid(i+1) mod n)
(
A0 | A1 | ... | An−1 | P0 | P1 | ... | Pn−1

)
A0 , c0[n0].d0(x0).a0[m0].close0
Ai , di(xi).ai[mi].ci[ni].closei i ∈ {1, ..., n− 1}
Pi , bi(yi).Qi i ∈ {0, ..., n− 1}

Prefix c0[n0] denotes an output on c0, and d0(x0) an input on d0. For now, let
m and n denote data. Process closei closes the channels used by Ai: the details
of this closure are irrelevant here (however, they are as in processes Q and R in
Ex. 2). Process Qi uses the message received from Ai, in internal computation.
The construct (νab) creates two channel endpoints a and b and binds them
together. The system Sched is deadlock-free because A1, ..., An−1 each wait for a
message from the previous Ai before sending, and A0 sends the initial message.

Sched is not typable in the original type systems by Caires-Pfenning and
Wadler. To do that, it would be necessary to break A0 into two parallel agents
A′0 , c0[n0].closec0 and A′′0 , d0(x0).a0[m0].closed0,a0 . This changes the design
of the system, yielding a different one. Moreover, if the scheduler continues into
a second round of communication, this redesign is not possible because of the
potential dependency from the input on d0 to the next output on c0. However,
Sched is typable in PCP; we will show the type assignment at the end of § 2.

There is a natural question at this point: given that the cyclic scheduler is
deadlock-free, is it possible to encode its semantics in CP, thus eliminating the
need for PCP? It is possible to define a centralised agent A that communicates
with all the collectors Pi, resulting in a system that is semantically equivalent to
our Sched. However, such an encoding has a global character, and changes the
structure of the overall system from distributed to centralised. In programming
terms, it corresponds to changing the software design, as we pointed out in Ex.1,
and ultimately the software architecture, which is not always desirable or even
feasible. The aim of PCP is to generalise CP so that deadlock-free processes
can be constructed with their natural structure. We would want any encoding
of PCP into CP to be structure-preserving, which would mean translating the
Cycle rule (given in Fig. 2) homomorphically; this is clearly impossible.

Contributions and Structure of the Paper In § 2 we define priority-based
linear logic (PLL), which extends classical linear logic (CLL) with priorities at-
tached to propositions. These priorities are based on Kobayashi’s annotations
for deadlock freedom [32]. By following the propositions-as-types paradigm, we
define a term assignment for PLL proofs, resulting in priority-based classical
processes (PCP), which extends Wadler’s CP [41] with Mix and Cycle rules
(Fig.2). In §3 we define an operational semantics for PCP. In §4 we prove Cycle-
elimination (Thm. 1) for PLL, analogous to the standard Cut-elimination theo-

3

rem for CLL. Consequently, the results for PCP are subject reduction (Thm. 2),
top-level deadlock-freedom (Thm. 3), and full deadlock-freedom for closed pro-
cesses (Thm. 4). In § 5 we discuss related work and conclude the paper.

2 PCP: Classical Processes with Mix and Cycle

Priority-based CP (PCP) follows the style of Wadler’s Classical Processes (CP)
[41], with details inspired by Carbone et al. [14] and Caires and Pérez [11].

Types We start with types, which are based on CLL propositions. Let A,B
range over types, given in Def. 1. Let o, κ ∈ N∪{ω} range over priorities, which
are used to annotate types. Let ω be a special element such that o < ω for all
o ∈ N. Often, we will omit ω. We will explain priorities later in this section.

Definition 1 (Types). Types (A,B) are given by:

A,B ::= ⊥o | 1o | A⊗oB | AOoB | ⊕o {li : Ai}i∈I | &o{li : Ai}i∈I | ?oA | !oA

⊥o and 1o are associated with channel endpoints that are ready to be closed.
A⊗oB (respectively, AOoB) is associated with a channel endpoint that first
outputs (respectively, inputs) a channel of type A and then proceeds as B.
⊕o{li : Ai}i∈I is associated with a channel endpoint over which we can select a
label from {li}i∈I , and proceed as Ai. Dually, &o{li : Ai}i∈I is associated with
a channel endpoint that can offer a set of labelled types. ?oA types a collection
of clients requesting A. Dually, !oA types a server repeatedly accepting A.

Duality on types is total and is given in Def. 2. It preserves priorities of types.

Definition 2 (Duality). The duality function (·)⊥ on types is given by:

(AOoB)
⊥
= A⊥⊗oB⊥ (⊥o)

⊥
= 1o

(A⊗oB)
⊥
= A⊥OoB⊥ (1o)

⊥
= ⊥o

(&o{li : Ai}i∈I)⊥ = ⊕o{li : Ai⊥}i∈I ?oA⊥ = !oA⊥

(⊕o{li : Ai}i∈I)⊥ = &o{li : Ai⊥}i∈I !oA⊥ = ?oA⊥

Processes Let P,Q range over processes, given in Def. 3. Let x, y range over
channel endpoints, and m,n over channel endpoints of type either ⊥o or 1o.

Definition 3 (Processes). Processes (P,Q) are given by:

P,Q ::= x[y].P (output) 0 (inaction)
x(y).P (input) P | Q (composition)
x / lj .P (selection) (νxAy)P (session restriction)
x . {li : Pi}i∈I (branching) x[].0 (empty output)
x→yA (forwarding) x().P (empty input)

Process x[y].P (respectively, x(y).P) outputs (respectively, inputs) y on channel
endpoint x, and proceeds as P . Process x/lj .P uses x to select lj from a labelled
choice process, typically being x. {li : Pi}i∈I , and triggers Pj ; labels indexed by

4

the finite set I are pairwise distinct. Process x→ yA forwards communications
from x to y, the latter having type A. Processes also include the inaction process
0, the parallel composition of P and Q, denoted P | Q, and the double restriction
constructor (νxAy)P : the intention is that x and y denote dual session channel
endpoints in P , and A is the type of x. Processes x[].0 and x().P are the empty
output and empty input, respectively. They denote the closure of a session from
the viewpoint of each of the two communicating participants.

Notions of bound/free names in processes are standard; we write fn(P) to
denote the set of free names of P . Also, we write P{x/z} to denote the (capture-
avoiding) substitution of x for the free occurrences of z in P . Finally, we let x̃,
which is different from x, denote a sequence x1, . . . , xn for n > 0.

Typing Rules Typing contexts, ranged over by Γ,∆,Θ, are sets of typing
assumptions x :A. We write Γ,∆ for union, requiring the contexts to be disjoint.
A typing judgement P ` Γ means “process P is well typed using context Γ ”.

Before presenting the typing rules, we need some auxiliary definitions. Our
priorities are based on the annotations used by Kobayashi [32], but simplified to
single priorities à la Padovani [37]. They obey the following laws:

(i) An action of priority o must be prefixed only by actions of priorities strictly
smaller than o.

(ii) Communication requires equal priorities for the complementary actions.

Definition 4 (Priority). The priority function pr(·) on types is given by:

pr(AOoB) = pr(A⊗oB) = o pr(⊥o) = pr(1o) = o
pr(⊕o{li : Ai}i∈I) = pr(&o{li : Ai}i∈I) = o pr(?oA) = pr(!oA) = o

Definition 5 (Lift). Let t ∈ N. The lift operator ↑t (·) on types is given by:

↑t(AOoB) = (↑tA)O(o+t) (↑tB) ↑t⊥o = 1(o+t)

↑t(A⊗oB) = (↑tA)⊗(o+t) (↑tB) ↑t 1o = ⊥(o+t)

↑t (&o{li : Ai}i∈I) = &(o+t){li : ↑tAi}i∈I ↑t (?oA) = ?(o+t) (↑tA)
↑t (⊕o{li : Ai}i∈I) = ⊕(o+t){li : ↑tAi}i∈I ↑t (!oA) = !(o+t) (↑tA)

We assume ω + t = ω for all t ∈ N.
The operator ↑t is extended component-wise to typing contexts: ↑t Γ .

The typing rules are given in Fig.2. Ax states that the forwarding process x→yA

is well typed if x and y have dual types, respectively A⊥ and A. Mix types the
parallel composition of two processes P andQ in the union of their disjoint typing
contexts. Cycle is our key typing rule; it states that the restriction process is
well typed, if the endpoints x and y have dual types, respectively A and A⊥.
By Def. 2, A and A⊥ also have the same priorities, enforcing law (ii) above. In
classical logic this rule would be unsound, but in PLL it allows deadlock-free
cycles. Rule ∅ states that inaction is well typed in the empty context. Rules 1
and ⊥ type channel closure actions from the viewpoint of each participant. Rule
O (respectively ⊗) types an input process x(y).P (respectively, output process
x[y].P), with y bound and x of type AOoB (respectively, A⊗oB). The priority

5

x→yA ` x :A⊥, y :A
Ax

P ` Γ Q ` ∆
P | Q ` Γ,∆ Mix

P ` Γ, x :A, y :A⊥

(νxAy)P ` Γ
Cycle

0 ` ∅ ∅ x[].0 ` x :1o 1
P ` Γ o < pr(Γ)

x().P ` x :⊥o, Γ
⊥

P ` Γ, y :A, x :B o < pr(Γ)

x(y).P ` Γ, x :AOoB
O

P ` Γ, y :A, x :B o < pr(Γ)

x[y].P ` Γ, x :A⊗oB
⊗

∀i ∈ I.(Pi ` Γ, x :Ai) o < pr(Γ)

x . {li : Pi}i∈I ` Γ, x :&o{li : Ai}i∈I
&

P ` Γ, x :Aj j ∈ I o < pr(Γ)

x / lj .P ` Γ, x :⊕o{li : Ai}i∈I
⊕

P ` ?Γ, y :A o < pr(?Γ)

!x(y).P ` ?Γ, x : !oA
!

P ` Γ, y :A o < pr(Γ)

?x[y].P ` Γ, x : ?oA ?

P ` Γ
P ` Γ, x : ?oA W

P ` Γ, y : ?κA, z : ?κ
′
A o ≤ κ o ≤ κ′ o < pr(Γ)

P{x/y, x/z} ` Γ, x : ?oA C

Fig. 2. Typing rules for PCP.

o is strictly smaller than any priorities in the continuation process P , enforcing
law (i) above. This is captured by o < pr(Γ) in the premises of both rules,
abbreviating “for all z ∈ dom(Γ), o < pr(Γ (z))”. Rules & and ⊕ type external
and internal choice, respectively, and follow the previous two rules. Rule ! types
a server and states that if P communicates along y following protocol A, then
!x(y).P communicates along x following protocol !oA. The three remaining rules
type different numbers of clients. Rule ? is for a single client: if P communicates
along y following A, then ?x[y].P communicates along x following ?oA. Rule W
is for no client: if P does not communicate along any channel following A, then
it may be regarded as communicating along x following ?oA, for some priority
o. Rule C is for multiple clients: if P communicates along y following ?κA, and z
following protocol ?κ

′
A, then P{x/y, x/z} communicates along a single channel

x following ?oA, where o 6 κ and o 6 κ′. The last two conditions are necessary
to deal with some cases in the proof of Cycle-elimination (Thm. 1).

Lifting preserves typability, by an easy induction on typing derivations.

Lemma 1. If P ` Γ then P ` ↑t Γ .

We will use this result in the form of an admissible rule:
P ` Γ
P ` ↑t Γ

↑t

The Design of PCP We have included Mix and Cycle, which allow derivation
of both the standard Cut and the Multicut by Abramsky et al. [2].

` Γ,A1, . . . , An ` ∆,A⊥1 , . . . , A⊥n
` Γ,∆,A1, . . . , An, A

⊥
1 , . . . , A

⊥
n

Mix

` Γ,∆ Cyclen

}
Multicut

6

Conversely, Mix is the nullary case of Multicut, and Cycle can be derived from
Ax and Multicut:

` Γ,A,A⊥ ` A⊥, A
Ax

` Γ Multicut

}
Cycle

Having included Mix, we choose Cycle instead of Multicut, as Cycle is more
primitive.

In the presence of Mix and Cycle, there is an isomorphism between A⊗ B
and AOB in CLL. Both A⊗B (AOB and AOB (A⊗B, are derivable,
where C (D , C⊥ O D in CLL. Equivalently, both (A⊥ O B⊥) O (A O B)
and (A⊥ ⊗B⊥) O (A⊗B) are derivable. For simplicity, let pr(A) = pr(B) = ω;
by duality also pr(A⊥) = pr(B⊥) = ω.

` A⊥, A ` B⊥, B
` A⊥, B⊥, A,B

o1 < ω

Mix

` A⊥Oo1 B⊥, A,B
o2 < o1

O

` A⊥Oo1 B⊥, AOo2 B
O

` (A⊥Oo1 B⊥)Oo (AOo2 B)
O

` A⊥, A ` B⊥, B
` A⊥, B⊥, A,B

o1 < ω

Mix

` A⊥⊗o1 B⊥, A,B
⊗

` A⊥, A ` B⊥, B
` A⊥, B⊥, A,B

o2 < ω

Mix

` A⊥, B⊥, A⊗o2 B
⊗

` A⊥⊗o1 B⊥, A⊗o2 B,A⊥, A,B⊥, B
Mix

` A⊥⊗o1 B⊥, A⊗o2 B
Cycle2

` (A⊥⊗o1 B⊥)Oo (A⊗o2 B)
O

The above derivations without priorities show the isomorphism between A⊗B
and A O B in CLL, which does not hold in our PLL, in particular as o1 6= o2.
The distinction between ⊗ and O, preserves the distinction between output and
input in the term assignment. However, to simplify derivations, both typing rules
(Fig.2) have the same form. The usual tensor rule, where there are two separate
derivations in the premise rather than just one, is derivable by using Mix.

Our type system performs priority-checking. Priorities can be inferred, as
in Kobayashi’s type system [32] and the tool TyPiCal [28]. We have opted for
priority checking over priority inference, as the presentation is more elegant.

The following two examples illustrate the use of priorities. We first establish
the structure of the typing derivation, then calculate the priorities. We conclude
the section by showing the typing for the cyclic scheduler from § 1.

Example 2 (Cyclic process: deadlock-free). Consider the following process

P , (νx1y1)(νx2y2)
[
x1(v).x2(w).R | y1[n].y2[n′].Q

]
where R , x1().v().x2().w().0 andQ , y1[].0 | n[].0 | y2[].0 | n′[].0. First, we
show the typing derivation for the left-hand side of the parallel, x1(v).x2(w).R:

0 ` ∅ κ4 < κ3 < κ2 < κ1
∅

R ` x1 : ⊥κ4 v : ⊥κ3 , x2 : ⊥κ2 , w : ⊥κ1 o1 < κ4
⊥4

x2(w).R ` x1 : ⊥κ4 , v : ⊥κ3 , x2 : ⊥κ1 Oo1 ⊥κ2
O

o2 < o1

x1(v).x2(w).R ` x2 : ⊥κ1 Oo1 ⊥κ2 , x1 : ⊥κ3 Oo2 ⊥κ4
O

(1)

7

Now, the typing derivation for the right-hand side of the parallel, y1[n].y2[n′].Q,
and recall that κ4 < κ3 < κ2 < κ1:

y1[].0 ` y1 : 1κ4
1

n[].0 ` n : 1κ3
1

y2[].0 ` y1 : 1κ2
1

n′[].0 ` n′ : 1κ1
1

y1[].0 | n[].0 | y2[].0 | n′[].0 ` y1 : 1κ4 ,n : 1κ3 , y2 : 1
κ2 ,n′ : 1κ1 o3 < κ4

Mix3

y2[n
′].Q ` y1 : 1κ4 ,n : 1κ3 , y2 : 1

κ1 ⊗o3 1κ2 o4 < o3
⊗

y1[n].y2[n
′].Q ` y2 : 1κ1 ⊗o3 1κ2 , y1 : 1

κ3 ⊗o4 1κ4
⊗

(2)
Finally, the typing derivation for process P is as follows:

(1) (2)

x1(v).x2(w).R | y1[n].y2[n′].Q `
x2 : ⊥κ1 Oo1 ⊥κ2 , x1 : ⊥κ3 Oo2 ⊥κ4 , y2 : 1

κ1 ⊗o3 1κ2 , y1 : 1
κ3 ⊗o4 1κ4

o1 = o3

Mix

(νx2y2)
[
x1(v).x2(w).R | y1[n].y2[n′].Q

]
`

x1 : ⊥κ3 Oo2 ⊥κ4 , y1 : 1
κ3 ⊗o4 1κ4 o2 = o4

Cycle

(νx1y1)(νx2y2)
[
x1(v).x2(w).R | y1[n].y2[n′].Q

]
` ∅

Cycle

The system of equations

o2 < o1 o4 < o3 o1 = o3 o2 = o4

can be solved by the assignment o1 = o3 = 1 and o2 = o4 = 0.

Example 3 (Cyclic process: deadlocked!). Now consider the process

P ′ = (νx1y1)(νx2y2)
[
x1(v).x2(w).R | y2[n′].y1[n].Q

]
where R = x1().v().x2().w().0 and Q = y1[].0 | n[].0 | y2[].0 | n′[].0. Notice
that the order of actions on channels y1 and y2 is now swapped, thus causing a
deadlock! If we tried to construct a typing derivation for process P ′, we would
have for the right-hand side of the parallel the following:

y1[].0 ` y1 : 1κ4
1

n[].0 ` n : 1κ3
1

y2[].0 ` y1 : 1κ2
1

n′[].0 ` n′ : 1κ1
1

y1[].0 | n[].0 | y2[].0 | n′[].0 ` y1 : 1κ4 ,n : 1κ3 , y2 : 1
κ2 ,n′ : 1κ1 o4 < κ4

Mix3

y1[n].Q ` n′ : 1κ1 , y2 : 1
κ2 , y1 : 1

κ3 ⊗o4 1κ4 o3 < o4
⊗

y2[n
′].y1[n].Q ` y1 : 1κ3 ⊗o4 1κ4 , y2 : 1

κ1 ⊗o3 1κ2
⊗

Then, the system of equations

o2 < o1 o3 < o4 o1 = o3 o2 = o4

has no solution because it requires o2 < o3 and o3 < o2, which is impossible.

Example 1 continued (Cyclic Scheduler).

Sched , ...(νaibi)...(νcid(i+1) mod n)
(
A0 | A1 | ... | An−1 | P0 | P1 | ... | Pn−1

)
A0 , c0[n0].d0(x0).a0[m0].close0
Ai , di(xi).ai[mi].ci[ni].closei i ∈ {1, ..., n− 1}
Pi , bi(yi).Qi i ∈ {0, ..., n− 1}

8

By applying the typing rules in Fig. 2 we can derive Sched ` ∅, since it is a
closed process, and assign the following types and priorities:

c0 :1⊗0 1 d0 :⊥O2(n−1)⊥ a0 :1⊗2(n−1)+1 1 for A0

di :⊥O2i−2⊥ ai :1⊗2i−1 1 ci :1⊗2i 1 for Ai, 0 < i < n
b0 :⊥O2(n−1)+1⊥ bi :⊥O2i−1⊥ for P0 and Pi, 0 < i < n

The priorities of types ⊥ and 1 could be easily assigned as Ex.2. As the priority
of di+1 is 2(i+ 1)− 2 = 2i, we can connect it to ai with a Cycle.

3 Operational Semantics of PCP

In this section we define structural equivalence, the principal β-reduction rules
and commuting conversions. The detailed derivations can be found in [18].

We define structural equivalence to be the smallest congruence relation sat-
isfying the following axioms. SC-Ax-Swp allows swapping channels in the for-
warding process. SC-Ax-Cycle states that cycle applied to a forwarding process
is equivalent to inaction. This allows elimination of unnecessary cycles. Axioms
SC-Mix-Nil, SC-Mix-Comm and SC-Mix-Asc state that parallel composition
uses the inaction as the neutral element and is commutative and associative.
SC-Cycle-Ext is the standard scope extrusion rule. SC-Cycle-Swp allows swap-
ping channels and SC-Cycle-Comm states the commutativity of restriction1.

SC-Ax-Swp x→yA ` x :A⊥, y :A ≡ y→xA
⊥ ` x :A⊥, y :A

SC-Ax-Cycle (νxA
⊥
y)x→yA ` ∅ ≡ 0 ` ∅

SC-Mix-Nil 0 | P ` Γ ≡ P ` Γ
SC-Mix-Comm P | Q ` Γ,∆ ≡ Q | P ` Γ,∆
SC-Mix-Asc P | (Q | R) ` Γ,∆,Θ ≡ (P | Q) | R ` Γ,∆,Θ

SC-Cycle-Ext (νxAy)(P | Q) ` Γ,∆ ≡ P | (νxAy)Q ` Γ,∆ x, y /∈ fn(P)

SC-Cycle-Swp (νxAy)P ` Γ ≡ (νyA
⊥
x)P ` Γ

SC-Cycle-Comm (νxAy)(νzBw)P ` Γ ≡ (νzBw)(νxAy)P ` Γ
The core of the operational semantics consists of β-reductions. In π-calculus

terms these are communication steps; in logical terms they are Cycle-elimination
steps. β⊗O is given in Fig.3 to illustrate priorities. It simplifies a cycle connecting
x of type A⊗oB and y of type AOoB, which corresponds to communication be-
tween an output on x and an input on y, respectively. Both actions have priority
o, which is strictly smaller than any priorities in their typing contexts, respecting
the fact that they are top-level prefixes. The remaining β-reductions are sum-
marised below. βAxCycle simplifies a Cycle involving an axiom. β1⊥ closes and
eliminates channels. β⊕&, similarly to β⊗O, simplifies a communication between
a selection and a branching. β!? simplifies a cycle between one server of type !oA
and one client of type ?oA. The last two rules differ in the number of clients
involved: rule β!W considers no clients, whether β!C considers multiple clients.
1 Note that associativity of restriction is derived from SC-Mix-Comm and

SC-Cycle-Comm.

9

o < pr(Γ)
P ` Γ, v :A, x :B

x[v].P ` Γ, x :A⊗oB
⊗

o < pr(∆)

Q ` ∆,w :A⊥, y :B⊥

y(w).Q ` ∆, y :A⊥OoB⊥
O

x[v].P | y(w).Q ` Γ,∆, x :A⊗oB, y :A⊥OoB⊥
Mix

(νxA⊗
o By)

(
x[v].P | y(w).Q

)
` Γ,∆

Cycle

−→

P ` Γ, v :A, x :B Q ` ∆,w :A⊥, y :B⊥

P | Q ` Γ,∆, v :A, x : B,w :A⊥, y : B⊥
Mix

(νvAw)(νxBy)
(
P | Q

)
` Γ,∆ Cycle2

Fig. 3. β-reduction for ⊗ and O.

βAxCycle (νyAz)(x→yA | P) ` Γ, x :A⊥ −→ P{x/z} ` Γ, x :A⊥
β1⊥ (νxAy)(x[].0 | y().P) ` Γ −→ P ` Γ
β⊕& (νx⊕

o{li:Bi}i∈Iy)
(
x / lj .P | y . {li : Qi}i∈I

)
` Γ,∆ −→

(νxBjy)
(
P | Qj

)
` Γ,∆

β!? (νx !o Ay)
(
!x(v).P | ?y[w].Q

)
` ?Γ,∆ −→ (νvAw)

(
P | Q

)
` ?Γ,∆

β!W (νx !o Ay)
(
!x(v).P | Q

)
` ?Γ,∆ −→ Q ` ?Γ,∆

β!C (νx !o Ay)
(
!x(v).P | Q{y/y′, y/y′′}

)
` ?Γ,∆ −→

(νx′
!o A

y′)(!x′(v′).P ′ | (νx′′ !
o A
y′′)(!x′′(v′′).P ′′ | Q)) ` ?Γ,∆

Commuting conversions, following [12,41], allow communication prefixes to
be moved to the conclusion of a typing derivation, corresponding to pulling them
out of the scope of Cycle rules. In order to account for the sequence of Cycles,
here we use ·̃. Due to this movement, if a prefix on a channel endpoint x with
priority o is pulled out at top level, then to preserve priority conditions in the
typing rules in Fig. 2, it is necessary to increase priorities of all actions after the
prefix on x. This increase is achieved by using ↑o+1(·) in the typing contexts.

κ⊥ (νx̃Ãỹ)
(
x().P | Q

)
` Γ,∆, x : ⊥o −→
x().[(νx̃Ãỹ)

(
P | Q

)
] ` ↑o+1 Γ, ↑o+1∆,x : ⊥o

κ⊗ (νx̃Ãỹ)
(
x[v].P | Q

)
` Γ,∆, x :A⊗oB −→

x[v].
[
(νx̃Ãỹ)

(
P | Q

)]
` (↑o+1 Γ), (↑o+1∆), x : (↑o+1A)⊗o (↑o+1B)

κO (νx̃Ãỹ)
(
x(w).P | Q

)
` Γ,∆, x :AOoB −→

x(w).
[
(νx̃Ãỹ)

(
P | Q

)]
` (↑o+1 Γ), (↑o+1∆), x : (↑o+1A)Oo (↑o+1B)

κ⊕ (νx̃Ãỹ)(x / lj .P | Q) ` Γ,∆, x :⊕o{li : Bi}i∈I −→
x / lj .

[
(νx̃Ãỹ)

(
P | Q

)]
` (↑o+1 Γ), (↑o+1∆), x :⊕o{li : ↑o+1Bi}i∈I

κ& (νx̃Ãỹ)(x . {li : Pi}i∈I | Q) ` Γ,∆, x :&o{li : Bi}i∈I −→
x . {li : (νx̃Ãỹ)

(
Pi | Q

)
}i∈I ` (↑o+1 Γ), (↑o+1∆), x :&o{li : ↑o+1Bi}i∈I

κ? (νx̃Ãỹ)
(
?x[w].P | Q

)
` Γ, ∆, x : ?oA −→

?x[w].
[
(νx̃Ãỹ)

(
P | Q

)]
` (↑o+1 Γ), (↑o+1∆), x : ?o (↑o+1A)

κ! (νx̃ ?̃o Aỹ)
(
!x(v).P | Q

)
` ?Γ, ∆, x : !oA −→

!x(v).
[
(νx̃ ?̃o Aỹ)

(
P | Q

)]
` (↑o+1 Γ), (↑o+1∆), x : !o (↑o+1A)

10

Finally, we give the following additional reduction rules: closure under struc-
tural equivalence, and two congruence rules, for restriction and for parallel.

Close-Equiv P ≡ Q Q −→ R R ≡ S implies P −→ S
Cong-Cycle P −→ Q implies (νxAy)P −→ (νxAy)Q
Cong-Mix P −→ Q implies P | R −→ Q | R

4 Results for PLL and PCP

4.1 Cycle-elimination for PLL

We start with results for Cycle-elimination for PLL; thus here we refer to A,B
as propositions, rather than types. The detailed proofs can be found in [18].

Definition 6. The degree function ∂(·) on propositions is defined by:
– ∂(1o) = ∂(⊥o) = 1
– ∂(A⊗oB) = ∂(AOoB) = ∂(A) + ∂(B) + 1
– ∂(&o{li : Ai}i∈I) = ∂(⊕o{li : Ai}i∈I) =

∑
i∈I{∂(Ai)}+ 1

– ∂(?oA) = ∂(!oA) = ∂(A) + 1.

Definition 7. A Maxicut is a maximal sequence of Mix and Cycle rules, end-
ing with a Cycle rule.

Maximality means that the rules applied immediately before a Maxicut are any
rules in Fig. 2, other than Mix or Cycle. The order in which Mix and Cycle
rules are applied within a Maxicut is irrelevant. However, Prop. 1, which follows
directly from structural equivalence (§ 3), allows us to simplify a Maxicut.

Proposition 1 (Canonical Maxicut). Given an arbitrary Maxicut, it is
always possible to obtain from it a canonical Maxicut consisting of a sequence
of only Mix rules followed by a sequence of only Cycle rules.

Definition 8. A single-Mix Maxicut contains only one Mix rule.
A1, . . . , An, A are Maxicut propositions if they are eliminated by a Maxicut.
The degree of a sequence of Cycles is the sum of the degrees of the eliminated
propositions.
The degree of a Maxicut is the sum of the degrees of the Cycles in it.
The degree of a proof π, d(π), is the sup of the degrees of its Maxicuts, implying
d(π) = 0 if and only if proof π has no Cycles.
The height of a proof π, h(π), is the height of its tree, and it is defined as
h(π) = sup

(
h(πi)

)
i∈I + 1, where {πi}i∈I are the subproofs of π.

Maxicut has some similarities with the derived Multicut: it generalises Multicut
in the number of Mixes, and a single-Mix Maxicut is an occurrence of Multicut.

The core of Cycle-elimination for our PLL, as for Cut-elimination for CLL
[10,25], is the Principal Lemma (Lem. 3), which eliminates a Cycle by either (i)
replacing it with another Cycle on simpler propositions, or (ii) pushing it further
up the proof tree. Item (i) corresponds to (the logical part of) β-reductions (§3);
and (ii) corresponds to (the logical part of) commuting conversions (§ 3).

11

Exceptionally, β!C reduces the original proof in a way that neither (i) nor
(ii) are respected. In order to cope with this case, we introduce Lem. 2, which is
inspired by Lem B.1.3 in Bräuner [10], and adapted to our PLL. Lem. 2 allows
us to reduce the degree of a proof ending with a single-Mix Maxicut and having
the same degree as the whole proof, and where the last rule applied on the left
hand-side immediate subproof is !. Let [n] denote the set {1, . . . , n}.

Lemma 2 (Inspired by B.1.3 in Bräuner [10]). Let τ be a proof of the
following form, ending with a single-Mix Maxicut:

π....
o < pr(?Γ)

∀i ∈ [n] : o < oi
` ?Γ, ?o1 A1, ..., ?

on An, A

` ?Γ, ?o1 A1, ..., ?
on An, !

oA
!

π′....
o < pr(∆)

∀i ∈ [n] : o < oi ∀j ∈ [k] : o 6 κj
` ∆, !o1 A⊥1 , ..., !on A⊥n , (?κj A⊥)j∈[k]

` ∆, !o1 A⊥1 , ..., !on A⊥n , ?oA⊥
Ck−1

` ?Γ,∆, ?o1 A1, ..., ?
on An, !

oA, !o1 A⊥1 , ..., !
on A⊥n , ?

oA⊥
Mix

` ?Γ,∆
Cycle

where d(π) < d(τ) and d(π′) < d(τ). Then, there is a proof τ ′ of ` ?Γ,∆ such
that d(τ ′) < d(τ).

Proof. Induction on h(π′), with a case-analysis on the last rule applied in π′. ut

Lemma 3 (The Principal Lemma). Let τ be a proof of ` Γ , ending with a
canonical Maxicut:

π1 . . . πm

` Γ,A1, ..., An, A,A
⊥
1 , ..., A

⊥
n , A

⊥ Mix

` Γ Cycle

such that for all i ∈ [m], d(πi) < d(τ). Then there is a proof τ ′ of ` ↑t Γ , for
some t > 0, such that d(τ ′) < d(τ).

Proof. The proof is by induction on
∑
i∈[m] h(πi). Let ri be the last rule applied

in πi, for i ∈ [m] and let Cri be the proposition introduced by ri. Consider the
proposition with the smallest priority. If the proposition is not unique, just pick

one. Let this proposition be Crk . Then, πk is the following proof:
. . .

` Γ ′, Crk
rk

We proceed by cases on πk.
– rk is ⊗ on one of the Maxicut propositions A1, . . . , An, A. Without loss of
generality, suppose rk is applied on A, meaning A = E⊗o F for some E and F
and o > 0. By ⊗ rule in Fig. 2, o < pr(Γ ′). Since A is a Maxicut proposition,
by Def. 2, A⊥ = E⊥Oo F⊥. Since o < pr(Γ ′) and pr(A⊥) = o, it must be that

A⊥ is in another proof, say πh:
. . .

` Γ ′′, E⊥Oo F⊥
rh

Consider the case where rh is a multiplicative, additive, exponential or ⊥ rule
in Fig. 2. Suppose rh is applied on Crh which is not A⊥. All the mentioned rules

12

require pr(Crh) < pr(Γ ′′, E⊥Oo F⊥ \Crh), implying pr(Crh) < pr(E⊥Oo F⊥) =
pr(E⊗o F) = o. This contradicts the fact that o is the smallest priority. Hence,
rh must be a O introducing A⊥.
We construct proof τA ending with a single-Mix Maxicut applied on at least A:

π⊗....
` Γ ′, E, F o < pr(Γ ′)

` Γ ′, E⊗o F
⊗

πO....
` Γ ′′, E⊥, F⊥ o < pr(Γ ′′)

` Γ ′′, E⊥Oo F⊥
O

` Γ ′, Γ ′′, E⊗o F,E⊥Oo F⊥
Mix

` Γ ′′′ Cycle

Then, by structural equivalence, we can rewrite τ in terms of τA. By applying
β⊗O on τA (only considering the logical part), we obtain a proof τ ′A such that
d(τ ′A) < d(τA) ≤ d(τ), because ∂(E)+∂(F) < ∂(E⊗o F). We can then construct
τ ′ by substituting τ ′A for τA in τ , which concludes this case.
– rk is ! on one of the Maxicut propositions A1, . . . , An, A. Without loss of
generality, suppose rk introduces A, implying that A = !oA′ for some A′ and
o > 0. Then πk is the following proof:

π!....
` ?Θ,A′ o < pr(?Θ)

` ?Θ, !oA′
!

where Γ ′ = ?Θ. Since A is a Maxicut proposition, by duality A⊥ = ?oA′
⊥.

Since o < pr(Γ ′) and pr(A⊥) = o, it must be that A⊥ is in another proof. Let it
be πh for h ∈ [m] and h 6= k. Then we apply Lem. 2 to πk and πh, obtaining a
proof which we use to construct τ ′, as we did in the previous case. ut
Lemma 4. Given a proof τ of ` Γ , such that d(τ) > 0, then for some t > 0
there is a proof τ ′ of ` ↑t Γ such that d(τ ′) < d(τ).

Proof. By induction on h(τ). We have the following cases.
– If τ ends in a Maxicut whose degree is the same as the degree of τ :

π1 . . . πm

` Γ,A1, ..., An, A,A
⊥
1 , ..., A

⊥
n , A

⊥ Mixm

` Γ Cyclen+1

we can apply the induction hypothesis to the subproofs of τ right before the last
Mix preceding the sequence of Cycle. This allows us to reduce their degrees to
become smaller than d(τ). Then we use Lem. 3.
– Otherwise, by using the inductive hypothesis on the immediate subproofs to
reduce their degree, we also reduce the degree of the whole proof. ut
Theorem 1 (Cycle-elimination). Given any proof of ` Γ , we can construct
a Cycle-free proof of ` ↑t Γ , for some t > 0.

Proof. Iteration on Lem. 4. ut
Cycle-elimination increases the priorities of the propositions in Γ . This is solely
due to the (logical part of) our commuting conversions in § 3.

13

4.2 Deadlock-Freedom for PCP

Theorem 2 (Subject Reduction). If P ` Γ and P −→ Q, then Q ` ↑t Γ ,
for some t > 0.

Proof. Follows from the β-reductions and commuting conversions in § 3. ut

Definition 9. A process is a Cycle if it is of the form (νxAy)P .

Theorem 3 (Top-Level Deadlock-Freedom). If P ` Γ and P is a Cycle,
then there is some Q such that P −→∗ Q and Q is not a Cycle.

Proof. The interpretation of Lem. 3 for PCP is that either (i) a top-level commu-
nication occurs, corresponding to a β-reduction, or (ii) commuting conversions
are used to push Cycle further inwards in a process. Consequently, iterating
Lem. 3 results in eliminating top-level Cycles. ut

Eliminating all Cycles, as specified by Thm. 1, would correspond to a semantics
in which reduction occurs under prefixes, as discussed by Wadler [41]. In order
to achieve this, we would need to introduce additional congruence rules, such as:

P −→ Q

x(y).P −→ x(y).Q

and similarly for other actions. Reductions of this kind are not present in the
π-calculus, and we also omit them in our framework.

However, we can eliminate all Cycles in a proof of ` ∅, corresponding to full
deadlock-freedom for closed processes. Kobayashi’s type system [32] satisfies the
same property.

Theorem 4 (Deadlock-Freedom for Closed Processes). If P ` ∅, then
either P ≡ 0 or there is Q such that P −→ Q.

Proof. This follows from Thm. 2 and Thm. 3, because if Q ` ∅ and Q is not a
Cycle then Q must be a parallel composition of 0 processes. ut

5 Related Work and Conclusion

Cycle and Multicut rules were explored by Abramsky et al. [2,3,4] in the con-
text of ∗-autonomous categories. That work is not directly comparable with ours,
as it only presented a typed semantics for CCS-like processes and did not give a
type system for a language or a term assignment for a logical system. Atkey et
al. [5] added a Multicut rule to CP, producing an isomorphism between ⊗ and
O, but they did not consider deadlock-freedom.

In Kobayashi’s original type-theoretic approach to deadlock-freedom [29],
priorities were abstract tags from a partially ordered set. In later work abstract
tags were simplified to natural numbers, and priorities were replaced by pairs of
obligations and capabilities [30,32]. The latter change allows more processes to
be typed, at the expense of a more complex type system. Padovani [36] adapted

14

Kobayashi’s approach to session types, and later on he simplified it to a single
priority for linear π-calculus [37]. Then, the single priority technique can be
transferred to session types by the encoding of session types into linear types
[33,19,16,17]. For simplicity, we have opted for single priorities, as Padovani [37].

The first work on progress for session types, by Dezani-Ciancaglini et al.
[22,15], guaranteed the property by allowing only one active session at a time.
Later work [21] introduced a partial order on channels in Kobayashi-style [29].
Bettini et al. [9] applied similar ideas to multiparty session types. The main
difference with our work is that we associate priorities with individual commu-
nication operations, rather than with entire channels. Carbone et al. [13] proved
that progress is a compositional form of lock-freedom and introduced a new tech-
nique for progress in session types by adopting Kobayashi’s type system and the
encoding of session types [19]. Vieira and Vasconcelos [40] used single priorities
and an abstract partial order in session types to guarantee deadlock-freedom.

The linear logic approach to deadlock-free session types started with Caires
and Pfenning [12], based on dual intuitionistic linear logic, and was later for-
mulated for classical linear logic by Wadler [41]. All subsequent work on linear
logic and session types enforces deadlock-freedom by forbidding cyclic connec-
tions. In their original work, Caires and Pfenning commented that it would be
interesting to compare process typability in their system with other approaches
including Kobayashi’s and Dezani-Ciancaglini’s. However, we are aware of only
one comparative study of the expressivity of type systems for deadlock-freedom,
by Dardha and Pérez [20]. They compared Kobayashi-style typing and CLL typ-
ing, and proved that CLL corresponds to Kobayashi’s system with the restriction
that only single cuts, not multicuts, are allowed.

In this paper, we have presented a new logic, priority-based linear logic
(PLL), and a term assignment system, priority-based CP (PCP), that increase
the expressivity of deadlock-free session type systems, by combining Caires and
Pfenning’s linear logic-based approach and Kobayashi’s priority-based type sys-
tem. The novel feature of PLL and PCP is Cycle, which allows cyclic process
structures to be formed if they do not violate ordering conditions on the priori-
ties of prefixes. Following the propositions-as-types paradigm, we prove a Cycle-
elimination theorem analogous to the standard Cut-elimination theorem. As a
result of this theorem, we obtain deadlock-freedom for a class of π-calculus pro-
cesses which is larger than the class typed by Caires and Pfenning. In particular,
these are processes that typically share more than one channel in parallel.

There are two main directions for future work. First, develop a type system
for a functional language, priority-based GV, and translate it into PCP, along
the lines of Lindley and Morris’ [34] translation of GV [41] into CP. Second,
extend PCP to allow recursion and sharing [6], in order to support more gen-
eral concurrent programming, while maintaining deadlock-freedom, as well as
termination, or typed behavioural equivalence.

Acknowledgements We are grateful for suggestions and feedback from the
anonymous reviewers and colleagues: Wen Kokke, Sam Lindley, Roly Perera,
Frank Pfenning, Carsten Schürmann and Philip Wadler.

15

References

1. S. Abramsky. Proofs as processes. Theoretical Computer Science, 135(1):5–9, 1994.
2. S. Abramsky, S. J. Gay, and R. Nagarajan. Interaction categories and the foun-

dations of typed concurrent programming. In M. Broy, editor, Proceedings of the
NATO Advanced Study Institute on Deductive Program Design, pages 35–113, 1996.

3. S. Abramsky, S. J. Gay, and R. Nagarajan. A type-theoretic approach to deadlock-
freedom of asynchronous systems. In TACS, volume 1281 of LNCS, pages 295–320.
Springer, 1997.

4. S. Abramsky, S. J. Gay, and R. Nagarajan. A specification structure for deadlock-
freedom of synchronous processes. Theoretical Computer Science, 222(1–2):1–53,
1999.

5. R. Atkey, S. Lindley, and J. G. Morris. Conflation confers concurrency. In A List
of Successes That Can Change the World—Essays Dedicated to Philip Wadler on
the Occasion of His 60th Birthday, volume 9600 of LNCS, pages 32–55. Springer,
2016.

6. S. Balzer and F. Pfenning. Manifest sharing with session types. Proceedings of the
ACM on Programming Languages, 1(ICFP):37:1–37:29, 2017.

7. A. Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-
96-347, University of Edinburgh, 1996. www.lfcs.inf.ed.ac.uk/reports/96/
ECS-LFCS-96-347.

8. G. Bellin and P. J. Scott. On the pi-calculus and linear logic. Theoretical Computer
Science, 135(1):11–65, 1994.

9. L. Bettini, M. Coppo, L. D’Antoni, M. D. Luca, M. Dezani-Ciancaglini, and
N. Yoshida. Global progress in dynamically interleaved multiparty sessions. In
CONCUR, volume 5201 of LNCS, pages 418–433. Springer, 2008.

10. T. Bräuner. Introduction to linear logic. Technical Report BRICS LS-96-6, Basic
Research Institute in Computer Science, University of Aarhus, 1996.

11. L. Caires and J. A. Pérez. Linearity, control effects, and behavioral types. In
ESOP, volume 10201 of LNCS, pages 229–259. Springer, 2017.

12. L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In
CONCUR, volume 6269 of LNCS, pages 222–236. Springer, 2010.

13. M. Carbone, O. Dardha, and F. Montesi. Progress as compositional lock-freedom.
In COORDINATION, volume 8459 of LNCS, pages 49–64. Springer, 2014.

14. M. Carbone, S. Lindley, F. Montesi, C. Schürmann, and P. Wadler. Coherence
generalises duality: A logical explanation of multiparty session types. In CONCUR,
volume 59 of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl—Leibniz-Zentrum für
Informatik, 2016.

15. M. Coppo, M. Dezani-Ciancaglini, and N. Yoshida. Asynchronous session types
and progress for object-oriented languages. In FMOODS, volume 4468 of LNCS,
pages 1–31. Springer, 2007.

16. O. Dardha. Recursive session types revisited. In BEAT, volume 162 of EPTCS,
pages 27–34, 2014.

17. O. Dardha. Type Systems for Distributed Programs: Components and Sessions,
volume 7 of Atlantis Studies in Computing. Springer / Atlantis Press, 2016.

18. O. Dardha and S. J. Gay. A New Linear Logic for Deadlock-Free Session Typed
Processes. In 21st International Conference on Foundations of Software Science
and Computation Structures, FoSSaCS, 2018. (Extended Version) http://www.
dcs.gla.ac.uk/~ornela/publications/DG18-Extended.pdf.

16

www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347
www.lfcs.inf.ed.ac.uk/reports/96/ECS-LFCS-96-347
http://www.dcs.gla.ac.uk/~ornela/publications/DG18-Extended.pdf
http://www.dcs.gla.ac.uk/~ornela/publications/DG18-Extended.pdf

19. O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In PPDP, pages
139–150. ACM, 2012.

20. O. Dardha and J. A. Pérez. Comparing deadlock-free session typed processes. In
EXPRESS/SOS, volume 190 of EPTCS, pages 1–15, 2015.

21. M. Dezani-Ciancaglini, U. de’Liguoro, and N. Yoshida. On progress for structured
communications. In TGC, volume 4912 of LNCS, pages 257–275. Springer, 2009.

22. M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session
types for object-oriented languages. In ECOOP, volume 4067 of LNCS, pages
328–352. Springer, 2006.

23. S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session
types. Journal of Functional Programming, 20(1):19–50, 2010.

24. J. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
25. J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and Types. Cambridge University

Press, New York, NY, USA, 1989.
26. K. Honda. Types for dyadic interaction. In CONCUR, volume 715 of LNCS, pages

509–523. Springer, 1993.
27. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disci-

pline for structured communication-based programming. In ESOP, volume 1381
of LNCS, pages 122–138. Springer, 1998.

28. N. Kobayashi. TyPiCal: Type-based static analyzer for the pi-calculus. www-kb.
is.s.u-tokyo.ac.jp/~koba/typical.

29. N. Kobayashi. A partially deadlock-free typed process calculus. ACM Transactions
on Programming Languages and Systems, 20(2):436–482, 1998.

30. N. Kobayashi. A type system for lock-free processes. Information and Computation,
177(2):122–159, 2002.

31. N. Kobayashi. Type systems for concurrent programs. In 10th Anniversary Collo-
quium of UNU/IIST, pages 439–453, 2002.

32. N. Kobayashi. A new type system for deadlock-free processes. In CONCUR, volume
4137 of LNCS, pages 233–247. Springer, 2006.

33. N. Kobayashi. Type systems for concurrent programs. Extended version of [31],
Tohoku University, 2007.

34. S. Lindley and J. G. Morris. A semantics for propositions as sessions. In ESOP,
pages 560–584, 2015.

35. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
36. L. Padovani. From lock freedom to progress using session types. In PLACES,

volume 137 of EPTCS, pages 3–19, 2013.
37. L. Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In CSL-LICS,

pages 72:1–72:10. ACM, 2014.
38. K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its

typing system. In PARLE ’94, volume 817 of LNCS, pages 398–413. Springer,
1994.

39. B. Toninho, L. Caires, and F. Pfenning. Dependent session types via intuitionistic
linear type theory. In PPDP, pages 161–172. ACM, 2011.

40. H. T. Vieira and V. T. Vasconcelos. Typing progress in communication-centred
systems. In COORDINATION, volume 7890 of LNCS, pages 236–250. Springer,
2013.

41. P. Wadler. Propositions as sessions. In ICFP, pages 273–286. ACM, 2012.
42. P. Wadler. Propositions as types. Communications of the ACM, 58(12):75–84,

2015.

17

www-kb.is.s.u-tokyo.ac.jp/~koba/typical
www-kb.is.s.u-tokyo.ac.jp/~koba/typical

	A New Linear Logic for Deadlock-Free Session-Typed Processes

