
1
Mungo and StMungo: Tools for
Typechecking Protocols in Java

Ornela Dardha, Simon J. Gay, Dimitrios Kouzapas, Roly Perera,
A. Laura Voinea and Florian Weber

School of Computing Science, University of Glasgow, UK

1.1 Introduction

Modern computing is dominated by communication, at every level from
manycore architectures through multithreaded programs to large-scale
distributed systems; this contrasts with the original emphasis on data
processing. Early recognition of the importance of structured data meant
that high-level programming languages have always incorporated data
types and supported programmers through the techniques of static and
dynamic typechecking. The foundational status of structured data was
explicitly recognised in the title of Wirth’s classic 1976 text Algorithms
+ Data Structures = Programs, but a more appropriate modern slo-
gan would be Programs + Communication Structures = Systems. The
new reality of communication-based software development needs to be
supported by programming tools based on structuring principles and
high-level abstractions. Given the success of data types, it is natural
to apply type-theoretic techniques to the specification and verification
of communication-based code. During the last twenty years, this goal
has been pursued by the expanding and increasingly active research
community on session types [13, 14, 25]. A session type is a formal
structured description of a communication protocol, specifying the type,
sequence and direction of messages. By embedding this description in
the type system of a programming language, adherence to the protocol

S. J. Gay and A. Ravara (eds), Behavioural Types: from Theory to Tools, 1–19.
c© 2016 River Publishers. All rights reserved.

2 Mungo and StMungo: Tools for Typechecking Protocols in Java

can be verified by static typechecking; if desired, dynamic monitoring
can be introduced into the runtime system.

Several researchers have worked towards making typechecked com-
munication structures available for mainstream software development,
by transferring session types from their original setting of pi-calculus to
functional and object-oriented languages [3, 5, 6, 7, 9, 16, 18, 20]. Gay
et al. [10] proposed an integration of session types and object-oriented
programming through the more general concept of typestate [23], in
which methods are constrained to be called only in particular sequences.
They defined a translation from the session types of communication
channels into typestate specifications that constrained the use of send
and receive methods on channel objects. Their notation for typestate
specifications was itself inspired by the syntax of session types.

We (the first four authors of the present chapter) extended that work
and implemented it as Mungo [17], a front-end typechecking tool for
Java. We also generalised the translation from session types to typestate
specifications, so that it handles multiparty [12] instead of binary session
types, and made it concrete by implementing StMungo [17], a translator
from the Scribble [21, 26] protocol description language into Mungo
specifications. The Scribble description of a protocol is translated into
an API with which to program implementations of protocol roles; the
typestate specification associated with the API permits static checking of
the correctness of the implementation. Our previous paper [17] illustrated
the use of Mungo and StMungo with a substantial case study based on
the SMTP protocol [22], including the low-level implementation details
necessary to enable communication with standard SMTP servers. This
achieved the long-standing goal of using session types to specify and
verify implementations of real internet protocols.

The present chapter describes Mungo and StMungo in relation to
three examples. The first, in Section 1.2.1, illustrates Mungo by defining
and checking a typestate specification for an iterator. The second, in
Section 1.3, is a simple multiparty scenario based on a travel agency.
Finally, in Section 1.4, we show how Mungo and StMungo can be used
to typecheck a client for the POP3 protocol [19].

1.2 Mungo: Typestate Checking for Java

Mungo is a static analysis tool that checks typestate properties in
Java programs. Mungo implements two main components. The first

1.2 Mungo: Typestate Checking for Java 3

is a Java-like syntax to define typestate specifications for classes, and
the second is a typechecker that checks whether objects that have
typestate specifications are used correctly. Mungo is modular enough to
allow typechecking of standard Java code without syntactic extensions;
typestate specifications are defined in separate files and are associated
with Java classes by means of the Java annotation mechanism. This
allows programs that have been checked by Mungo to be compiled
and run using standard Java tools. The declaration of a typestate
specification in a single file contrasts with other approaches that take
the viewpoint of typestate as pre- and post-conditions on methods; we
discuss this point in Section 1.5. If a class has a typestate specifiction, the
Mungo typechecker analyses each object of that class in the program and
extracts the method call behaviour (sequences of method calls) through
the object’s life. Finally, it checks the extracted information against the
sequences of method calls allowed by the typestate specification.

Mungo is implemented in the JastAdd [11] framework, which is a
Reference Attribute Grammar (RAG) meta-compiler suite compatible
with the Java programming language. The JastAdd framework provides
a Java parser which was used for the implementation of the Mungo
typechecker. The JastAdd suite was also used to implement a parser for
the Java-like typestate specification language.

Mungo supports typechecking for a subset of Java. The programmer
can define both classes that follow a typestate specification and classes
that do not. The typechecking procedure follows objects (instances of the
former classes) through argument passing and return values. Moreover,
the typechecking procedure for the fields of a class follows the typestate
specification of the class to infer a typestate usage for the fields. For
this reason fields that follow a typestate specification are only allowed
to be defined in a class that also follows a typestate specification.

Completing the coverage of Java will require further work. Some
features we anticipate to be relatively straightforward extensions, such
as synchronised statements, the conditional operator ?:, inner and
anonymous classes, and static initialisers. Generics, inheritance and
exceptions are non-trivial. Currently, generics are not supported, while
inheritance is supported for classes without associated typestate be-
haviour. Exceptions are supported syntactically but are type-checked
under the (unsound) assumption that no exceptions are thrown; a
try{...} catch(Exception e) {...} statement is typechecked by type-

4 Mungo and StMungo: Tools for Typechecking Protocols in Java

checking the try body and if an exception is thrown a typestate violation
may result.

1.2.1 Example: Iterator

We introduce some of the features of Mungo through an example that
enforces correct usage of a Java Iterator. In the code below we define
class StateIterator to wrap a Java Iterator. We use the Java annota-
tion syntax @Typestate("StateIteratorProtocol") to associate the class
StateIterator with the typestate specification StateIteratorProtocol.
We often refer to a typestate specification as a protocol.

1 package iterator;

2 import java.util.Iterator;

3

4 @Typestate("StateIteratorProtocol")

5 class StateIterator {

6 private Iterator iter;

7

8 public StateIterator(Iterator i) { iter = i; }

9 public Object next() { return iter.next(); }

10 public void remove() { iter.remove(); }

11 public Boolean hasNext() {

12 if(iter.hasNext() == true)

13 return Boolean.True;

14 return Boolean.FALSE;

15 } }

We assume that the underlying implementation of the Java Iterator
includes the void remove() method. The implementation of method
Boolean hasNext() uses the Iterator to discover whether the underlying
collection has more elements. It assumes the definition of the enumeration

1 enum Boolean { True, False }

The enumeration is used to enable the external choice feature of the
Mungo protocol (see below). Overall, the StateIteratorProtocol protocol
will ensure that the Java Iterator will be accessed in an order that raises
no exceptions (method Object next() raises the NoSuchElementException

exception when there are no more elements on the underlying collection
and method void remove() raises the IllegalStateException exception

1.2 Mungo: Typestate Checking for Java 5

when there is no element to removed. The code below defines the
typestate specification StateIteratorProtocol.

1 package iterator;

2

3 typestate StateIteratorProtocol {

4 HasNext = { Boolean hasNext(): <True: Next, False: end> }

5 Next = { Object next(): HasNextOrRemove }

6 HasNextOrRemove = {

7 void remove(): HasNext,

8 Boolean hasNext(): <True: NextOrRemove, False: end>

9 }

10 NextOrRemove = {

11 void remove(): Next,

12 Object next(): HasNextOrRemove

13 } }

A new iterator object is in state HasNext where the only method available
is Boolean hasNext(). If method Object next() were available then a pos-
sible NoSuchElementException might be thrown in the case where there are
no (more) elements on the underlying collection. Similarly, the availabil-
ity of method void remove() might result in the IllegalStateException

exception. A call of method Boolean hasNext() enables an external choice
on the continuation of the protocol, that depends on the return value of
the method. In the case of False no further interaction with the iterator is
possible, thus disallowing possible exceptions from a further interaction
with the Iterator. If the value True is returned then the state changes
to Next, which forces the programmer to call the Object next() method
and proceed to state HasNextOrRemove. Should the method void remove()

be available, then upon calling it an exception will be raised because
there is no element to remove. Also, availability of the Boolean hasNext()

method might result in a redundant call. In the HasNextOrRemove is an
internal choice between methods void remove and Boolean hasNext(). In
the former case the iterator can remove the current object via the
void remove method and proceed to the HasNext state. Alternatively, it
can enable an external choice by calling Boolean hasNext(), where upon
having more elements the Iterator will proceed to state NextOrRemove

or end the protocol otherwise. In state NextOrRemove there is still the
possibility of removing the last returned object and proceeding to the
Next state (this is because a poll has already been done), or getting

6 Mungo and StMungo: Tools for Typechecking Protocols in Java

the next element of the collection using method Object next() and
proceeding to the HasNextOrRemove state.

To summarise, if we assume a correct implementation of the above
protocol, then we can ensure exception-free access to the elements of
the underlying collection. Specifically, it ensures: i) not calling the
Object next() method on an empty collection; ii) not having redu-
dant calls of the Boolean hasNext() method; and iii) not calling the
void remove() when there is no element to remove from the underlying
collection.

The code below shows the creation and usage of a StateIterator

object:

1 Collection c = new HashSet();

2 Integer i = 0; while(i < 32) c.add(i++);

3 StateIterator iter = new StateIterator(c.iterator());

4 iterate:

5 do {

6 switch(iter.hasNext()) {

7 case True:

8 System.out.println(i = (Integer) iter.next());

9 if(i%2 == 0) iter.remove(); continue iterate;

10 case False: break iterate;

11 }

12 } while(true);

A new collection is created and filled with elements. The collection’s
iterator is then wrapped in a StateIterator object, that is subsequently
used according to its protocol. The switch statement is used to implement
an external choice. The pattern label: do { ... } while(true); together
with the continue label; and break label; statements is used when
an external choice controls a loop structure. Also, notice the internal
choice (if(i%2 == 0) in line 9) between calling the void remove() method
and continue with the loop that removes all even numbers from the
collection and corresponds to the implementation of the protocol state
HasNextOrRemove.

1.3 StMungo: Typestate from Communication Protocols

StMungo (Scribble to Mungo) is a transpiler from Scribble to Java. It
is based on the integration of session types and typestate [10] which

1.3 StMungo: Typestate from Communication Protocols 7

consists of a formal translation of session types for communication
channels into typestate specifications for channel objects, the latter
defines the order in which the methods of the channel objects can be
called. This specification of the permitted sequences of method calls is
naturally viewed as a channel protocol. We take a step further and extend
this formal translation from binary to multiparty session types [12] and
implement it as StMungo, which translates Scribble local protocols into
typestate specifications and skeleton socket-based implementation code.
The resulting code is then typechecked using Mungo.

A Scribble local protocol describes the communication between one
role and all the other participants in a multiparty scenario, including
the way in which messages sent to different participants are interleaved.
StMungo is based on the principle that each role in the multiparty
communication can be abstracted as a Java class following the typestate
corresponding to the role’s local protocol. The typestate specification
generated from StMungo together with the Mungo typechecker can guide
the user in the design and implementation of distributed multiparty
communication-based programs with guarantees on communication
safety and soundness. StMungo is the first tool to provide a practi-
cal embedding of Scribble multiparty protocols into object-oriented
languages with typestate.

We are now ready to describe the toolchain composed by Scribble,
StMungo and Mungo. To do so, first we give a diagram showing how
these tools are used step by step, and afterwards we show an example.

The diagram below depicts the process of generating a Java program
starting from Scribble protocols.

We start with a global protocol written in Scribble, which is then
validated and projected into local protocols, one for each role specified
in the global protocol. At this point we run StMungo on the local
projections for which we want to generate a typestate. The tool generates
a typestate specification, a Java API and a skeletal main program. After

8 Mungo and StMungo: Tools for Typechecking Protocols in Java

completing the main program, we are ready to run Mungo on it, which
produces standard Java code.

1.3.1 Example: Travel Agency

At this point we want to illustrate the toolchain of Scribble, StMungo
and Mungo by the travel agency example, which models the process of
booking a flight through a university travel agent.

Three participants are involved: Researcher (abbreviated R), who
intends to travel; Agent (A), who is able to make travel reservations; and
Finance (F), who approves expenditure from the budget. In the Scribble
[26] language, we first define the global protocol among three roles,
which are abstract representations of the participants. The protocol
consists of sequences of interactions. Every message (e.g. request) can be
associated with a payload type (e.g. Travel), a sender, and one or more
receivers. Typically payload types are structured data types defined
separately from the protocol specification.

In the following global protocol, after the quote and the check message
requesting authorisation for a trip, Finance can choose to approve or
refuse the request:

1 global protocol BuyTicket(role R, role A, role F) {

2 request(Travel) from R to A;

3 quote(Price) from A to R;

4 check(Price) from R to F;

5 choice at F {

6 approve(Code) from F to R,A;

7 ticket(String) from A to R;

8 invoice(Code) from A to F;

9 payment(Price) from F to A;

10 } or {

11 refuse(String) from F to R,A;

12 } }

Scribble can be used to validate the protocol definition and to derive
a local version of the protocol for each role, according to the theory
of multiparty session types [12]. This is known as endpoint projection.
Here we show the projection for Researcher, which describes only the
messages involving that role. The self keyword indicates that R is the
local endpoint.

1.3 StMungo: Typestate from Communication Protocols 9

1 local protocol BuyTicket_R(self R, role A, role F) {

2 request(Travel) to A;

3 quote(Price) from A;

4 check(Price) to F;

5 choice at F {

6 approve(Code) from F;

7 ticket(String) from R;

8 } or {

9 refuse(String) from F;

10 } }

Notice that the exchange of invoice and payment between Agent and Fi-
nance is not included. Similarly, the local projection for Agent omits the
check message; we omit its local projection Finally, the local projection
for Finance omits the request, quote and ticket messages.

1 local protocol BuyTicket_F(role R, role A, self F) {

2 check(Price) from R;

3 choice at F {

4 approve(Code) to R,A;

5 invoice(Code) from A;

6 payment(Price) to A;

7 } or {

8 refuse(String) from F to R,A;

9 } }

The common theme between protocols and typestate specifications is the
requirement to do operations in particular orders. Our methodology for
implementing the roles in a Scribble protocol is to define a Java class that
encapsulates socket connections to provide the necessary communication,
and provides methods that send and receive the messages in the protocol.
This class constitutes an API for role programming. To ensure that
communication methods are called in the order required by the protocol,
we associate a typestate specification with the API, so that Mungo can
check the correctness of code that uses the API. StMungo generates a
Java API and a Mungo specification. If we are implementing all of the
endpoints in a system, then the generated APIs are complete. However,
in the POP3 example (Section 1.4), an extra layer is necessary in order
to translate between the abstract message labels defined in Scribble and
the detailed textual message formats required by the protocol.

10 Mungo and StMungo: Tools for Typechecking Protocols in Java

For the R role, StMungo converts the BuyTicket_R local projection
into the following Mungo definitions:

1. RProtocol, a typestate definition capturing the interactions local to
the R role.

2. RRole, a Java class that implements RProtocol by communication
over Java sockets. This is an API that can be used to implement
the Researcher endpoint.

3. RMain, a skeletal Java implementation of the Researcher endpoint.
This runs as a Java process, and provides a main() method which
uses RRole to communicate with the other parties in the session.

To complete the ticket buying example, we now describe the result of
translating the local protocol for Researcher. For each choice there is an
enumerated type.

1 enum Choice1 { APPROVE, REFUSE; }

The typestate specification defines the allowed sequences of method calls.
It plays a similar role to an interface, as method headers are included.
The initial state is the first one that is defined. A constructor is also
generated, but it does not appear in the typestate specification. The
generated RProtocol definition is as follows:

1 typestate RProtocol {

2 State0 = { void send_requestTravelToA(Travel): State1 }

3 State1 = { Price receive_quotePriceFromA(): State2 }

4 State2 = { void send_checkPriceToF(Price): State3 }

5 State3 = { Choice1 receive_Choice1LabelFromF():

6 <APPROVE: State4, REFUSE: State6> }

7 State4 = { Code receive_approveCodeFromF(): State5 }

8 State5 = { String receive_ticketStringFromA(): end }

9 State6 = { String receive_refuseTravelFromF(): end } }

The API is defined by the class RRole, which is also generated.

1 @Typestate("RProtocol") class RRole {

2 // Constructor and method definitions.

3 }

The RRole class provides an implementation of RProtocol based on Java
sockets. When instantiated, it connects to the other role objects in the
session (ARole and FRole); we omit the details here. The RMain class

1.4 POP3: Typechecking an Internet Protocol Client 11

provides a skeletal implementation of the Researcher endpoint, using
the RRole class to communicate with the other roles in the system.

Mungo is able to statically check the correctness of a Researcher im-
plementation, by checking that methods are called in allowed sequences
and that all possible responses are handled. For example, the following
method is correct.

1 public static void main(String[] args) {

2 RRole r = new RRole();

3 Travel t = // input travel;

4 r.send_requestTravelToA(t);

5 Price p = r.receive_quotePriceFromA();

6 r.send_checkPriceToF(p);

7 switch(r.receive_Choice1LabelFromF().getEnum()) {

8 case APPROVE:

9 Code c = r.receive_approveCodeFromF();

10 println(r.receive_ticketStringFromA());

11 break;

12 case REFUSE:

13 println(r.receive_refuseStringFromF());

14 break;

15 } }

This code is checked by computing the sequences of method calls that are
made on an RRole object, inferring the minimal typestate specification
that allows those sequences, and then comparing this specification
with the declared specification RProtocol. The comparison is based on
a simulation relation. Typically the programmer would flesh out the
skeletal implementation with extra business logic. Mungo is able to
statically check RMain, or any client of the RRole class, to ensure that
methods of the protocol are called in a valid sequence and that all
possible responses are handled.

1.4 POP3: Typechecking an Internet Protocol Client

As a more substantial example, we use a standard internet protocol,
POP3 [19] (Post Office Protocol Version 3), to show the applicability
of session types in the real world and the use of session type tools to
typecheck protocols. The protocol allows an email client to retrieve
messages from a server. The diagram below [8] is based on RFC 1939

12 Mungo and StMungo: Tools for Typechecking Protocols in Java

[19], the official specification of the protocol. For simplicity, several
transitions from state TRANSACTION have been omitted.

The protocol starts with the client connecting to the server and the
server authenticating the connection. The client then has the choice
to either submit a username to log into a mailbox, or to end the
authorization. Upon receiving the username, the server has the choice
to accept the username or to send an error message to the client, for
example if the username does not exist. After the username has been
accepted, the client is then required to send a password or to end the
authorization. If the password is accepted, the transaction stage begins.
In the transaction stage, the client has a choice of various commands: the
diagram shows STAT (mailbox statistics) and RETR (retrieve a message).
Some of these requests involve a choice at the server side to either fulfil
the request or to send an error message. Alternatively the client can
also choose to end the transaction. The specification of the messages
and state transitions of POP3 can be converted into a Scribble global
protocol, as shown below.

1 global protocol POP3(role S, role C) {

2 OK(String) from S to C;

1.4 POP3: Typechecking an Internet Protocol Client 13

3 rec authentication_username {

4 choice at C {

5 USER(String) from C to S;

6 choice at S {

7 OK(String) from S to C;

8 rec authentication_password {

9 choice at C {

10 PASS(String) from C to S;

11 choice at S {

12 OK(String) from S to C;

13 rec transaction {

14 choice at C {

15 STAT() from C to S;

16 OKN(int, int) from S to C;

17 continue transaction;

18 } or {

19 RETR_n(int) from C to S;

20 choice at S {

21 OK(String) from S to C;

22 rec summary_choice_retrieve {

23 choice at S {

24 DOT() from S to C;

25 continue transaction;

26 } or {

27 SUM(String) from S to C;

28 continue summary_choice_retrieve; } }

29 } or {

30 ERR(String) from S to C;

31 continue transaction; }

32 } or {

33 QUIT() from C to S;

34 OK(String)from S to C; } }

35 } or {

36 ERR(String) from S to C;

37 continue authentication_password; }

38 } or {

39 QUIT() from C to S;

40 OK(String) from S to C; } }

41 } or {

14 Mungo and StMungo: Tools for Typechecking Protocols in Java

42 ERR(String) from S to C;

43 continue authentication_username; }

44 } or {

45 QUIT() from C to S;

46 OKN(String) from S to C; } } }

Projection using the Scribble tools produces local protocols for the
client and the server. For the rest of this section we focus on the client
protocol, and to reduce the size of the listings we omit the authentication
phase.

1 local protocol POP3 (role S,self C) {

2 OK(String) from S;

3 ...

4 rec transaction {

5 choice at C {

6 STAT() to S;

7 OKN(int,int) from S;

8 continue transaction;

9 } or {

10 RETR_n(int) to S;

11 choice at S {

12 OK(String) from S;

13 rec summary_choice_retrieve {

14 choice at S {

15 DOT() from S;

16 continue transaction;

17 } or {

18 SUM(String) from S;

19 continue summary_choice_retrieve; } }

20 } or {

21 ERR(String) from S;

22 continue transaction; }

23 } or {

24 QUIT() to S;

25 OK(String) from S; } }

26 ...

27 QUIT() to S;

28 OKN(String) from S; } } }

1.4 POP3: Typechecking an Internet Protocol Client 15

We use StMungo to translate the Scribble local protocol into a
typestate specification (CProtocol.mungo), which defines the order in
which the communication methods are called.

1 typestate CProtocol {

2 State0 = {String receive_OKStringFromS(): State1}

3 ...

4 State9 = {void send_STATToS(): State10,

5 void send_RETR_NToS(): State12,

6 void send_QUITToS(): State19}

7 State10 = {void send_STATToS(): State11}

8 State11 = {intInt receive_OKNIntIntFromS(): State9}

9 State12 = {void send_RETR_nintToS(int): State13}

10 State13 = {Choice1 receive_Choice1LabelFromS():

11 <OK: State14, ERR: State18>}

12 State14 = {String receive_OKStringFromS(): State15}

13 State15 = {Choice2 receive_Choice2LabelFromS():

14 <DOT: State16, SUM: State17>}

15 State16 = {void receive_DOTFromS(): State9}

16 State17 = {String receive_SUMStringFromS(): State15}...}

1.4.1 Challenges of using Scribble in the real world

Programming with loops In response to the LIST command in
POP3, the server can send any number of lines, terminated by the DOT

message.

The corresponding Scribble description uses explicit recursion in
which continue jumps to a named state.

1 rec summary_choice_list {

2 choice at S {

3 DOT() from S to C

4 continue transaction;

5 } or {

16 Mungo and StMungo: Tools for Typechecking Protocols in Java

6 SUM(int, int) from S to C;

7 continue summary_choice_list; } }

The skeleton Java code generated by StMungo is a direct transla-
tion, using labelled statements and continue. This might, however, be
considered an unnatural programming style in Java.

1 summary_choice_list: do {

2 switch(currentC.receive_Choice2LabelFromS().getEnum()){

3 case Choice2.DOT:

4 Void payload10 = currentC.receive_DOTVoidFromS();

5 System.out.println("Received from S: ." + payload10);

6 continue _transaction;

7 case Choice2.SUM:

8 SUMIntInt payload11 = currentC.receive_SUMIntIntFromS();

9 System.out.println("Received from S: " + payload11);

10 continue _summary_choice_list; } }

11 while(true);

Abstract vs. concrete messages When designing a complete system
and implementing all of the roles, it is possible for StMungo to generate
concrete textual messages in a uniform way; alternatively, it would be
possible to use a structured message format such as JSON. However,
in POP3 and other standard protocols, the client has to work with the
specific textual message formats defined by the protocol. For example,
the Scribble message OK(int, int) from S to C; corresponds to a line
of text send as +OK 2 200. In the current implementation of the POP3
example, conversion between abstract and concrete messages is done by
hand-written code, but we are working on a tool to generate message
converters from a specification.

Naming StMungo converts Scribble message names into Java method
names, which can cause naming conflicts if the same name is used for
messages with different formats. For example, the messages OK and OKN

would more naturally both be called OK, which is allowed in Scribble
despite their different payload types but would result in overloaded Java
methods without disambiguating parameter types. The general point
is that it is difficult to write Scribble in a truly language-independent
style.

1.5 Related Work 17

Non-standard implementations Real-world servers do not always
follow the RFC exactly. The specification of POP3 says that if the
client sends an unknown username, it is rejected and the username must
be sent again. However, the server used for this case study, namely
GMX.co.uk, accepts an unknown username and expects the client to
send the password again. Consequently, even after completing the
skeleton client generated by StMungo and checking it with Mungo,
it is necessary to test the client thoroughly with existing servers. This
problem could be avoided by mandating the use of Scribble within RFCs
and requiring implementations to demonstrate compliance with the
Scribble specification. We recognise that such a situation is unlikely to
be achieved.

1.5 Related Work

Session types. The main instances of related work on session types
and Java are the Session Java (SJ) language [16] and the API generation
approach [15], both by Hu et al. The API generation approach has
been used to to analyse an SMTP client in Java. The API for SMTP
implements multiparty session types using a pattern in which each
communication method returns the receiver object with a new type that
determines which communication methods are available at the next step.
Standard Java typechecking can verify the correctness of communication
when the pattern is used properly, with runtime monitoring being
used to ensure linearity constraints are fulfilled. In contrast, Mungo’s
analysis of SMTP and POP3 statically checks all aspects of the protocol
implementation.

SJ [16] builds on earlier work [5, 4, 7] to add binary session type
channels to Java. SJ implements a library for binary sessions that have a
pre-defined interface. The syntax of Java is extended with communication
statements to allow typechecking. The scope of a session is restricted to
the body of a single method. Mungo removes this restriction by allowing
the abstraction of multiparty session types as user-defined objects that
can be passed and used throughout different program scopes.

Typestate. There have been many projects that add typestate to
practical languages, since the introduction of the concept by Strom and
Yemini [23]. Plural [2] is a noteworthy example. It is based on Java
and has been used to study access control systems. Plural implements
typestate by using annotations to define pre- and post-conditions on

18 Mungo and StMungo: Tools for Typechecking Protocols in Java

methods, referring to abstract states and predicates on instance variables.
In contrast, Mungo explicitly defines the possible sequences of method
calls. Plural and Mungo both allow the typestate after a method call to
depend on the return value.

Plaid [1, 24] introduces typestate-oriented programming as a paradigm.
Instead of class definitions, a program consists of state definitions
containing methods that cause transitions to other states. Transitions are
specified in a similar way to Plural’s pre- and post-conditions. Similarly
to classes, states can be structured into an inheritance hierarchy. As
opposed to Plaid, Mungo focuses on the object-oriented paradigm in
order to be applicable to Java.

A more detailed discussion of related work can be found in our
previous paper [17].

Acknowledgements

This research was supported by the UK EPSRC project “From Data
Types to Session Types: A Basis for Concurrency and Distribution”
(EP/K034413/1) and by COST Action IC1201 “Behavioural Types for
Reliable Large-Scale Software Systems”.

References

[1] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-oriented programming.
In OOPSLA ’09, pages 1015–1022. ACM Press, 2009.

[2] K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical API protocol checking
with access permissions. In ECOOP ’09, volume 5653 of Springer LNCS, pages
195–219, 2009.

[3] S. Capecchi, M. Coppo, M. Dezani-Ciancaglini, S. Drossopoulou, and E. Giachino.
Amalgamating sessions and methods in object-oriented languages with generics.
Theoret. Comp. Sci., 410:142–167, 2009.

[4] M. Dezani-Ciancaglini, S. Drossopoulou, D. Mostrous, and N. Yoshida. Objects
and session types. Information and Computation, 207(5):595–641, 2009.

[5] M. Dezani-Ciancaglini, E. Giachino, S. Drossopoulou, and N. Yoshida. Bounded
session types for object oriented languages. In FMCO ’06, volume 4709 of
Springer LNCS, pages 207–245, 2006.

[6] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopolou. Session
types for object-oriented languages. In ECOOP ’06, volume 4067 of Springer
LNCS, pages 328–352, 2006.

References 19

[7] M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopolou. A distributed
object-oriented language with session types. In TGC ’05, volume 3705 of
Springer LNCS, pages 299–318, 2005.

[8] S. J. Gay, A. Ravara, and V. T. Vasconcelos. Session types for inter-process
communication. Technical Report TR-2003-133, Comp. Sci., Univ. Glasgow,
2003.

[9] S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session
types. Journal of Functional Programming, 20(1):19–50, 2010.

[10] S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, and A. Z. Caldeira. Modular
session types for distributed object-oriented programming. In POPL ’10, pages
299–312. ACM Press, 2010.

[11] G. Hedin. An introductory tutorial on JastAdd attribute grammars. In Genera-
tive and Transformational Techniques in Software Engineering III, volume 6491
of Springer LNCS, pages 166–200, 2011.

[12] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
In POPL ’08, pages 273–284. ACM Press, 2008.

[13] K. Honda. Types for dyadic interaction. In CONCUR ’93, volume 715 of
Springer LNCS, pages 509–523, 1993.

[14] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type discipline
for structured communication-based programming. In ESOP ’98, volume 1381
of Springer LNCS, pages 122–138, 1998.

[15] R. Hu and N. Yoshida. Hybrid session verification through endpoint API
generation. In FASE 16, volume 9633 of Springer LNCS, pages 401–418, 2016.

[16] R. Hu, N. Yoshida, and K. Honda. Session-based distributed programming in
Java. In ECOOP ’08, volume 5142 of Springer LNCS, pages 516–541, 2008.

[17] D. Kouzapas, O. Dardha, R. Perera, and S. J. Gay. Typechecking protocols
with Mungo and StMungo. In PPDP ’16, pages 146–159. ACM Press, 2016.

[18] M. Neubauer and P. Thiemann. An implementation of session types. In PADL
’04, volume 3057 of Springer LNCS, pages 56–70, 2004.

[19] Post office protocol version 3, RFC 1939. https://www.ietf.org/rfc/rfc1939.
[20] R. Pucella and J. A. Tov. Haskell session types with (almost) no class. In

Proceedings of the 1st ACM SIGPLAN Symposium on Haskell, pages 25–36.
ACM Press, 2008.

[21] Scribble project homepage. www.scribble.org.
[22] Simple mail transfer protocol, RFC 821. https://tools.ietf.org/html/rfc821.
[23] R. E. Strom and S. Yemini. Typestate: A programming language concept for

enhancing software reliability. IEEE Trans. Softw. Eng., 12(1):157–171, 1986.
[24] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and É. Tanter. First-class state

change in Plaid. In OOPSLA ’11, pages 713–732. ACM Press, 2011.
[25] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its

typing system. In PARLE ’94, volume 817 of Springer LNCS, pages 398–413,
1994.

[26] N. Yoshida, R. Hu, R. Neykova, and N. Ng. The Scribble protocol language. In
TGC ’13, volume 8358 of Springer LNCS, pages 22–41, 2013.

