
Session Types Revisited

Ornela Dardha Elena Giachino Davide Sangiorgi
INRIA Focus Team / University of Bologna
{dardha, giachino, sangio}@cs.unibo.it

Abstract
Session types are a formalism to model structured communication-
based programming. A session type describes communication by
specifying the type and direction of data exchanged between two
parties. When session types and session primitives are added to the
syntax of standard π-calculus types and terms, they give rise to ad-
ditional separate syntactic categories. As a consequence, when new
type features are added, there is duplication of efforts in the theory:
the proofs of properties must be checked both on ordinary types
and on session types. We show that session types are encodable in
ordinary π types, relying on linear and variant types. Besides being
an expressivity result, the encoding (i) removes the above redun-
dancies in the syntax, and (ii) the properties of session types are
derived as straightforward corollaries, exploiting the correspond-
ing properties of ordinary π types. The robustness of the encoding
is tested on a few extensions of session types, including subtyping,
polymorphism and higher-order communications.

Categories and Subject Descriptors D.3.1 [Programming lan-
guages]: Formal Definitions and Theory; F.1.2 [Computation by
abstract devices]: Modes of Computation—Parallelism and con-
currency; F.3.2 [Logics and meanings of programs]: Semantics
of Programming Languages—Process models; F.3.3 [Logics and
meanings of programs]: Studies of Program Constructs—Type
structure

General Terms Languages, Theory

Keywords session types, π-calculus, linear types, encoding

1. Introduction
In complex distributed systems, participants willing to communi-
cate should previously agree on a protocol to follow. The specified
protocol describes the types of messages that are exchanged as well
as their direction. In this context session types [3, 21] came into
play: they describe a protocol as a type abstraction. Session types
were originally designed for process calculi [7, 19, 22]. They have
been studied also for other paradigms like multithreaded functional
languages, object-oriented languages, Web Services and Contracts,
WC3-CDL a language for choreography etc [3].

Session types are a formalism proposed as a theoretical foun-
dation to describe and model structured communication-based pro-
gramming, guaranteeing privacy as well as communication safety.

To apper in Proc. of PPDP’12

They are an ‘ad hoc’ means to describe a session, namely a logical
unit of data that are exchanged between two or more interacting
participants.

Session types are defined as a sequence of input and output op-
erations, explicitly indicating the types of messages being trans-
mitted. This structured sequentiality of operations is what makes
session types suitable to model protocols and distributed scenarios.

However, they offer more flexibility than just performing inputs
and outputs: they permit choice, internal and external one. Branch
and select are typical type (and term) constructs in the theory of
session types, the former being the offering of a set of alternatives
and the latter being the selection of one of the possible options on
hand.

As mentioned above, session types guarantee privacy and com-
munication safety. Privacy is guaranteed since session channels are
known only to the agents involved in the communication. Such
communication proceeds without any mismatch of direction and
of message type. In order to achieve communication safety, a ses-
sion channel is split by giving rise to two opposite endpoints, each
of which is owned by one of the agents. These endpoints have dual
behavior and thus have dual types. So, duality is a fundamental
concept in the theory of session types as it is the ingredient that
guarantees communication safety.

To better understand session types and the notion of duality, let
us consider a simple example: a client and a server communicating
over a session channel. The endpoints x and y of the channel are
owned by the client and the server exclusively and should have dual
types. To guarantee duality of types, static checks are performed
by the type system. If the type of x is ?Int.?Int.!Bool.end —
meaning that the process listening on channel x receives an integer
value followed by another integer value and then sends back a
boolean value — then the type of y should be !Int.!Int.?Bool.end
— meaning that the process listening on channel y sends an integer
value followed by another integer value and then waits to receive
back a boolean value — which is exactly the dual type.

There is a precise moment at which a session, between two
agents, is established. It is the connection, when a fresh (private)
session channel is created and its endpoints are bound to each
communicating process. The connection is also the moment when
the duality, hence compliance of two session types, is verified.
In order to perform a connection, primitives for session channel
creation, like accept/request or (νxy), are added to the syntax
of terms [7, 19, 21].

Session types and session primitives are supposed to be added
to the syntax of standard π-calculus types and terms, respectively.
In doing so, sessions give rise to additional separate syntactic cat-
egories. Hence, the syntax of types need to be split into separate
syntactic categories, one for session types and the other for standard
π-calculus types [5, 7, 19, 22] (this often introduces a duplication
of type environments, as well). Common typing features, such as
products, records, subtyping, polymorphism, have then to be added
to both syntactic categories. Also the syntax of processes will con-



tain both standard process constructs and session primitives (for ex-
ample, the constructs mentioned above to create session channels).
This redundancy in the syntax brings in redundancy also in the the-
ory, and can make the proofs of properties of the language heavy.
For instance, if a new type construct is added, the corresponding
properties must be checked both on ordinary types and on session
types.

In this paper we try to understand at which extent this redun-
dancy is necessary, in the light of the following similarities between
session constructs and standard π-calculus constructs. Consider
?Int.?Int.!Bool.end. This type is assigned to a session channel
(actually, as we said above, to one of its endpoints) and describes
a structured sequence of inputs and outputs by specifying the type
of messages that it can transmit. This way of proceeding reminds
us of the linearized channels [14], which are channels used multi-
ple times for communication but only in a sequential manner. Lin-
earized types can be encoded, as shown in [14], into linear types—
i.e., channel types used exactly once.

The considerations above deal with input and output operations
and the sequentiality of session types. Let us consider branch and
select. These constructs give more flexibility by offering and select-
ing a range of possibilities. This brings in mind an already existing
type construct in the π- calculus, namely the variant type [18].

Other analogies between session types and π types concern
connection and duality. Connection can be seen as the restriction
construct, since both are used to create and bind a new private
session channel to the communication parties. As mentioned above,
duality is checked when connection takes place. Duality describes
the split of behavior of session channel endpoints. This reminds us
of the split of capabilities: once a new channel is created by the ν
construct, it can be used by two communicating processes owning
the opposite capability each.

In this paper, by following Kobayashi [13], we define an inter-
pretation of session types into π types and by exploiting this en-
coding, session types and all their theory are shown to be derivable
from the theory of π-calculus. For instance, basic properties such as
Subject Reduction and Type Safety become straightforward corol-
laries.

Intuitively, a session channel is interpreted as a linear channel
transmitting a pair consisting of the original message and a new
linear channel which is going to be used for the continuation of the
communication.

Furthermore, we present an optimization of linear channels en-
abling the reuse of the same channel, instead of a new one, for the
continuation of the communication.

As stated above, the encoding we adopt follows Kobayashi [13]
and the constructs we use are not new (linear types and variants
are well-known concepts in type theory and they are also well
integrated in the π-calculus). Indeed the technical contribution of
the paper may be considered minor (the main technical novelty
being the optimization in linear channel usage mentioned above).
Rather than technical, the contribution of the paper is meant to be
foundational: we show that Kobayashi’s encoding

(i) does permit to derive the session types and their basic proper-
ties; and

(ii) is a robust encoding.

As evidence for (ii), in the paper we examine, besides plain session
types, a few extensions of them, adding subtyping, polymorphism
and higher-order features. These are non-trivial extensions, which
have been studied in dedicated session types papers [4, 5, 15]. In
each case we show that we can derive the main results of the papers
via the encoding, as straightforward corollaries.

While Kobayashi’s encoding was generally known, its strength,
robustness, and practical impact were not. This is witnessed by the

plethora of papers on session types over the last 10-15 years, in
which session types are always taken as primitives — we are not
aware of a single work that explains the results on session types via
an encoding of them into ordinary types. In our opinion, the reasons
why Kobayashi’s encoding had not caught attention are:

(a) Kobayashi did not prove any properties of the encoding and did
not investigate its robustness;

(b) as certain key features of session types do not clearly show up
in the encoding, the faithfulness of the encoding was unclear.

A good example for (b) is duality. In session types duality plays
a central role: a session is identified by two channel end-points,
and these have dual types. In the ordinary π-calculus, in contrast,
there is no notion of duality on types. Indeed, in the encoding, dual
session types (e.g., the branch type and the select type) are mapped
onto the same type (e.g., the variant type). In general, dual session
types will be mapped onto linear types that are identical except for
the outermost I/O tag — duality on session types boils down to the
duality between input and output capability of channels.

The results in the paper are not however meant to say that ses-
sion types are useless, as they are very useful from a programming
perspective. The work just tells us that, at least for the binary ses-
sions and properties examined in the paper, session types and ses-
sion primitives may be taken as macros.

The rest of the paper is structured as follows: Section 2 gives an
overview of session types and π-calculus types as well as language
terms, typing rules and operational semantics. Section 3 presents
the encoding of both session types and session processes. Sections
4, 5 and 6 consider extensions to session types: subtyping, poly-
morphism and higher-order, respectively and analyze the encoding
w.r.t. these extensions. Section 7 presents an optimization of linear
channels usage. Section 8 examines the related work and concludes
the paper.

2. Background
In this section we give an overview of the main technical concepts
of the two theories we will be dealing with in the next sections:
sessions and π-calculus.

2.1 Session Types
Type Syntax Generally, the syntax of types is given by two sep-
arate syntactic categories: one for session types and the other for
standard π types, including session types, as well. Types are pre-
sented in Figure 1.

We use S to range over session types and T to range over basic
types. Session types are: end, the type of a terminated session;
?T.S and !T.S indicating respectively session channel types used
to receive and send a value of type T and then proceed according
to type S. Branch and select are sets of labelled session types,
where the order of components does not matter and labels are all
distinct. They indicate external and internal choice, respectively,
i.e., what is offered and what is chosen. &{l1 ∶ S1, . . . , ln ∶ Sn}
indicates the external choice, what is offered. Dually, select type
⊕{l1 ∶ S1, . . . , ln ∶ Sn} indicates the internal choice, only one of
the labels will be chosen. Types T include session types, standard
channel types and other standard π type constructs. They may
also include other basic types meant to be the types of exchanged
messages, such as ground types, classes, etc. In [21] the syntax of
types is given by a unique syntactic category. In order to distinguish
between session types and standard ones, [21] uses qualifiers lin-
linear and un-unrestricted. Linear types correspond to session types
whereas unrestricted types correspond to the standard π types.
We have decided to adopt the syntax above, inspired by [5] as it



Types T ∶∶=
S session type
♯T channel type
⋯ other constructs

Session Types S ∶∶= end termination
?T.S input
!T.S output
&{l1 ∶ S1, . . . , ln ∶ Sn} branch
⊕{l1 ∶ S1, . . . , ln ∶ Sn} select

Processes P ∶∶= x!⟨v⟩.P output
x?(y).P input
P ∣ Q composition
0 inaction

(νxy)P session restriction
x◁ l.P selection
x▷ {l1 ∶ P1, . . . , ln ∶ Pn} branching

Values v ∶∶= x variable true ∣ false boolean values

Transitions (νxy)(x!⟨v⟩.P ∣ y?(z).Q)Ð→ (νxy)(P ∣ Q{v/z}) [R-Com]
(νxy)(x◁ lj .P ∣ x▷ {l1 ∶ P1, . . . , ln ∶ Pn})Ð→ (νxy)(P ∣ Pj) j ∈ 1 . . . n [R-Case]

Figure 1. Syntax and Semantics for Sessions

∅ = ∅ ○ ∅
Γ = Γ1 ○ Γ2

Γ, x ∶ S = (Γ1, x ∶ S) ○ Γ2

Γ = Γ1 ○ Γ2

Γ, x ∶ S = Γ1 ○ (Γ2, x ∶ S)

Γ = Γ + ∅
Γ = Γ1 + Γ2

Γ, x ∶ S = (Γ1, x ∶ S) + Γ2

Γ = Γ1 ○ Γ2

Γ, x ∶ S = Γ1 + (Γ2, x ∶ S)

Figure 2. Context split and Context update

underlines the separation of session types from standard channel
types.

Language Syntax The syntax of terms presented in Figure 1 is in-
spired by Vasconcelos [21]. There are different ways of presenting
session channel initiation and end-points, like accept/request
[7], polarized channels [5] or by means of co-variables [21]. Stan-
dard communication (not involving sessions) is based on standard
π channels [5, 7], whether in [21] it is based on co-variables, as
well. In our work we have adopted the use of co-variables. Some
comments on the syntax follow: We use P and Q to range over
processes and v to range over values. The output process x!⟨v⟩.P
sends a value v on channel x and proceeds as process P ; the input
process x?(y).P receives on channel x a value that is going to sub-
stitute the placeholder y in P . The process 0 is the standard inaction
process. (νxy)P is the scope restriction construct; it creates a ses-
sion channel, more precisely its two endpoints x and y and binds
them in P . The two endpoints should be distinguished to validate
subject reduction, see [22]. The type system enforces that two end-
points specify dual behavior. The last two constructs represent the
choices. The process x◁ l.P on channel x selects label l attached
to process P . The process x▷ {l1 ∶ P1, . . . , ln ∶ Pn} on channel
x offers a range of alternatives each labelled with a different label
taken from l1 . . . ln. According to the label lj that is selected the
process Pj will be executed.

Duality Two processes willing to communicate, for example, a
client and a server, must agree on a protocol. The protocol is ab-
stracted as a structured type, namely a session type. Intuitively,
client and server should perform dual operations: when one pro-
cess sends, the other receives, when one offers, the other chooses.
So, the dual of an input action is an output one, the dual of
branch(offering) is select(choice), as formalized by the following

definition:

end = end
?T.S = !T.S

!T.S = ?T.S

&{l1 ∶ S1, . . . , ln ∶ Sn} = ⊕{l1 ∶ S1, . . . , ln ∶ Sn}

⊕{l1 ∶ S1, . . . , ln ∶ Sn} = &{l1 ∶ S1, . . . , ln ∶ Sn}

In order to guarantee that communication is safe and proceeds with-
out any mismatch, static checks are performed by the type system.
Precisely, these checks consist in controlling that the opposite end-
points of the same session channel have dual types.

Typing Let us now consider the typing rules, listed in Figure 3.
We have focused only on the most important ones. Typing deriva-
tions for processes are of the form Γ ⊢ P . The typing rules handle
context split (○) in order to deal with linearity of session channels
[21] and context update (+) in order to deal with the continuation
type to make sure they not discarded without being used or they
are not used more than once session or duplicated [21]. Context
split and context update are defined in Figure 2. These rules handle
only the addition of session types S, as the standard types T can be
added freely to the context without any particular treatment.

Some comments on the typing rules follow. The rule that better
explains duality checks is the rule for restriction [T-Res]. Process
(νxy)P is well-typed in Γ if P is well-typed in Γ augmented
with session channel endpoints having dual types (x ∶ T, y ∶ T ).
Rule [T-In] splits in two the context in which the input process
x?(y).P is well-typed: one part type checks the variable x, the
other part, augmented with y ∶ T and updated with x ∶ U , type
checks the continuation process P . The rule for output [T-Out]
is similar. The context is split in three parts, one to type check
x, another to type check v and the last part to type check the
continuation P . Similarly to the rule for input, the continuation
process uses channel x with its continuation type U . Let us now
consider the typing rules for branch, [T-Brch], and select, [T-Sel].



Γ, x ∶ T, y ∶ T ⊢ P
[T-Res]

Γ ⊢ (νxy)P

Γ1 ⊢ x ∶ ?T.U (Γ2, y ∶ T ) + x ∶ U ⊢ P
[T-In]

Γ1 ○ Γ2 ⊢ x?(y).P

Γ1 ⊢ x ∶ !T.U Γ2 ⊢ v ∶ T Γ3 + x ∶ U ⊢ P
[T-Out]

Γ1 ○ Γ2 ○ Γ3 ⊢ x!⟨v⟩.P

Γ1 ⊢ x ∶ &{l1 ∶ T1, . . . , ln ∶ Tn} Γ2 + x ∶ Ti ⊢ Pi ∀i ∈ 1 . . . n
[T-Brch]

Γ1 ○ Γ2 ⊢ x▷ {l1 ∶ P1, . . . , ln ∶ Pn}

Γ1 ⊢ x ∶ ⊕{l1 ∶ T1, . . . , ln ∶ Tn} Γ2 + x ∶ Tj ⊢ P j ∈ 1 . . . n
[T-Sel]

Γ1 ○ Γ2 ⊢ x◁ lj .P

Figure 3. Some typing rules for session processes

As these constructs are a generalization of the input and output
processes, respectively, the corresponding typing rules follow the
intuitions above. The branching process x▷ {l1 ∶ P1, . . . , ln ∶ Pn}
is well-typed if channel x is of branch type &{l1 ∶ T1, . . . , ln ∶ Tn}
and every continuation process Pi is well-typed and uses x with
type Ti. This rule introduces an external choice. Whilst, the rule
for selection introduces an internal choice. To type check a process
that selects label lj on the channel x having type⊕{l1 ∶ T1, . . . , ln ∶
Tn}, we have to type check that the continuation process Pj uses x
with type Tj .

Operational Semantics The operational semantics is defined as a
binary relation over processesÐ→. We present in Figure 1 only two
transition rules, [R-Com] and [R-Case]. For simplicity, we do not
report the transition rules for the other cases as they are standard.
In rule [R-Com], two processes communicate on two co-variables,
that are variables bound together: one sends a value v on x and
the other receives it on y and substitutes the placeholder z with it.
Rule [R-Case] follows the above rule, the communicating processes
have prefixes that are co-variables. The selecting process continues
as P and the offering one as Qj , if the label lj is selected. In order
to complete the operational semantics rules, the standard structural
congruence is needed.

2.2 π Types
Type Syntax We now consider the π- calculus [18]. The ordi-
nary π-calculus types, ranged over by T , include various type con-
structs [18]. Here we focus on linear types and variant types, which
will be used in the encoding. The syntax of the type constructs we
want to discuss is presented in Figure 4. Linear types `iT , `oT
and `♯T are assigned to channels used exactly once in input to re-
ceive messages of type T , in output to send messages of type T and
used once for sending and once for receiving messages of type T ,
respectively. The variant type ⟨l1 T1 . . . ln Tn⟩ is a labelled form
of disjoint union of types. The order of the components does not
matter and labels are all distinct. Product types (T1 × . . .× Tn) are
needed to model the polyadic π-calculus. Other type constructs like
ground types, recursive types etc. can be added to the syntax.

Language syntax The syntax of terms of the π-calculus is given
in Figure 4. The output process x⟨ṽ⟩.P sends a tuple of values ṽ on
channel x and proceeds as P ; input process x(ỹ).P receives on x
a tuple of values that is going to substitute ỹ in P ; parallel compo-
sition and 0 inaction are standard; restriction creates a new name x
and binds it with scope P (the same as in sessions for shared chan-
nels). Process case v of [l1 (x1)▷ P1 . . . ln (xn)▷ Pn] offers
different behaviors depending on which variant value l v it re-
ceives. Other values are boolean values and variables.

Typing Some typing rules for π processes are given in Figure 5.
As in the previous section for session types, also here, there is
a particular handling of typing environments in order to ensure
linearity. The context is split following a split of linear types. which
is defined as follows:

`oT ⊎ `iT ≜ `♯T
T ⊎ T ≜ T
T ⊎ S ≜ (error) otherwise

The context split is defined as follows:

(Γ1 ⊎ Γ2)(x) ≜
Γ1(x) ⊎ Γ2(x) if both Γ1(x) and Γ2(x) are defined
Γ1(x) if Γ1(x), but not Γ2(x), is defined
Γ2(x) if Γ2(x), but not Γ1(x), is defined
undef if both Γ1(x) and Γ2(x) are undefined

Some comments on the typing rules follow. Rules for input and
output processes are straightforward: on a linear input, respectively
output, channel x a value v of the correct type is received, re-
spectively sent, with a continuation process P . Rule on restriction
states asserts that process (νx ∶ `♯T )P is well-typed provided P
is well-typed in a context extended with x ∶ `♯T . Following the
definition of context split above it means x ∶ `oT,x ∶ `iT and
this is a fundamental feature exploited in the encoding. It is im-
portant to notice that the standard rule for restriction assigns to x
some general channel type T and not necessarily ∶ `♯T . We have
adopted the rule in this simplified form as it used in our encod-
ing, presented in the next section. A variant value l v is of type
⟨l T ⟩ if v is of type T . Notice that, by means of subtyping, we
can also derive that l v is of type ⟨l1 T1 . . . l T . . . ln Tn⟩. Process
case v of [l1 (x1)▷ P1 . . . ln (xn)▷ Pn] is well-typed if value
v has variant type and every process Pi is well-typed assuming xi
has type Ti.

Operational Semantics We present in Figure 4 two transition
rules. Again, as for sessions, we do not present the other rules as
they are standard. Rule [Rπ-Com] is very similar to the correspond-
ing one in session processes. The only difference here is that we are
considering the polyadic π-calculus. Rule [Rπ-Case] is also called
a case normalization. The case process evolves to Pj substituting
xj with the value v, if the label lj is chosen. Structural congruence
and the corresponding rules are standard again.

3. Encoding
Session types guarantee that only the communicating parties know
the corresponding endpoints of the session channel, thus providing



Types T ∶∶= `iT ∣ `oT ∣ `♯T
⟨l1 T . . . ln T ⟩
(T × . . . × T )
⋯

linear input — linear output — linear connection
variant type
product type
other constructs

Processes P ∶∶= x⟨ṽ⟩.P output
x(ỹ).P input
P ∣Q composition
0 inaction

(νx)P scope restriction
case v of [l1 (x1)▷ P1 . . . ln (xn)▷ Pn] case

Values v ∶∶= x variable
l v variant value

true ∣ false boolean values

Transitions x⟨ṽ⟩.P ∣ x(z̃).QÐ→ P ∣ Q{ṽ/z̃} [Rπ-Com]
case lj v of [l1 (x1)▷ P1 . . . ln (xn)▷ Pn]Ð→ Pj j ∈ 1 . . . n [Rπ-Case]

Figure 4. Syntax and Semantics for π-calculus

Γ1 ⊢ x ∶ `iT Γ2, y ∶ T ⊢ P
[Tπ-In]

Γ1 ⊎ Γ2 ⊢ x(y).P

Γ1 ⊢ x ∶ `oT Γ2 ⊢ v ∶ T Γ3 ⊢ P
[Tπ-Out]

Γ1 ⊎ Γ2 ⊎ Γ3 ⊢ xv.P

Γ, x ∶ `♯T ⊢ P
[Tπ-Res]

Γ ⊢ (νx ∶ `♯T )P

Γ ⊢ v ∶ T
[Tπ-Var]

Γ ⊢ l v ∶ ⟨l T ⟩

Γ1 ⊢ v ∶ ⟨l1 T1 . . . ln Tn⟩ Γ2, xi ∶ Ti ⊢ Pi ∀i
[Tπ-Case]

Γ1 ○ Γ2 ⊢ case v of [l1 (x1)▷ P1 . . . ln (xn)▷ Pn]

Figure 5. Some typing rules for π processes

privacy. Moreover, the opposite endpoints should have dual types,
thus providing communication safety. The interpretation of session
types should take into account these fundamental issues. In order
to guarantee privacy and safety of communication we adopt linear
channels that are used exactly once. Privacy is ensured since the
linear channel is used at most once and so it is known only to
the interacting parties. Communication safety is ensured since the
linear channel is used at least once and so the input/output actions
are necessarily performed. Obviously, values transmitted should be
checked if they have the right type as specified by the protocol.

In the following we provide an encoding of session types into
ordinary π types and of session processes into π-calculus ones. The
intuition behind our encoding is that the continuation behavior of
the session channel instead of being explicitly put into the type, as
in session types, is sent along with the message at each output.

3.1 Type Encoding
First we present the encoding of session types into ordinary π types,
which is defined in Figure 6.

The encoding of the terminated communication channel is a
linear channel with no capabilities, meaning that it cannot be used
neither for input nor for output. The session channel type ?T.S is
interpreted as the linear input channel type carrying a pair of values
of type the encoding of T and of the encoding of continuation S.
The encoding of !T.S is a linear type used in output to carry a
pair of values of type the encoding of T and of type the encoding
of the dual of S. Note that in this case it is the dual of S to be
sent since it is the type of a channel as seen by the receiver. The
branch and the select types are generalizations of input and output
types, respectively. Consequently, they are interpreted as linear

input and linear output channels carrying variant types having the
same labels l1 . . . ln and the types encodings of S1 . . . Sn and
S1 . . . Sn, respectively. Again, the reason for duality is the same
as for the output type.

As mentioned above, in order to establish a communication,
the opposite endpoints of the session channel should have dual
types. Consider the following dual types: S = ?Int.!Int.end
and S = !Int.?Int.end. Their encoding is the following: ⟦S⟧ =
`i [Int, `o [Int, `∅[]]] and ⟦S⟧ = `o [Int, `o [Int, `∅[]]]. It turns
out that the duality of session types boils down to opposite capabil-
ities of linear channel types. The encodings above differ only in the
outermost level, that corresponds to having `i or `o types. The π
channels having these types carry exactly the same messages. This
happens because duality is incorporated in the output typing, where
the receiver’s point of view of the output type is considered, which
is therefore dual w.r.t. that of the sender. The encoding simplifies
the structure of the pair of dual session types. So, it can render the
process of abstracting protocols as structured types easier.

To conclude, let us recall the syntax of types in Vasconce-
los [21], where the qualifiers are present. What we encode are the
session types (given by the syntactic category S ∶∶=), that corre-
spond to the linear types in [21] while the standard π types (given
by the syntactic category T ∶∶=) that correspond to the unrestricted
types in [21], remain as such, i.e. they are not encoded as they are
already present in the π-calculus.

3.2 Process Encoding
The encoding of session processes into π-calculus processes is
defined in Figure 6.



⟦end⟧ = `∅[]
⟦?T.S⟧ = `i[⟦T ⟧, ⟦S⟧]
⟦!T.S⟧ = `o[⟦T ⟧, ⟦S⟧]
⟦{l1 ∶ S1&, . . . ,&ln ∶ Sn}⟧ = `i[⟨l1 ∶ ⟦S1⟧, . . . , ln ∶ ⟦Sn⟧⟩]
⟦{l1 ∶ S1⊕, . . . ,⊕ln ∶ Sn}⟧ = `o[⟨l1 ∶ ⟦S1⟧, . . . , ln ∶ ⟦Sn⟧⟩]

⟦P ∣ Q⟧f = ⟦P ⟧f ∣ ⟦Q⟧f
⟦x!⟨v⟩.P ⟧f = (νc)fx⟨v, c⟩.⟦P ⟧f,{x→c}

⟦x?(y).P ⟧f = fx(y, c).⟦P ⟧f,{x→c}

⟦(νxy)P ⟧f = (νc)⟦P ⟧f,{x→c,y→c}

⟦x◁ l.P ⟧f = (νc)fx⟨l c⟩.⟦P ⟧f,{x→c}

⟦x▷ {l1 ∶ P1, . . . , ln ∶ Pn}⟧f = fx(y). case y of [l1 c⇒ ⟦P1⟧f,{x→c} . . . ln c⇒ ⟦Pn⟧f,{x→c}]

Figure 6. Encoding of types and terms

The encoding of terms differs from the encoding of types as it
is parametrized in a function f that renames the linear channels
involved in the communication. The reason for f is the following:
since we are using linear types, once a channel is used, it cannot be
used again for transmission. To enable structured communications
however, like session types do, the channel is renamed: a new
channel is created and is sent to the partner in order to use it to
continue the rest of the session. This procedure is repeated at every
step of communication and the function f is updated to the new
name created.

Some explanations on the encoding are provided. The encoding
of the output process is as follows: a new channel name c is
created and is sent together with the value v along channel x
renamed by function f , we denote this by fx; the encoding of
the continuation process P is parametrized in f where name x is
updated to c. Similarly, the input process listens on channel fx and
receives a value, that substitutes variable y and a fresh channel c
that substitutes x in the continuation process encoded in f updated.

As shown in Section 2.1, the syntax of session processes we
have adopted here has a particular treatment of the binding con-
structor: (νxy)P creates two fresh names and binds them in P and
together as being the opposite endpoints of the same session chan-
nel. Since there is no such binding in π-calculus, the encoding is
given by the creation of a new name (νc) of linear channel type
with both capabilities of input/output. This may lead the reader to
think of subject reduction failure, as shown in [22], since two oppo-
site endpoints are being encoded as a single name c . However, this
name substitutes x and y in the encoding of P in such a way that
the capability of c matches the encoding of the type of that name.
Namely, each endpoint corresponds to channel c having only one of
the capabilities, input or output, whereas the other one corresponds
to the opposite endpoint. So, in session types we use two names x
and y, whereas in π-calculus we introduce a single name c having
two capabilities.This is a static check performed by the type sys-
tem. We sometimes denote cb and cb to emphasize the capabilities
of c.

The last two constructs correspond to selection and branching
processes. The selection process x◁ l.P is encoded as the process
that first creates a new channel c and then sends on fx a variant
value, l c where l is the label it is selecting and c is the channel
created to be used for the rest of the session. Afterwards it proceeds
as process P encoded in f updated. The branching process is
the most complicated one: it receives on fx a value, typically
being a variant value l c, to substitute the placeholder y in the
case process. The value l c, as for the selection, is composed by
the label l, that the partner has chosen and the channel c to be
used in the continuation processes. According to the label received

one of the corresponding processes ⟦P1⟧f,{x→c} . . . ⟦Pn⟧f,{x→c}

is chosen and again the encoding is parametrized in f updated by
{x→ c}. Note that the name c is bound in any process ⟦Pi⟧f,{x→c}

The encoding of other process constructs, like inaction, standard
scope restriction, parallel composition etc. is a homomorphism.

For a better understanding of the encoding, let us consider a
simple example: the equality test. The server and client processes
are the following.

server = x?(v1).x?(v2).x!⟨v1 == v2⟩.0
client = y!⟨3⟩.y!⟨5⟩.y?(eq).0

They communicate on a session channel by owning two opposite
endpoints x and y, respectively. The server accepts two integer
values in sequence v1 and v2 and sends back true or false depending
on whether these values are equal or not (v1 == v2). The client
process behaves dually: it sends to the server two integer values 3
and 5 and waits for a boolean answer. After this communication,
they both terminate. The encodings of server and client processes
are:

⟦server⟧f = z(v1, c).c(v2, c′).(νc′′)c′⟨v1 == v2, c′′⟩.0
⟦client⟧f = (νc)z⟨3, c⟩.(νc′)c⟨5, c′⟩.c′(eq, c′′).0

In the encoding, at the very first step, function f initializes x and y
to a new name z, and after that, before every output action, a new
channel c, c′, c′′ is created and sent to the partner together with the
value.

Session types associated to channel endpoints x, y on which this
interaction takes place, are as follows:

x ∶ ?Int.?Int.!Bool.end y ∶ !Int.!Int.?Bool.end

Following the encoding definition we have the following:

⟦x⟧ = `i [Int, `i [Int, `o [Bool, unit]]]
⟦y⟧ = `o [Int, `i [Int, `o [Bool, unit]]]

3.3 Properties
The encoding presented previously can be taken as the semantics of
session types and session terms. The following results show that we
can derive the typing judgments and Subject Reduction and Type
Safety of the session calculus.

THEOREM 1 (Type Correctness). Γ ⊢ P if and only if ⟦Γ⟧f ⊢
⟦P ⟧f .

PROOF 1. (⇒) It is proved by induction on the length of the deriva-
tion Γ ⊢ P . Let us consider just one case of the proof.



Case [T-Res]:

Γ, x ∶ T, y ∶ T ⊢ P
[T-Res]

Γ ⊢ (νxy)P
To prove ⟦Γ⟧f ⊢ ⟦(νxy)P ⟧f Following the encoding, ⟦(νxy)P ⟧f =
(νz)⟦P ⟧f,{x→z,y→z}. By IH ⟦Γ⟧f , x ∶ ⟦T ⟧, y ∶ ⟦T ⟧ ⊢ ⟦P ⟧f,{x,y}
The encoding of dual types is as follows ⟦T ⟧ = `c[⟦⋅⟧] and
⟦T ⟧ = `c[⟦⋅⟧] where we leave unspecified the innermost level of
the type as it is not important. We will introduce a fresh name z
having type `♯[⟦⋅⟧] ♯ = c + c i.e. a type having both the type ca-
pabilities of outermost capabilities of T and T maintaining the
internal structure of the types. So, we can modify the IH as fol-
lows: ⟦Γ⟧f , z ∶ `♯[⟦⋅⟧] ⊢ ⟦P ⟧f,{x→z,y→z}, where x is substituted
by z having type `c[⟦⋅⟧] whilst, y is substituted by z having type
`c[⟦⋅⟧]. Using rule LIN-RES in pi, we have:

⟦Γ⟧f , z ∶ `♯[⟦⋅⟧] ⊢ ⟦P ⟧f,{x→z,y→z}

⟦Γ⟧f ⊢ (νz)⟦P ⟧f,{x→z,y→z}

(⇐) It is proved by induction on the structure of P . We consider
again one case of the proof just to illustrate it.
CaseP = x(y).P . Suppose ⟦Γ⟧f ⊢ ⟦x(y).P ⟧f ≜ fx(y, c).⟦P ⟧f,{x→c}.
This is derived by using LIN-INP as the last rule:

⟦Γ1⟧f ⊢ fx ∶ `i[W1,W2] ⟦Γ2⟧f , y ∶W1, c ∶W2 ⊢ ⟦P ⟧f,{x→c}

⟦Γ⟧f ⊢ fx(y, c).⟦P ⟧f,{x→c}

Where ⟦Γ⟧f = ⟦Γ1⟧f ⊎ ⟦Γ2⟧f . By IH Γ1 ⊢ x ∶ ?T1.T2 and
(Γ2, y ∶ T1)+x ∶ T2 ⊢ P where W1 = ⟦T1⟧ and W2 = ⟦T2⟧. Using
rule [T-In] we conclude the following:

Γ1 ⊢ x ∶ ?T1.T2 (Γ2, y ∶ T1) + x ∶ T2 ⊢ P
[T-In]

Γ1 ○ Γ2 ⊢ x?(y).P

Theorem 1, and more precisely its proof, shows that the encoding
can be actually used to reconstruct the typing rules of session types.

THEOREM 2 (Operational Correspondence). If P → P ′ then ∃Q
such that ⟦P ⟧f → Q and Q ↪ ⟦P ′⟧f where ↪ is a structural
congruence extended with case normalization.

PROOF 2. It is proved by induction on the length of the proof of the
reduction P → P ′. We consider the following base cases:
Case (R-Com):
P = (νxy)(x!⟨v⟩.P1 ∣ y?(z).P2)→ (νxy)(P1 ∣ P2{v/z}) = P ′.

⟦P ⟧f =
⟦(νxy)(x!⟨v⟩.P1 ∣ y?(z).P2)⟧f

≜(νt)⟦(x!⟨v⟩.P1 ∣ y?(z).P2)⟧f,{x→t,y→t}

=(νt) (⟦x!⟨v⟩.P1⟧f,{x→t} ∣ ⟦y?(z).P2⟧f,{y→t})

≜(νt) [((νc)t⟨v, c⟩.⟦P1⟧f,{x→t,t→c}) ∣ t(z, c).⟦P2⟧f,{y→t,t→c}]

(an α-conversion is performed in order to have c in the rhs)

→(νt) [(νc) (⟦P1⟧f,{x→c} ∣ ⟦P2⟧f,{y→c}{v/z})] = Q

≡(νc) (⟦P1⟧f,{x→c} ∣ ⟦P2⟧f,{y→c}{v/z})

The following also holds:

⟦P ′⟧f ≜ ⟦(νxy)(P1 ∣ P2{v/z})⟧f
≜ (νc)⟦P1 ∣ P2{v/z}⟧f,{x→c,y→c}

≜ (νc)(⟦P1⟧f,{x→c} ∣ ⟦P2⟧f,{y→c}{v/z})

Case (R-Case): P = (νxy)(x◁ lj .R ∣ y ▷ {l1 ∶ Q1, . . . , ln ∶
Qn})→ (νxy)(R ∣ Qj) = P ′j ∈ 1 . . . n.

⟦P ⟧f ≜ ⟦(νxy)(x◁ lj .R ∣ y▷ {l1 ∶ Q1, . . . , ln ∶ Qn})⟧f
≜ (νz) (⟦x◁ lj .R ∣ y▷ {l1 ∶ Q1, . . . , ln ∶ Qn}⟧f,{x→z,y→z})

≜ (νz) (⟦z◁ lj .R⟧f,{x→z} ∣ ⟦z▷ {l1 ∶ Q1, . . . , ln ∶ Qn}⟧f,{y→z})

≜ (νz) ((νc)z⟨lj c⟩.⟦R⟧f,{x→z,z→c} ∣ z(w). case w of

[l1 c ∶ ⟦Q1⟧f,{y→z,z→c} . . . ln c ∶ ⟦Qn⟧f,{y→z,z→c}])

(an α-conversion is performed in order to have c in the rhs)

= (νc) (z⟨lj c⟩.⟦R⟧f,{x→c} ∣ z(w). case w of

[l1 c ∶ ⟦Q1⟧f,{y→c} . . . ln c ∶ ⟦Qn⟧f,{y→c}])

→ (νc) (⟦R⟧f,{x→c} ∣ case lj c of

[l1 c ∶ ⟦Q1⟧f,{y→c} . . . ln c ∶ ⟦Qn⟧f,{y→c}]) = Q

↪ (νc) (⟦R⟧f,{x→c} ∣ ⟦Qj⟧f,{y→c})

The following also holds:

⟦P ′⟧f ≜ ⟦(νxy)(R ∣ Qj)⟧f
≜ (νc)⟦R ∣ Qj⟧f,{x→c,y→c}

≜ (νc)(⟦R⟧f,{x→c} ∣ ⟦Qj⟧f,{y→c})

The inductive step is straightforward.

By exploiting Type Correctness and Operational Correspon-
dence we derive for free the Subject Reduction and Type Safety
(absence of run-time errors) in session types.

COROLLARY 1. If Γ ⊢ P and P → P ′ then Γ ⊢ P ′

PROOF 3. The result follows from the subject reduction property in
π-calculus and Theorems 1 and 2.

After analyzing the effectiveness of the encoding on basic ses-
sion types, in the following sections we show its robustness by ex-
amining three non-trivial extensions, namely subtyping, polymor-
phism and higher-order.

4. Subtyping
Subtyping is a relation among channel types based on a notion of
substitutability, meaning that language constructs meant to act on
channels of the supertype can also act on channels of the subtype. If
T is a subtype of T ′, then any channel of type T can be safely used
in a context where a channel of type T ′ is expected. The definition
of subtyping must be done carefully in order for this substitutability
property to hold.

Subtyping has been studied extensively in π-calculus [17, 18]. It
has also been studied in session types [5]. In this section we show
that the ordinary subtyping of the π-calculus is enough to derive
subtyping in session types. Subtyping rules for both systems are
presented in Figure 7. We use the symbol <∶ for session subtyping,
and ≤ for standard π subtyping.

Rules (S-inp) and (S-out) define subtyping relation of input and
output linear π channels. These rules assert that input channels are
co-variant and output channels are contra-variant in the types of
values they transmit. Rule (S-variant) presents subtyping of variant
types. It is co-variant both in depth and in breadth. Rules (S-?)
and (S-!) indicate subtyping in input and output session types,
respectively. As before, input operation is co-variant whilst output



I = {i, ♯} ∀i ∈ 1 . . . n. Ti ≤ Si
(S-inp)

`I[T1, . . . , Tn] ≤ `i[S1, . . . , Sn]

I = {o, ♯} ∀i ∈ 1 . . . n. Si ≤ Ti
(S-out)

`I[T1, . . . , Tn] ≤ `o[S1, . . . , Sn]

∀i ∈ 1 . . . n. Ti ≤ Si
(S-variant)

⟨l1 T1 . . . ln Tn⟩ ≤ ⟨l1 S1 . . . ln+m Sn+m⟩

T <∶ T ′ S <∶ S′

(S-?)
?T.S <∶ ?T ′.S′

T ′ <∶ T S <∶ S′

(S-!)
!T.S <∶ !T ′.S′

I ⊆ J ∀i ∈ I. Ti <∶ Si
(S-brch)

&{li ∶ Ti}i∈I <∶ &{lj ∶ Sj}j∈J

I ⊇ J ∀j ∈ J. Tj <∶ Sj
(S-sel)

⊕{li ∶ Ti}i∈I <∶ ⊕{lj ∶ Sj}j∈J

Figure 7. Subtyping rules for π types (≤) and for session types (<∶).

operation is contra-variant. The continuation type is co-variant in
both cases. This is a difference w.r.t. the corresponding rules in π-
calculus. There are two rules for labelled types, namely (S-brch)
and (S-sel) being both co-variant in depth in the types of values
they transmit and being co-variant and contra-variant in breadth,
respectively.

In π-calculus with sessions and subtyping, one must deal both
with ordinary subtyping on π types and subtyping on session types.
This introduces a duplication of effort that grows as the type syntax
and type system become richer. For example, this duplication is
very heavy when recursive types are included. If the type system
is structural, then subtyping on recursive types is established with
coinductive techniques, e.g. simulation relations. These techniques
must be defined and proved sound both on ordinary π types and
on session types. In addition, on session types one also needs
coinductive techniques to formalize type duality.

The encoding is used, as in the previous section, to derive basic
properties of session types; in addition to Theorem 1 and 2 here
we have to take into account the subtyping relation. Therefore, it is
important to prove the validity of subtyping, which is necessary in
order to extend Subject Reduction and Type Safety.

THEOREM 3 (Validity of Subtyping). T <∶ S if and only if ⟦T ⟧ ≤
⟦S⟧.

PROOF 4. (⇒) The proof is by induction on the derivation of T <∶
S. To give an idea of the proof we consider the following case
Case input:
Where T = ?T1.T2 and S = ?S1.S2. By induction hypothesis:
⟦T1⟧ ≤ ⟦S1⟧ and ⟦T2⟧ ≤ ⟦S2⟧. To prove ⟦?T1.T2⟧ ≤ ⟦?S1.S2⟧.

Since ⟦?T1.T2⟧ = `i[⟦T1⟧, ⟦T2⟧] and ⟦?S1.S2⟧ = `i[⟦S1⟧, ⟦S2⟧],
using the IH and the rule (S-inp) with I = {i} we have:

⟦T1⟧ ≤ ⟦S1⟧ ⟦T2⟧ ≤ ⟦S2⟧
(Sub-inp)

`i[⟦T1⟧, ⟦T2⟧] ≤ `i[⟦S1⟧, ⟦S2⟧]
(⇐) The proof is by induction on the structure of session types

T,S. Again, let us consider as an example one case of the proof.
Case T = !T1.T2 and S = !S1.S2. The encodings are ⟦!T1.T2⟧ =
`o[⟦T1⟧, ⟦T2⟧] and ⟦!S1.S2⟧ = `o[⟦S1⟧, ⟦S2⟧] and we suppose
⟦T ⟧ ≤ ⟦S⟧. To prove T <∶ S. Using the following rule in pi we
have:

⟦S1⟧ ≤ ⟦T1⟧ ⟦S2⟧ ≤ ⟦T2⟧
(Sub-out)

`o[⟦T1⟧, ⟦T2⟧] ≤ `o[⟦S1⟧, ⟦S2⟧]
An auxiliary Lemma gives ⟦T2⟧ ≤ ⟦S2⟧ if and only if ⟦S2⟧ ≤ ⟦T2⟧
and by IH we have S1 <∶ T1 and T2 <∶ S2. We conclude using rule
(S-!).

The other cases of the proof follow in a similar way.

Subtyping in session types has been studied in details in [5, 21]:
we can derive the main results in these papers as straightforward
corollaries via the encoding along the lines of what we have shown
for Subject Reduction and Validity of Subtyping. Examples are: re-
flexivity and transitivity of subtyping, and all the auxiliary lemmas
(e.g. substitution).

The above results remain valid with the addition of recursive
types; in this case we can also obtain for free all the coinductive
techniques for subtyping and duality in session types.

5. Polymorphism
Polymorphism is a common and useful type abstraction in pro-
gramming languages as it allows operations that are generic by us-
ing an expression with several types. Polymorphism is added both
on session side and on the π side. In this section we show that
this duplication is not necessary: all the theory of polymorphism
in session types can be derived by the corresponding theory in the
π-calculus. This holds for the standard parametric polymorphism
as well as for bounded polymorphism.

5.1 Parametric Polymorphism
Let us first consider (existential) parametric polymorphism. This
form of polymorphism has not been studied in session types. We
need to extend the syntax of types T with type variable X and
polymorphic type ⟨X;T ⟩.

Types T ∶∶=S session type

♯T channel type
X type variable
⟨X;T ⟩ polymorphic type
. . . other π types constructs

The syntax of session types remains unchanged. Modifications in
the syntax of types introduce modifications in the syntax of terms,
as expected. So, we add polymorphic value ⟨T ; v⟩ and unpacking
process open v as (X;x) in P , the same constructs as in π-
calculus. Note that value v and hence name x, can be tuples of
values, respectively names, in order to accommodate polyadicity.

Since we added polymorphic constructs in the syntax of stan-
dard types and we left the syntax of session types unchanged, the
encoding of session types is the same as before, hence the encoding
of types is a homomorphism. In particular, polymorphic constructs
are encoded as

⟦X⟧ =X
⟦⟨X;T ⟩⟧ = ⟨X; ⟦T ⟧⟩



The same holds for the terms of the calculus with or without
sessions: we added the same value and process constructs on both
sides and thus the encoding is again a homomorphism

⟦⟨T ; v⟩⟧f = ⟨⟦T ⟧; ⟦v⟧f ⟩
⟦open v as (X;x) in P ⟧f = open ⟦v⟧f as ⟦(X;x)⟧ in ⟦P ⟧f

In the case of polymorphic calculi we prove the correctness
of the typing derivation, by considering only the polymorphic
types/terms constructs and the corresponding typing rules. We also
prove the operational correspondence for the new process con-
structs added. The typing judgments are of the form ∆,Γ ⊢ P
where ∆ is the set of type variables present in P . This is the only
difference w.r.t. typings introduced before. The following theorem
states the correctness result for polymorphic types.

THEOREM 4. ∆,Γ ⊢ P if and only if ∆, ⟦Γ⟧f ⊢ ⟦P ⟧f .

The operational correspondence for polymorphic calculi merely
adds a case to Theorem 2 stated previously. Again, Subject Re-
duction and Type Safety and other basic properties are derived as
in the previous sections.

5.2 Bounded Polymorphism
We now consider the bounded polymorphism, studied in [4], which
is a form of parametric polymorphism. This kind of polymorphism
has not been studied yet in π-calculus; we add it and show how we
can derive bounded polymorphism in session types passing through
the π types. Bounded polymorphism in session types [4] is added
only to the labels in the branch and select constructs. The two type
constructs have now the following shape:

& {l1(X1 ≤ B1) ∶ S1, . . . , ln(Xn ≤ Bn) ∶ Sn}
⊕ {l1(X1 ≤ B1) ∶ S1, . . . , ln(Xn ≤ Bn) ∶ Sn},

where B stands for basic types (e.g. integer, boolean, X, . . .) not
channel types.

In order to have bounded polymorphism also in the π-calculus,
we should add it to the syntax of types, precisely attached to the
labels of variant types as follows:

⟨l1(X1 ≤ B1) ∶ T1 . . . ln(Xn ≤ Bn) ∶ Tn⟩
So, on both π-calculi with or without sessions, we should take

into account the condition (Xi ≤ Bi) andXi should be instantiated
with a type that satisfies the condition. The syntax of processes
should be modified accordingly, by adding the bound type to the
labels. The typing rules are now similar on both calculi and the
same holds for the operational semantics. The encoding is once
again a homomorphism and is given in Figure 8.

By using the encoding and the bounded polymorphism in π-
calculus, we can derive bounded polymorphism in session types.
Furthermore, all the results presented in Section 4 and 5.1 are
derivable for free.

6. Higher-Order
Higher-Order π-calculus (HOπ) models mobility of processes that
can be sent and received and thus can be run locally [18]. Higher-
order in sessions has the same benefits as that in π-calculus, in
particular, it models code mobility in a distributed scenario. What
we want to do is to use HOπ to provide sessions with higher-order
capabilities by exploiting the encoding, as we did with subtyping
and polymorphism.

Let us consider higher-order sessions [15].
The syntax of types is the following. We consider standard

π channel types, session types and types taken from the simply-
typed λ-calculus. The syntax T of types is extended with two
functional type constructs: a standard one T → ♢, assigned to a

T ∶∶= ♯T standard channel type
S session type
T → ♢ functional type
T

1→ ♢ linear functional type
S ∶∶= . . . Session Types

Figure 9. Higher-order session types

functional term that can be used without any restriction and, a linear
functional type T

1→ ♢1 assigned to a term that should be used
exactly once. The reason for this is that a function may contain free
session channels, hence it should necessarily be used at least once
in order to complete the session and should not be used more than
once, so not to violate session safety. Regarding terms, π-calculus
with session primitives is augmented with call-by-value λ-calculus
primitives, namely abstraction (λx ∶ T.P ) and application (PQ).

HOπ types, given in Figure 10, include the standard functional
type and its terms include abstraction and application. The only
type construct missing w.r.t. higher order session types is the linear
functional type, which we add in order to properly define the
encoding. The syntax of terms, on the contrary, is unchanged and

T ∶∶= `iT linear input
`oT linear output
`♯T linear connection
⟨l1 T1 . . . ln Tn⟩ variant type
T → ♢ functional type
T

1→ ♢ linear functional type

Figure 10. Higher-order π types

remains the one of HOπ.
The encoding is a homomorphism on the higher-order con-

structs added to the syntax of types and terms on both calculi. It
is presented in Figure 11.

⟦T 1→ ♢⟧ = ⟦T ⟧ 1→ ♢
⟦T → ♢⟧ = ⟦T ⟧→ ♢

⟦λx ∶ T.P ⟧f = λx ∶ ⟦T ⟧.⟦P ⟧f
⟦PQ⟧f = ⟦P ⟧f⟦Q⟧f

Figure 11. Encoding of higher-order types and terms

Typing judgements, in π-calculus with and without sessions
are of the form Γ; Σ;S ⊢ P , where Σ denotes the set of session
channels typed by session types, S is the set of linear functional
variables and Γ contains the rest in order to type P .

Regarding the higher-order calculus, the assertion of type cor-
rectness becomes:

THEOREM 5. Γ; Σ;S ⊢ P if and only if ⟦Γ⟧f ; ⟦Σ⟧f ; ⟦S⟧f ⊢
⟦P ⟧f
The result of the operational correspondence for the higher-order
is as before. Again, we derive Subject Reduction, Type Safety and
other Lemmas as corollaries.

7. Further Considerations
As explained in the previous sections, a session type is interpreted
as a linear channel type, which in turn carries a linear channel. In

1 In [15] they consider generic functional types T → T . However, this
does not add much to the calculi and as long as our goal for encoding is
concerned T → ♢ is enough.



⟦&{li(Xi ≤ Ti) ∶ Si}i∈I⟧ = `i[⟨l1(X1 ≤ T1) ∶ ⟦S1⟧, . . . , ln(Xn ≤ Tn) ∶ ⟦Sn⟧⟩]
⟦⊕{li(Xi ≤ Ti) ∶ Si}i∈I⟧ = `o[⟨l1(X1 ≤ T1) ∶ ⟦S1⟧, . . . , ln(Xn ≤ Tn) ∶ ⟦Sn⟧⟩]

⟦x◁ l(T ).P ⟧f = (νc)fx⟨l(T ) c⟩.⟦P ⟧f,{x→c}

⟦x▷ {l1(X1 ≤ T1) ∶ P1, . . . , ln(Xn ≤ Tn) ∶ Pn}⟧f = fx(y). case y of
[l1(X1 ≤ T1) c⇒ ⟦P1⟧f,{x→c}

. . .
ln(Xn ≤ Tn) c⇒ ⟦Pn⟧f,{x→c}]

Figure 8. Encoding of polymorphic types and terms

order to satisfy this linearity, on behalf of terms, a fresh channel
is created at any step of communication and is sent to the partner
along with the message to be transmitted. The sent channel will be
used to handle the rest of the communication. What we just said
describes the encoding of the an output process transmitting some
value v:

(νb)a⟨v, b⟩.⟦P ⟧
{a→b} (1)

One can argue that there is an overhead in doing so, and above all
it is not necessary. Since the fresh names are assigned linear types,
once they are used, we are guaranteed by the type system that those
channels are not going to be used again. An optimized approach
permits to reuse the same linear channel. For example, the above
process would be as follows:

a⟨v, a⟩.⟦P ⟧ (2)

This leads to a typing problem, since the process is not well-typed,
as it obviously violates linearity. In order to overcome this problem,
we introduce the following typing rule:

Γ1 ⊢ v ∶ `oT Γ2, v ∶ `cS ⊢ w ∶ T Γ3, v ∶ `cS ⊢ P

Γ1,Γ2,Γ3 ⊢ v⟨w⟩.P
We have proved that (1) and (2) are typed strong barbed con-

gruent. The modified rule may be seen as an optimization of linear
types, allowing reuse of channel names. The optimization would
make the encoding of session types simpler— a linear channel
would be use like a session channel and therefore the function pa-
rameter f of the encoding would not be needed. In our presenta-
tion, we have preferred not to do so in order to relate ourselves to
the standard π-calculus and its theory.

8. Conclusions, Related and Future Work
This paper proposes an interpretation of session types into ordinary
π types, more precisely into linear types and variant types. Linear
types [14] force a channel to be used exactly once. Variant types
[18] are a labeled form of disjoint union of types.

The idea of the encoding of session types into π-calculus linear
types is not new. Kobayashi [13] was the first to propose such an en-
coding, but he did not provide any formal study of it. Demangeon
and Honda [2] provide a subtyping theory for a π-calculus aug-
mented with branch and select constructs and show an encoding of
the session calculus. They prove the soundness of the encoding and
the full abstraction. The main differences w.r.t. our work are: (i) the
target language is closer to the session calculus having branch and
select constructs (instead of having just one variant construct), and
a refined subtyping theory is provided, while we focus on encoding
the session calculus in the standard π-calculus in order to exploit
its rich and well-established theory; (ii) we study the encoding in a
systematic way as a means to formally derive session types and all
their properties, in order to provide a methodology for the treatment

of session types and their extensions without the burden of estab-
lishing the underlying theory (specifically, [2] focuses on subtyping
issues).

Other expressivity results regarding session types theory include
the work by Caires and Pfenning [1]. They present a type system
for the π-calculus that corresponds to the standard sequent calculus
proof system for dual intuitionistic linear logic. They give an in-
terpretation of intuitionistic linear logic formulas as a form of ses-
sion types. These results are complemented and strengthened with
a theory of logical relations [16]. Moreover an interpretation of the
simply-typed λ-calculus in sessions π-calculus is given in [20].

Igarashi and Kobayashi [9] have developed a single generic
type system (GTS) for the π-calculus from which numerous spe-
cific type systems can be obtained by varying certain parameters. A
range of type systems are thus obtained as instances of the generic
one. Gay, Gesbert and Ravara [6] define an interpretation from ses-
sion types and terms into GTS by proving operational correspon-
dence and correctness of the encoding. However, as the authors
state, the encoding they present is very complex and deriving prop-
erties of sessions passing through GTS would be more difficult than
proving them directly.

We develop Kobayashi’s proposal of an encoding of session
types into ordinary π types. We show that the encoding is faithful,
in that it allows us to derive all the basic properties of session
types, exploiting the analogous properties of π types. We then
show that the encoding is robust, by analyzing a few non-trivial
extensions to session types, namely subtyping, polymorphism and
higher-order. Finally, we propose an optimization of linear channels
permitting the reuse of the same channel for the continuation of the
communication and prove a typed barbed congruence result. This
optimization considerably simplifies Kobayashi’s encoding, which
on some terms (for example, input and output processes) becomes
the identity relation (the encoding of session types, however is the
same as before).

The benefits coming from the encoding include the elimination
of the redundancy introduced both in the syntax of types and of
terms, and the derivation of properties (Subject Reduction, Type
Safety, . . . ) as straightforward corollaries (thus eliminating redun-
dancy also in the proofs). Issues like opposite endpoints of a ses-
sion channel and duality of types assigned to these endpoints are
handled by the theory of π: there is just one channel we deal with
(no need to distinguish endpoints) and duality boils down to having
opposite outermost capabilities of linear channel types. Moreover,
the robustness of the encoding allow us to easily obtain extensions
of the session calculus, by exploiting the theory of the π-calculus.
As we have shown in Section 5.2, where we presented the bounded
polymorphism, our approach makes it easy even when the intended
extension was not already present in the π-calculus. In these cases
one can just provide the π-calculus with the intended capability
and obtain the same capability in sessions. The whole process has
shown to be much easier passing through π-calculus than doing it
from scratch for sessions.



We conclude that session types theory is indeed derivable from
the theory of π calculus. This does not mean that we believe session
types are useless: on the contrary, due to their simple and intuitive
structure they represent a fine tool for describing and reasoning
about communication protocols in distributed scenarios. Our aim is
to provide a methodology for facilitating the definition of session
types and their extensions, hence encouraging their study.

We are planning to investigate whether our approach can be
taken a step further, by modifying the encoding in order to accom-
modate notions of causality needed to capture multiparty commu-
nication behavior [8] and deadlock freedom [10, 12].

References
[1] L. Caires and F. Pfenning. Session types as intuitionistic linear propo-

sitions. In CONCUR’10, pages 222–236, 2010.
[2] R. Demangeon and K. Honda. Full abstraction in a subtyped pi-

calculus with linear types. In CONCUR’11, pages 280–296, 2011.
[3] M. Dezani-Ciancaglini and U. de’Liguoro. Sessions and session types:

An overview. In WS-FM’09, pages 1–28, 2009.
[4] S. J. Gay. Bounded polymorphism in session types. Mathematical

Structures in Computer Science, 18(5):895–930, 2008.
[5] S. J. Gay and M. Hole. Subtyping for session types in the pi calculus.

Acta Inf., 42(2-3):191–225, 2005.
[6] S. J. Gay, N. Gesbert, and A. Ravara. Session types as generic process

types. In PLACES’08, 2008.
[7] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and

type discipline for structured communication-based programming. In
ESOP’98, pages 122–138, 1998.

[8] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. In POPL’08, pages 273–284, 2008.

[9] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight java: a minimal
core calculus for java and gj. ACM Trans. Program. Lang. Syst., 23
(3):396–450, 2001.

[10] N. Kobayashi. A partially deadlock-free typed process calculus. ACM
Trans. Program. Lang. Syst., 20(2):436–482, 1998. ISSN 0164-0925.
doi: http://doi.acm.org/10.1145/276393.278524.

[11] N. Kobayashi. Type systems for concurrent programs. In 10th An-
niversary Colloquium of UNU/IIST, pages 439–453, 2002.

[12] N. Kobayashi. A new type system for deadlock-free processes. In
CONCUR’06, pages 233–247, 2006.

[13] N. Kobayashi. Type systems for concurrent programs. Extended
version of [11], Tohoku University, 2007.

[14] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-
calculus. ACM Trans. Program. Lang. Syst., 21(5):914–947, 1999.

[15] D. Mostrous and N. Yoshida. Two session typing systems for higher-
order mobile processes. In TLCA’07, pages 321–335, 2007.

[16] J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Linear logical
relations for session-based concurrency. In ESOP’12, pages 539–558,
2012.

[17] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile
processes. In LICS’93, pages 376–385, 1993.

[18] D. Sangiorgi and D. Walker. The Pi-Calculus - a theory of mobile
processes. Cambridge University Press, 2001. ISBN 978-0-521-
78177-0.

[19] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. In PARLE’94, pages 398–413, 1994.

[20] B. Toninho, L. Caires, and F. Pfenning. Functions as session-typed
processes. In FoSSaCS’12, pages 346–360, 2012.

[21] V. T. Vasconcelos. Fundamentals of session types. In To appear in
Information and Computation, volume 217, pages 52–70, 2012.

[22] N. Yoshida and V. T. Vasconcelos. Language primitives and type dis-
cipline for structured communication-based programming revisited:
Two systems for higher-order session communication. Electr. Notes
Theor. Comput. Sci., 171(4):73–93, 2007.


