
Semantic Subtyping for Objects and Classes
Ornela Dardha, Daniele Gorla and Daniele Varacca

Introduction
There are two approaches for defining subty-
ping relations: the syntactic and the semantic
one. In the semantic approach one starts from
a model of the language of interest and an in-
terpretation of types as subsets of the model.
The subtyping relation is then defined as inclu-
sion of sets denoting types. An orthogonal is-
sue, typical of object-oriented languages, is the
issue of nominal vs. structural subtyping. We
aim to integrate structural subtyping with boo-
lean connectives and semantic subtyping for
a object-oriented core language and define a
Java-like programming platform that exploits
the benefits of both approaches, expressible in
terms of code reuse and of compactness of pro-
gram writing.

The Calculus
Types:

α ::= 0 | B | [l̃ : τ] | α∧∧∧ α | ¬¬¬α
µ ::= α→ α | µ∧∧∧ µ | ¬¬¬µ

τ ::= α | µ

Terms:

L ::= class C extends D {α̃ a; K M̃}

K ::= C(β̃ b; α̃ a){super(̃b); this.̃a = ã; }
M ::= α m(α a){return e; }
e ::= x | c | e.a | e.m(e) | new C(̃e)

Semantic Subtyping
• Step 1: type constructors are augmented

with 0, 1 and the boolean connectives ∧∧∧, ∨∨∨
e ¬¬¬. Let T be the types algebra.

• Step 2: give a set-theoretic model of the
type algebra: define an interpretation func-
tion ~�B : T → P(B) for some set B.
The function ~�B must satisfy:

~τ1 ∨∨∨ τ2�B = ~τ1�B ∪ ~τ2�B

~τ1 ∧∧∧ τ2�B = ~τ1�B ∩ ~τ2�B

~¬¬¬τ�B = B \ ~τ�B

subtyping induced by B:

τ1 ≤B τ2
de f
⇐⇒ ~τ1�B ⊆ ~τ2�B

• Step 3: find an algorithm that decides the
subtyping relation.

• Step 4: consider the subtyping relation
and the typing rules and deduce typing
judgments Γ `B e : τ for the language.

• Step 5: typing judgments allow us to de-
fine a new natural interpretation, types as
set of values:

~τ�V = {v ∈ V | `B v : τ}

subtyping induced byV:

τ1 ≤V τ2
de f
⇐⇒ ~τ1�V ⊆ ~τ2�V

Closing the circle

τ1 ≤B τ2
proved
⇐⇒ τ1 ≤V τ2

Advantages of boolean connectives in object-oriented languages
Example: suppose we are working with polygons: triangles, squares, rumbles etc. We want to define a
method diagonal that given a polygon computes its longest diagonal. Of course, this is possible only
if the polygon is not a triangle. In Java this can be done in different ways, for example:

class Polygon {· · · }

class Triangle extends Polygon {· · · }

class Other_Polygons extends Polygon {
...

real diagonal(Other_Polygons p) {. . .}
}

Using interfaces:

public interface Diagonal {
real diagonal(Polygon p);

}

class Polygon {· · · }

class Triangle extends Polygon {· · · }

class S quare extends Polygon implements Diagonal {· · · }

class Rumble extends Polygon implements Diagonal {· · · }
...

Things are easier when done ad-hoc. But it is not always this way... Suppose the class-hierarchy is
already declared and it is not possible to modify it afterwards. The situation is as follows:

class Polygon extends Ob ject {· · · }

class Triangle extends Polygon {· · · }

class S quare extends Polygon {· · · }

class Rumble extends Polygon {· · · }
...

It is more complicated to define the method diagonal. One can define this method in the class Polygon
and use an instance-of construct and handle exceptions. If a triangle is passed to the method, then
an exception is thrown and will be handled at run-time. Or...

Let’s use connectives!!
Define a method with argument type Polygon ∧∧∧
¬¬¬Triangle.

class Diagonal extends Ob ject {
real diagonal(Polygon∧∧∧¬¬¬Triangle p){. . .}

}

If a polygon not triangle is passed to the method
diagonal, then the longest diagonal is computed;
otherwise, if a triangle is passed to the method,
then a type-error at compile time will occur.

Results and Conclusions
• We considered the functional fragment of

Java.

• We gave a set-theoretic interpretation in
B that induces ≤B.

• Next, a new interpretation in V is given,
(types as set of values) that induces ≤V.

• Theorem: ≤B⇐⇒≤V

Nominal vs. Structural
There are two approaches to subtyping specific
to object-oriented languages:

• Nominal: A is a subtype of B if and only
if it is declared to be so (declarative).

• Structural: A is a subtype of B if and only
if its fields and methods are a superset of
the fields and methods of B and their ty-
pes are subtypes of types in B (intrinsic).

Observation: it is natural to integrate structural
subtyping with boolean connectives and seman-
tic subtyping, exploiting their benefits.

Future work
• We aim at constructing universal models

of types.

• Prove properties of ~�V.

• Implement a prototype OO language
JDuce that uses boolean connectives and
a semantically defined subtyping.

1

