Semantic Subtyping for Objects and Classes

Ornela Dardha, Daniele Gorla and Daniele Varacca

SAPIENZA

UNIVERSITA DI ROMA

Introduction Advantages of boolean connectives in object-oriented languages

There are two approaches for defining subty-
ping relations: the syntactic and the semantic
one. In the semantic approach one starts from
a model of the language of interest and an in-
terpretation of types as subsets of the model.
The subtyping relation is then defined as inclu-
sion of sets denoting types. An orthogonal is-
sue, typical of object-oriented languages, is the
issue of nominal vs. structural subtyping. We
aim to integrate structural subtyping with boo-
lean connectives and semantic subtyping for
a object-oriented core language and define a
Java-like programming platform that exploits
the benefits of both approaches, expressible in
terms of code reuse and of compactness of pro-
gram writing.

The Calculus

Types:
a:::OIBI[m‘]IaAal—-a
pHi=a—>aluAyul-u
Ti=a|u
Terms:
L ::= class C extends D {aa; K M)
K = C(,B’\l;; Eﬁz’){super@); this.a = a;}
M = a m(a a){return e; }
e 2= x|clea|em(e)| new C(e)

Semantic Subtyping

o Step 1: type constructors are augmented
with 0, 1 and the boolean connectives A, V
e 0. Let 7 be the types algebra.

e Step 2: give a set-theoretic model of the
type algebra: define an interpretation func-

tion [llg : T — P(B) for some set B.
The function []lg must satisty:

71 V1oolg =ltillg Ul g

[T1 ATollg = [m1llg N2 llg
[-7lg = B\ [7lg

subtyping induced by 5:

def
T <g Ty & |11lg C lm2lg

e Step 3: find an algorithm that decides the
subtyping relation.

e Step 4: consider the subtyping relation
and the typing rules and deduce typing
judgments I' kg e : 7 for the language.

e Step 5: typing judgments allow us to de-
fine a new natural interpretation, types as
set of values:

[ty =lveV]| Fgv:T)

subtyping induced by V:

def
T <y Ty &= 11l C 2]y

Closing the circle

proved
T SgTy) & T 9T

Example: suppose we are working with polygons: triangles, squares, rumbles etc. We want to define a
method diagonal that given a polygon computes its longest diagonal. Of course, this is possible only

if the polygon is not a triangle. In Java this can be done in different ways, for example:

class Polygon {---}

class Triangle extends Polygon {- - -}

class Other_Polygons extends Polygon {

real diagonal(Other_Polygons p){...}

)

Using intertfaces:

public interface Diagonal {

real diagonal(Polygon p);

)

class Polygon {---}

class T'riangle extends Polygon {- - -}

class S quare extends Polygon implements Diagonal {- - -}

class Rumble extends Polygon implements Diagonal {- - -}

Things are easier when done ad-hoc. But it is not always this way... Suppose the class-hierarchy is

already declared and it is not possible to modity it atterwards. The situation is as follows:

class Polygon extends Ob ject {- - - }

class T'riangle extends Polygon {- - -}

class S quare extends Polygon {- - -}

class Rumble extends Polygon {- - -}

[t is more complicated to define the method diagonal. One can define this method in the class Polygon
and use an instance-of construct and handle exceptions. If a triangle is passed to the method, then
an exception is thrown and will be handled at run-time. Or...

Let’'s use connectives!!

Detine a method with argument type Polygon A
~ Triangle.

class Diagonal extends Ob ject {
real diagonal(Polygon A ~Triangle p)i.. .}

)

If a polygon not triangle is passed to the method
diagonal, then the longest diagonal is computed;
otherwise, if a triangle is passed to the method,
then a type-error at compile time will occur.

Results and Conclusions

e We considered the functional fragment ot
Java.

e We gave a set-theoretic interpretation in
B that induces <g.

e Next, a new interpretation in V is given,
(types as set of values) that induces <« .

e Theorem: <g= <

Nominal vs. Structural

There are two approaches to subtyping specific
to object-oriented languages:

e Nominal: A is a subtype of B if and only
if it is declared to be so (declarative).

e Structural: A is a subtype of B if and only
if its fields and methods are a superset of

the fields and methods of B and their ty-
pes are subtypes of types in B (intrinsic).

Observation: it is natural to integrate structural

subtyping with boolean connectives and seman-
tic subtyping, exploiting their benetfits.

Future work

e We aim at constructing universal models
of types.

e Prove properties of [] .

o Implement a prototype OO language
JDuce that uses boolean connectives and
a semantically defined subtyping.

