
Submitted to:
EXPRESS/SOS 2015

© O. Dardha & J.A. Pérez
This work is licensed under the
Creative Commons Attribution License.

Comparing Deadlock-Free Session Typed Processes

Ornela Dardha
University of Glasgow, United Kingdom

Jorge A. Pérez
University of Groningen, The Netherlands

Besides respecting prescribed protocols, communication-centric systems should never “get stuck”.
This important requirement has been expressed by liveness properties such as progress or (dead)lock-
freedom. Several typing disciplines that ensure these properties for mobile processes have been pro-
posed. Unfortunately, very little is known about the precise relationship between these disciplines–
and the classes of typed processes they induce.

In this paper, we compare L and K , two classes of deadlock-free, session typed concurrent
processes. The class L stands out for its canonicity: it results naturally from interpretations of
linear logic propositions as session types. The class K , obtained by encoding session types into
Kobayashi’s usage types, includes processes not typable in other typing systems.

We show that L is strictly included in K . We also identify the precise condition under which
L and K coincide. One key observation is that the degree of sharing between parallel processes
determines a new expressiveness hierarchy for typed processes. We also provide a type-preserving
rewriting procedure of processes in K into processes in L . This procedure suggests that, while
effective, the degree of sharing is a rather subtle criteria for distinguishing typed processes.

1 Introduction

The goal of this work is to formally relate different type systems for the π-calculus. Our interest
is in session-based concurrency, a type-based approach to communication correctness: dialogues be-
tween participants are structured into sessions, basic communication units; descriptions of interaction
sequences are then abstracted as session types [11] which are checked against process specifications.
We offer the first formal comparison between different type systems that enforce (dead)lock-freedom,
the liveness property that ensures session communications never “get stuck”. Our approach relates the
classes of typed processes that such systems induce. To this end, we identify a property on the structure
of typed parallel processes, the degree of sharing, which is key in distinguishing two salient classes of
deadlock-free session processes, and in shedding light on their formal underpinnings.

In session-based concurrency, types enforce correct communications through different safety and
liveness properties. Basic correctness properties are communication safety and session fidelity: while the
former ensures absence of errors (e.g., communication mismatches), the latter ensures that well-typed
processes respect the protocols prescribed by session types. Moreover, a central (liveness) property for
safe processes is that they should never “get stuck”. This is the well-known progress property, which
asserts that a well-typed term either is a final value or can further reduce [17]. In calculi for concurrency,
this property has been formalized as deadlock-freedom (“a process is deadlock-free if it can always
reduce until it eventually terminates, unless the whole process diverges” [13]) or as lock-freedom (“a
process is lock free if it can always reduce until it eventually terminates, even if the whole process
diverges” [12]). Notice that in the absence of divergent behaviors, deadlock- and lock-freedom coincide.

(Dead)lock-freedom guarantees that all communications will eventually succeed, an appealing re-
quirement for communicating processes. Several advanced type disciplines that ensure deadlock-free
processes have been proposed (see, e.g., [2,4,8,12,13,15,20]). Unfortunately, these disciplines consider

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Comparing Deadlock-Free Session Typed Processes

different process languages or are based in rather different principles. As a result, very little is known
about how they relate to each other. This begs several research questions: What is the formal relationship
between these type disciplines? What classes of deadlock-free processes do they induce?

In this paper, we tackle these open questions by comparing L and K , two salient classes of
deadlock-free, session typed processes (Definition 4.2):

• L contains all session processes that are well-typed according to the Curry-Howard correspondence
of linear logic propositions as session types [2, 21]. This suffices, because the type system derived
from such a correspondence ensures communication safety, session fidelity, and deadlock-freedom.

• K contains all session processes that enjoy safety and fidelity (as ensured by the system of Vascon-
celos [19]) and are (dead)lock-free by combining Kobayashi’s type system based on usages [12, 13]
with Dardha et al.’s encodability result [7].

There are good reasons for considering L and K . On the one hand, due to its deep logical foundations,
L appears to us as the canonic class of deadlock-free session processes, upon which all other classes
should be compared. Indeed, this class arguably offers the most principled yardstick for comparisons.
On the other hand, K integrates session type checking with the sophisticated usage discipline developed
by Kobayashi for π-calculus processes. This (indirect) approach to deadlock-freedom (first proposed
in [14], later developed in [7]) is fairly general, as it may capture sessions with subtyping, polymorphism,
and higher-order communication. Also, as informally shown in [3], K strictly includes classes of typed
processes induced by other type systems for deadlock-freedom in sessions [4, 8, 15].

One key observation in our development is that K corresponds to a family of classes of deadlock-free
processes, denoted K0,K1, · · · ,Kn, which is defined by the degree of sharing between their parallel
components. Intuitively, K0 is the sub-class of K with independent parallel composition: for all
processes P | Q ∈K0, subprocesses P and Q do not share any sessions. Then, K1 is the subclass of
K which contains K0 but admits also processes with parallel components that share at most one session.
Then, Kn contains deadlock-free session processes whose parallel components share at most n sessions.

Contributions. In this paper, we present three main contributions:

1. We show that the inclusion between the constituent classes of K is strict (Theorem 4.4). That is, we
have:

K0 ⊂K1 ⊂K2 ⊂ ·· · ⊂Kn ⊂Kn+1 (1)

Although not extremely surprising, the significance of this result lies in the fact that it talks about
concurrency (via the degree of sharing) but implicitly also about the potential sequentiality of parallel
processes. As such, processes in Kk are necessarily “more parallel” than those in Kk+1. Interestingly,
the degree of sharing in K0, . . . ,Kn can be characterized in a very simple way, via a natural condition
in the rule for parallel composition in Kobayashi’s type system for deadlock-freedom.

2. We show that L and K1 coincide (Theorem 4.6). That is, there are deadlock-free session processes
that cannot be typed by systems derived from the Curry-Howard interpretation of session types [2,21],
but that can be admitted by the (indirect) approach of [7]. This result is significant: it establishes the
precise status of systems based on [2, 21] with respect to previous (non Curry-Howard) disciplines.
Indeed, it formally confirms that linear logic interpretations of session types naturally induce the most
basic form of concurrent cooperation (sharing of exactly one session), embodied as the principle of
“composition plus hiding”, a distinguishing feature of such interpretations.

3. We define a rewriting procedure of processes in K into L (Defintion 5.7). Intuitively, due to our
previous observation and characterization of the degree of sharing in session typed processes, it is

O. Dardha & J.A. Pérez 3

quite natural to convert a process in K into another, more parallel process in L . In essence, the pro-
cedure replaces sequential prefixes with representative parallel components. The rewriting procedure
satisfies type-preservation, and enjoys the compositionality and operational correspondence criteria
as stated in [10] (cf. Theorems 5.8 and 5.10). These properties not only witness the significance of the
rewriting procedure; they also confirm that the degree of sharing is a rather subtle criteria for formally
distinguishing deadlock-free, session typed processes.

To the best of our knowledge, these contributions define the first formal comparison between funda-
mentally distinct type systems for deadlock-freedom in session communications. Previous comparisons,
such as the ones in [3] and [2, §6], are informal: they are based on representative “corner cases”, i.e.,
examples of deadlock-free session processes typable in one system but not in some other.

The paper is structured as follows. § 2 summarizes the framework of [19]: a session π-calculus and
its associated type system. In § 3 we present the two typed approaches to deadlock-freedom for sessions.
§ 4 defines the classes L and K , formalizes the hierarchy (1), and shows that L and K1 coincide. In § 5
we give the rewriting procedure of Kn into L and establish its properties. § 6 collects some concluding
remarks. Omitted definitions and proofs are included in Appendix A.

2 Session π-calculus

In this section we introduce the session π-calculus and its associated type system which ensures com-
munication safety and session fidelity. Our presentation follows that of Vasconcelos [19]. The syntax is
given in Figure 1 (upper part). Let P,Q range over processes x,y over channels and v over values; for
simplicity, the set of values coincides with that of channels. In examples, we often use n to denote a
terminated channel that cannot be further used.

Process x〈v〉.P denotes the output of value v along channel x, with continuation P. Dually, process
x(y).P denotes an input along channel x with continuation P, with y denoting a placeholder. Process
x/ l j.P uses channel x to select l j from a labelled choice process, being x.{li : Pi}i∈I , so as to trigger Pj;
labels indexed by the finite set I are pairwise distinct. We also consider the terminated process (denoted
0), the parallel composition of P and Q (denoted P | Q), and the (double) restriction operator, noted
(νxy)P: the intention is that channels x and y denote dual session endpoints in P. We shall omit 0
whenever possible and write, e.g., x〈n〉 instead of x〈n〉.0. Notions of bound/free variables in processes
are standard; we write fn(P) to denote the set of free names of P. Also, we write P[v/z] to denote the
(capture-avoiding) substitution of free occurrences of z in P with v.

The operational semantics is given in terms of a reduction relation, noted P→ Q. This relation is
defined by the rules in Figure 1 (lower part), and relies on a standard notion of structural congruence,
noted ≡ (see [19] for details). We write →∗ to denote the reflexive, transitive closure of →. Observe
that interaction involves prefixes with different channels (endpoints), and always occurs in the context of
an outermost restriction, which declares dual endpoints. Key rules are (R-COM) and (R-CASE), denoting
the interaction of output/input prefixes and selection/branching constructs, respectively. Rules (R-PAR),
(R-RES), and (R-STR) are standard.

The syntax of session types, ranged over T,S, . . ., is given by the following grammar.1

T,S ::= end | ?T.S | !T.S | &{li : Si}i∈I | ⊕{li : Si}i∈I

Above, end is the type of an endpoint with a terminated protocol. The type ?T.S is assigned to an
endpoint that first receives a value of type T and then continues according to the protocol described

1 Notice that our session types correspond to the linear pretypes in [19].

4 Comparing Deadlock-Free Session Typed Processes

P,Q ::= x〈v〉.P (output) 0 (inaction)
x(y).P (input) P | Q (composition)
x/ l j.P (selection) (νxy)P (session restriction)
x.{li : Pi}i∈I (branching)

v ::= x (channel)

(R-COM) (νxy)(x〈v〉.P | y(z).Q)→ (νxy)(P | Q[v/z]) (R-PAR) P→ Q =⇒ P | R→ Q | R
(R-CASE) (νxy)(x/ l j.P | y.{li : Pi}i∈I)→ (νxy)(P | Pj) j ∈ I (R-RES) P→ Q =⇒ (νxy)P→ (νxy)Q

(R-STR) P≡ P′, P→ Q, Q′ ≡ Q =⇒ P′→ Q′

Figure 1: Session π-calculus: syntax and semantics.

(T-NIL)

x : end `ST 0

(T-PAR)
Γ1 `ST P Γ2 `ST Q

Γ1 ◦Γ2 `ST P | Q

(T-RES)
Γ,x : T,y : T `ST P

Γ `ST (νxy)P

(T-IN)
Γ,x : S,y : T `ST P

Γ,x : ?T.S `ST x(y).P

(T-OUT)
Γ,x : S `ST P

Γ,x : !T.S,y : T `ST x〈y〉.P

(T-BRCH)
Γ,x : Si `ST Pi ∀i ∈ I

Γ,x : &{li : Si}i∈I `ST x.{li : Pi}i∈I

(T-SEL)
Γ,x : S j `ST P ∃ j ∈ I

Γ,x :⊕{li : Si}i∈I `ST x/ l j.P

Figure 2: Typing rules for the π-calculus with sessions.

by S. Dually, type !T.S is assigned to an endpoint that first outputs a value of type T and then continues
according to the protocol described by S. Type ⊕{li : Si}i∈I , an internal choice, is a generalization of
output; type &{li : Si}i∈I , an external choice, is a generalization of input type. Notice that session types
describe sequences of structured behaviors; they do not admit parallel composition operators.

A central notion in session-based concurrency is duality, which relates session types offering opposite
(i.e., complementary) behaviors. Duality stands at the basis of communication safety and session fidelity.
Given a session type T , its dual type T is defined as follows:

!T.S , ?T.S ?T.S , !T.S
⊕{li : Si}i∈I , &{li : Si}i∈I &{li : Si}i∈I , ⊕{li : Si}i∈I end , end

Typing contexts, ranged over by Γ,Γ′, are sets of typing assignments x : T . Given a context Γ and a
process P, a session typing judgement is of the form Γ `ST P. Typing rules are given in Figure 2. Rule
(T-PAR) depends on a splitting operator, noted ◦, which performs a combination of session types [19].
Rule (T-RES) depends on duality of session types as defined above. Rule (T-NIL) states that the terminated
process is well-typed under a terminated channel. Rule (T-PAR) types the parallel composition of two
processes under the composition of the corresponding typing contexts. Rule (T-RES) types the restriction
process under the assumption that the endpoints being restricted have dual types. Rules (T-IN) and (T-

OUT) type the receiving and sending of a value over a channel x, respectively. Finally, rules (T-BRCH) and
(T-SEL) are generalizations of input and output over a labelled set of processes.

O. Dardha & J.A. Pérez 5

The main guarantees of the typing system are communication safety and session fidelity, i.e., typed
processes respect their ascribed protocols, as represented by session types.

Theorem 2.1 (Type Preservation for Session Types). If Γ `ST P and P→ Q, then Γ `ST Q.

The following notion of well-formed processes is key to single out meaningful typed processes.

Definition 2.2 (Well-Formedness for Sessions). A process is well-formed if for any of its structural
congruent processes of the form (ν x̃y)(P | Q) the following hold.

• If P and Q are prefixed at the same variable, then the variable performs the same action (input or
output, branching or selection).

• If P is prefixed in xi and Q is prefixed in yi where xiyi ∈ x̃y, then P | Q→.

It is important to notice that well-typedness of a process does not imply the process is well-formed.
We have the following theorem:

Theorem 2.3 (Type Safety for Sessions [19]). If `ST P then P is well-formed.

We present the main result of the session type system. The following theorem states that a well-typed
closed process does not reduce to an ill-formed one. It follows immediately from Theorems 2.1 and 2.3.

Theorem 2.4 ([19]). If `ST P and P→∗ Q, then Q is well-formed.

An important observation is that the session type system given above does not automatically exclude
processes which reach a “stuck state.” This is because the interleaving of communication prefixes in
typed processes may create extra causal dependencies not described by session types. (This can be made
precise with the definition of deadlock-free session process that we give next.) A particularly insidious
class of deadlocks is due to cyclic interleaving of channels in processes. For example, consider a process
such as P , (νxy)(νwz)(x〈n〉.w〈n〉 | z(t).y(s)): it represents the implementation of two (simple) inde-
pendent sessions, which get intertwined (i.e., blocked) due to the nesting induced by input and output
prefixes. We have that n : end `ST P even if P is unable to reduce. (A deadlock-free variant of P would
be, e.g., process P′ , (νxy)(νwz)(x〈n〉.w〈n〉 | y(s).z(t)), typable in `ST.)

We are now ready to give the formal definition of deadlock freedom for sessions. We will say that a
process is deadlock-free if any communication action that becomes active during execution is eventually
consumed. Below, we assume that reduction sequences are fair, as formalized in [12].

Definition 2.5 (Deadlock-Freedom for Session π-Calculus). A process P0 is deadlock-free if for any fair
reduction sequence P0→ P1→ P2→ . . ., we have that

1. Pi ≡ (ν x̃y)(x〈v〉.Q | R), for i≥ 0, implies that there exists n≥ i such that
Pn ≡ (ν x̃′y′)(x〈v〉.Q | y(z).R1 | R2) and Pn+1 ≡ (ν x̃′y′)(Q | R1[v/z] | R2);

2. Pi ≡ (ν x̃y)(x/ l j.Q | R), for some i≥ 0, implies that there exists n≥ i such that
Pn ≡ (ν x̃′y′)(x/ l j.Q | y.{lk : Rk}k∈I∪{ j} | S) and Pn+1 ≡ (ν x̃′y′)(Q | R j | S).

For simplicity, above we have omitted the cases for input and branching, which have expected definitions.

3 Two Approaches to Deadlock Freedom

We introduce two approaches to deadlock-free, session typed processes. The first one, given in § 3.1,
comes from interpretations of linear logic propositions as session types [1, 2, 21]; the second approach,
summarized in § 3.2, combines usage types for the standard π- calculus with encodings of session pro-
cesses and types [7]. Based on these two approaches, in § 4 we will define the classes L and K .

6 Comparing Deadlock-Free Session Typed Processes

3.1 Linear Logic Foundations for Session Types

The linear logic interpretation of session types was introduced by Caires and Pfenning [2], and developed
by Wadler [21] and others. Initially proposed for intutitionistic linear logic, here we consider an interpre-
tation based on classical linear logic with mix principles, following a recent presentation by Caires [1].

The syntax and semantics of processes are as in § 2 except for the following differences. First, we
have the standard restriction operator (νx)P, which replaces the double restriction. Second, we have a
so-called forwarding process, denoted [x↔ y], which intuitively “fuses” names x and y. Besides these
differences in syntax, we have also some minor modifications in reduction rules. Differences with respect
to the language considered in § 2 are summarized in the following:

P,Q ::= (νx)P (channel restriction) | [x↔y] (forwarding)

(R-CHCOM) x〈v〉.P | x(z).Q→ P | Q[v/z] (R-FWD) (νx)([x↔y] | P)→ P[y/x]

(R-CHCASE) x/ l j.P | x.{li : Pi}i∈I → P | Pj j ∈ I (R-CHRES) P→ Q =⇒ (νx)P→ (νx)Q

Observe how interaction of input/output prefixes and selection/branching is no longer covered by an
outermost restriction. As for the typing system, we consider the so-called C-types which correspond to
linear logic propositions. They are given by the following grammar:

A,B ::=⊥ | 1 | A⊗B | AOB | ⊕{li : Ai}i∈I | &{li : Ai}i∈I

Intuitively, ⊥ and 1 are used to type a terminated endpoint. Type A⊗B is associated to an endpoint that
first outputs an object of type A and then behaves according to B. Dually, type A O B is the type of an
endpoint that first inputs an object of type A and then continues as B. The interpretation of ⊕{li : Ai}i∈I

and &{li : Ai}i∈I as select and branch behaviors follows as expected.
We define a full duality on C-types, which exactly corresponds to the negation operator of CLL (·)⊥.

The dual of type A, denoted A, is inductively defined as follows:

1 = ⊥ ⊥ = 1 ⊕{li : Ai}i∈I = &{li : Ai}i∈I

A⊗B = AOB AOB = A⊗B &{li : Ai}i∈I = ⊕{li : Ai}i∈I

Recall that A(B , A O B. As explained in [1], considering mix principles means admitting ⊥(1 and
1(⊥, and therefore ⊥= 1. We write • to denote either ⊥ or 1, and decree that •= •.

Typing contexts, sets of typing assignments x : A, are ranged over ∆,∆′, The empty context is
denoted ‘ · ’. Typing judgments are then of the form P `CH ∆. Figure 3 gives the typing rules associated
to the linear logic interpretation. Salient points include the use of bound output (νy)x〈y〉.P, which is
abbreviated as x(y)P. Another highlight is the “composition plus hiding” principle implemented by
rule (T-cut), which integrates parallel composition and restriction in a single rule. Indeed, there is no
dedicated rule for restriction. Also, rule (T-mix) enables the typing of independent parallel compositions,
i.e., the composition of two processes that do not share sessions.

We now collect main results for this typing system; see [1, 2] for details. For any P, define live(P) if
and only if P≡ (ν ñ)(π.Q | R), where π is an input, output, selection, or branching prefix.

Theorem 3.1 (Type Preservation for C-Types). If P `CH ∆ and P−→ Q then Q `CH ∆.

Theorem 3.2 (Progress). If P `CH · and live(P) then P−→ Q, for some Q.

O. Dardha & J.A. Pérez 7

(T-1)
0 `CH x:•

(T-⊥)
P `CH ∆

P `CH x:•,∆
(T-id)

[x↔y] `CH x:A,y:A

(T-O)
P `CH ∆,y:A,x:B

x(y).P `CH ∆,x:AOB

(T-⊗)
P `CH ∆,y:A Q `CH ∆

′,x:B

x(y).(P | Q) `CH ∆,∆′,x:A⊗B

(T-cut)
P `CH ∆,x:A Q `CH ∆

′,x:A

(νx)(P | Q) `CH ∆,∆′

(T-⊕)
P `CH ∆,x:A j j ∈ I

x/ l j.P `CH ∆,x:⊕{li : Ai}i∈I

(T-&)
Pi `CH ∆,x:Ai ∀i ∈ I

x.{li : Pi}i∈I `CH ∆,x:&{li : Ai}i∈I

(T-mix)
P `CH ∆ Q `CH ∆

′

P | Q `CH ∆,∆′

Figure 3: Typing rules for the π-calculus with C-types.

3.2 Deadlock Freedom by Encodability

As mentioned above, the second approach to deadlock-free session processes is indirect, in the sense that
establishing deadlock freedom for session processes appeals to usage types for the π-calculus [12,13], for
which type systems enforcing deadlock freedom are well-established. Formally, this reduction exploits
encodings of processes and types: a session process Γ `ST P is encoded into a (standard) π-calculus
process JΓK f `n

KB JPK f . Next we introduce the syntax of standard π-calculus processes with variant
values (§ 3.2.1), the discipline of usage types (§ 3.2.2), and the encodings of session processes and types
into standard π-calculus processes and usage types, respectively (§ 3.2.3).

3.2.1 Processes

The syntax and semantics of the π-calculus with usage types build upon those in § 2. We require some
modifications. First, the encoding of terms presented in § 3.2.3, requires polyadic communication. Rather
than branching and selection constructs, the π- calculus that we consider here includes a case construct
casevof{li xi.Pi}i∈I that uses variant value l j v. Moreover, we consider the standard channel restriction,
rather than double restriction. These modifications are summarized below:

P,Q ::= (νx)P (channel restriction) | casevof{li xi .Pi}i∈I (case)
v ::= l j v (variant value)

(Rπ - COM) x〈ṽ〉.P | x(z̃).Q→ P | Q[ṽ/z̃] (Rπ - RES) P→ Q =⇒ (νx)P→ (νx)Q

(Rπ - CASE) case l j vof{li xi .Pi}i∈I → Pj[v/xi] j ∈ I

To conclude, we give the formal definition of deadlock freedom.

Definition 3.3 (Deadlock-Freedom for Standard π-Calculus). A process P0 is lock-free under fair
scheduling, if for any fair reduction sequence P0→ P1→ P2→ ··· the following hold

1. if Pi ≡ (ν x̃)(x〈ṽ〉.Q | R) (for i≥ 0), implies that there exists n≥ i such that
Pn ≡ (ν x̃)(x〈ṽ〉.Q | x(z̃).R1 | R2) and Pn+1 ≡ (ν x̃)(Q | R1[ṽ/z̃] | R2);

2. if Pi ≡ (ν x̃)(x(z̃).Q | R) for some i≥ 0, there exists n≥ i such that
Pn ≡ (ν x̃)(x(z̃).Q | x〈ṽ〉.R1 | R2) and Pn+1 ≡ (ν x̃)(Q[ṽ/z̃] | R1 | R2).

8 Comparing Deadlock-Free Session Typed Processes

U ::= ?o
κ .U (used in input) /0 (not usable)

!o
κ .U (used in output) (U1 |U2) (used in parallel)

T ::= U [T̃] (channel types) 〈l : T 〉i∈I (variant type)

Figure 4: Syntax of usage types for the π-calculus

3.2.2 Usage Types

The syntax of usage types is defined in Figure 4. For simplicity, we let α range over actions input ? or
output !. The usage /0 describes a channel that cannot be used at all. We will often omit /0, and so we
will write U instead of U. /0. Usages ?o

κ .U and !o
κ .U describe channels that can be used once for input

and output, respectively and then used according to the continuation usage U . The obligation o and
capability κ range over the set of natural numbers. The usage U1 | U2 describes a channel that is used
according to U1 by one process and U2 by another processes in parallel.

Obligation and capability describe inter-channel dependencies. Following [13], their relation may be
described as:
• An obligation of level n must be fulfilled by using only capabilities of level less than n. Said differently,

an action of obligation n must be prefixed by actions of capabilities less than n.

• For an action with capability of level n, there must exist a co-action with obligation of level less than
or equal to n.

Typing contexts are sets of typing assignments and are ranged over Γ,Γ′. A typing judgement is of the
form Γ `n

KB P: the annotation n explicitly denotes the greatest degree of sharing admitted in parallel
processes. Before commenting on the typing rules (given in Figure 5), we discuss some important aux-
iliary notions. First, the composition operation on types (denoted | , and used in rules Tπ-(PAR)n and
Tπ-(OUT)) is based on the composition of usages and is defined as follows:

〈li : Ti〉i∈I | 〈li : Ti〉i∈I = 〈li : Ti〉i∈I U1[T̃] |U2[T̃] = (U1 |U2)[T̃]

The generalization of | to typing contexts, denoted (Γ1 | Γ2)(x), is defined as expected. The unary
operation ↑ t applied to usage U lifts its obligation level up to t; it is defined inductively as:

↑ t /0 = /0 ↑ t
α

o
κ .U = α

max(o,t)
κ .U ↑ t (U1 |U2) = (↑t U1 | ↑t U2)

The ↑ t is extended to types and typing contexts as expected. The notion of duality on usage types (used
in the proofs of our main results in Appendix A) is defined as follows. It simply exchanges ? and !:

/0[] = /0[] ?o
κ .U [T̃] = !o

κ .U [T̃] !o
κ .U [T̃] = ?o

κ .U [T̃]

Operator “ ; ” in ∆ = x : [T]αo
κ ; Γ, used in rules (Tπ -IN) and (Tπ -OUT), is such that the following hold:

dom(∆) = {x}∪dom(Γ) ∆(x) =

{
α

o
κ .U [T̃] if Γ(x) =U [T̃]

α
o
κ [T̃] if x /∈ dom(Γ)

∆(y) =↑κ+1
Γ(y) if y 6= x

The final required notion is that of a reliable usage. It builds upon the following definition:
Definition 3.4. Let U be a usage. The input and output obligation levels (resp. capability levels) of U,
written ob?(U) and ob!(U) (resp. cap?(U) and cap!(U)), are defined as:

obα(α
o
κ .U) = o capα(α

o
κ .U) = κ

obα(U1 |U2) = min(obα(U1),obα(U2)) capα(U1 |U2) = min(capα(U1),capα(U2))

O. Dardha & J.A. Pérez 9

(Tπ -NIL)

x : /0[] `n
KB 0

(Tπ -RES)
Γ,x : U [T̃] `n

KB P rel(U)

Γ `n
KB (νx)P

(Tπ -PARn)
Γ1 `n

KB P Γ2 `n
KB Q

|Γ1∩Γ1| ≤ n

Γ1 | Γ2 `n
KB P | Q

(Tπ -IN)
Γ, ỹ : T̃ `n

KB P

x : ?0
κ [T̃] ; Γ `n

KB x(ỹ).P

(Tπ -OUT)
Γ1 `n

KB ṽ : T̃ Γ2 `n
KB P

x : !0
κ [T̃] ; (Γ1 | Γ2) `n

KB x〈ṽ〉.P

(Tπ -LVAL)
Γ `n

KB v : Tj ∃ j ∈ I

Γ `n
KB l j v : 〈li : Ti〉i∈I

(Tπ -CASE)
Γ1 `n

KB v : 〈li : Ti〉i∈I

Γ2,xi : Ti `n
KB Pi ∀i ∈ I

Γ1,Γ2 `n
KB casevof{li xi .Pi}i∈I

Figure 5: Typing rules for the π-calculus with usage types with degree of sharing n.

The definition of reliable usages depends on a reduction relation on usages, noted U →U ′. Intuitively,
U →U ′ means that if a channel of usage U is used for communication, then after the communication
occurs, the channel should be used according to usage U ′. Thus, e.g., ?o

κ .U1 | ?o′
κ ′ .U2 reduces to U1 |U2.

Definition 3.5 (Reliability). We write conα(U) when obα(U) ≤ capα(U). We write con(U) when
con?(U) and con!(U) hold. Usage U is reliable, noted rel(U), if con(U ′) holds ∀U ′ such that U →∗ U ′.

Typing Rules. The typing rules for the standard π-calculus with usage types are in Figure 5. The only
difference with respect to the rules in Kobayashi’s systems [12,13] is that we annotate typing judgements
with the degree of sharing, explicitly declared in rule (Tπ -PARn)–see below. Rule (Tπ - NIL) states that the
terminated process is typed under a terminated channel. Rule (Tπ - RES) states that process (νx)P is well-
typed if the usage for x is reliable (cf. Definition 3.5). Rules (Tπ - IN) and (Tπ - OUT) type input and output
processes in a typing context where the “ ; ” operator is used in order to increase the obligation level of
the channels in continuation P. Rules (Tπ - LVAL) and (Tπ - CASE) type a choice: the first types a variant
value with a variant type; the second types a case process using a variant value as its guard.

Given a degree of sharing n, rule (Tπ -PARn) states that the parallel composition of processes P and Q
(typable under contexts Γ1 and Γ2, respectively) is well-typed under the typing context Γ1 | Γ2 only if
|Γ1∩Γ2| ≤ n. This allows to simply characterize the “concurrent cooperation” between P and Q. As a
consequence, if P `n

KB then P `k
KB, for any k ≤ n. Observe that the typing rule for parallel composition

in [12, 13] is the same as (Tπ -PARn), except for condition |Γ1∩Γ2| ≤ n, which is not specified.
The next theorems imply that well-typed processes by the type system in Figure 5 are deadlock-free.

Theorem 3.6 (Type Preservation for Usage Types). If Γ `n
KB P and P→ Q, then Γ′ `n

KB Q for some Γ′

such that Γ→ Γ′.

Theorem 3.7 (Deadlock-Freedom). If /0 `n
KB P, then P→ Q for some Q.

Corollary 3.8. If /0 `n
KB P, then P is deadlock-free.

3.2.3 Encodings of Processes and Types

Encoding of Terms. In order to relate classes of processes obtained by the different type systems
presented so far, we need to rewrite a session typed or C-typed process into a usage typed process by
adopting the continuation-passing style. This is because the only way we have to mimic the structure
of a session type or a C-type is by sending its continuation as a payload over a channel. This idea is
developed in [7] and before that in [14] and we recall it in Figure 6.

10 Comparing Deadlock-Free Session Typed Processes

Jx〈v〉.PK f , (νc) fx〈v,c〉.JPK f ,{x 7→c}
Jx(y).PK f , fx(y,c).JPK f ,{x 7→c}
Jx/ l j.PK f , (νc) fx〈l j c〉.JPK f ,{x 7→c}

Jx.{li : Pi}i∈IK f , fx(y). caseyof{li c. JPiK f ,{x 7→c}}i∈I

J(νxy)PK f , (νc)JPK f ,{x,y 7→c}
JP | QK f , JPK f | JQK f

Figure 6: Encoding of session processes into π-calculus processes.

JendKsu = /0[]

J?T.SKsu = ?o
κ [JT Ksu,JSKsu]

J!T.SKsu = !o
κ [JT Ksu,JSKsu]

J&{li : Si}i∈IKsu = ?o
κ [〈li : JSiKsu〉i∈I]

J⊕{li : Si}i∈IKsu = !o
κ [〈li : JSiKsu〉i∈I]

JendKc = •
J?T.SKc = JT Kc OJSKc
J!T.SKc = JT Kc⊗ JSKc

J&{li : Si}i∈IKc = &{li : JSiKc}i∈I

J⊕{li : Si}i∈IKc = ⊕{li : JSiKc}i∈I

Figure 7: Encodings of session types into usage types (Left) and C-types (Right).

Encoding of Types. We formally relate session types and logic propositions yo usage types by means
of the encodings given in Figure 7. The former one, denoted as denoted J·Ksu, is taken from [7].

Definition 3.9. Let Γ be a session typing context. The encoding J·K f into usage typing context and J·Kc
into C-typing context is inductively defined as follows:

J /0K f = J /0Kc , /0 JΓ,x : T K f , JΓK f , fx : JT Ksu JΓ,x : T Kc , JΓKc,x : JT Kc

Lemma 3.10 (Duality and encoding of session types). Let T,S be finite session types.
Then: (i) T = S if and only if JT Kc = JSKc; (ii) T = S if and only if JT Ksu = JSKsu.

Proof. The proof is by induction on the duality relation of session types.

On deadlock freedom by encoding. The next results relate the notions of deadlock freedom and typing
and encoding.

Proposition 3.11. Let P be a deadlock-free session process, then JPK f is a deadlock-free π-process.

Proof. The above corollary follows immediately by the encoding of terms given in Figure 6, Defini-
tion 2.5 and Definition 3.3.

Next we recall an important result relating deadlock freedom and typing, by following [3].

Corollary 3.12. Let P be a session process such that `ST P. If `n
KB JPK f is deadlock-free then P is

deadlock-free.

4 A Hierarchy of Deadlock-Free Session Typed Processes

Preliminaries. To formally define the classes L and K , we require some auxiliary definitions. We
let x(y).P denote bound output. The following translation addresses minor syntactic differences between
session typed processes (cf. § 2) and the processes typable in the linear logic interpretation of session
types (cf. § 3.1). Such differences concern output actions and the restriction operator:

O. Dardha & J.A. Pérez 11

Definition 4.1. Let P be a session process. The translation {{·}} is defined as

{{x〈y〉.P}} = x(z).([z↔y] | {{P}}) {{(νxy)P}} = (νw){{P}}[w/x][w/y] w 6∈ fn(P)

and as an homomorphism for the other process constructs.

Let J·Kc denote the transition of session types into linear logic propositions in Figure 7 (right). Recall
that J·K f stands for the translations for processes and J·Ksu for the translation of types, both defined in [7],
and given here in Figure 6 and Figure 7 (left), respectively. We may then formally define the languages
under comparison:

Definition 4.2 (Typed Languages). The languages L and Kn (n≥ 0) are defined as follows:

L =
{

P | ∃Γ. (Γ `ST P ∧ {{P}} `CH JΓKc)
}

Kn =
{

P | ∃Γ, f . (Γ `ST P ∧ JΓK f `n
KB JPK f)

}
Main Results. Our first observation is that there are processes in K2 but not in K1:

Lemma 4.3. K1 ⊂K2.

Proof. K2 contains (deadlock-free) session processes not captured in K1. A representative example is:

P2 = (νa1b1)(νa2b2)(a1(x). a2〈x〉 | b1〈n〉. b2(z))

This process is not in K1 because it involves the composition of two parallel processes which share two
sessions. As such, it is typable in `n

KB (with n≥ 2) but not in `1
KB.

The previous result generalizes easily, so as to define a hierarchy of deadlock-free, session processes:

Theorem 4.4. For all n≥ 1, we have that Kn ⊂Kn+1.

Proof. Immediate by considering one of the following processes, which generalize process P2 in
Lemma 4.3:

Pn+1 = (νa1b1)(νa2b2) · · ·(νan+1bn+1)(a1(x). a2〈x〉. · · · . an+1〈y〉 | b1〈n〉. b2(z). · · · bn+1(z))

Qn+1 = (νa1b1)(νa2b2) · · ·(νan+1bn+1)(a1(x). a2〈x〉. · · · . an+1(y) | b1〈n〉. b2(z). · · · bn+1〈n〉)

To distinguish Kn+1 from Kn, we consider Pn+1 if n+1 is even and Qn+1 otherwise.

One main result of this paper is that L and K1 coincide. Before stating this result, a first observation
we make is on the shape of session processes in L . We have:

P ::= 0 | [x↔y] | x(y).P | x(y).P | x.{li : Pi}i∈I | x/ l j.P | P1 | P2 | (νxy)(P1 | P2)

Notice that typing for processes in L does not directly allow free output. Still, free output is repre-
sentable (and typable) by linear logic types by means of the transformation in Definition 4.1. Thus,
considered processes are not syntactically equal. In L there is cooperating composition (enabled by rule
(T-cut) in Figure 3); independent composition can only be enabled by rule (T-mix). Arbitrary restriction
is not allowed; the interpretation induces only restriction of parallel processes.

The following property is key in our developments: it connects our encodings of (dual) session types
into usage types with reliability (Definition 3.5), a central notion to the type system for deadlock freedom.
Recall that, unlike usage types, there is no parallel composition operator at the level of session types.

12 Comparing Deadlock-Free Session Typed Processes

Proposition 4.5. Let T be a session type. Then rel(JT Ksu | JT Ksu) holds.

Proof (Sketch). By induction on the structure of session type T and the definitions of J·Ksu and predicate
rel(·), using Lemma 3.10 (encodings of types preserve session type duality). See § A.1 for details.

We then have the following main result, whose proof is detailed in § A.2:

Theorem 4.6. L = K1.

Therefore, we have the following corollary, which attests that the class of deadlock-free session
processes naturally induced by linear logic interpretations of session types are strictly included in the
class induced by the indirect approach of Dardha et al. [7] (cf. § 3.2).

Corollary 4.7. L ⊂Kn.

The fact that (deadlock-free) processes such as P2 (cf. Lemma 4.3) are not in L is informally discussed
in [2, §6]. However, [2] gives no formal comparisons with other classes of deadlock-free processes.

5 Rewriting Kn into L

The hierarchy of deadlock-free session processes established by Theorem 4.4 is subtle in the following
sense: if P ∈Kk+1 but P 6∈Kk (with k ≥ 1) then we know that there is a subprocess of P that needs to
be “adjusted” in order to “fit in” Kk. More precisely, we know that such a subprocess of P must become
more parallel in order to be typable under the lesser degree of sharing k.

Here we propose a rewriting procedure that converts processes in Kn into processes in K1 (that is,
L , by Theorem 4.6). The rewriting procedure follows a simple idea: given a parallel process as input,
return as output a process in which one of the components is kept unchanged, but the other is replaced
by parallel representatives of the sessions implemented in it. Such parallel representatives are formally
defined as characteristic processes and catalyzers, introduced next.

5.1 Preliminaries: Characteristic Processes and Catalyzers

Before presenting our rewriting procedure, let us first introduce some preliminary results.

Definition 5.1 (Characteristic Processes of a Session Type). Let T be a session type (cf. § 2). Given a
name x, the set of characteristic processes of T , denoted {|T |}x, is inductively defined as follows:

{|end|}x =
{

P | P `CH x:•
}

{|?T.S|}x =
{

x(y).P | P `CH y:JT Kc,x:JSKc
}

{|!T.S|}x =
{

x(y).(P | Q) | P ∈ {|T |}y∧Q ∈ {|S|}x
}

{|&{li : Si}i∈I|}x =
{

x.{li : Pi}i∈I | ∀i ∈ I. Pi ∈ {|Si|}x
}

{|⊕{li : Si}i∈I|}x =
⋃

i∈I
{

x/ li.Pi | Pi ∈ {|Si|}x
}

Definition 5.2 (Catalyser). Given a session type environment Γ, we define its associated catalyser as a
process context CΓ[·], as follows:

C /0[·] = [·] CΓ,x:T [·] = (νx)(CΓ[·] | P) with P ∈ {|T |}x

We record the fact that characteristic processes are well-typed in the system of § 3.1:

Lemma 5.3. Let T be a session type. For all P ∈ {|T |}x, we have: P `CH x : JT Kc

O. Dardha & J.A. Pérez 13

Proof. See Appendix § A.3.

We use {|T |}x `CH x : JT Kc to denote the set of processes P ∈ {|T |}x such that P `CH x : JT Kc.

Lemma 5.4 (Catalysers Preserve Typability). Let Γ `ST P and Γ′ ⊆ Γ. Then CΓ′
[
P
]
`CH JΓKc \ JΓ′Kc.

Proof. Follows immediately by Definition 5.2.

The following is a corollary of Lemma 5.4.

Corollary 5.5. Let Γ `ST P. Then CΓ

[
P
]
`CH /0.

5.2 Rewriting Kn in L

We start this section with some notations. First, in order to represent pseudo-non deterministic binary
choices between two equally typed processes, we introduce the following notation.

Convention 5.6. Let P1, P2 be two processes such that k 6∈ fn(P1,P2). We write P1 ‖k P2 to stand for the
process (νk)(k /inx.0 | k .{inl : P1,inr : P2}), where label inx stands for either inl or inr.

Clearly, since session execution is purely deterministic, our use of notation P1 ‖k P2 is merely syntac-
tic sugar to denote the fact that either P1 or P2 will be executed (and that the actual deterministic choice is
not relevant). It is worth adding that Caires [1] has already developed the technical machinery required
to include non deterministic behavior into the linear logic interpretation of session types.

For syntactic convenience, we annotate bound names in processes with session types, and write
(νxy : T)P and x(y : T).P, for some session type T . When the reduction relation involves a left or right
choice in a binary labelled choice, as in (administrative) reductions due to pseudo-non deterministic
choices (Convention 5.6), we sometimes annotate the reduction as →inl or →inr. We let C denote a
process context, i.e., a process with a hole. And finally, for a typing context Γ, we shall write {|Γ|} to
denote the process ∏(wi:Ti)∈Γ {|Ti|}wi . We are now ready to give the rewriting procedure from Kn to L .

Definition 5.7 (Rewriting Kn into L). Let P∈Kn such that Γ`ST P, for some Γ. The encoding LΓ`ST PM
is a process of L inductively defined as follows:

Lx : end `ST 0M , 0

LΓ `ST x〈v〉.P′M , x(z).
(
[v↔z] | LΓ′,x : S `ST P′M

)
Γ = Γ

′,x : !T.S,v : T

LΓ `ST x(y : T).P′M , x(y).LΓ′,x : S,y : T `ST P′M Γ = Γ
′,x : ?T.S

LΓ `ST x/ l j.P′M , x/ l j.LΓ′,x : S j `ST P′M Γ = Γ
′,x :⊕{li : Si}i∈I

LΓ `ST x.{li : Pi}i∈IM , x.{li : LΓ′,x : Si `ST PiM}i∈I Γ = Γ
′,x : &{li : Si}i∈I

LΓ `ST (ν x̃y : S̃)(P | Q)M , {|Γ2|} | Cz̃:S̃

[
LΓ1, x̃:S̃ `ST PM[z̃/x̃]

]
Γ = Γ1 ◦Γ2 ∧Γ1, x̃ : S̃ `ST P

‖k {|Γ1|} | Cz̃:Ṽ

[
LΓ2, ỹ:Ṽ `ST QM[z̃/ỹ]

]
Γ2, ỹ : Ṽ `ST Q∧Vi = Si

We illustrate the procedure in § A.6. Notice that the rewriting procedure given in Definition 5.7
satisfies the compositionality criteria given in [10]. In particular, it is easy to see that the rewriting of
a composition of terms is defined in terms of the rewriting of the constituent subterms. Indeed, e.g.,
LΓ1 ◦Γ2 `ST (νxy : S)(P | Q)M depends on a context including both LΓ1,x : S `ST PM and LΓ2,y : S `ST QM.

In the following we present two important results about our rewriting procedure. First, we show is
type preserving—see § A.4 for a proof.

14 Comparing Deadlock-Free Session Typed Processes

Theorem 5.8 (Rewriting is Type Preserving). Let (Γ `ST P) ∈Kn. Then, LΓ `ST PM `CH JΓKc.
Notice that the inverse of the previous theorem is trivial by following the definition of typed encoding.

We now state the operational correspondence theorem, whose proof is in § A.5. Let us write Γ `ST P1,P2
whenever both Γ `ST P1 and Γ `ST P2 hold.

Definition 5.9. Let P,P′ be such that Γ `ST P,P′. Then, we write P + P′ if and only if P = C[Q] and
P′ = C[Q′], for some context C, and there is Γ′ such that Γ′ `ST Q,Q′.

Theorem 5.10 (Operational Correspondence). Let P ∈Kn such that Γ `ST P for some Γ. Then we have:

I) If P→ P′ then there exist Q, Q′ s.t. (i) LΓ `ST PM→inx→∗≡Q; (ii) Q + Q′; (iii) LΓ `ST P′M→inx Q′.

II) If LΓ `ST PM→inx→∗≡ Q then there exists P′ s.t. P→ P′ and Q + LΓ `ST P′M.

6 Concluding Remarks

We have presented a formal comparison of fundamentally distinct type systems for deadlock-free, session
typed processes. To the best of our knowledge, ours is the first work to establish precise relationships of
this kind. Indeed, prior comparisons between type systems for deadlock freedom are informal, given in
terms of representative examples typable in one type system but not in some other one.

An immediate difficulty in giving a unified account of different typed frameworks for deadlock free-
dom is the variety of process languages, type structures, and typing rules that define each framework.
Indeed, our comparisons involve: the framework of session processes put forward by Vasconcelos [19];
the interpretation of linear logic propositions as session types by Caires [1]; the π-calculus with usage
types defined by Kobayashi in [12]. Finding some common ground for comparing these three frame-
works is not trivial—several translations/transformations were required in our developments to account
for numerous syntactic differences. Overall, we believe that we managed to concentrate on essential
semantic features of two salient classes of deadlock-free session processes, noted L and K .

Our main contribution is identifying the degree of sharing as a subtle, important issue that under-
lies both session typing and deadlock freedom. We propose a simple characterization of the degree of
sharing: in essence, it arises via an explicit premise for the typing rule for parallel composition in the
system in [12]. The degree of sharing is shown to effectively induce a strict hierarchy of deadlock-free
session processes in K , as resulting from the approach of [7]. We showed that the most elementary (and
non trivial) member of this hierarchy precisely corresponds to L –arguably the most canonical class of
session typed processes known to date. Furthermore, by exhibiting an intuitive rewriting procedure of
processes in K into processes in L , we demonstrated that the degree of sharing is a subtle criteria
for distinguishing deadlock-free processes. As such, even if our technical developments are technically
simple, in our view they substantially clarify our understanding of typed systems for liveness properties
(such as deadlock freedom) in the context of π-calculus processes.

One direction of future work is to obtain semantic characterizations of the degree of sharing, in the
form of a preorder on typed processes that may distinguish when one process “is more parallel” than
another. Previous work in this line includes that of Corradini et al. [5] who consider basic (untyped) CCS
processes. Another direction is to extend our formal relationships to cover typing disciplines with infinite
behavior. In session types, infinite behavior is specified via recursive processes and types. We notice
that the approach of [7] extends to account for recursion [6] and that infinite (yet non divergent) behavior
has been already incorporated into logic-based session types [18]. In the light of recent (non behavioral)
type systems that admit expressive recursive structures (cf. [9, 16]), one interesting issue is to assess
whether the expressiveness of such recent systems entails also additional expressiveness for (recursive)

O. Dardha & J.A. Pérez 15

session processes, following the indirect approach of [6,7]. Finally, we would like to explore whether the
rewriting procedure given in § 5 could be adapted into a procedure for deadlock resolution that replaces
overly sequential portions of a deadlocked process with (more parallel) characteristic processes.

References
[1] L. Caires. Types and logic, concurrency and non-determinism. In Essays for the Luca Cardelli Fest -

Microsoft Research Technical Report MSR-TR-2014-104, September 2014.
[2] L. Caires, F. Pfenning, and B. Toninho. Linear logic propositions as session types. MSCS, 2014. Extended

abstract in Proc. of CONCUR’10.
[3] M. Carbone, O. Dardha, and F. Montesi. Progress as compositional lock-freedom. In COORDINATION,

volume 8459 of Lecture Notes in Computer Science, pages 49–64. Springer, 2014.
[4] M. Carbone and S. Debois. A graphical approach to progress for structured communication in web services.

In Proc. of ICE’10, pages 13–27, 2010.
[5] F. Corradini, R. Gorrieri, and D. Marchignoli. Towards parallelization of concurrent systems. RAIRO -

Theoretical Informatics and Applications - Informatique Théorique et Applications, 32(4-6):99–125, 1998.
[6] O. Dardha. Recursive session types revisited. In M. Carbone, editor, Proceedings Third Workshop on Be-

havioural Types, BEAT 2014, Rome, Italy, 1st September 2014., volume 162 of EPTCS, pages 27–34, 2014.
[7] O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In PPDP, pages 139–150, 2012.
[8] M. Dezani-Ciancaglini, U. de’Liguoro, and N. Yoshida. On progress for structured communications. In TGC,

volume 4912 of LNCS, pages 257–275. Springer, 2007.
[9] E. Giachino, N. Kobayashi, and C. Laneve. Deadlock analysis of unbounded process networks. In CONCUR,

pages 63–77, 2014.
[10] D. Gorla. Towards a unified approach to encodability and separation results for process calculi. Inf. Comput.,

208(9):1031–1053, 2010.
[11] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type disciplines for structured

communication-based programming. In ESOP’98, volume 1381 of LNCS, pages 22–138. Springer, 1998.
[12] N. Kobayashi. A type system for lock-free processes. Inf. Comput., 177(2):122–159, 2002.
[13] N. Kobayashi. A new type system for deadlock-free processes. In CONCUR, pages 233–247, 2006.
[14] N. Kobayashi. Type systems for concurrent programs. Extended version, Tohoku University, 2007.
[15] L. Padovani. From lock freedom to progress using session types. In PLACES, pages 3–19, 2013.
[16] L. Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In CSL-LICS, pages 72:1–72:10. ACM,

2014.
[17] B. C. Pierce. Types and programming languages. MIT Press, MA, USA, 2002.
[18] B. Toninho, L. Caires, and F. Pfenning. Corecursion and non-divergence in session-typed processes. In Proc.

of TGC 2014, volume 8902, pages 159–175. Springer, 2014.
[19] V. T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.
[20] H. T. Vieira and V. T. Vasconcelos. Typing progress in communication-centred systems. In Proc. of COOR-

DINATION 2013, volume 7890 of Lecture Notes in Computer Science, pages 236–250. Springer, 2013.
[21] P. Wadler. Propositions as sessions. In ICFP, pages 273–286, 2012.

16 Comparing Deadlock-Free Session Typed Processes

A Appendix

A.1 Proof of Proposition 4.5

We repeat the statement in Page 12:

Proposition A.1. Let T be a session type. Then rel(JT Ksu | JT Ksu) holds.

Proof. By induction on the structure of session type T and the definitions of J·Ksu and predicate rel(·),
using Lemma 3.10 (encodings of types preserve session type duality).

1. T = end. Then JT Ksu | JT Ksu = (/0 | /0)[] and the thesis follows easily.

2. T = !T1.T2 for some T1,T2. By definition of inductive duality, T = ?T1.T2. Then JT Ksu | JT Ksu =
(?o

κ . /0 | !o′
κ ′ . /0)[JT1Ksu,JT2Ksu]. By letting o = o′ = 0 and κ = κ ′ = 1 the rel(·) predicate holds easily.

The case of T = ?T1.T2, for some T1,T2 is similar to the above.

3. T = &{li : Si}i∈I , for some Si with i ∈ I. By definition of inductive duality, T = ⊕{li : Si}i∈I .
Since JT Ksu = ?o

κ [〈li : JSiKsu〉i∈I] and JT Ksu = !o′
κ ′ [〈li : JSiKsu〉i∈I], we have that JT Ksu | JT Ksu =

(?o
κ . /0 | !o′

κ ′ . /0)[〈li : JSiKsu〉i∈I]. By letting o = o′ = 0 and κ = κ ′ = 1 the rel(·) predicate holds easily.
The case of T =⊕{li : Si}i∈I ,for some Si with i ∈ I is similar to the above.

A.2 Proof of Theorem 4.6

We divide the proof into two auxiliary lemmas.

Lemma A.2. If P ∈L then, P ∈K1.

Proof. By structural induction on P.

1. P = 0: Then, by assumption we have: x : end `ST 0 and 0 `CH x:•, for some x. The thesis follows
immediately by rule (Tπ -NIL) (Figure 5) noticing that JendKsu = /0[].

2. P = [x↔ y]: Then, by assumption we have x : T,y : T `ST [x↔ y] and [x↔ y] `CH x:JT Kc,y:JT Kc,
for some session type T . The thesis follows by using rule (Tπ -FWD) (Figure 5) and exploiting
Lemma 3.10 (encodings of types preserve session type duality).

3. P = x(y).P′: Then, by assumption and Definitions 4.1 and 4.2, we have

Γ,x : ?T.S `ST x(y).P′ (2)

x(y).{{P′}} `CH JΓKc,x : JT Kc OJSKc

for some context Γ and session types S,T . Then, by inversion on typing on (2) we have:

Γ,x : S,y : T `ST P′

Γ,x : ?T.S `ST x(y).P′

By Definitions 4.2 and Figure 6, we must show:

fx : ?0
κ [JT Ksu,JSKsu];JΓK f `1

KB fx(y,c).JP′K f ,{x 7→c}

O. Dardha & J.A. Pérez 17

By induction hypothesis we have:

JΓK f ′ , f ′x : JSKsu, f ′y : JT Ksu `1
KB JP′K f ′

Let f = f ′ \{x 7→ c,y 7→ y}. We can re-write the above judgement as follows:

JΓK f ,c : JSKsu,y : JT Ksu `1
KB JP′K f ,{x 7→c} (3)

Then, the thesis follows from (3) by using rule (Tπ -IN) given in Figure 5.

4. P = x〈y〉.P′: Then, by assumption and Definitions 4.1 and 4.2, we have:

Γ,x : !T.S,y : T `ST x〈y〉.P′ (4)

x(z).([z↔y] | {{P′}}) `CH JΓKc,x : JT Kc⊗ JSKc,y : JT Kc

for some context Γ and session types S,T . By inversion on typing on (4) we have:

Γ,x : S `ST P′

Γ,x : !T.S,y : T `ST x〈y〉.P′

By Definitions 4.2 and Figure 6, we must show:

fx : !0
κ [JT Ksu, JSKsu] ;

(
y : JT Ksu | JΓK f

)
`1
KB (νc) fx〈y,c〉.JP′K f ,{x 7→c}

By induction hypothesis we have:

JΓK f ′ , f ′x : JSKsu `1
KB JP′K f ′

Let f = f ′ \{x 7→ c}. We can re-write the above judgement as follows:

JΓK f ,c : JSKsu `1
KB JP′K f ,{x 7→c} (5)

By applying rule (Tπ - VAR) to derive c : JSKsu and y : JT Ksu and (Tπ - OUT) on (5) we have

y : JT Ksu `1
KB y : JT Ksu c : JSKsu `1

KB c : JSKsu JΓK f ,c : JSKsu `1
KB JP′K f ,{x 7→c}

fx : !0
κ [JT Ksu, JSKsu] ;

(
y : JT Ksu | c : JSKsu | JΓK f ,c : JSKsu

)
`1
KB fx〈y,c〉.JP′K f ,{x 7→c}

(6)

Last, by applying rule (Tπ - RES) and Proposition 4.5 on the conclusion of (6) we have:

fx : !0
κ [JT Ksu, JSKsu] ;

(
y : JT Ksu | c : JSKsu | JΓK f ,c : JSKsu

)
`1
KB fx〈y,c〉.JP′K f ,{x 7→c} rel(JSKsu | JSKsu)

fx : !0
κ [JT Ksu, JSKsu] ;

(
y : JT Ksu | JΓK f

)
`1
KB (νc) fx〈y,c〉.JP′K f ,{x 7→c}

This concludes the case.

5. P = x.{li : Pi}i∈I . Then, by assumption and Definitions 4.1 and 4.2, we have:

Γ,x : &{li : Ti}i∈I `ST x.{li : Pi}i∈I (7)

x.{li : {{Pi}}}i∈I `CH JΓKc,x:&{li : JTiKc}i∈I

for some context Γ and session types Ti for i ∈ I. By inversion on typing on (7) we have:

Γ,x : Ti `ST Pi ∀i ∈ I

Γ,x : &{li : Ti}i∈I `ST x.{li : Pi}i∈I

18 Comparing Deadlock-Free Session Typed Processes

By Definitions 4.2 and Figure 6, we must show:

fx : ?0
κ [〈li : JTiKsu〉i∈I] ; JΓK f `1

KB fx(y). caseyof{li c. JPiK f ,{x 7→c}}i∈I

By induction hypothesis we have:

JΓK f ′ , f ′x : JTiKsu `1
KB JPiK f ′ ∀i ∈ I

Let f = f ′ \{x 7→ c}. We can re-write the above judgement as follows:

JΓK f ,c : JTiKsu `1
KB JPiK f ,{x 7→c} ∀i ∈ I (8)

By applying rules (Tπ - VAR) to obtain y : 〈li : JTiKsu〉i∈I and (Tπ - CASE) and (Tπ - INP) we conclude:

fx : ?0
κ [〈li : JTiKsu〉i∈I] ; JΓK f `1

KB fx(y). caseyof{li c. JPiK f ,{x 7→c}}i∈I

6. P = x/ l jPj. Then, by assumption and Definitions 4.1 and 4.2, we have:

Γ,x :⊕{li : Ti}i∈I `ST x/ l j.Pj (9)

x/ l j.{{Pj}} `CH JΓKc,x:⊕{li : JTiKc}i∈I

for some context Γ and session types Ti for i ∈ I. By inversion on typing on (9) we have:

Γ,x : Tj `ST Pj ∃ j ∈ I

Γ,x :⊕{li : Ti}i∈I `ST x/ l j.Pj

By Definitions 4.2 and Figure 6, we must show:

fx : !0
κ [〈li : JTiKsu〉i∈I] ; JΓK f `1

KB (νc) fx〈l j c〉.JPjK f ,{x 7→c}

By induction hypothesis we have:

JΓK f ′ , f ′x : JTjKsu `1
KB JPjK f ′

Let f = f ′ \{x 7→ c}. We can re-write the above judgement as follows:

JΓK f ,c : JTjKsu `1
KB JPjK f ,{x 7→c} (10)

We use typing rules (Tπ - VAR) and (Tπ - LVAL) to obtain

c : JTjKsu `1
KB l j c : 〈li : JTiKsu〉i∈I (11)

By applying rule (Tπ - OUT) on (10) and (11) we have

c : JTjKsu `1
KB l j c : 〈li : JTiKsu〉i∈I JΓK f ,c : JTjKsu `1

KB JPjK f ,{x 7→c}

fx : !0
κ [〈li : JTiKsu〉i∈I] ;

(
c : JTjKsu | JΓK f ,c : JTjKsu

)
`1
KB fx〈l j c〉.JPjK f ,{x 7→c}

Last, by applying (Tπ - RES) on the conclusion above we have

fx : !0
κ [〈li : JTiKsu〉i∈I] ;

(
c : JTjKsu | JΓK f ,c : JTjKsu

)
`1
KB fx〈l j c〉.JPjK f ,{x 7→c}

fx : !0
κ [〈li : JTiKsu〉i∈I] ; JΓK f `1

KB (νc) fx〈l j c〉.JPjK f ,{x 7→c}

This concludes the case.

O. Dardha & J.A. Pérez 19

7. P = (νxy)(P1 | P2): Then, by assumption and Definitions 4.1 and 4.2, we have:

Γ1 ◦Γ2 `ST (νxy)(P1 | P2) (12)

(νw)({{P1}}[w/x] | {{P2}}[w/y]) `CH JΓ1Kc,JΓ2Kc

for some contexts Γ1,Γ2. By inversion on typing on (12) we have:

Γ1,x : T `ST P1 Γ2,y : T `ST P2

Γ1,x : T ◦Γ2,y : T `ST P1 | P2

Γ1 ◦Γ2 `ST (νxy)(P1 | P2)

for some session type T .
Notice that, since P∈L , then channel xy – or w – is the only one shared between processes P1 and
P2. This implies that Γ1 and Γ2 are disjoint. Hence, by the definition of ◦ we can replace Γ1 ◦Γ2
with simply Γ1,Γ2. By Definitions 4.2 and Figure 6, we must show:

JΓ1K f ,JΓ2K f `1
KB (νw)(JP1K f ,{x 7→w} | JP2K f ,{y7→w})

By induction hypothesis we have:

JΓ1K f ′ , f ′x : JT Ksu `1
KB JP1K f ′ and JΓ2K f ′ , f ′y : JT Ksu `1

KB JP2K f ′

Let f = f ′ \{x,y 7→ w}, hence we have f ′x = f ′y = w. We can now re-write the above judgements
as follows:

JΓ1K f ,w : JT Ksu `1
KB JP1K f ,{x 7→w} and JΓ2K f ,w : JT Ksu `1

KB JP2K f ,{y7→w} (13)

By applying rule (Tπ - PAR1) on the conclusion of (13) we have the following derivation:

JΓ1K f ,w : JT Ksu `1
KB JP1K f ,{x 7→w} JΓ2K f ,w : JT Ksu `1

KB JP2K f ,{y 7→w}

JΓ1K f ,JΓ2K f ,w : JT Ksu | JT Ksu `1
KB JP1K f ,{x 7→w} | JP2K f ,{y 7→w}

Since the only channel that processes P1 and P2 share is w, it is sufficient to write the composition
of typing contexts JΓ1K f and JΓ2K f with ‘,’ instead of parallel composition; we put | in the
composition of the types for channel w, namely JT Ksu | JT Ksu.
By applying rule (Tπ - RES) and by using Proposition 4.5, to show that session type duality implies,
through encodings, the reliability predicate rel(·) we have the following derivation:

JΓ1K f ,JΓ2K f ,w : JT Ksu | JT Ksu `1
KB JP1K f ,{x 7→w} | JP2K f ,{y7→w} rel(JT Ksu | JT Ksu)

JΓ1K f ,JΓ2K f `1
KB (νw)(JP1K f ,{x 7→w} | JP2K f ,{y 7→w})

8. P = P1 | P2: This case is similar as the previous one. By assumption we have

Γ1 ◦Γ2 `ST P1 | P2 (14)

{{P1}},{{P2}} `CH JΓ1Kc,JΓ2Kc

and inversion on typing on (14) we infer:

Γ1 `ST P1 Γ2 `ST P2

Γ1 ◦Γ2 `ST P1 | P2

20 Comparing Deadlock-Free Session Typed Processes

By Definitions 4.2 and Figure 6, we must show:

JΓ1K f ,JΓ2K f `1
KB JP1K f | JP2K f

Since by induction hypothesis we have both:

JΓ1K f `1
KB JP1K f and JΓ2K f `1

KB JP2K f

the thesis proceeds easily by using rule Tπ -PAR1 (Figure 5).

Lemma A.3. If P ∈K1 then P ∈L .

Proof (Sketch). By structural induction on P. We briefly comment on the several cases:
1. P = 0: Straightforward.

2. P = [x↔y]: Straightforward.

3. P = x(y).P′: Then by assumption and Definitions 6 and 4.2, we have

Γ,x : ?T.S `ST x(y).P′ (15)

JΓK f , fx : ?0
κ [JT Ksu,JSKsu] `1

KB fx(y,c).JP′K f ,{x 7→c}

for some context Γ and session types S and T . By inversion on typing on 15 we have:

Γ,x : S,y : T `ST P′

Γ,x : ?T.S `ST x(y).P′

We must show:
x(y).{{P′}} `CH JΓKc,x : JT Kc OJSKc

By induction hypothesis we have:

{{P′}} `CH JΓKc,x : JSKc,y : JT Kc (16)

and therefore the thesis follows easily from (16), using rule (TO) (Figure 3).

4. P = x〈y〉.P′: Then by assumption and Definitions 6 and 4.2, we have

Γ,x : !T.S,y : T `ST x〈y〉.P′ (17)

JΓK f , fx : !0
κ [JT Ksu,JSKsu] `1

KB (νc) fx〈y,c〉.JP′K f ,{x 7→c}

for some context Γ and session types S and T . By inversion on typing on (18) we have:

Γ,x : S `ST P′

Γ,x : !T.S,y : T `ST x〈y〉.P′

By induction hypothesis we have:

{{P′}} `CH JΓKc,x : JSKc

and then we can easily infer:

{{P′}} `CH JΓKc,x : JSKc [y↔z] `CH y : JT Kc,z : JT Kc
x(z).([z↔y] | {{P′}}) `CH JΓKc,x : JT Kc⊗ JSKc,y : JT Kc

and therefore the thesis follows.

O. Dardha & J.A. Pérez 21

5. P = (νxy)(P1 | P2): Then by assumption and Definitions 6 and 4.2, we have:

Γ1 ◦Γ2 `ST (νxy)(P1 | P2) (18)

JΓ1K f , JΓ2K f `1
KB (νw)(JP1K f [w/x] | JP2K f [w/y])

for some contexts Γ1,Γ2. By inversion on typing on (18) we have:

Γ1,x : S `ST P1 Γ2,y : S `ST P2

Γ1,x : S◦Γ2,y : S `ST P1 | P2

Γ1 ◦Γ2 `ST (νxy)(P1 | P2)

for session type S. By induction hypothesis we have both

{{P1}} `CH JΓ1Kc,x : JSKc and {{P2}} `CH JΓ2Kc,y : JSKc

and the thesis follows easily from Lemma 3.10 and rule (Tcut).

6. P = P1 | P2: Similar to the previous case, but using rule (Tmix) (rather than on (Tcut)) for compo-
sition (see Figure 3).

A.3 Proof of Lemma 5.3

We repeat the statement in Page 12:

Lemma A.4. Let T be a session type. For all P ∈ {|T |}x, we have: P `CH x : JT Kc

Proof. By induction on the structure of session type T .

1. Case {|end|}x =
{

P | P `CH x:•
}

. We conclude since JendKc = •.
2. Case {|?T.S|}x =

{
x(y).P | P `CH y:JT Kc,x:JSKc

}
. Let x(y).P ∈ {|?T.S|}x, then by rule (TO) we have

P `CH y:JT Kc,x:JSKc
x(y).P `CH x:JT Kc OJSKc

By the encoding of types in Figure 7, we have J?T.SKc = JT Kc OJSKc, which concludes the case.

3. Case {|!T.S|}x =
{

x(y).(P | Q) | P ∈ {|T |}y∧Q ∈ {|S|}x
}

. By rule (T⊗) and by induction hypothesis
we have

P `CH y : JT Kc Q `CH x : JSKc
x(y).(P | Q) `CH x : JT Kc⊗ JSKc

By the encoding of types in Figure 7, we have J!T.SKc = JT Kc⊗ JSKc which concludes the case.

4. Case {|&{li : Si}i∈I|}x =
{

x.{li : Pi}i∈I | ∀i∈ I. Pi ∈ {|Si|}x
}

. By rule (T&) and induction hypothesis
we have

Pi `CH x : JSiKc ∀i ∈ I

x.{li : Pi}i∈I `CH x : &{li : JSiKc}i∈I

By the encoding of types in Figure 7, we have J&{li : Si}i∈IKc = &{li : JSiKc}i∈I , which concludes
the case.

22 Comparing Deadlock-Free Session Typed Processes

5. Case {|⊕{li : Si}i∈I|}x =
⋃

i∈I
{

x / l j.Pj | Pj ∈ {|Si|}x
}

. For any process Pj in the set, by rule (T⊕)
and induction hypothesis we have

Pj `CH x : JS jKc
x/ l j.Pj `CH x:⊕{li : JSiKc}i∈I

By the encoding of types in Figure 7, we have J⊕{li : Si}i∈IKc =⊕{li : JSiKc}i∈I which concludes
this case.

A.4 Proof of Theorem 5.8

We start with an auxiliary lemma.

Lemma A.5 (Substitution in C-Types). If P `CH ∆,x : A then P[z/x] `CH ∆,z:A.

We repeat the statement in Page 14:

Theorem A.6 (Rewriting is Type Preserving). Let (Γ `ST P) ∈Kn. Then, LΓ `ST PM `CH JΓKc.

Proof. The proof proceeds by induction on the derivation Γ `ST P. We will use inversion on typing in
order to determine the session typing context Γ.

1. Γ `ST 0. Then Γ = {x : end} and

x : end `ST 0
(T-NIL)

By Definition 5.7, Lx : end `ST 0M = 0. Then by applying rule (T-1) we have

0 `CH x : •

The the thesis follows by encoding of types J·Kc (given in Figure 7) and Definition 3.9, which ensure
Jx : endKc = x : •.

2. Γ `ST x〈v〉.P′. Then Γ = Γ′,x : !T.S,v : T and

Γ
′,x : S `ST P′

Γ
′,x : !T.S,v : T `ST x〈v〉.P′

(T-OUT)

By Definition 5.7, LΓ `ST x〈v〉.P′M = x(z).
(
[v↔ z] | LΓ′,x : S `ST P′M

)
. By typing rule (T-id) and by

Lemma 3.10 we have

[v↔z] `CH v : JT Kc,z : JT Kc
(19)

By induction hypothesis we have that LΓ′,x : S `ST P′M `CH JΓ′Kc,x : JSKc
By applying typing rule (T-⊗) on the induction hypothesis and (19) we have that

[v↔z] `CH v : JT Kc,z : JT Kc LΓ′,x : S `ST P′M `CH JΓ
′Kc,x : JSKc

x(z).
(
[v↔z] | LΓ′,x : S `ST PM

)
`CH JΓ

′Kc,x : JT Kc⊗ JSKc,v : JT Kc

where, by encoding of types J·Kc (given in Figure 7) we have J!T.SKc = JT Kc⊗ JSKc and by Defini-
tion 3.9, we have JΓ′,x : !T.S,v : T Kc = JΓ′Kc,x : JT Kc⊗ JSKc,v : JT Kc.

O. Dardha & J.A. Pérez 23

3. Γ `ST x(y : T).P′. Then Γ = Γ′,x : ?T.S and

Γ
′,x : S,y : T `ST P′

Γ
′,x : ?T.S `ST x(y : T).P′

(T-IN)

By Definition 5.7, we have LΓ `ST x(y : T).P′M= x(y).LΓ′,x : S,y : T `ST P′M. By induction hypothesis
we have LΓ′,x : S,y : T `ST P′M `CH JΓ′Kc,x : JSKc,y : JT Kc. By typing rule (T-O) on the induction
hypothesis we have

LΓ′,x : S,y : T `ST P′M `CH JΓ
′Kc,x : JSKc,y : JT Kc

x(y).LΓ′,x : S,y : T `ST P′M `CH JΓ
′Kc,x : JT Kc OJSKc

where by encoding of types J·Kc (given in Figure 7) we have that J?T.SKc = JT Kc O JSKc and by
Definition 3.9, we have JΓ′,x : ?T.SKc = JΓ′Kc,x : JT Kc OJSKc.

4. P = x/ l j.P′: Then Γ = Γ′,x :⊕{li : Si}i∈I and

Γ
′,x : S j `ST P′ j ∈ I

Γ
′,x :⊕{li : Si}i∈I `ST x/ l j.P′

(T-SEL)

By Definition 5.7 we have that LΓ `ST x / l j.P′M = x / l j.LΓ′,x : S j `ST P′M. By induction hypothesis
we have LΓ′,x : S j `ST P′M `CH JΓ′Kc,x : JS jKc. By applying the typing rule (T-⊕) on the induction
hypothesis we have:

LΓ′,x : S j `ST P′M `CH JΓ
′Kc,x : JS jKc j ∈ I

x/ l j.LΓ′,x : S j `ST P′M `CH JΓ
′Kc,x :⊕{li : JSiKc}i∈I

By encoding of types J·Kc (given in Figure 7) and Definition 3.9, we have JΓ′,x : ⊕{li : Si}i∈IKc =
JΓ′Kc,x :⊕{li : JSiKc}i∈I , which concludes the case.

5. P = x.{li : Pi}i∈I: Then Γ = Γ′,x : &{li : Si}i∈I and

Γ
′,x : Si `ST Pi ∀i ∈ I

Γ
′,x : &{li : Si}i∈I `ST x.{li : Pi}i∈I

(T-BRA)

By Definition 5.7, we have

LΓ `ST x.{li : Pi}i∈IM = x.{li : LΓ′,x : Si `ST PiM}i∈I

By induction hypothesis we have for all i ∈ I

LΓ′,x : Si `ST PiM `CH JΓ
′Kc,x : JSiKc (20)

By applying typing rule (T-&) on the induction hypothesis (20) we have

LΓ′,x : Si `ST PiM `CH JΓ
′Kc,x : JSiKc

x.{li : LΓ′,x : Si `ST PiM}i∈I `CH JΓ
′Kc,x : &{li : JSiKc}i∈I

where by encoding of types J·Kc (given in Figure 7) we have J&{li : Si}i∈IKc = &{li : JSiKc}i∈I and by
Definition 3.9, we have JΓ′,x : &{li : Si}i∈IKc = JΓ′Kc,x : &{li : JSiKc}i∈I . This concludes the case.

24 Comparing Deadlock-Free Session Typed Processes

6. Γ `ST (ν x̃y : S̃)(Q | R). Then Γ = Γ1 ◦Γ2, where Γ1, x̃ : S̃ `ST Q and Γ2, ỹ : S̃ `ST R, and

Γ1, x̃ : S̃ `ST Q Γ2, ỹ : S̃ `ST R

Γ1 ◦Γ2, x̃ : S̃, ỹ : S̃ `ST Q | R
(T-PAR)

Γ1 ◦Γ2 `ST (ν x̃y : S̃)(Q | R)
(T-RES)

Notice that, since the only restricted names in P are x̃y and the restriction creates co-variables, it
means that Γ1∩Γ2 = /0. Hence, by the definition of ◦ we have that Γ1 ◦Γ2 = Γ1,Γ2.
By Definition 5.7, we have that LΓ `ST (ν x̃y : S̃)(Q | R)M is the process

(νk)
(
Cz̃:S̃

[
LΓ1, x̃ : S̃ `ST QM[z̃/x̃]

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi ‖k C
z̃:S̃

[
LΓ2, ỹ : S̃ `ST RM[z̃/ỹ]

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i
)

By induction hypothesis on the premises of the typing rule (T-PAR) we have that

LΓ1, x̃ : S̃ `ST QM `CH JΓ1Kc, x̃ : JS̃Kc

and also by Lemma 3.10
LΓ2, ỹ : S̃ `ST RM `CH JΓ2Kc, ỹ : JS̃Kc

By applying Lemma A.5 on the induction hypothesis for x and y we have

LΓ1, x̃ : S̃ `ST QM[z̃/x̃] `CH JΓ1Kc, z̃ : JS̃Kc

and
LΓ2, ỹ : S̃ `ST RM[z̃/ỹ] `CH JΓ2Kc, z̃ : JS̃Kc

By using the catalysers on the two judgements above to obtain a closure on z and by applying
Lemma 5.4 we have:

Cz̃:S̃

[
LΓ1, x̃ : S̃ `ST QM[z̃/x̃]

]
`CH JΓ1Kc (21)

and
C

z̃:S̃

[
LΓ2, ỹ : S̃ `ST RM[z̃/ỹ]

]
`CH JΓ2Kc (22)

By applying Lemma 5.3 we have that {|Ti|}wi `CH wi : JTiKc for all wi : Ti ∈ Γ2 and {|T ′i |}w′i `CH w′i : JT ′i Kc
for all (w′i : T ′i) ∈ Γ1. Finally, by applying the typing rule (T-MIX) we have:

{|Ti|}wi `CH wi : JTiKc ∀wi : Ti ∈ Γ2

∏
(wi:Ti)∈Γ2

{|Ti|}wi `CH JΓ2Kc
(T-mix)

(23)

and
{|T ′i |}w′i `CH w′i : JT ′i Kc ∀(w′i : T ′i) ∈ Γ1

∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i `CH JΓ1Kc
(T-mix)

(24)

where w̃ : JT̃ Kc = JΓ2Kc and w′ : JT ′Kc = JΓ1Kc. By applying (T-mix) on (21) and the conclusion of (23)
we have:

(T-mix)

Cz̃:S̃

[
LΓ1, x̃ : S̃ `ST QM[z̃/x̃]

]
`CH JΓ1Kc ∏

(wi:Ti)∈Γ2

{|Ti|}wi `CH JΓ2Kc

Cz̃:S̃

[
LΓ1, x̃ : S̃ `ST QM[z̃/x̃]

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi `CH JΓ1Kc,JΓ2Kc
(25)

O. Dardha & J.A. Pérez 25

and by applying (T-mix) on (22) and the conclusion of (24) we have:

(T-mix)

C
z̃:S̃

[
LΓ2, ỹ : S̃ `ST RM[z̃/ỹ]

]
`CH JΓ2Kc ∏

(w′i:T
′

i)∈Γ1

{|T ′i |}w′i `CH JΓ1Kc

C
z̃:S̃

[
LΓ2, ỹ : S̃ `ST RM[z̃/ỹ]

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i `CH JΓ1Kc,JΓ2Kc
(26)

By applying typing rule (T-⊥) on k and (T-&) on the conclusions of 25 and 26, and by letting

Q = Cz̃:S̃

[
LΓ1, x̃ : S̃ `ST QM[z̃/x̃]

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi `CH JΓ1Kc,JΓ2Kc,k : •

and
R = C

z̃:S̃

[
LΓ2, ỹ : S̃ `ST RM[z̃/ỹ]

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i `CH JΓ1Kc,JΓ2Kc,k : •

we have the following derivation:

(T-&)

Cz̃:S̃

[
LΓ1, x̃ : S̃ `ST QM[z̃/x̃]

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi `CH JΓ1Kc,JΓ2Kc,k : •

C
z̃:S̃

[
LΓ2, ỹ : S̃ `ST RM[z̃/ỹ]

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i `CH JΓ1Kc,JΓ2Kc,k : •

k .{l1 : Q, l2 : R} `CH JΓ1Kc,JΓ2Kc,k : &{l1 : •, l2 : •} (27)

By applying (T-⊗) we have
0 `CH k : • j ∈ {1,2}

k /inx.0 `CH k :⊕{inl : •,inr : •}

We conclude by applying (T-cut)

k /inx.0 `CH k :⊕{inl : •,inr : •} k .{l1 : Q, l2 : R} `CH JΓ1Kc,JΓ2Kc,k : &{inl : •,inr : •}
(νk)

(
k /inx.0 | k .{inl : Q,inr : R}

)
`CH JΓ1Kc,JΓ2Kc

A.5 Proof of Theorem 5.10

We repeat the statement in Page 14:

Theorem A.7 (Operational Correspondence). Let P ∈Kn such that Γ `ST P for some Γ. Then we have:

I) If P→ P′ then there exist Q, Q′ s.t. (i) LΓ `ST PM→inx→∗≡Q; (ii) Q + Q′; (iii) LΓ `ST P′M→inx Q′.

II) If LΓ `ST PM→inx→∗≡ Q then there exists P′ s.t. P→ P′ and Q + LΓ `ST P′M.

Proof. I) The proof is done by induction on the length of the derivation P→ P′.

1. Case (R-COM):

P , (νxy : S′)(x〈v〉.P1 | y(t : T).P2)→ (νxy : S′′)(P1 | P2[v/t]), P′

26 Comparing Deadlock-Free Session Typed Processes

Since Γ `ST P, by inversion let S′ = !T.S for some S and S′′ = S. Then, again by inversion Γ =
(Γ1,v : T)◦Γ2 meaning that

Γ1,x : S `ST P1

Γ1,v : T,x : !T.S `ST x〈v〉.P1

and

Γ2,y : S, t : T `ST P2

Γ2,y : ?T.S `ST y(t : T).P2

By Definition 5.7 we have

LΓ `ST PM = LΓ `ST (νxy : !T.S)(x〈v〉.P1 | y(t : T).P2)M
= (νk)

(
Cz:!T.S

[
LΓ1,x : !T.S,v : T `ST x〈v〉.P1M[z/x]

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

‖k Cz:?T.S

[
LΓ2,y : ?T.S `ST y(t : T).P2M[z/y]

]
| ∏
(w′i:T

′
i)∈{Γ1,v:T}

{|T ′i |}w′i
)

= (νk)
(
Cz:!T.S

[
LΓ1,z : !T.S,v : T `ST z〈v〉.P1[z/x]M

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

‖k Cz:?T.S

[
LΓ2,z : ?T.S `ST z(t : T).P2[z/y]M

]
| ∏
(w′i:T

′
i)∈{Γ1,v:T}

{|T ′i |}w′i
)

By the reduction rules given in Fig. 1:

• If inx= inl we have the following reduction:

LΓ `ST PM→ Cz:!T.S
[
LΓ1,z : !T.S,v : T `ST z〈v〉.P1[z/x]M

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

= Cz:!T.S
[
z(w).

(
[v↔w] | LΓ1,z : S `ST P1[z/x]M

)]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

≡ (νz)
(
(νw)(z〈w〉.

(
[v↔w] | LΓ1,z : S `ST P1[z/x]M

)
| z(s).Q)

)
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

By Definition 5.1 we have that z(s).Q∈ {|?T.S|}z with Q `CH s:JT Kc,z:JSKc. By applying rules
(R-COM), (R-CHRES) and (R-FWD) given in Fig. 1 we have the following reductions:

→→ (νz)
(
(νw)([v↔w] | LΓ1,z : S `ST P1[z/x]M | Q{w/s})

)
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

→ (νz)
(
LΓ1,z : S `ST P1[z/x]M | Q{v/w}

)
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi , P1

By Theorem 5.8 we have that LΓ `ST PM `CH JΓKc. By hypothesis P→ P′, then by subject

O. Dardha & J.A. Pérez 27

reduction LΓ `ST P′M `CH JΓKc. and the rewriting of P′ is as follows.

LΓ `ST P′M = LΓ `ST (νxy : S)(P1 | P2[v/t])M
= (νk)

(
Cz:S
[
LΓ1,x : S `ST P1M[z/x]

]
| ∏
(wi:Ti)∈{Γ2,v:T}

{|Ti|}wi

‖k Cz:S

[
LΓ2,y : S,v : T `ST P2[v/t]M[z/y]

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i
)

= (νk)
(
Cz:S
[
LΓ1,z : S `ST P1[z/x]M

]
| ∏
(wi:Ti)∈{Γ2,v:T}

{|Ti|}wi

‖k Cz:S

[
LΓ2,z : S,v : T `ST P2[v/t][z/y]M

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i
)

Since inl was chosen, then we have the following reduction, where Rz ∈ {|S|}z:

→ Cz:S
[
LΓ1,z : S `ST P1[z/x]M

]
| ∏
(wi:Ti)∈{Γ2,v:T}

{|Ti|}wi

= (νz)
(
LΓ1,z : S `ST P1[z/x]M | Rz

)
| ∏
(wi:Ti)∈{Γ2,v:T}

{|Ti|}wi , P ′
1

Recall that process P1 is well-typed in JΓKc; process P ′
1 is also well-typed in JΓKc. Then,

P1 + P ′
1 and P1 is a subterm of both P1 and P ′

1.
• If inx= inr we have the following reduction:

LΓ `ST PM→ Cz:?T.S

[
LΓ2,z : ?T.S `ST z(t : T).P2[z/y]M

]
| ∏
(w′i:T

′
i)∈{Γ1,v:T}

{|T ′i |}w′i

= Cz:?T.S

[
z(t).LΓ2,z : S, t : T `ST P2[z/y]M

]
| | ∏

(w′i:T
′

i)∈{Γ1,v:T}
{|T ′i |}w′i

≡ (νz)
(
z(t).LΓ2,z : S, t : T `ST P2[z/y]M | (νu)z〈u〉.(R | Q)

)
| ∏
(w′i:T

′
i)∈{Γ1,v:T}

{|T ′i |}w′i

By Definition 5.1 we have that z(u).(R | Q) ∈ {|!T.S|}z with R ∈ {|T |}u and Q ∈ {|S|}z. By
applying rule (R-COM) given in Fig. 1 we have the following reductions:

→≡ (νz)
(
(νu)(LΓ2,z : S,u : T `ST P2[z/y][u/t]M | R | Q)

)
| ∏
(w′i:T

′
i)∈{Γ1,v:T}

{|T ′i |}w′i , P2

By Theorem 5.8 process (νz)
(
(νu)(LΓ2,z : S,u : T `ST P2[z/y][u/t]M | R | Q)

)
is well-typed in

JΓ2Kc, since restrictions of z and u remove them from the typing environment Γ2,z : S,u : T .
The encoding of P′ is the same as before; we recall it here for simplicity:

LΓ `ST P′M = LΓ `ST (νxy : S)(P1 | P2[v/t])M
= (νk)

(
Cz:S
[
LΓ1,x : S `ST P1M[z/x]

]
| ∏
(wi:Ti)∈{Γ2,v:T}

{|Ti|}wi

‖k Cz:S

[
LΓ2,y : S,v : T `ST P2[v/t]M[z/y]

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i
)

= (νk)
(
Cz:S
[
LΓ1,z : S `ST P1[z/x]M

]
| ∏
(wi:Ti)∈{Γ2,v:T}

{|Ti|}wi

‖k Cz:S

[
LΓ2,z : S,v : T `ST P2[v/t][z/y]M

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i
)

28 Comparing Deadlock-Free Session Typed Processes

Since inr was chosen, then we have the following reduction, where Rz ∈ {|S|}z:

→ Cz:S

[
LΓ2,z : S,v : T `ST P2[v/t][z/y]M

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i

= (νz)
(
LΓ2,z : S,v : T `ST P2[v/t][z/y]M | Rz

)
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i , P ′
2

Process P2 and process P ′
2 are well-typed in JΓKc. Then P2 + P ′

2 and P2 is a subterm of
both P2 and P ′

2.

2. Case (R-CASE):

P , (νxy : S′)(x/ l j.Q | y.{li : Ri}i∈I)→ (νxy : S′′)(Q | R j), P′

Since Γ `ST P, by inversion let S′ =⊕{li : Si}i∈I for some S and S′′ = S j. Then, again by inversion
Γ = Γ1 ◦Γ2 and

Γ1,x : S j ` Q ∃ j ∈ I

Γ1,x :⊕{li : Si}i∈I ` x/ l j.Q

and
Γ2,y : Si ` Ri ∀i ∈ I

Γ2,y : &{li : Si}i∈I ` y.{li : Ri}i∈I

By Definition 5.7 we have

LΓ `ST PM =LΓ `ST (νxy : S′)(x/ l j.Q | y.{li : Ri}i∈I)M
=(νk)

(
Cz:S′

[
LΓ1,x : S′ `ST x/ l j.QM[z/x]

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

‖k Cz:S′
[
LΓ2,y : S′ `ST y.{li : Ri}i∈IM[z/y]

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i
)

By the reduction rules given in Fig. 1:

• If inx= inl we have the following reduction:

LΓ `ST PM→ Cz:S′
[
LΓ1,x : S′ `ST x/ l j.QM[z/x]

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

≡ (νz)
(
LΓ1,z : S′ `ST z/ l j.Q[z/x]M | z.{li : R′i}i∈I

)
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

By Definition 5.1, z . {li : R′i}i∈I ∈ {|&{li : Si}i∈I|}z and for all i ∈ I we have R′i ∈ {|S|}z. In
particular R′j ∈ {|S j|}z. By applying rules (R-RES) and (R-CASE) the process performs the
following reduction:

→→ (νz)
(
LΓ1,z : S j `ST Q[z/x]M | R′j

)
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi , Q

Since z is restricted, the last process is well-typed in Γ1 ◦Γ2.

O. Dardha & J.A. Pérez 29

By Theorem 5.8 we have that LΓ `ST PM `CH JΓKc. By hypothesis P→ P′, then by subject
reduction LΓ `ST P′M `CH JΓKc, and the rewriting of P′ is as follows.

LΓ `ST P′M = LΓ `ST (νxy : S j)(Q | R j)M
= (νk)

(
Cz:S j

[
LΓ1,x : S j `ST QM[z/x]

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

‖k Cz:S j

[
LΓ2,y : S j `ST R jM[z/y]

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i
)

Since inl was chosen, then we have the following reduction where Rz ∈ {|S j|}z:

→ Cz:S j

[
LΓ1,z : S j `ST Q[z/x]M

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

= (νz)
(
LΓ1,z : S j `ST Q[z/x]M | Rz

)
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi = Q

• If inx = inr, since by Definition 5.1 we have that {|⊕ {li : Si}i∈I|}z =
⋃

i∈I
{

z / li.Pi | Pi ∈
{|Si|}z

}
, then there exists an index j ∈ I. Recall that l j is the label selected in process P. We

hence use label l j for the reduction below

LΓ `ST PM→ Cz:S′
[
LΓ2,y : S′ `ST y.{li : Ri}i∈IM[z/y]

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i

≡ (νz)
(
LΓ2,z : S′ `ST z.{li : Ri}i∈I[z/y]M | z/ l j.R′

)
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i

By Definition 5.1 z / l j.R′ ∈ {|⊕ {li : Si}i∈I|}z for j ∈ I and R′ ∈ {|S j|}z. By applying rules
(R-RES) and (R-CASE) the process performs the following reduction:

→→ (νz)
(
LΓ2,z : Sk `ST Rk[z/y]M | R′

)
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i , R

Since z is restricted, the last process is well-typed in Γ1 ◦Γ2.
By Theorem 5.8 we have that LΓ `ST PM `CH JΓKc. By hypothesis P→ P′, then by subject
reduction LΓ `ST P′M `CH JΓKc, and the rewriting of P′ is presented above.
Since inr was chosen, then we have the following reduction where Rz ∈ {|S j|}z

LΓ `ST P′M→ Cz:S j

[
LΓ2,z : S j `ST R j[z/y]M

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i
)

= (νz)
(
LΓ2,z : S j `ST R j[z/y]M | Rz

)
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i
)

II) The proof is done by induction on the structure of P.

1. Case P , (νxy : S′)(x〈v〉.P1 | y(t : T).P2). Since Γ `ST P, by inversion let S′ = !T.S for some S and
S′′ = S. Then, again by inversion Γ = (Γ1,v : T)◦Γ2 meaning that

Γ1,x : S `ST P1

Γ1,v : T,x : !T.S `ST x〈v〉.P1

30 Comparing Deadlock-Free Session Typed Processes

and
Γ2,y : S, t : T `ST P2

Γ2,y : ?T.S `ST y(t : T).P2

By Definition 5.7 we have

LΓ `ST PM = LΓ `ST (νxy : !T.S)(x〈v〉.P1 | y(t : T).P2)M
= (νk)

(
Cz:!T.S

[
LΓ1,x : !T.S,v : T `ST x〈v〉.P1M[z/x]

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

‖k Cz:?T.S

[
LΓ2,y : ?T.S `ST y(t : T).P2M[z/y]

]
| ∏
(w′i:T

′
i)∈{Γ1,v:T}

{|T ′i |}w′i
)

= (νk)
(
Cz:!T.S

[
LΓ1,z : !T.S,v : T `ST z〈v〉.P1[z/x]M

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

‖k Cz:?T.S

[
LΓ2,z : ?T.S `ST z(t : T).P2[z/y]M

]
| ∏
(w′i:T

′
i)∈{Γ1,v:T}

{|T ′i |}w′i
)

By the reduction rules given in Fig. 1:

• If inx= inl we have the following reduction:

LΓ `ST PM→ Cz:!T.S
[
LΓ1,z : !T.S,v : T `ST z〈v〉.P1[z/x]M

]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

= Cz:!T.S
[
z(w).

(
[v↔w] | LΓ1,z : S `ST P1[z/x]M

)]
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

≡ (νz)
(
(νw)(z〈w〉.

(
[v↔w] | LΓ1,z : S `ST P1[z/x]M

)
| z(s).Q)

)
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

By Definition 5.1 we have that z(s).Q∈ {|?T.S|}z with Q `CH s:JT Kc,z:JSKc. By applying rules
(R-COM), (R-CHRES) and (R-FWD) given in Fig. 1 we have the following reductions:

→→ (νz)
(
(νw)([v↔w] | LΓ1,z : S `ST P1[z/x]M | Q{w/s})

)
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi

→ (νz)
(
LΓ1,z : S `ST P1[z/x]M | Q{v/w}

)
| ∏
(wi:Ti)∈Γ2

{|Ti|}wi , Q

By (R-COM) P→ (νxy : S′′)(P1 | P2[v/t]) , P. Since Γ `ST P, by inversion let S′ = !T.S for
some S and S′′ = S. The rewriting of P1 is as follows:

LΓ `ST P′M = LΓ `ST (νxy : S)(P1 | P2[v/t])M
= (νk)

(
Cz:S
[
LΓ1,x : S `ST P1M[z/x]

]
| ∏
(wi:Ti)∈{Γ2,v:T}

{|Ti|}wi

‖k Cz:S

[
LΓ2,y : S,v : T `ST P2[v/t]M[z/y]

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i
)

= (νk)
(
Cz:S
[
LΓ1,z : S `ST P1[z/x]M

]
| ∏
(wi:Ti)∈{Γ2,v:T}

{|Ti|}wi

‖k Cz:S

[
LΓ2,z : S,v : T `ST P2[v/t][z/y]M

]
| ∏
(w′i:T

′
i)∈Γ1

{|T ′i |}w′i
)

O. Dardha & J.A. Pérez 31

Since inl was chosen, then we have the following reduction, where Rz ∈ {|S|}z:

→ Cz:S
[
LΓ1,z : S `ST P1[z/x]M

]
| ∏
(wi:Ti)∈{Γ2,v:T}

{|Ti|}wi

= (νz)
(
LΓ1,z : S `ST P1[z/x]M | Rz

)
| ∏
(wi:Ti)∈{Γ2,v:T}

{|Ti|}wi , R

Recall that process Q is well-typed in JΓKc; process R is also well-typed in JΓKc. Then,
Q + R and P1 is a subterm of both Q and R.

A.6 Example of the Rewriting Procedure

Consider again the process

P2 = (νa1b1)(νa2b2)(a1(x). a2〈x〉 | b1〈n〉. b2(z))

that we used in Lemma 4.3. We have that

a1 : ? end,a2 : ! end,x : end `ST a1(x). a2〈x〉 ?

b1 : ! end,b2 : ? end,n : end `ST b1〈n〉. b2(z) ??

and let Γ1 = x : end, Γ2 = n : end and Γ = Γ1 ◦Γ2. By applying Definition 5.7 we have

LΓ `ST P2M = (νk)
(
{|end|}n | (νz1)(νz2)({|! end|}z1 | {|? end|}z2 | L?M[z1,z2/a1,a2])

‖k {|end|}x | (νz1)(νz2)({|? end|}z1 | {|! end|}z2 | L??M[z1,z2/b1,b2])
)

≡ (νk)
(
(νz1)(νz2)(z1(n).0 | z2(y).0 | z1(x).z2(w)([x↔w] | 0))

‖k (νz1)(νz2)(z1(y).0 | z2(n).0 | z1(v)([n↔v] | z2(z).0))
)
, P2

Now, to illustrate the reduction that process P2 can perform, suppose inr is chosen:

P2→(νz1)(νz2)(z1(y).0 | z2(n).0 | z1(v)([n↔v] | z2(z).0))
)

≡ (νz1)(νz2)(z1(y).0 | z2(n).0 | (νv)z1〈v〉([n↔v] | z2(z).0))
)

≡ (νv)(νz1)(νz2)(z1(y).0 | z2(n).0 | z1〈v〉([n↔v] | z2(z).0))
)
→∗

	Introduction
	Session - calculus
	Two Approaches to Deadlock Freedom
	Linear Logic Foundations for Session Types
	Deadlock Freedom by Encodability
	Processes
	Usage Types
	Encodings of Processes and Types

	A Hierarchy of Deadlock-Free Session Typed Processes
	Rewriting Kn into L
	Preliminaries: Characteristic Processes and Catalyzers
	Rewriting Kn in L

	Concluding Remarks
	Appendix
	Proof of Proposition 4.5
	Proof of Theorem 4.6
	Proof of Lemma 5.3
	Proof of Theorem 5.8
	Proof of Theorem 5.10
	Example of the Rewriting Procedure

