
Type Systems for Distributed Programs:
Components and Sessions

Ornela Dardha

ii

Foreword

The Italian Chapter of the EATCS (European Association for Theoretical Com-
puter Science) was founded in 1988, and aims at facilitating the exchange of ideas
and results among Italian theoretical computer scientists, and at stimulating coop-
eration between the theoretical and the applied communities in Italy.

One of the major activities of this Chapter is to promote research in theoretical
computer science, stimulating scientific excellence by supporting and encouraging
the very best and creative young Italian theoretical computer scientists. This is
done also by sponsoring a prize for the best PhD thesis. An interdisciplinary
committee selects the best PhD thesis, among those defended in the previous year
and dealing with one of the many themes in theoretical computer science.

In 2012 we started a cooperation with Atlantis Press so that the selected PhD
theses will be published as volumes in the Atlantis Studies in Computing.

The present volume contains the thesis selected for publication in 2015:

Type Systems for Distributed Programs: Components and Sessions by Ornela
Dardha (supervisor: Prof. Davide Sangiorgi, Univ. of Bologna, Italy)

The scientific committee that selected this thesis was composed of Professors
Margherita Napoli (Univ. of Salerno), Paolo Santi (CNR of Pisa) and Andrea
Masini (Univ. of Verona).

They gave the following motivation to justify the assignment of the award to
the thesis by Ornela Dardha:

The PhD thesis “Type Systems for Distributed Programs: Components and
Sessions” by Ornela Dardha deals with type-based systems for distributed pro-
grams. The goal of the thesis is the development of static techniques based on
type systems aimed at dealing with consistency and safety properties related with
dynamic reconfiguration and communication in complex distributed systems. The
main original contributions of the thesis are:

• the design of a type system for a realistic concurrent object-oriented calcu-
lus to statically guarantee the consistency of dynamic reconfigurations;

iii

• the study of concrete, non-trivial safety properties of complex distributed
systems, namely deadlock freedom, livelock freedom, and progress.

All the theoretical proposals of the thesis are original and extremely interesting.
They represent a major breakthrough in the study of type systems for concurrent
languages. It is our opinion that the ideas of this thesis could also help in the
design and implementation of real type systems for concrete distributed program-
ming languages.

I would like to thank the members of the scientific committee, and I hope that
this initiative will further contribute to strengthen the sense of belonging to the
same community of all the young researchers that have accepted the challenges
posed by any branch of theoretical computer science.

Rome, January 2016
Tiziana Calamoneri
President of the Italian Chapter of the EATCS

iv

Preface

It is a pleasure for me to write a preface for Ornela Dardha’s PhD thesis in the
occasion of its publication in the Atlantis Studies in Computing, as recipient
of a prize for “Best Italian 2015 PhD Thesis in Theoretical Computer Science”
awarded by the Italian Chapter of EATCS.

I am happy that Ornela has obtained the prize, as a reward for the time and
the energy that she has invested into research during the PhD period. Ornela’s
achievement is also gratifying for the Focus team and the whole Department of
Computer Science of the University of Bologna, in which the thesis has been
carried out. I like to think that Focus and the Department have provided a fertile
environment in which her desire of learning and growing has been nourished.

The general topic of Ornela’s thesis is type systems for programming lan-
guages. Type systems have been developed in sequential languages, initially with
the goal of improving the efficiency of programs, and later also with the goals
of ensuring certain correctness properties during execution and of specifying the
inteded use of certain objects or components in a program. The application of
type systems to concurrency is more recent. The field has presented, and still
presents, a number of challenges: in a concurrent system new features, such as
interactions, have to be taken into account; other features, such as dynamic recon-
figurations, take a prominent role. Concurrency has sometimes led to the design
of new type systems. A relevant example are the so-called session types, roughly
types capable of specifying the protocols that a set of components should follow,
in order to accomplish a certain task. The past two decades have seen a thorough
investigation of session types.

Ornela’s thesis shows how types can be used in presence of interactions and
dynamic reconfiguration to guarantee some fundamental behavioural properties
of distributed systems, such as forms of consistency, deadlock freedom, progress.
Moreover, the thesis sheds light into the foundations of session types. The thesis
shows that session types, at least in their most common format, are not a primitive
concept, as they had been treated in the literature: they can be derived from more
basic and well-known type constructs. This is important, both to understand better
the concept, and to develop its metatheory.

v

I would like to conclude with my personal congratulations to Ornela for the
work done, and my warmest wishes for her future.

Bologna, Gennaio 2016
Davide Sangiorgi

vi

Acknowledgments

The work for the PhD thesis was carried out while I was a PhD student at the
Computer Science Department of the University of Bologna and a member of the
Focus team, and also during my one-year visit at the IT University of Copenhagen.

I am very grateful to my supervisor Davide Sangiorgi, who during my PhD has
been of great support and guidance. I also want to thank the external reviewers of
my PhD thesis: Ilaria Castellani and Vasco T. Vasconcelos for their careful work
and useful feedbacks.

Currently I am a Research Associate at the School od Computing Science of
the University of Glasgow, working with Simon J. Gay and supported by the UK
EPSRC project From Data Types to Session Types: A Basis for Concurrency and
Distribution (ABCD) (EP/K034413/1).

A very special thanks goes to Elena Giachino for her help and support, for the
scientific and life-related advice she gave me during those years.

I also want to thank Jorge A. Pérez, for being a very good friend and a very
good “older academic brother”. Thank you for your prompt response every time I
needed your help.

During my one-year visit at ITU of Copenhagen, I had the pleasure to work
with Marco Carbone and Fabrizio Montesi. Thank you for the very nice year at
ITU and for making research a lot fun.

An enormous hug goes to all my friends around the world, especially the ones
in Rome, Bologna, Copenhagen, Glasgow and London. Thank you for the great
time together, for being of inspiration and support and above all for making me
feel home whenever I visit you.

Falenderoj familjen time babin, mamin dhe dy motrat e mia te mrekullueshme,
per prezencën, durimin dhe dashurinë e tyre të pakushtëzuar. Ju dua shumë!

Ringrazio la mia (seconda) famiglia, mamma, papi, Titi e Ernesto: il tempo
con voi non è mai abbastanza... Vi voglio un mondo di bene!

Last, but absolutely not least, I want to thank my Simon. During the time I
was writing this book he has been very supportive, understanding and caring. You
are truly a wonderful person!

vii

viii

Contents

Foreword iii

Preface v

Acknowledgements vii

List of Figures xiii

Introduction to the PhD Thesis 1

I Safe Dynamic Reconfiguration of Components 7

Introduction to Part I 9

1 Background on Components 13
1.1 Syntax . 13
1.2 Semantics . 17

1.2.1 Runtime Syntax . 17
1.2.2 Functions and Predicates 18
1.2.3 Evaluation of Pure and Guard Expressions 19
1.2.4 Reduction Rules . 21

1.3 Server and Client Example . 25

2 A Type System for Components 29
2.1 Typing Features . 29
2.2 Subtyping Relation . 30
2.3 Functions and Predicates . 32
2.4 Typing Rules . 35
2.5 Typing Rules for Runtime Configurations 41

ix

3 Properties of the Type System 43
3.1 Main Results . 43
3.2 Proofs . 44

Related Work of Part I 53

II Safe Communication by Encoding 57

Introduction to Part II 59

4 Background on π-Types 63
4.1 Syntax . 63
4.2 Semantics . 65
4.3 π-Types . 66
4.4 π-Typing Rules . 67
4.5 Main Results . 71

5 Background on Session Types 73
5.1 Syntax . 75
5.2 Semantics . 76
5.3 Session Types . 78
5.4 Session Typing Rules . 79
5.5 Main Results . 83

6 Session Types Revisited 85
6.1 Types Encoding . 85
6.2 Terms Encoding . 87
6.3 Properties of the Encoding . 89

6.3.1 Auxiliary Results . 90
6.3.2 Typing Values by Encoding 92
6.3.3 Typing Processes by Encoding 93
6.3.4 Operational Correspondence 102

6.4 Corollaries from the Encoding 109

III Advanced Features on Safety by Encoding 111

Introduction to Part III 113

x

7 Subtyping 115
7.1 Subtyping Rules . 115
7.2 Properties . 116

8 Polymorphism 121
8.1 Parametric Polymorphism . 121

8.1.1 Syntax . 122
8.1.2 Semantics . 122
8.1.3 Typing Rules . 123
8.1.4 Encoding . 123
8.1.5 Properties of the Encoding 124

8.2 Bounded Polymorphism . 127
8.2.1 Syntax . 127
8.2.2 Semantics . 129
8.2.3 Typing Rules . 130
8.2.4 Encoding . 131
8.2.5 Properties of the Encoding 132

9 Higher-Order Communication 141
9.1 Syntax . 141
9.2 Semantics . 142
9.3 Typing Rules . 143

9.3.1 HOπ Session Typing Rules 143
9.3.2 HOπ Typing Rules . 146

9.4 Encoding . 146
9.5 Properties of the Encoding . 149

9.5.1 Typing HOπ Processes by Encoding 149
9.5.2 Operational Correspondence for HOπ 157

10 Recursion 161
10.1 Syntax . 161
10.2 Semantics . 162
10.3 Typing Rules . 163
10.4 Encoding . 165
10.5 Properties of the Encoding . 166

11 From π-Types to Session Types 169
11.1 Further Considerations . 169
11.2 Typed Behavioural Equivalence 170

11.2.1 Equivalence Results for the Encoding 171

xi

Related Work of Part II and III 173

IV Progress of Communication 177

Introduction to Part IV 179

12 Background on π-types for Lock Freedom 183
12.1 Syntax . 183
12.2 Semantics . 183
12.3 π-Types for Lock Freedom . 185
12.4 π-Typing Rules for Lock Freedom 187

13 Background on Session Types for Progress 193
13.1 Syntax . 193
13.2 Semantics . 193
13.3 Session Types . 195
13.4 Session Typing Rules . 195

14 Progress as Compositional Lock Freedom 197
14.1 Lock Freedom for Sessions . 197
14.2 Progress for Sessions . 199
14.3 Lock Freedom meets Progress 200

14.3.1 Properties of Closed Terms 200
14.3.2 Properties of Open Terms 202

14.4 A Type System for Progress . 205

Related Work of Part IV 207

Bibliography 211

xii

List of Figures

1.1 Component extension of core ABS 14
1.2 Runtime syntax . 18
1.3 Evaluation of pure expressions 19
1.4 Evaluation of guard expressions 21
1.5 Reduction rules for configurations (1) 22
1.6 Reduction rules for configurations (2) 23
1.7 Reduction rules for configurations (3) 24
1.8 Reduction rules for rebinding . 25
1.9 Workflow in ABS . 26
1.10 Workflow in the component model 27
1.11 Client and controller objects creation 27

2.1 Subtyping relation . 31
2.2 Lookup functions . 33
2.3 Auxiliary functions and predicates 34
2.4 Typing rules for the functional level 36
2.5 Typing rules for expressions with side effects 37
2.6 Typing rules for statements . 38
2.7 Typing rules for declarations . 39
2.8 Typing the workflow example 40
2.9 Typing rules for runtime configurations 42

4.1 Syntax of the standard π-calculus 63
4.2 Structural congruence for the standard π-calculus 65
4.3 Rules for equational reasoning 65
4.4 Semantics of the standard π-calculus 66
4.5 Syntax of linear π-types . 66
4.6 Combination of π-types and typing contexts 68
4.7 Type duality for linear π-types 69
4.8 Typing rules for the standard π-calculus 70

5.1 Syntax of the π-calculus with sessions 75

xiii

5.2 Structural congruence for the π-calculus with sessions 76
5.3 Semantics of the π-calculus with sessions 77
5.4 Syntax of session types . 78
5.5 Type duality for session types . 79
5.6 Context split and context update 80
5.7 Typing rules for the π-calculus with sessions 81

6.1 Encoding of session types . 86
6.2 Encoding of session terms . 87
6.3 Encoding of session typing contexts 90

7.1 Subtyping rules for the π-calculus with sessions 116
7.2 Subtyping rules for the standard π-calculus 116

8.1 Syntax of parametric polymorphic constructs 122
8.2 Typing rules for parametric polymorphic constructs 123
8.3 Encoding of parametric polymorphic constructs 124
8.4 Syntax of bounded polymorphic session constructs 128
8.5 Syntax of bounded polymorphic π-constructs 129
8.6 Typing rules for bounded polymorphic session constructs 130
8.7 Typing rules for bounded polymorphic π-constructs 131
8.8 Encoding of bounded polymorphic types 131
8.9 Encoding of bounded polymorphic terms 132

9.1 Syntax of higher-order constructs 141
9.2 Semantics of higher-order constructs 142
9.3 Typing rules for the HOπ with sessions: values 144
9.4 Typing rules for the HOπ with sessions: processes 145
9.5 Typing rules for the standard HOπ: values 147
9.6 Typing rules for the standard HOπ: processes 148
9.7 Encoding of HOπ types and terms 149

10.1 Syntax of recursive session types and terms 161
10.2 Syntax of recursive standard π-calculus types and terms 162
10.3 Typing rules for recursive constructs 164
10.4 Encoding of recursive types, terms and typing contexts 165

12.1 Syntax of the standard π-calculus: repeated 184
12.2 Semantics of the standard π-calculus: repeated 184
12.3 Syntax of usage types . 185
12.4 Typing rules for the π-calculus with usage types 190

13.1 Syntax of the π-calculus with sessions: updated 194

xiv

13.2 Semantics of the π-calculus with sessions: updated 194
13.3 Syntax of session types: updated 195
13.4 Typing rules for the π-calculus with sessions: updated 196

14.1 Checking progress with TyPiCal 206

xv

xvi

Introduction to the PhD Thesis

History’s Worst Software Bugs

Report on Wired News in August 11, 2005

Computer bugs are still with us, and show no sign of going extinct. As the line be-
tween software and hardware blurs, coding errors are increasingly playing tricks
on our daily lives. Bugs don’t just inhabit our operating systems and applications
– today they lurk within our cell phones and our pacemakers, our power plants
and medical equipment, and in our cars. [. . .]
July 28, 1962 – Mariner I space probe. A bug in the flight software for the
Mariner 1 causes the rocket to divert from its intended path on launch. Mission
control destroys the rocket over the Atlantic Ocean. The investigation into the
accident discovers that a formula written on paper and pencil was improperly
transcribed into computer code, causing the computer to miscalculate the rocket’s
trajectory.
1985-1987 – Therac-25 medical accelerator. A radiation therapy device mal-
functions and delivers lethal radiation doses at several medical facilities. [. . .]
Because of a subtle bug called a ”race condition,” a quick-fingered typist could
accidentally configure the Therac-25 so the electron beam would fire in high-
power mode but with the metal X-ray target out of position. At least five patients
die; others are seriously injured.
June 4, 1996 – Ariane 5 Flight 501. Working code for the Ariane 4 rocket
is reused in the Ariane 5, but the Ariane 5’s faster engines trigger a bug in an
arithmetic routine inside the rocket’s flight computer. The error is in the code
that converts a 64-bit floating-point number to a 16-bit signed integer. The faster
engines cause the 64-bit numbers to be larger in the Ariane 5 than in the Ariane 4,
triggering an overflow condition that results in the flight computer crashing [. . .]
and causes the rocket to disintegrate 40 seconds after launch.

The previous text is taken from an article reported in the WIRED magazine
in August 11, 2005 [90]. The events above are just a few taken from the long
list of software bugs that have caused big havoc. The severity and impact of the

1

2

bugs grows when dealing with safety critical applications and can result in huge
amount of money and time loss or even worse, people lives loss.

This clearly shows the importance of correctness and safety properties in soft-
ware programs. However, the more complex the software systems are and the
more difficult it is to ensure such properties. As described in the remainder of
the introduction, guaranteeing safety properties for complex distributed systems
is what guides this thesis.

Problem Description
Complex software systems, in particular distributed ones, are everywhere around
us and are at the basis of our everyday activities.

These systems are highly mobile and dynamic: programs or devices may move
and may often execute in networks owned and operated by other parties; new
devices or pieces of software may be added; the operating environment or the
software requirements may change over time.

These systems are also heterogeneous and open: the pieces that form a system
may be quite different from each other, built by different people or industries,
even using different infrastructures or programming languages; the constituents
of a system only have a partial knowledge of the overall system, and may only
know, or be aware of, a subset of the entities that operate in the system.

These systems are often being thought of and designed as structured compo-
sition of computational units often referred to as components, which give rise to
the name of Component-Based Ubiquitous Systems (CBUS) [62]. These compo-
nents are supposed to interact and communicate with each other following some
predefined patterns or protocols. The notion of component is widely used also in
industry, in particular the following informal definition, from Szyperski [103] is
often adopted: “a software component is a unit of composition with contractu-
ally specified interfaces and explicit context dependencies”. An interface is a set
of named operations that can be invoked by clients and context dependencies are
specifications of what the deployment environment needs to provide, such that the
components can properly function.

In order to handle the complexity of distributed systems, it is natural to aim
at verification methods and techniques that are compositional. On the other hand,
compositionality is also useful and can be exploited in dealing with the inherent
heterogeneity of software components.

When reasoning about complex distributed systems, their reliability and their
usability are fundamental and necessary requirements.

i) In order to be reliable, compositional models of software systems need to
account for dynamic reconfiguration, i.e., changing at runtime the communication

3

patterns. This is important because the needs and the requirements of a system
may change over time. This may happen because the original specification was
incomplete or ambiguous, or because new needs arise that had not been predicted
at design time. As designing and deploying a system is costly, it is important for
the system to be capable of adapting itself to changes in the surrounding environ-
ment. In addition, this is also important when modelling failure recovery.

ii) In order to be useful, compositional models of software systems need to
account for interaction. Interaction can be seen as communication patterns among
components which collaborate together to achieve a common task.

As far as i) is concerned it is important to understand how correctness and
consistency criteria can be enforced. Guaranteeing consistency of dynamic recon-
figurations, especially the unplanned ones, is challenging, since it is difficult to
ensure that such modifications will not disrupt ongoing computations.

As far as ii) is concerned it is important to understand how correctness and
safety criteria can be enforced. In the communication setting, the notion of safety
comes as a collection of several requirements, including basic properties like pri-
vacy, guaranteeing that the communication means is owned only by the commu-
nicating parties or communication safety, guaranteeing that the protocol has the
expected structure. Stronger safety properties related to communication may be
desirable like deadlock freedom, guaranteeing that the system does not get stuck
or progress, guaranteeing that every engaged communication or protocol satisfies
all the requested interactions. Enforcing each of the previous safety requirements
is a difficult task, which becomes even more difficult if one wants to enforce a
combination of them. In many distributed systems, in particular, safety critical
systems, a combination of these properties is required.

Aim of the PhD and Methodology
The aim of the PhD was to develop powerful techniques based on formal methods
for the verification of correctness, consistency and safety properties related to
dynamic reconfigurations and communications in complex distributed systems.

In particular, static analysis techniques based on types and type systems ap-
pear to be an adequate methodology, as they stand at the formal basis of useful
programming tools. Before using them in a practical setting, a rigorous develop-
ment of such techniques is needed, which is more easily done on models and core
languages, such as object-oriented and concurrent calculi. The reason why we
have adopted types and type systems in our work is twofold.

i) Type systems are a very adequate means to guarantee safety properties.
Their benefits are well known in sequential programming, starting from early
detection of programming errors to facilitating code optimisation and readabil-

4

ity. In concurrent and distributed programming the previous benefits still hold
and in addition other properties, typical of these systems, can be guaranteed by
using types and type systems. In particular, there has been a considerable ef-
fort over the last 20-years in the development of types for processes, mainly in
the π- calculus [57, 58, 72, 83, 98, 99, 101, 104] or variants of it, which is by all
means the calculus mostly used to model concurrent and distributed scenarios.
For instance, types have been proposed to ensure termination, so that when we
interrogate a well-typed process we are guaranteed that an answer is eventually
produced [36, 100, 117], or deadlock freedom, ensuring that a well-typed process
never reaches a deadlocked state, meaning that communications will eventually
succeed, unless the whole process diverges [66, 70, 73], or a stronger property,
that of lock freedom [67, 68, 74] ensuring that communication of well-typed pro-
cesses will succeed, (under fair scheduling), even if the whole process diverges.
Types and type systems for guaranteeing safety properties have been successfully
adopted also in a more complex setting than the typed π-calculus, that of concur-
rent component-based systems, to guarantee, for example deadlock freedom of
components communication [50, 51].

ii) There are several types and type system proposals for communication, start-
ing from the standard channel types in the typed π-calculus [72,83,98,101] to the
behavioural types [17, 21, 38, 57, 58, 88, 104, 109, 112, 118], generally defined for
(variants) of the π- calculus. The standard channel types are foundational. They
are simple, expressively powerful and robust and they are well studied in the lit-
erature. Moreover, they are at the basis of behavioural types, which were defined
independently. In this thesis, we concentrate on the standard channel types and on
the session types, the latter being a formalism used to describe and model a proto-
col as a type abstraction. We focus on session types because they guarantee several
safety properties, such as privacy of the communication channel, communication
safety and session fidelity, ensuring that the type of the transmitted data and the
structure of the session type are as expected. However, as previously stated, we are
also interested in studying stronger properties, such as deadlock and lock freedom
of communicating participants and progress of a session. Again, these properties
can be guaranteed by using session types.

Contribution
The contributions of this thesis are listed in the following.

• We design a type system for a concurrent object-oriented calculus, to stat-
ically ensure consistency of dynamic reconfigurations related to modifica-
tions of communication patterns in a program. The type system statically

5

tracks runtime information about the objects. It can be seen as a technique
which can be applied to other calculi and frameworks, for purposes related
to tracking runtime information during compile time.

• We present an encoding of the session typed π- calculus into the standard
typed π- calculus, by showing that the type and term primitives of the for-
mer can be obtained by using the primitives of the latter. The goal of the en-
coding is to understand the expressive power of session types and to which
extent they are more sophisticated and complex than the standard π-calculus
types. The importance of the encoding is foundational, since

– The encoding is proved faithful as it allows the derivation of properties
of the session π-calculus, for e.g., subject reduction, by exploiting the
theory of the standard typed π-calculus.

– The encoding is proved robust by extending it to handle non trivial
features like, subtyping, polymorphism, higher-order communication
and recursion and by using it to derive new properties in the session π-
calculus due to these new features from the corresponding ones in the
standard typed π-calculus.

– The encoding is an expressiveness result for the standard π- calculus.
There are many more expressiveness results in the untyped settings as
opposed to expressiveness results in the typed ones.

• We study advanced safety properties related to communication in complex
distributed systems. We concentrate on (dyadic) session types and study
properties like deadlock freedom, lock freedom and progress. We study the
relation among these properties and present a type system for guaranteeing
the progress property by exploiting our encoding.

Structure of the Thesis
The structure of the thesis is given in the following. Every part is roughly an
extension of the previous one and is self-contained.

• Part I: Safe Dynamic Reconfiguration of Components.
This part focuses on components and is based on [31]. Chapter 1 introduces
the component calculus, which is a concurrent object-oriented language de-
signed for distributed programs. Chapter 2 introduces a type system for the
component calculus, which statically guarantees consistency properties re-
lated to runtime modifications of communication patterns. Chapter 3 gives

6

the theoretical results and properties that the component type system satis-
fies, as well as the detailed proofs.

• Part II: Safe Communication by Encoding.
This part focuses on the encoding of session types and terms and is based
on [32]. Chapter 4 presents the typed π-calculus [101]. We give the syntax
of types and terms, the operational semantics, and the typing rules. Chap-
ter 5 gives a detailed overview of the notions of sessions and session types,
as well as the statics and dynamics of a session calculus [109]. Chapter 6
gives the encoding of session types into linear channel types and variant
types and the encoding of session terms into standard typed π- calculus
terms. In addition, we present the theoretical results and their detailed
proofs, that validate our encoding.

• Part III: Advanced Features on Safety by Encoding.
This part is a continuation of the previous one. It shows the robustness
of the encoding by analysing important extensions to session types and by
showing yet the validity of our encoding. In particular, Chapter 7 focuses
on subtyping; Chapter 8 on polymorphism; Chapter 9 on higher-order and
Chapter 10 focuses on recursion. Chapter 11 gives an alternative encoding
and hence an alternative way of obtaining session types.

• Part IV: Progress of Communication.
This part focuses on the progress property for sessions and is based on [19].
Chapter 12 and Chapter 13 give a background on the standard π- calculus
typed with usage types and the π-calculus with sessions, respectively, which
report few modifications wrt the ones introduced in Part II. In particular,
Chapter 12 focuses on types and the type system for guaranteeing the lock
freedom property. Chapter 14 introduces the notion of progress for the π-
calculus with session, by relating it to the notion of lock freedom for ses-
sions. In addition, it gives a static way for checking progress for sessions,
by using the type system for lock freedom given in Chapter 12.

Part I

Safe Dynamic Reconfiguration of
Components

7

Introduction to Part I

In modern complex distributed systems, unplanned dynamic reconfiguration, i.e.,
changing at runtime the communication pattern of a program, is challenging as
it is difficult to ensure that such modifications will not disrupt ongoing compu-
tations. In [77] the authors propose to solve this problem by integrating notions
coming from component models [4,11,14,29,82] within the Abstract Behavioural
Specification programming language (ABS) [63].

We start this thesis with a component-extension of the ABS calculus because
it has interesting constructs for modelling components, especially reconfigurable
components and hence for designing complex distributed systems. The reconfig-
urable component constructs can be adopted in calculi and languages other than
ABS in order to model a component-layer system and to address the (dynamic)
reconfiguration problem. The communication-based problems are addressed (in
the remainder parts of the thesis) after a solid system is built.

ABS is an actor-based language and is designed for distributed object-oriented
systems. It integrates concurrency and synchronisation mechanisms with a func-
tional language. The concurrency and synchronisation mechanisms are used to
deal with data races, whether the functional level is used to deal with data, namely,
data structures, data types and functional expressions. Actors, called concurrent
object groups, cogs or simply groups, are dynamic collections of collaborating
objects. Cogs offer consistency by guaranteeing that at most one method per cog
is executing at any time. Within a cog, objects collaborate using (synchronous)
method calls and collaborative concurrency with the suspend and await oper-
ations which can suspend the execution of the current method, and thus allow
another one to execute. Between cogs, collaboration is achieved by means of
asynchronous method calls that return future, i.e., a placeholder where the result
of the call is put when its computation finishes. Futures are first-class values.
ABS ensures the encapsulation principle by using interfaces to type objects and
thus by separating the interface from its (possibly) various implementations. For
the same reason classes are (possibly) parametrised in a sequence of typed vari-
ables. In this way, when creating a new object, the actual parameters initialise the
class’ formal parameters, differently from other object-oriented languages, where

9

10

the fields are the one to be initialised. The fields in ABS are initialised by calling a
special method init(C), or differently one can initialise them in a second step after
the object creation by performing an assignment statement. – In the present work
we adopt the latter way of initialising an object’s fields. –

ABS is a fully-fledged programming language. On top of the implementation
of ABS language, the authors in [63] define the Core ABS, a calculus that abstracts
from some implementation details. In the remainder of this part, we use the Core
ABS calculus. However, without leading to confusion, we often will refer to it as
simply the ABS language.

On top of the ABS language, [77] adds the notion of components, and more
precisely, the notions of ports, bindings and safe state to deal with dynamic re-
configuration. Ports define variability points in an object, namely they define the
access points to functionalities provided by the external environment, and can be
rebound (i.e., modified) from outside the object. On the contrary, fields, which
represent the inner state of the object, can only be modified by the object itself.
To ensure consistency of the rebind operation, [77] enforces two constraints on
its application: i) it is only possible to rebind an object’s port when the object is
in a safe state; and ii) it is only possible to rebind an object’s port from any object
within the same cog. Safe states are modelled by annotating methods as critical,
specifying that while a critical method is executing, the object is not in a safe
state. The resulting language offers a consistent setting for dynamic reconfigura-
tions, which means performing modifications on a program at runtime while still
ensuring consistency of its execution.

On the other hand, consistency is based on two constraints: synchronous
method calls and rebinding operations must involve two objects in the same cog.
These constraints are enforced at runtime; therefore, programs may encounter un-
expected runtime errors during their execution.

The contribution of Part I of the thesis, is to statically check that synchronous
method calls and rebinding operations are consistent. In particular, we define a
type system for the aforementioned component model that ensures the legality of
both synchronous method calls and port rebindings, guaranteeing that well-typed
programs will always be consistent.

Our approach is based on a static tracking of group membership of the objects.
The difficulty in retrieving this kind of information is that cogs as well as objects
are dynamic entities. Since we want to trace group information statically, we need
a way to identify and track every group in the program. To this aim, we define
a technique that associates to each group creation a fresh group name. Then, we
keep track of which cog an object is allocated to, by associating to each object a
group record. The type system checks that objects indeed have the specified group
record, and uses this information to ensure that synchronous calls and rebindings
are always performed locally to a cog. The type system is proven to be sound with

11

respect to the operational semantics. We use this result to show that well-typed
programs do not violate consistency during execution.

Roadmap to Part I The rest of Part I is organised as follows. Chapter 1 gives a
detailed presentation of the component calculus. We start by introducing the syn-
tax of terms and types, give the operational semantics and we conclude by present-
ing a running example that illustrates the calculus, its features and the problems
we deal with. Chapter 2 presents the main contribution of this Part of the the-
sis, namely the type system. We start by explaining the features of types, then
we present the subtyping relation and we conclude with the typing rules for the
component calculus. In Chapter 3 we present the properties that our type system
satisfies and give the complete proofs of these properties.

12

Chapter 1

Background on Components

In this chapter we give an overview of the component calculus, which is an ex-
tension of the ABS language. We first present the syntax of terms and types; then
the operational semantics and we conclude by giving a running example which
illustrates the main features of components.

1.1 Syntax

The calculus we present in Fig. 1.1 is an extension of the ABS language [63] and
is mainly inspired by the component calculus in [77]. It is a concurrent object-
oriented calculus designed for distributed programs. It is roughly composed by
a functional part, containing data types and data type constructors, pure func-
tional expressions and case expressions; and a concurrent part, containing object
and object/cog creations, synchronous and asynchronous method calls, suspend,
await and get primitives. We include the functional part of the language in order
to have a complete general-purpose language, which can be used in practice, as
ABS. Notice that, the functional part is present in ABS but is not present in the
component calculus [77]. On the other hand, we include in the present calculus
the component primitives from [77], like port and rebind and critical methods
to deal with critical sections. Notice that the component part is not present in the
original ABS language. The present calculus differs, from both calculi mentioned
above, in the syntax of types which use group information. Moreover, for the sake
of readability, the component calculus we consider lacks the notion of location,
present in [77]. This notion is orthogonal to the notion of ports and rebinding op-
erations and does not influence the aim of our work. The validity of our approach
and of our type system still holds for the full calculus.

The syntax of the component calculus is given in Fig. 1.1. It is based on several
categories of names: I and C range over interface and class names, respectively;

13

14 CHAPTER 1. BACKGROUND ON COMPONENTS

P ::= Dl { s } (program)
Dl ::= D | F | I | C (declaration)
T ::= V | D[〈T 〉] | (I, r) | (C, r) (type)
r ::= ⊥ | G[f : T] | α | µα.r (record)

D ::= data D[〈T 〉] = Co[(T)]|Co[(T)]; (data type)
F ::= def T fun[〈T 〉](T x) = e; (function)
I ::= interface I [extends I] { port T x; S } (interface)

C ::= class C[(T x)] [implements I] { Fl M } (class)
Fl ::= [port] T x (field declaration)
S ::= [critical] (G, r) T m(T x) (method header)
M ::= S { s } (method definition)
s ::= skip | s ; s | T x | x = z | await g (statement)
| if e then s else s | while e { s } | return e
| rebind e.x = z | suspend

z ::= e | new [cog] C (e) | e.m(e) | e!m(e) | get(e) (expression w/ side effects)
e ::= v | x | fun(e) | case e {p⇒ ep} | Co[(e)] (pure expression)
v ::= true | false | null | Co[(v)] (value)
p ::= | x | null | Co[(p)] (pattern)
g ::= e | x? | ‖e‖ | g ∧ g (guard)

Figure 1.1: Component extension of core ABS

1.1. SYNTAX 15

V ranges over type variables for polymorphism; G ranges over cog names –which
will be explained in details later on; D, Co and fun range respectively over data
type, constructor and function names; m and x range respectively over method
names and variables, in particular x ranges over fields and ports. For readability,
we will often use f for fields and p for ports, or just f for both fields and ports
in order to distinguish them from other variables. There are also some special
variables, like this, indicating the current object, and the special variable destiny,
indicating the placeholder for the returned value of the method invocation. We
adopt the following notations in the syntax and in the rest of the work: an overlined
element corresponds to any finite, possibly empty, sequence of such element; and
an element between square brackets is optional. Finally, for simplicity we let L be
either a class name C or an interface name I. A program P consists of a sequence
of declarations Dl ended by a main block, namely a statement s to be executed.
We refer to the sequence of declarations in a program as a Class Table (CT), the
same way as called in [61].

Declarations Dl include data type declarations D, function declarations F, in-
terface declarations I and class declarations C.

A type T can be a type variable V; a data type name D, which can be a ground
type like Bool, Int or a future Fut〈T 〉, used to type data structures – we will
thoroughly explain future types in the remainder; or a pair consisting of an inter-
face name I or class name C and a record r to type objects. The pair (C, r) is only
used to type object this. Records are a new concept and are associated to types in
order to track group information. The previous calculi, neither ABS [63] nor its
component extension [77] used the notion of records in types. A record can be:
⊥, meaning that the structure of the object is unknown; G[f : T], meaning that the
object is in the cog G and its fields f are typed with T ; or regular terms, using the
standard combination of variables α and the µ-binder. We work up-to unfolding,
meaning equating a record and its unfolding.

Data types D have at least one constructor, with name Co, and possibly
a list of type parameters T . Examples of data types are: data IntList =

NoInt | Cons(Int, IntList), or parametric data types data List〈T 〉 =

Nil | Cons(T, List〈T 〉), or predefined data types like data Bool = true | false ;
or data Int ; or data Fut〈T 〉 ; where the names of the predefined data types are
used as types, as given by the production T introduced earlier.

Functions F are declared with a return type T , a name fun, a list of parameters
T x and a code or body e. Note that both data types and functions can also have
in input type parameters for polymorphism.

Interfaces I declare methods and ports that can be modified at runtime.
Classes C implement interfaces; they have a list of fields and ports Fl and

implement all declared methods. Classes are possibly parametrised in a sequence
of typed variables, T x, as in Core ABS and in its implementation. This respects

16 CHAPTER 1. BACKGROUND ON COMPONENTS

the encapsulation principle, often desired in the object-oriented languages. There
is a neat distinction between the parameters of the class, which are the ones that
the class exhibits, and the inner fields and ports of the class, given by Fl.

Method headers S are used to declare methods with their classic type anno-
tation, and i) the possible annotation critical that ensures that no rebinding will
be performed on that object during the execution of that method; ii) a method
signature (G, r) which will be described and used in our type system section.

Method declarations M consist of a header and a body, the latter being a se-
quential composition of local variables and commands.

Statements s are mainly standard. Statements skip and s1; s2 indicate the
empty statement and the composition statement, respectively. Variable declara-
tion T x, as in many programming languages and also in the implementation of
the ABS language, is a statement. Assignment statement x = z assigns an expres-
sion with side-effects to variable x. The statement await g suspends the execution
of the method until the guard g is true. Statements if e then s1 else s2 and
while e { s } indicate the standard conditional and loop, respectively. Statement
return e returns the expression e after a method call. Statement rebind e.x = z
rebinds the port x of the object e to the value stored in z, and statement suspend
merely suspends the currently active process.

Expressions are divided in expressions with side effects, produced by z and
pure expressions, produced by e. We will often use the term expression to denote
both of them, when it does not lead to confusion.

Expressions z include: pure expressions e; new C (e) and new cog C (e) that
instantiate a class C and place the object in the current cog and in a new cog,
respectively; synchronous e.m(e) and asynchronous e!m(e) method calls, the latter
returning a future that will hold the result of the method call when it will be
computed; and get(e) which gives the value stored in the future e, or actively
waits for it if it is not computed yet.

Pure expressions e include values v, variables x, function call fun(e), pattern
matching case e {p⇒ ep} that tests e and executes ep if it matches p and a con-
structor expression Co[(e)], possibly parametrised in a sequence of expressions.

Values v can be null or a constructor value Co[(v)], possibly parametrised in a
sequence of values. For example, values true and false are obtained as values
from the corresponding constructor, as defined previously by the data type Bool.

Patterns p are standard, they include wildcard which matches everything,
variable x which matches everything and binds it to x, value null which matches
a null object and value Co(p) which matches a value Co(ep) where p matches ep.

Finally, a guard g can be: an expression e; x? which is true when the future
x is completed, false otherwise; ‖e‖ which is true when the object e is in a
safe state, i.e., it is not executing any critical method, false otherwise; and the
conjunction of two guards g ∧ g has the usual meaning.

1.2. SEMANTICS 17

1.2 Semantics

In this section we present the operational semantics of the component calculus,
which is defined as a transition system on the runtime configurations. Hence,
we first define the runtime configurations and then give some auxiliary functions
which the operational semantics relies on.

1.2.1 Runtime Syntax

The operational semantics is defined over runtime configurations, presented in
Fig. 1.2 which extend the language with constructs used during execution, namely
runtime representations of objects, groups and tasks. Let o, f and c range over
object, future, and cog identifiers, respectively. A runtime configuration N can be
empty, denoted with ε, an interface, a class, an associative and commutative union
of configurations N N′, an object, a cog, a future or an invocation message. An
object ob(o, σ,Kidle,Q) has a name o; a substitution σ mapping the object’s fields,
ports and special variables (this, class, cog, destiny) to values; a running process
Kidle, that is idle if the object is idle; and a queue of suspended processes Q. A
process K is { σ | s } where σ maps the local variables to their values and s is a
list of statements. The statements are the ones presented in Fig. 1.1 augmented
with the statement cont(f), used to control continuation of synchronous calls. A
substitution σ is a mapping from variable names to values. For convenience, we
associate the declared type of the variable with the binding, and we also use sub-
stitutions to store: i) in case of substitutions directly included in objects, their this
reference, their class, their cog, and an integer denoted by nbcr which counts how
many open critical sections the object has; and ii) in case of substitution directly
included in tasks, destiny is associated to future return field. A cog cog(c, oε) has
a name c and a running object oε, which is ε when no execution is taking place
in the cog. A future fut(f, v⊥) has a name f and a value v⊥ which is ⊥ when the
value has not been computed yet. Finally, the invocation message invoc(o, f, m, v),
which is the initial form of an asynchronous call, consists of the callee identifier
o, the name of the future f where the call’s result should be returned, the invoked
method name m, and the call’s actual parameters v.

The initial state of a program is denoted by ob(start, ε, p, ∅) where the process
p is the activation of the main block of the program. We call execution of a pro-
gram a sequence of reductions established by the operational semantics starting
from the initial state of the program.

18 CHAPTER 1. BACKGROUND ON COMPONENTS

N ::= ε | I | C | N N
| ob(o, σ,Kidle,Q)
| cog(c, oε)
| fut(f, v⊥)
| invoc(o, f, m, v)

Q ::= ε | K | Q ∪ Q
K ::= { σ | s }
v ::= o | f | · · ·

s ::= cont(f) | · · ·
σ ::= ε | σ; T x v | σ; θ
θ ::= ε | θ; this o
| θ; class C | θ; cog c
| θ; destiny f | θ; nbcr v

v⊥ ::= v | ⊥
oε ::= o | ε

Kidle ::= K | idle

Figure 1.2: Runtime syntax

1.2.2 Functions and Predicates
In this section we introduce the auxiliary functions and predicates that are used to
define the operational semantics of the calculus.

Function bind(o, f, m, v, C) returns the process being the instantiation of the
body of method m in class C with this bound to o, destiny bound to f, and the
parameters of the method bound to the actual values v. If the method is critical,
then nbcr is first incremented and then decremented when the method finishes its
execution. Instead, if binding does not succeed, then error is returned. Since, in
the component calculus we have standard and critical methods, the bind function
is defined differently from the corresponding one in ABS – whereas, the rest of the
functions and predicates are defined in the same way. Formally, the bind function
is defined by the following two rules, where rule (NM-Bind) applies for a normal
method and rule (CM-Bind) applies for a critical method:

(NM-Bind)
class C . . . {T m(T x){T ′ x′ s} . . .} ∈ N

bind(o, f, m, v, C) = {T x = v; T ′ x′ = null; this = o | s}

(CM-Bind)
class C . . . {critical T m(T x){T ′ x′ s′} . . .} ∈ N

s = nbcr = nbcr + 1; s′; nbcr = nbcr − 1

bind(o, f, m, v, C) = {T x = v; T ′ x′ = null; this = o | s}

Function atts(C, v, o, c) returns the initial state of an instance of class C with its
fields, this and cog mapped to v, o and c, respectively.

Function select(Q, σ,N) selects from the queue of suspended processes the
next process to be active.

Predicate fresh is defined on names of objects o, futures f and names of cogs

1.2. SEMANTICS 19

(RedCons)
σ ` ei ; σ′ ` e′i

σ ` Co(e1 . . . ei . . . en)
; σ′ ` Co(e1 . . . e′i . . . en)

(RedFunExp)
σ ` ei ; σ′ ` e′i

σ ` fun(e1 . . . ei . . . en)
; σ′ ` fun(e1 . . . e′i . . . en)

(RedVar)

σ ` x ; σ ` σ(x)

(RedFunGround)
fresh({y1 . . . yn})

y = y1 . . . yn |xfun| = n
σ ` fun(v)

; σ[y 7→ v] ` efun[xfun 7→ y]

(RedCase1)
σ ` e ; σ′ ` e′

σ ` case e {p⇒ ep}

; σ′ ` case e′ {p⇒ ep}

(RedCase2)
match(σ(p), v) = ⊥

σ ` case v {p⇒ ep; p′ ⇒ e′p′}
; σ ` case v {p′ ⇒ e′p}

(RedCase3)
y = y1 . . . yn fresh({y1 . . . yn})

x = x1 . . . xn {x1 . . . xn} = vars(σ(p))
match(σ(p), v) = σ′′ σ′ = σ[y 7→ σ′′(x)]

σ ` case v {p⇒ ep; p′ ⇒ e′p′}
; σ′ ` ep[x 7→ y]

Figure 1.3: Evaluation of pure expressions

c and asserts that these names are globally unique. It is defined on a variable x or
a sequence of variables {x1 . . . xn} and asserts that the variables are globally new.

Function match(p, v) returns a unique substitution σ such that σ(p) = v and
dom(σ) = vars(p), otherwise match(p, v) = ⊥.

Function vars(p) returns the set of variables in the pattern p and is defined
by induction on the structure of p: vars() = vars(null) = ∅, vars(x) = {x} and
vars(Co(p1 . . . pn)) =

⋃
i vars(pi).

1.2.3 Evaluation of Pure and Guard Expressions
In this section we present the evaluation of pure and guard expressions, before
introducing the operational semantics for runtime configurations.

Pure Expressions The evaluation of pure expressions is defined by a small-step
reduction relation σ ` e ; σ′ ` e′ and is given in Fig. 1.3. Let σ be a substitution
and e be a pure expression, then the reduction relation means that expression e
in the context σ reduces to expression e′ in the context σ′. We use the notation
e[x 7→ y] to denote the expression e in which every occurrence of variable xi is
substituted by variable yi. The same holds for σ[x 7→ y]. For simplicity in the
reduction rules to follow, we denote with [[e]]σ the evaluation of the expression e

20 CHAPTER 1. BACKGROUND ON COMPONENTS

in the context σ to its ground value, given by the production v. In particular, when
e is a boolean expression, then [[e]]σ = true and ¬[[e]]σ = false.

Rule (RedCons) states that the expression Co(e1 . . . ei . . . en) reduces to
Co(e1 . . . e′i . . . en) whenever ei reduces to e′i . Rule (RedVar) states that variable
x in the context σ evaluates to the value assigned by σ, namely σ(x), in the same
context. Function evaluation is given by rules (RedFunExp) and (RedFunGround).
A function fun is defined by def T fun(T x) = e, and we denote by xfun the list
of formal parameters x and by efun the body e of the function; namely, we use
the subscript fun to state the belonging to the function having name fun. By rule
(RedFunGround), the evaluation of a function call fun(v) in a context σ reduces
to the evaluation of efun[xfun 7→ y] in σ[y 7→ v]. First of all, in order to get the
values v, the reduction rule(RedFunExp) is applied, where the expressions e are
evaluated to values v. In addition, the change in scope in evaluating a function
body is obtained by replacing the list of formal parameters xfun by fresh variables
y in the body of the function, thus avoiding name capture. There are three reduc-
tion rules for case expressions. Rule (RedCase1) states that the case expression
case v {p⇒ ep; p′ ⇒ e′p′} reduces if its argument e reduces. Case expressions
reduce only if the pattern in one of the branches matches. In order to achieve
this, we use the function match(p, v), previously defined. Rules (RedCase2) and
(RedCase3) check this matching function. In case match(σ(p), v) = ⊥, then the
case expression case v {p⇒ ep; p′ ⇒ e′p′} reduces to case v {p′ ⇒ e′p}. Otherwise,
if match(σ(p), v) , ⊥, first variables in p are bound to ground values, given by
the substitution σ′′ and then, in order to avoid names to be captured, variables in x
are substituted by fresh variables in y, which in turn have associated values given
by σ′′(x). Thus, the context for evaluating the new expression is σ augmented
with y associated to σ′′(x). Then, the case expression reduces to the body ep of
the corresponding branch, where x is replaced by y.

Guard Expressions The evaluation of guards is given in Fig. 1.4.
Let σ be a substitution and N be a configuration. The evaluation of a guard to

a ground value is either true or false. For simplicity, we denote with [[g]]N
σ the

evaluation of a guard g in a context σ,N to true. Hence, we denote with ¬[[g]]N
σ

the evaluation of a guard g in a context σ,N to false.
Rules (RedReply1) and (RedReply2) assert that the guard x? evaluates to true,

whenever the value associated to the evaluation of x is ready to be retrieved,
namely is different from ⊥; otherwise, it evaluates to false. Rule (RedConj)
is straightforward and asserts the evaluation of boolean conjunctions of guards g1

and g2. Rules (RedCS1) and (RedCS2) are the new evaluation rules of the com-
ponent calculus, wrt ABS. They state that, when in the object o the field nbcr is
different from zero, then the object has an open critical section and hence the test

1.2. SEMANTICS 21

(RedReply1)
σ ` x ; σ ` f

fut(f, v) ∈ N v , ⊥
σ,N ` x? ; σ,N ` true

(RedReply2)
σ ` x ; σ ` f
fut(f,⊥) ∈ N

σ,N ` x? ; σ,N ` false

(RedConj)
σ,N ` g1 ; σ,N ` g′1
σ,N ` g2 ; σ,N ` g′2

σ,N ` g1 ∧ g2 ; σ,N ` g′1 ∧ g′2

(RedCS1)
σ ` e ; σ ` o

ob(o, σo,Kidle,Q) ∈ N
σo(nbcr) = 0

σ,N ` ‖e‖; σ,N ` true

(RedCS2)
σ ` e ; σ ` o

ob(o, σo,Kidle,Q) ∈ N
σo(nbcr) , 0

σ,N ` ‖e‖; σ,N ` false

Figure 1.4: Evaluation of guard expressions

‖e‖ returns true; otherwise, if nbcr = 0 it means that no critical section is open
and ‖e‖ evaluates to false.

1.2.4 Reduction Rules

In this section we introduce the operational semantics for configurations. The
reduction rules are given in Fig. 1.5, 1.6, 1.7 and 1.8.

We start with Fig. 1.5. Rule (Context) is straightforward. Rule (Skip) merely
executes the skip statement and reduces to the object having only s as part of
its active process. Rules (Assign-Local) and (Assign-Field) update the values of
the local variables and of the object variables, respectively, where σ[x 7→ v] de-
notes the updating of σ with the substitution of x to v. Rules (Cond-True) and
(Cond-False) select branch s1 or branch s2 of the if e then s1 else s2 statement
if the evaluation of expression e is true or false, respectively. Rules (While-
True) and (While-False) for loops are similar to the ones for conditionals. In case
the evaluation of the expression e is true, then the loop reduces to its body s
composed with the loop itself – which is then evaluated again. Otherwise, if the
evaluation returns false then the loop reduces to skip. Rule (Suspend) simply
suspends the currently active process by moving it to the queue Q of suspended
process. Rule (Release-Cog), after a process is suspended, updates the cog con-
figuration, by setting the object entry to idle meaning that there is no active object
in the cog. Rule (Activate), as opposed to (Suspend), selects a task p from the

22 CHAPTER 1. BACKGROUND ON COMPONENTS

(Context)
N → N′

N N′′ → N′ N′′

(Skip)

ob(o, σ, {σ′ | skip; s},Q)
→ ob(o, σ, {σ′ | s},Q)

(Assign-Local)
x ∈ dom(σ′) v = [[e]](σ◦σ′)

ob(o, σ, {σ′ | x = e; s},Q)
→ ob(o, σ, {σ′[x 7→ v] | s},Q)

(Assign-Field)
x ∈ dom(σ) x < dom(σ′)

v = [[e]](σ◦σ′)

ob(o, σ, {σ′ | x = e; s},Q)
→ ob(o, σ[x 7→ v], {σ′ | s},Q)

(Cond-True)
[[e]](σ◦σ′)

ob(o, σ, {σ′ | if e then s1 else s2; s},Q)
→ ob(o, σ, {σ′ | s1; s},Q)

(Cond-False)
¬[[e]](σ◦σ′)

ob(o, σ, {σ′ | if e then s1 else s2; s},Q)
→ ob(o, σ, {σ′ | s2; s},Q)

(While-True)
[[e]](σ◦σ′)

ob(o, σ, {σ′ | while e { s }; s′},Q)
→ ob(o, σ, {σ′ | s; while e { s }; s′},Q)

(While-False)
¬[[e]](σ◦σ′)

ob(o, σ, {σ′ | while e { s }; s′},Q)
→ ob(o, σ, {σ′ | skip; s′},Q)

(Suspend)

ob(o, σ, {σ′ | suspend; s},Q)
→ ob(o, σ, idle,Q ∪ {σ′ | s})

(Release-Cog)
c = σ(cog)

ob(o, σ, idle,Q) cog(c, o)
→ ob(o, σ, idle,Q) cog(c, ε)

(Activate)
p = select(Q, σ,N) c = σ(cog)

ob(o, σ, idle,Q) cog(c, ε) N
→ ob(o, σ, {p},Q \ {p}) cog(c, o) N

Figure 1.5: Reduction rules for configurations (1)

queue of suspended processes and activates it. The process is removed from the
queue and the cog configuration is updated accordingly.

Now we move to Fig. 1.6. Rule (Return) assigns the return value to the call’s
associated future. Rule (Read-Fut) retrieves the value associated to the future f
when ready (v , ⊥). Rules (Await-True) and (Await-False) define the behaviour
of statement await g, which depending on the truth value of g either succeeds, and
lets the current task continue with its execution, or suspends the current task, al-
lowing other tasks to execute (see rule (Suspend)), respectively. Rule (Bind-Mtd)
adds a process p′ to the queue of the suspended processes by first letting p′ be
the process obtained by the bind auxiliary function after the invocation configura-
tion is consumed. The latter provides the arguments to the bind function. Rules
(New-Object) and (New-Cog-Object) spawn a new object runtime configuration,
bound to the current cog or to a freshly created cog, respectively. The names of

1.2. SEMANTICS 23

(Return)
σ′(destiny) = f v = [[e]](σ◦σ′)

ob(o, σ, {σ′ | return e; s},Q) fut(f,⊥)
→ ob(o, σ, {σ′ | s},Q) fut(f, v)

(Read-Fut)
v , ⊥ f = [[e]](σ◦σ′)

ob(o, σ, {σ′ | x = get(e); s},Q) fut(f, v)
→ ob(o, σ, {σ′ | x = v; s},Q) fut(f, v)

(Await-True)
[[g]]N

(σ◦σ′)

ob(o, σ, {σ′ | await g; s},Q) N
→ ob(o, σ, {σ′ | s},Q) N

(Await-False)
¬[[g]]N

(σ◦σ′)

ob(o, σ, {σ′ | await g; s},Q) N
→ ob(o, σ, {σ′| suspend; await g; s,Q) N

(Bind-Mtd)
p′ = bind(o, f, m, v, class(o))

ob(o, σ, p,Q) invoc(o, f, m, v)→ ob(o, σ, p,Q ∪ p′)

(New-Object)
v = [[e]](σ◦σ′′) fresh(o′) σ′ = atts(C, v, o′, c)

ob(o, σ, {σ′′ | x = new C(e); s},Q)
→ ob(o, σ, {σ′′ | x = o′; s},Q) ob(o′, σ′, idle, ε)

(New-Cog-Object)
v = [[e]](σ◦σ′′) fresh(o′) fresh(c′) σ′ = atts(C, v, o′, c′)

ob(o, σ, {σ′′ | x = new cog C(e); s},Q)
→ ob(o, σ, {σ′′ | x = o′; s},Q) ob(o′, σ′, idle, ε) cog(c′, o′)

Figure 1.6: Reduction rules for configurations (2)

the object and the cog created are globally unique. The object’s fields are given
default values by applying function atts(C, v, o′, c).

We comment now on the rules in Fig. 1.7. Rule (Self-Sync-Call) looks up
the body of the method using function bind, as previously described. After the
reduction, the active task for object o will be the body of the method (suitably in-
stantiated with the actual parameters) and the continuation statement s will be put
in the queue of the suspended processes. The statement cont(f), which is a state-
ment added to the runtime syntax of the calculus, is used to resume the execution
of s as stated by rule (Self-Sync-Return-Sched). Rule (Async-Call) sends an
invocation message to o′ with a new (unique) future f, method name m and actual
parameters v. The return value of f is undefined (i.e., ⊥). Rules (Cog-Sync-Call)
and (Cog-Sync-Return-Sched) are specific to synchronous method calls between
objects residing in the same cog. When a method is called synchronously, inside
a cog, then the active object in that cog changes from o to o′, by thus respecting

24 CHAPTER 1. BACKGROUND ON COMPONENTS

(Self-Sync-Call)
o = [[e]](σ◦σ′) v = [[e]](σ◦σ′) σ′(destiny) = f′

fresh(f) {σ′′ | s′} = bind(o, f, m, v, class(o))
ob(o, σ, {σ′ | x = e.m(e); s},Q)

→ ob(o, σ, {σ′′ | s′; cont(f′)},Q ∪ {σ′ | x = get(f); s}) fut(f,⊥)

(Self-Sync-Return-Sched)
σ′(destiny) = f

ob(o, σ, {σ′′ | cont(f)},Q ∪ {σ′ | s})→ ob(o, σ, {σ′ | s},Q)

(Async-Call)
fresh(f) o′ = [[e]](σ◦σ′) v = [[e]](σ◦σ′)

ob(o, σ, {σ′ | x = e!m(e); s},Q)
→ ob(o, σ, {σ′ | x = f; s},Q) invoc(o′, f, m, v) fut(f,⊥)

(Cog-Sync-Call)
o′ = [[e]](σ◦σ′′) v = [[e]](σ◦σ′′) fresh(f) σ′(cog) = c

f′ = σ′′(destiny) {σ′′′ | s′} = bind(o′, f, m, v, class(o′))
ob(o, σ, {σ′′ | x = e.m(e); s},Q) ob(o′, σ′, idle,Q′) cog(c, o)

→ ob(o, σ, idle,Q ∪ {σ′′ | x = get(f); s}) fut(f,⊥)
ob(o′, σ′, {σ′′′ | s′; cont(f′)},Q′) cog(c, o′)

(Cog-Sync-Return-Sched)
σ′′(cog) = c σ′′′(destiny) = f

ob(o, σ, {σ′ | cont(f)},Q ob(o′, σ′′, idle,Q′ ∪ {σ′′′ | s})) cog(c, o)
→ ob(o, σ, idle,Q) ob(o′, σ′′, {σ′′′ | s},Q′) cog(c, o′)

Figure 1.7: Reduction rules for configurations (3)

that only one object per cog is active. In (Cog-Sync-Call) the cont statement is
composed with the statement s′ of the newly created process in order to be used
to activate the caller in (Cog-Sync-Return-Sched).

Finally, we comment on the reduction rules for rebinding of ports in Fig. 1.8.
Rule (Rebind-Local) is applied when an object rebinds one of its own ports. The
rule first checks that the object is not in a critical section, by testing if nbcr is
zero, and then updates the port. Rule (Rebind-Global) is applied when an object
rebinds a port of another object, within the same group, and follows the same line
as the previous one. Rule (Rebind-None) states that when a rebind is attempted
on a port that does not exist, then nothing happens and the rebind operation is

1.3. SERVER AND CLIENT EXAMPLE 25

(Rebind-Local)
σ(nbcr) = 0

o = [[e]](σ◦σ′) v = [[e′]](σ◦σ′)

ob(o, σ, { σ′ | rebind e.x = e′; s },Q)
→ ob(o, σ[x 7→ v], { σ′ | s },Q)

(Rebind-None)
σ(nbcr) = 0 x < ports(σ(class))
o = [[e]](σ◦σ′) v = [[e′]](σ◦σ′)

ob(o, σ, { σ′ | rebind e.x = e′; s },Q)
→ ob(o, σ, { σ′ | s },Q)

(Rebind-Global)
σo(nbcr) = 0 σo(cog) = σo′(cog)
o = [[e]](σo′◦σ′o′)

v = [[e′]](σo′◦σ′o′)

ob(o, σo,Kidle,Q) ob(o′, σo′ , { σ′o′ | rebind e.x = e′; s },Q′)
→ ob(o, σo[x 7→ v],Kidle,Q) ob(o′, σo′ , { σ′o′ | s },Q

′)

Figure 1.8: Reduction rules for rebinding

simply ignored and discarded. Intuitively, the reason for this rule is the following:
a component can replace another one if the former offers less services, accessed
by ports, than the latter – this intuition is respected by the subtyping relation which
is defined in the next section. So, during execution a component can be replaced
by another one with a smaller number of ports. As a consequence, if a rebind is
performed on a port not present, this is going merely to be ignored.

1.3 Server and Client Example
In this section we present a running example which gives a better understanding
of the ABS language and its component extension. In addition, this example gives
a flavour of the motivation behind our type system.

Consider the following typical distributed scenario: suppose that we have sev-
eral clients working together in a specific workflow and using a central server for
their communications. Suppose we want to update the server. Updating the server
is a difficult task, as it requires to update its reference in all clients at the same
time in order to avoid communication failures.

We first consider how the above task is achieved in ABS . The code is pre-
sented in Fig. 1.9. The programmer declares two interfaces Server and Client
and a class Controller. Basically, the class Controller updates the server
in all the clients ci by synchronously calling their setter method. All the clients
are updated at the same time: since they are in the same cog as the controller
they cannot execute until the execution of method updateServer has terminated.
However, this code does not ensure that the update is performed when the clients

26 CHAPTER 1. BACKGROUND ON COMPONENTS

interface Server { ... }
interface Client { Unit setServer(Server s); ... }

class Controller {
Client c1, c2, ... cn;

Unit updateServer(Server s2) {

c1.setServer(s2);

c2.setServer(s2);

...

cn.setServer(s2);

}

}

Figure 1.9: Workflow in ABS

are in a safe state. This can lead to inconsistency issues because clients that are
using the server are not aware of the modification taking place. This problem can
be solved by using the notions of port and rebind as shown in [77].

The solution is presented in Fig. 1.10. In this case, the method updateServer
first waits for all clients to be in a safe state (await statement performed on the
conjunction of all clients) and then updates their reference one by one (rebind
server s which is declared to be a port). However, even with the component
extension and the presence of critical sections, runtime errors can still occur. For
instance, if the clients and the controller are not in the same cog, by following the
operational semantics rules, the update will fail.

Consider the code in Fig. 1.11. Method main instantiates classes Client and
Controller – and possibly other classes, like Server, present in the program
– by creating objects c1,c2,...,cn,c. These objects are created in the same
cog by the new command, except for client c1, which is created and placed in
a new cog by the new cog command. Now, suppose that the code in Fig. 1.10
is executed. At runtime, the program will check if the controller and the client
belong to the same cog to respect the consistency constraints for rebinding. In
case of c1 this check will fail by leading to a runtime error.

In the remainder of the present Part, we address the aforementioned problem;
namely to avoid these kind of runtime errors and the overhead in dealing with
them, while performing runtime modifications. We present our type system which
tracks cog membership of objects thus permitting to typecheck only programs
where rebinding is consistent.

1.3. SERVER AND CLIENT EXAMPLE 27

interface Server { ... }
interface Client { port Server s; ... }

class Controller {
Client c1, c2, ... cn;

...

Unit updateServer(Server s2) {

await ‖c1‖ ∧ ‖c2‖ ∧ . . . ∧ ‖cn‖;

rebind c1.s = s2;

rebind c2.s = s2;

...

rebind cn.s = s2;

}

}

Figure 1.10: Workflow in the component model

Unit main () { ...

Client c1 = new cog Client (s);
Client c2 = new Client (s);

...

Client cn = new Client (s);
Controller c = new Controller (c1, c2, ... cn);

}

Figure 1.11: Client and controller objects creation

28 CHAPTER 1. BACKGROUND ON COMPONENTS

Chapter 2

A Type System for Components

In this chapter we present the type system for the component model. We first give
a thorough explanation of the types we adopt and how the type system achieves
tracking of cog membership. Then, we introduce the subtyping relation; we
present the auxiliary functions and predicates that the type system relies on, and
we conclude with the typing rules.

2.1 Typing Features
In this section we give the intuition behind the types and the records used in the
typing rules, the latter being a new concept not adopted either in ABS or in its
component extension [77]. We explain also the meaning of the method signa-
ture and how the type system addresses the problem of consistent rebindings and
consistent synchronous method calls.

Cog Names The goal of our type system is to statically check if rebindings
and synchronous method calls are performed locally to a cog. Since cogs and
objects are entities created at runtime, we cannot know statically their identity.
The interesting, and also difficult part, in designing the type systems is how to
statically track cogs identity and hence membership to a cog. We address this
issue by using a linear type system on names of cogs, which range over G, G′, G′′,
in a way that abstracts the runtime identity of cogs. The type system associates
to every cog creation a unique cog name, which makes it possible to check if two
objects are in the same cog or not.

Precisely, we associate objects to their cogs using records r, having the form
G[f : T], where G denotes the cog in which the object is located and [f : T] maps
any object’s fields in f to its type in T . In fact, in order to correctly track cog
membership of each expression, we also need to keep information about the cog

29

30 CHAPTER 2. A TYPE SYSTEM FOR COMPONENTS

of the object’s fields in a record. This is needed, for instance, when an object
stored in a field is accessed within the method body and then returned by the
method; in this case one needs a way to bind the cog of the accessed field to the
cog of the returned value.

Cog Sets In order to deal with linearity of cogs created, and to keep track of
them after their creation, our type system, besides the standard typing context Γ

(formally defined in the next section) uses a set of cogs, ranged over by G,G′,G′′,
that keeps track of the cogs created so far and uses the operator] to deal with
the disjoint union of sets, namely G] G′, where the empty set acts as the neutral
element, namely G] ∅ = ∅] G = G. We will discuss the details in Section 2.4.

Method Signature Let us now explain the method signature (G, r) used to an-
notate a method header. The record r is used as the record of the object this during
the typing of the method, i.e., r is the binder for the cog of the object this in the
scope of the method body, as we will see in the typing rules in the following. The
set of cog names G is used to keep track of the fresh cogs that the method creates.
In particular, when we deal with recursive method calls, the set G gathers the fresh
cogs of every call, which is then returned to the main execution. Moreover, when
it is not necessary to keep track of cog information about an object, because the
object is not going to take part in any synchronous method call or any rebind oper-
ation, it is possible to associate to this object the unknown record ⊥. This special
record does not keep any information about the cog where the object or its fields
are located, and it is to be considered different from any other cog, thus to ensure
the soundness of our type system. Finally, notice that data types also may contain
records; for instance, a list of objects is typed with List 〈T 〉 where T is the type of
the objects in the list and it may include the records of the objects.

2.2 Subtyping Relation

There are two forms of subtyping: structural and nominal subtyping. In a lan-
guage where subtyping is nominal, A is a subtype of B if and only if it is declared
to be so, meaning if class (or interface) A extends (or implements) class (or in-
terface) B; these relations must be defined by the programmer and are based on
the names of classes and interfaces declared. In the latter, subtyping relation is
established by analysing the structure of a class, i.e., its fields and methods: class
(or interface) A is a subtype of class (or interface) B if and only if the fields and
methods of A are a superset of the fields and methods of B, and their types in A are
subtypes of their types in B. (Featherweight) Java uses nominal subtyping, lan-

2.2. SUBTYPING RELATION 31

(S-Data)
∀i Ti ≤ T ′i

D〈T 〉 ≤ D〈T
′
〉

(S-Type)
L ≤ L′

(L, r) ≤ (L′, r)

(S-Fields)
f < ports(L)

(L, G[f : T ; f : T]) ≤ (L, G[f : T])

(S-Ports)
f ∈ ports(L)

(L, G[f : T]) ≤ (L, G[f : T ; f : T])

(S-Class)
class C[(T x)] implements I { Fl M } Ii ∈ I

C ≤ Ii

(S-Refl)

T ≤ T

(S-Interface)
interface I extends I { port T x; S } Ii ∈ I

I ≤ Ii

(S-Trans)
T ≤ T ′ T ′ ≤ T ′′

T ≤ T ′′

Figure 2.1: Subtyping relation

guages like [44, 52, 81, 92] use structural subtyping. In [33] the authors integrate
both nominal and structural subtyping.

The subtyping relation ≤ for our language is given in Fig. 2.1; we adopt both
nominal and structural subtyping. Rule (S-Data) states that data types are co-
variant in their type parameters. Rule (S-Type) states that annotating classes and
interfaces with records does not change the subtyping order. Rules (S-Fields) and
(S-Ports) use structural subtyping on records. Fields, like methods, are what the
object provides, hence it is sound to forget about the existence of a field in an
object. This is why the rule (S-Fields) allows to remove fields from records. Ports
on the other hand, model the dependencies the objects have on their environment,
hence it is sound to consider that an object may have more dependencies than it
actually has during its execution. This is why the rule (S-Ports) allows to add
ports to records. So, in case of fields, one object can be substituted by another
one if the latter has at least the same fields; on the contrary, in case of ports, one
object can be substituted by another one if the latter has at most the same ports.
Notice that in the standard object-oriented setting this rule would not be sound,
since trying to access a non-existing attribute would lead to a null pointer excep-
tion. Therefore, to support our vision of port behaviour, we add a (Rebind-None)
reduction rule to the component calculus semantics which simply permits the re-
bind to succeed without modifications if the port is not available. Rules (S-Class)

32 CHAPTER 2. A TYPE SYSTEM FOR COMPONENTS

and (S-Interface) use nominal subtyping and state that a class C (respectively, an
interface I) is a subtype of an interface Ii that it implements (respectively, ex-
tends). Rules (S-Refl) and (S-Trans) are standard and state that our subtyping
relation is a preorder.

2.3 Functions and Predicates
In this section we define the auxiliary functions and predicates that are used in
the typing rules. We start with the lookup functions params, ports, fields, ptype,
mtype, heads shown in Fig. 2.2. These functions are similar and are inspired
by the corresponding ones in Featherweight Java [61]. For readability reasons,
the lookup functions are written in italics, whether the auxiliary functions and
predicates are not. Function params returns the sequence of typed parameters
of a class. Function ports returns the sequence of typed ports. Instead, function
f ields returns all the fields of the class it is defined on, namely the inner state and
the ports too. Functions ptype and mtype return the declared type of respectively
the port and the method they are applied to. Function heads returns the headers
of the declared methods. Except function f ields which is defined only on classes,
the rest of the lookup functions is defined on both classes and interfaces.

The auxiliary functions and predicates are shown in Fig. 2.3. Function tmatch
returns a substitution σ of the formal parameters to the actual ones. It is defined
both on types and on records. The matching of a type T to itself, or of a record r

to itself, returns the identity substitution id; the matching of a type variable V to a
type T returns a substitution of V to T ; the matching of data type D parametrized
on formal types T and on actual types T ′ returns the union of substitutions that
correspond to the matching of each type Ti with T ′i , in such a way that substitu-
tions coincide when applied to the same formal types, the latter being expressed
by ∀i, j σi|dom(σ j) = σ j|dom(σi); the matching of records follows the same idea as that
of data types. Finally, tmatch applied on types (I, r), (I, r′) returns the same sub-
stitution obtained by matching r with r

′. Function pmatch, performs matchings
on patterns and types by returning a typing context Γ. In particular, pmatch returns
an empty set when the pattern is or null, or x : T when applied on a variable x
and a type T . Otherwise, if applied to a constructor expression Co(p) and a type
T ′′ it returns the union of typing contexts corresponding to patterns in p. The pair
(I, G[σ] σ′(f : (I, r))]) is a member of crec(G, C, σ) if class C implements inter-
face I and σ′ and σ are substitutions defined on disjoint sets of names. Predicate
coloc states the equality of two cog names. Predicates implements and extends
check when a class implements an interface and an interface extends another one.
A class C implements an interface I if the ports of C are at most the ones of I.
Instead, for methods, C may define at least the methods declared in I having the

2.3. FUNCTIONS AND PREDICATES 33

class C (T x) [implements I] { Fl; M }

params(C) = T x

class C [(T ′′ x′′)] [implements I] { port T x; T ′ x′; M }

ports(C) = T x

interface I [extends I] { port T x; S }

ports(I) = T x

class C [(T ′′ x′′)] [implements I] { port T x; T ′ x′; M }

f ields(C) = T x; T ′ x′

class C [(T ′′ x′′)] [implements I] { port T x; T ′ x′; M }

ptype(p, C) = T

interface I [extends I] { port T x; S }

ptype(p, I) = T

class C [(T x)] [implements I] { Fl M }
[critical] (G, r) T m(T x){ s } ∈ M

mtype(m, C) = (G, r)(T x)→ T

interface I [extends I] { port T x; S }
[critical] (G, r) T m(T x) ∈ S

mtype(m, I) = (G, r)(T x)→ T

class C [(T x)] [implements I] { Fl M } M = S {s}

heads(C) = S

interface I [extends I] { port T x; S }

heads(I) = S

Figure 2.2: Lookup functions

34 CHAPTER 2. A TYPE SYSTEM FOR COMPONENTS

tmatch(T,T) = id tmatch(r, r) = id tmatch(V,T) , [V 7→ T]

∀i tmatch(Ti,T ′i) = σi ∀i, j σi|dom(σ j) = σ j|dom(σi)

tmatch(D〈T 〉,D〈T ′〉) ,
⋃

i

σi

tmatch(r, r′) = σ

tmatch((I, r), (I, r′)) , σ

∀i tmatch(Ti,T ′i) = σi ∀i, j σi|dom(σ j) = σ j|dom(σi) σ(G) ∈ {G, G′}

tmatch(G[f : T], G′[f : T ′]) , [G 7→ G′]
⋃

i

σi

pmatch(,T) , ∅ pmatch(x,T) , ∅; x : T pmatch(null, (I, r)) , ∅

Γ(Co) = T → T ′

tmatch(T ′,T ′′) = σ ∀i pmatch(pi, σ(Ti)) = Γi

pmatch(Co(p),T ′′) ,
⊎

i

Γi

C ≤ I dom(σ′) ∩ dom(σ) = ∅

fields(C) = (I, r) f ; D(. . .) f ′

(I, G[f : σ ◦ σ′(I, r)]) ∈ crec(G, C, σ)

equals(G, G′)

coloc(G[. . .], (C, G′[. . .]))

ports(C) ⊆ ports(I) and ∀p ∈ ports(C). ptype(p, I) = ptype(p, C)
heads(I) ⊆ heads(C) and ∀m ∈ I. mtype(m, I) = mtype(m, C)

implements(C, I)

ports(I) ⊆ ports(I′) and ∀p ∈ ports(I). ptype(p, I′) = ptype(p, I)
heads(I′) ⊆ heads(I) and ∀m ∈ I′. mtype(m, I) = mtype(m, I′)

extends(I, I’)

Figure 2.3: Auxiliary functions and predicates

2.4. TYPING RULES 35

same signature. The extends predicate states when an interface I properly extends
another interface I′ and is defined similarly to the implements predicate.

2.4 Typing Rules
A typing context Γ is a partial function and assigns types T to variables, a pair
(C, r) to this, and arrow types T → T ′ to function symbols like Co or fun, namely:

Γ ::= ∅ | x : T,Γ | this : (C, r),Γ | Co : T → T ′,Γ | fun : T → T ′,Γ

As usual dom(Γ) denotes the domain of the typing context Γ. We define the com-
position of typing contexts, Γ ◦ Γ′, as follows: Γ ◦ Γ′(x) = Γ′(x) if x ∈ dom(Γ′),
and Γ ◦ Γ′(x) = Γ(x) otherwise. We say that a typing context Γ′ extends a typ-
ing context Γ, denoted with Γ ⊆ Γ′ if dom(Γ) ⊆ dom(Γ′) and Γ(x) = Γ′(x) for
all x ∈ dom(Γ). Typing judgements have the following forms, where a cogset G
indicates the set of new cogs created by the term being typed. Γ ` g : Bool for
guards; Γ ` e : T for pure expressions; Γ,G ` z : T for expressions with side
effects; Γ,G ` s for statements; Γ ` M for method declarations; Γ ` C for class
declarations and Γ ` I for interface declarations.

Pure Expressions The typing rules for pure expressions are given in Fig. 2.4.
Rule (T-Var/Field) states that a variable is of type the one assumed in the typing
context. Rule (T-FieldR) assigns to x a type T and a record r fetched from the type
of this. Rule (T-FieldBot) assigns (T,⊥) to x, since x is not part of the record for
this but is a field of C. Rule (T-Null) states that the value null is of type any
interface I declared in the CT (class table) and any record r. Rule (T-Wild) states
that the wildcard is of any type T . Rule (T-ConsExp) states that the application
of the constructor Co to a list of expressions e is of type σ(T ′) whenever the
constructor is of a functional type T → T ′ and the expressions are of type T ′;
where the auxiliary function tmatch applied on the formal types T and the actual
ones T ′ returns the substitution σ. Rule (T-FunExp) is similar to the previous one
for constructor expressions, namely, the application of the function fun to a list
of expressions e is of type σ(T ′) whenever the function is of a functional type
T → T ′ and the expressions are of type T ′, and again tmatch is applied to obtain
σ. Rule (T-Case) states that if all branches in p⇒ ep are well typed with the
same type, then the case expression is also well typed with the return type of the
branches. Rule (T-Branch) states that a branch p⇒ ep is well typed with an arrow
type T → T ′ if the pattern p is well typed with T and the expression ep is well
typed with type T ′ in the composition of Γ with typing assertions for the pattern
obtained by the function pmatch, previously defined. Rule (T-Sub) is the standard
subsumption rule, which uses the subtyping relation defined in Section 2.2.

36 CHAPTER 2. A TYPE SYSTEM FOR COMPONENTS

(T-Var/Field)
Γ(x) = T

Γ ` x : T

(T-FieldR)
x < dom(Γ) Γ(this) = (C, G[x : (T, r), . . .])

Γ ` x : (T, r)

(T-FieldBot)
x < dom(Γ) T x ∈ f ields(C)
Γ(this) = (C, G[x : T]) x < x

Γ ` x : (T,⊥)

(T-Null)
interface I [· · ·] { · · · } ∈ CT

Γ ` null : (I, r)

(T-Wild)

Γ ` : T

(T-ConsExp)
Γ(Co) = T → T ′

tmatch(T ,T ′) = σ Γ ` e : T ′

Γ ` Co(e) : σ(T ′)

(T-FunExp)
Γ(fun) = T → T ′

tmatch(T ,T ′) = σ Γ ` e : T ′

Γ ` fun(e) : σ(T ′)

(T-Case)
Γ ` e : T

Γ ` p⇒ ep : T → T ′

Γ ` case e {p⇒ ep} : T ′

(T-Branch)
Γ ` p : T

Γ ◦ pmatch(p,T) ` ep : T ′

Γ ` p⇒ ep : T → T ′

(T-Sub)
Γ ` e : T T ≤ T ′

Γ ` e : T ′

(T-FutGuard)
Γ ` x : Fut〈T 〉

Γ ` x? : Bool

(T-CriticGuard)
Γ ` x : (I, r)

Γ ` ‖x‖ : Bool

(T-ConjGuard)
Γ ` g1 : Bool Γ ` g2 : Bool

Γ ` g1 ∧ g2 : Bool

Figure 2.4: Typing rules for the functional level

Guard Expressions The typing rules for guard expressions are given at the bot-
tom of Fig. 2.4. Rule (T-FutGuard) states that if a variable x has type Fut〈T 〉, the
guard x? has type Bool. Rule (T-CriticGuard) states that ‖x‖ has type Bool if x
is an object, namely having type (I, r). Rule (T-ConjGuard) states that if each gi

has type Bool for i = 1, 2 then the conjunction g1 ∧ g2 has also type Bool.

Expressions with Side Effects The typing rules for expressions with side effects
are given in Fig. 2.5. As already stated at the beginning of the section, these
typing rules are different wrt the typing rules for pure expressions, as they keep
track of the new cogs created. Rule (T-Exp) is a weakening rule which asserts
that a pure expression e is well typed in a typing context Γ and an empty set
of cogs, if it is well typed in Γ. Rule (T-Get) states that get(e) is of type T ,
if expression e is of type Fut〈T 〉. Rule (T-New) assigns type T to the object

2.4. TYPING RULES 37

(T-Exp)
Γ ` e : T

Γ, ∅ ` e : T

(T-Get)
Γ ` e : Fut〈T 〉

Γ, ∅ ` get(e) : T

(T-New)
Γ(this) = (C′, G[. . .])

params(C) = T x Γ ` e : T ′ tmatch(T ,T ′) = σ T ∈ crec(G, C, σ)

Γ ` new C(e) : T

(T-NewCog)
params(C) = T x Γ ` e : T ′ tmatch(T ,T ′) = σ T ∈ crec(G, C, σ)

Γ, {σ(G)} ` new cog C (e) : T

(T-SCall)
mtype(m, I) = (G, r)(T x)→ T

Γ ` e : (I, σ(r)) Γ ` e : σ(T) coloc(σ(r),Γ(this))

Γ, σ(G) ` e.m(e) : σ(T)

(T-ACall)
mtype(m, I) = (G, r)(T x)→ T Γ ` e : (I, σ(r)) Γ ` e : σ(T)

Γ, σ(G) ` e!m(e) : Fut〈σ(T)〉

Figure 2.5: Typing rules for expressions with side effects

new C(e) if the actual parameters have types compatible with the formal ones, by
applying function tmatch; the new object and this have the same cog C and the
type T belongs to the crec(G, C, σ) predicate, which means that T is of the form
(I, G[f : σ(I, r)]) and implements(C, I) and σ is obtained by the function tmatch.
Rule (T-NewCog) is similar to the previous one, except for the creation of a new
cog G where the new object is placed, and hence the group of object this is not
checked. Rules (T-SCall) and (T-ACall) type synchronous and asynchronous
method calls, respectively. Both rules use function mtype to obtain the method
signature i.e., (G, r)(T x) → T . The group record r, the parameters types and the
return type of the method are the formal ones. In order to obtain the actual ones,
we use the substitution σ that maps formal cog names to actual cog names. The
callee e has type (I, σ(r)) and the actual parameters e have types σ(T). Finally,
the invocations are typed respectively in the substitution σ(T) and Fut〈σ(T)〉,
with T being the formal return type. Rule (T-SCall) checks whether the group of

38 CHAPTER 2. A TYPE SYSTEM FOR COMPONENTS

(T-Skip)

Γ, ∅ ` skip

(T-Suspend)

Γ, ∅ ` suspend

(T-Decl)
Γ(x) = T

Γ, ∅ ` T x

(T-Comp)
Γ,G1 ` s1 Γ,G2 ` s2

Γ,G1] G2 ` s1; s2

(T-Assign)
Γ(x) = T Γ,G ` z : T

Γ,G ` x = z

(T-AssignFieldR)
x < dom(Γ) Γ,G ` z : T
Γ(this) = (C, G[x : T, . . .])

Γ,G ` x = z

(T-AssignFieldBot)
x < dom(Γ) T x ∈ f ields(C)

Γ(this) = (C, G[x : T]) Γ,G ` z : T x < x

Γ,G ` x = z

(T-Await)
Γ ` g : Bool

Γ, ∅ ` await g

(T-Cond)
Γ ` e : Bool Γ,G1 ` s1 Γ,G2 ` s2

Γ,G1] G2 ` if e then s1 else s2

(T-While)
Γ ` e : Bool Γ, ∅ ` s

Γ, ∅ ` while e { s }

(T-Return)
Γ ` e : T Γ(destiny) = Fut〈T 〉

Γ, ∅ ` return e

(T-Rebind)
T x ∈ ports(I) Γ ` e : (I, r)
Γ,G ` z : T coloc(r,Γ(this))

Γ,G ` rebind e.x = z

(T-RebindBot)
Γ(this) = (C, G[x : T])

T x ∈ ports(I) x < x Γ ` e : (I, r) Γ,G ` z : T coloc(r,Γ(this))

Γ,G ` rebind e.x = z

Figure 2.6: Typing rules for statements

this and the group of the callee coincide, by using the auxiliary function coloc,
whether this check is not performed in rule (T-ACall).

Statements The typing rules for statements are given in Fig. 2.6. Rules (T-Skip)
and (T-Suspend) state that skip and suspend are always well typed. Rule (T-Decl)
states that T x is well typed if variable x is of type T in Γ. Rule (T-Comp) states
that, if s1 and s2 are well typed in the same typing context and, like in linear type
systems, they use distinct sets of cogs, then their composition is well typed and

2.4. TYPING RULES 39

(T-Method)
Γ, x : σ(T),destiny : Fut〈σ(T)〉, this : (C, σ(r)), σ(G) ` s

Γ ` [critical] (G, r) T m(T x){ s } in C

(T-Class)
∀I ∈ I. implements(C, I) Γ, x : T ` M in C

Γ ` class C (T x) implements I { Fl M }

(T-Interface)
∀I′ ∈ I. extends(I, I′)

∅ ` interface I extends I { port T x; S }

Figure 2.7: Typing rules for declarations

uses the disjoint union] of the corresponding cogsets. Rule (T-Assign) states
the well typedness of the assignment x = z if both x and z have the same type T
and the set of cogs is the one corresponding to z. Rule (T-AssignFieldR) and rule
(T-AssignFieldBot) deal with the assignment x = z when field x is not present
in dom(Γ) and they follow the same idea as rules (T-FieldR) and (T-FieldBot),
respectively. The main difference in the premises of rule (T-AssignFieldR) and
rule (T-AssignFieldBot) is the fact that in the former rule x is in the record of
this, whether in the latter rule x is not in the record of this but it is a field of the
class of this. Rule (T-Await) asserts that await g is well typed whenever the guard
g has type Bool. Rules (T-Cond) and (T-While) are quite standard, except for the
presence of the linear set of cog names: the typing of the conditional statement
follows the same principle as the composition of statements in rule (T-Comp); the
typing of the loop uses instead an empty set of cogs. Rule (T-Return) asserts that
return e is well typed if expression e has type T whether the variable destiny
has type Fut〈T 〉. Finally, rule (T-Rebind) types the statement rebind e.x = z by
checking that: i) x is a port of the right type, ii) z has the same type as the port,
and iii) the object stored in e and the current one this are in the same cog, by using
the predicate coloc(r,Γ(this)). Rule (T-RebindBot) is similar but it deals with the
case when x is not present in the record of this, namely it is assigned to ⊥.

Declarations The typing rules for declarations of methods, classes and inter-
faces are presented in Fig. 2.7. Rule (T-Method) states that method m is well typed
in class C if the method’s body s is well typed in a typing context augmented with
the method’s typed parameters; destiny being of type Fut〈σ(T)〉 and this being of

40 CHAPTER 2. A TYPE SYSTEM FOR COMPONENTS

(T-Rebind)
Γ(this) = (Controller, G[. . .]) (Server, r) s ∈ ports(Client)

∀i = 2, ..., n Γ ` ci : (Client, G[. . . , s : (Server, r)])
Γ, ∅ ` s2 : (Server, r) coloc(G[. . . , s : (Server, r)],Γ(this))

∀i Γ, ∅ ` rebind ci.s = s2

Figure 2.8: Typing the workflow example

type (C, σ(r)). A substitutionσ is used to obtain the actual values starting from the
formal ones. Rule (T-Class) states that a class C is well typed when it implements
all the interfaces I and all its methods are well typed. Finally, rule (T-Interface)
states that an interface I is well typed if it extends all interfaces in I.

Remark The typing rule for assignment requires the group of the variable and
the group of the expression being assigned to be the same. This restriction applies
to rule for rebinding, as well. To see why this is needed let us consider a sequence
of two asynchronous method invocations x!m(); x!n(), both called on the same
object and both modifying the same field. Say m does this.f = z1 and n does
this.f = z2. Because of asynchronicity, there is no way to know the order in which
the updates will take place at runtime. A similar example may be produced for the
case of rebinding. Working statically, we can either force the two expressions z1

and z2 to have the same group as f, or keep track of all the different possibilities,
thus the type system must assume for an expression a set of possible objects it can
reduce to. In this work we adopt the former solution, we let the exploration of the
latter as a future work. We plan to relax this restriction following a similar idea
to the one proposed in [51], where a set of groups can be associated to a variable
instead of just only one group.

Example Revisited We now recall the example of the workflow given in
Fig. 1.10 and Fig. 1.11. We show how the type system works on this example:
by applying the typing rule for rebind we have the derivation in Fig. 2.8 for any
clients from c2 to cn. Let us now try to typecheck client c1. If we try to typecheck
the rebinding operation, we would have the following typing judgement in the
premise of (T-Rebind):

Γ(this) = (Controller, G[...]) Γ, ∅ ` c1 : (Client, G′[. . . , s : (Server, r)])

But then, the predicate coloc(G′[. . . , s : (Server, r)],Γ(this)) is false, since
equals(G, G′) is false. Then, one cannot apply the typing rule (T-Rebind), by thus
not typechecking rebind c1.s = s2, exactly as we wanted.

2.5. TYPING RULES FOR RUNTIME CONFIGURATIONS 41

2.5 Typing Rules for Runtime Configurations
In this section we present the typing rules for runtime configurations, introduced
in Section 1.2. In order to prove the subject reduction property, typing rules for
runtime configurations are needed and are presented in Fig. 2.9.

Runtime typing judgements are of the form ∆,G `R N meaning that the con-
figuration N is well typed in the typing context ∆ by using a set G of new cogs.
The (runtime) typing context ∆ is an extension of the (compile time) typing con-
text Γ with runtime information about objects, futures and cogs and is formally
defined as follows:

∆ ::= ∅ | Γ,∆ | o : (C, r),∆ | f : Fut〈T 〉,∆ | c : G,∆

An object identifier o is given type (C, r) where C is the class the object is instan-
tiating and r is the group record containing group information about the object
itself and the object’s fields. A future value f is assigned type future Fut〈T 〉 and
a cog identifier c is assigned a cog name G.

Rules (T-Weak1), (T-Weak2) and (T-Weak3) state respectively that when an
expression is of type T in some typing context Γ, then it has the same type in
∆, which is an extension of Γ; and whenever a statement s or a declaration Dl
is well typed in Γ, then it is also well-typed in ∆, which is an extension of Γ.
Rule (T-State) asserts that the substitution of variable x with value v is well typed
when x and v have the same type T . Rule (T-Cont) asserts that the statement
cont(f), which is a new statement added to the runtime syntax, is well typed
whenever f is a future. Rule (T-Future1) states that the configuration fut(f, v)
is well typed if the future f has type Fut〈T 〉 where T is the type of v. Instead,
rule (T-Future2) states that fut(f,⊥) is well typed whenever f is a future. Rule
(T-Process-Queue) states that the union of two queues is well typed if both queues
are well typed and the set of cogs is obtained as a disjoint union of the two sets of
cogs corresponding to each queue. Rule (T-Process) states that a task or a process
is well typed if its local variables x are well typed and statement s is well typed
in a typing context augmented with typing information about the local variables
and the set of cogs G. Rule (T-Config) states that the composition N N′ of two
configurations is well typed whenever N and N′ are well typed using disjoint sets
of cog names. Rule (T-Cog) asserts that a group configuration cog(c, oε) is well
typed if c is declared to be associated to G in ∆. Rules (T-Empty) and (T-Idle) are
straightforward. Rule (T-Object) states that an object is well typed whenever: i)
the declared record of o is the same as the one associated to c; ii) its fields are
well typed and iii) its running process and process queue are well typed. Finally,
(T-Invoc) states that invoc(o, f, m, v) is well typed under substitution σ when: i)
callee o is assigned type (C, σ(r)); ii) future f is of type Fut〈σ(T)〉 and iii) values
v are typed accordingly by applying substitution σ, namely σ(T).

42 CHAPTER 2. A TYPE SYSTEM FOR COMPONENTS

(T-Weak1)
Γ,G ` z : T

Γ ⊆ ∆

∆,G `R z : T

(T-Weak2)
Γ,G ` s
Γ ⊆ ∆

∆,G `R s

(T-Weak3)
Γ,G ` Dl

Γ ⊆ ∆

∆,G `R Dl

(T-State)
∆(x) = T
∆ `R v : T

∆, ∅ `R T x v

(T-Cont)
∆(f) = Fut〈T 〉

∆, ∅ `R cont(f)

(T-Future1)
∆(f) = Fut〈T 〉

∆ `R v : T

∆, ∅ `R fut(f, v)

(T-Future2)
∆(f) = Fut〈T 〉

∆, ∅ `R fut(f,⊥)

(T-Process-Queue)
∆,G `R Q
∆,G′ `R Q′

∆,G] G′ `R Q ∪ Q′

(T-Process)
∆, ∅ `R T x v

∆, x : T ,G `R s

∆,G `R { T x v | s }

(T-Config)
∆,G `R N
∆,G′ `R N′

∆,G] G′ `R N N′

(T-Cog)
∆(c) = G

∆, {G} `R cog(c, oε)

(T-Empty)

∆, ∅ `R ε

(T-Idle)

∆, ∅ `R idle

(T-Object)
∆(o) = (C, G[f : T]) ∆(c) = G

f ields(C) = T f ∆, f : T , ∅ `R T f v
∆, f : T ,G `R Kidle ∆, f : T ,G′ `R Q

∆,G] G′ `R ob(o,T f v, cog c; θ,Kidle,Q)

(T-Invoc)
mtype(m, C) = (G, r)(T x)→ T ∆(o) = (C, σ(r))

∆(f) = Fut〈σ(T)〉 ∆ `R v : σ(T)

∆, σ(G) `R invoc(o, f, m, v)

Figure 2.9: Typing rules for runtime configurations

Chapter 3

Properties of the Type System

3.1 Main Results
In this section we present the main results regarding our type system. We start
with subject reduction for expressions, then we present subject reduction for con-
figurations and finally we conclude with the correctness theorems, the main result
of this part. Intuitively the latter theorems state that well-typed programs do not
perform illegal rebinding or illegal synchronous method calls.

A substitution σ is well typed in a typing context Γ, denoted by Γ ` σ, if
Γ ` σ(x) : Γ(x) for all x ∈ dom(σ). Recall that a typing context Γ′ extends a
typing context Γ, denoted with Γ ⊆ Γ′ if dom(Γ) ⊆ dom(Γ′) and Γ(x) = Γ′(x) for
all x ∈ dom(Γ).

Lemma 3.1.1 (Subject Reduction for Expressions). Let Γ be a typing context and
σ a substitution such that Γ ` σ. If Γ ` e : T and σ ` e ; σ′ ` e′, then there is a
typing context Γ′ such that Γ ⊆ Γ′, Γ′ ` σ′ and Γ′ ` e′ : T .

The type system is proven correct in a Wright-Felleisen style [116], namely we
prove the subject reduction property stating that if a well-typed configuration N
reduces to some configuration N′ then, the latter configuration is also well typed.

Theorem 3.1.2 (Subject Reduction for Configurations). If ∆,G `R N and N → N′

then ∃ ∆′, G′ such that ∆ ⊆ ∆′, G ⊆ G′ and ∆′,G′ `R N′.

Theorem 3.1.3 (Correctness of Rebindings). If ∆,G `R N, then for all objects
ob(o, σ, { σ′ | s },Q) ∈ N and s ≡ rebind e. fi = e′; s′ there exists an object
ob(o′, σ′′,Kidle,Q′) ∈ N such that [[e]](σ◦σ′) = o′ and σ(cog) = σ′′(cog).

Theorem 3.1.4 (Correctness of Sync Method Calls). If ∆,G `R N, then for all
objects ob(o, σ, { σ′ | s },Q) ∈ N and s ≡ x = e.m(e); s′ there exists an object
ob(o′, σ′′,Kidle,Q′) ∈ N such that [[e]](σ◦σ′) = o′ and σ(cog) = σ′′(cog).

43

44 CHAPTER 3. PROPERTIES OF THE TYPE SYSTEM

As a consequence of the previous results, rebinding and synchronous method
calls are always performed between objects of the same cog:

Corollary 3.1.5. Well-typed programs do not perform i) an illegal rebinding or ii)
a synchronous method call outside the cog.

3.2 Proofs
In this section we give the detailed proofs of the previous lemmas and theorems
that validate our type system. We state the following auxiliary lemma needed to
prove the former properties.

Lemma 3.2.1 (Weakening). If ∆,G `R N, then ∆′,G `R N, where ∆ ⊆ ∆′.

Proof. The proof follows immediately by the definition of ∆ and the typing judge-
ments for configurations ∆,G `R N.

�

Proof of Lemma 3.1.1 on Subject Reductions for Exprs: Let Γ be a typing
context and σ a substitution such that Γ ` σ. If Γ ` e : T and σ ` e ; σ′ ` e′,
then there is a typing context Γ′ such that Γ ⊆ Γ′, Γ′ ` σ′ and Γ′ ` e′ : T .

Proof. The proof is done by induction on the reduction rules for the pure expres-
sions, given in Fig. 1.4.

• Case (RedVar): By assumption Γ ` σ and Γ ` x : T and σ ` x ; σ ` σ(x).
Since σ is well typed Γ ` σ(x) : Γ(x), so, Γ ` σ(x) : T .

• Case (RedCons): By induction hypothesis Γ ` ei : Ti and since σ ` ei ;

σ′ ` e′i 1 ≤ i ≤ n, the Γ′ ` e′i : Ti and Γ ⊆ Γ′ and Γ′ ` σ′. By assumption
Γ ` Co(e1 . . . ei . . . en) : T . Since Γ ⊆ Γ′, the Γ′ ` Co(e1 . . . e′i . . . en) : T .

• Case (RedFunExp): This case follows exactly the same line as (RedCons).
By induction hypothesis Γ ` ei : Ti and since σ ` ei ; σ′ ` e′i for 1 ≤
i ≤ n, the Γ′ ` e′i : Ti and Γ ⊆ Γ′ and Γ′ ` σ′. By assumption we have
Γ ` fun(e1 . . . ei . . . en) : T . Since Γ ⊆ Γ′, the Γ′ ` fun(e1 . . . e′i . . . en) : T .

• Case (RedFunGround): By assumption Γ ` σ and Γ ` fun(v) : T and by
rule (T-FunExp) we have Γ ` v : T and Γ(fun) = T ′ → T ′, and there is a
type substitution ρ such that T = ρ(T ′) and T = ρ(T ′). It is the case that
Γ, xfun : ρ(T ′) ` xfun : T ′. By rule (T-FunDecl) Γ, xfun : T ′ ` efun : T ′.
Since typing is preserved by substitution, then Γ, xfun : ρ(T ′) ` efun : ρ(T ′).
This is the same as Γ, xfun : T ` efun : T . Let Γ′ = Γ, y : T where a

3.2. PROOFS 45

renaming of variables has occurred. Then, Γ′ ` efun[xfun 7→ y] : T . Since
fresh({y1 . . . yn}), then Γ ⊆ Γ′ and Γ′ ` σ, so Γ′ ` σ′.

• Case (RedCase1): By assumption Γ ` σ and Γ ` case e {p⇒ ep} : T ′. By
induction hypothesis Γ ` e : T , Γ ⊆ Γ′ and Γ′ ` σ′ and Γ′ ` e′ : T . Then,
since Γ ⊆ Γ′ we have Γ′ ` case e′ {p⇒ ep} : T ′.

• Case (RedCase2): By assumption Γ ` case v {p⇒ ep; p′ ⇒ e′p′} : T , then
also case v {p′ ⇒ e′p′} : T .

• Case (RedCase3): By assumption Γ ` case v {p⇒ ep; p′ ⇒ e′p′} : T ′ and
Γ ` σ and match(σ(p), v) = σ′′ which implies that vars(σ(p))∩dom(σ) = ∅.
By rule (T-Case) we have that Γ ` v : T and Γ ` p⇒ ep; p′ ⇒ e′p′ : T → T ′

for some type T . By rule (T-Branch) we have that Γ′′ = Γ◦pmatch(σ(p),T)
and Γ′′ ` σ(p) : T , Γ′′ ` ep : T ′, and let ρ = pmatch(σ(p),T). Since
dom(ρ) ∩ dom(σ) = ∅, then Γ ◦ ρ ` σ ◦ σ′′. By renaming the variable
in σ(p) we let Γ′ = Γ, y : Γ′′(x) and Γ ⊆ Γ′. Then we get Γ′ ` σ′ and
Γ′ ` ep[x 7→ y] : T ′, which concludes the proof.

�

Proof of Theorem 3.1.2 on Subject Reduction for Configs: If ∆,G `R N and
N → N′ then ∃ ∆′, G′ such that ∆ ⊆ ∆′, G ⊆ G′ and ∆′,G′ `R N′.

Proof. The proof is done by induction on the reduction rules. We assume that
class definitions are well typed and for simplicity we omit them from the runtime
syntax.

• Case (Skip): By assumption ∆,G `R ob(o, σ, {σ′|skip; s},Q); but then also
∆,G ` ob(o, σ, {σ′|s},Q).

• Case Assignment: By assumption

∆,G `R ob(o, σ, {σ′|x = e; s},Q)

and x ∈ dom(σ′) and v = [[e]](σ◦σ′), and letσ = T x w; θ andσ′ = T ′ x′ v; θ′.
Let ∆′ = ∆, x : T , x′ : T ′. Then, by rules (T-Object) and (T-Process) and
Lemma 3.1.1, we have ∆′,G1 `R x = v; s, such that G = G1] G2 and
∆′,G2 `R Q. The derivation ∆′,G1 `R x = v; s implies that ∆′, ∅ `R v : ∆′(x),
by rule (T-Assign) being v a value, and ∆′,G1 `R s. By rule (Assign-Local)
we have ob(o, σ, {σ′|x = v; s},Q) → ob(o, σ, {σ′[x 7→ v]|s},Q). By apply-
ing typing rule (T-Object) we obtain ∆,G `R ob(o, σ, {σ′[x 7→ v]|s},Q).
Case (Assign-Field) follows the same line as case (Assign-Local). Since
ob(o, σ, {σ′|x = v; s},Q) → ob(o, σ[x 7→ v], {σ′|s},Q), then we derive
∆,G `R ob(o, σ[x 7→ v], {σ′|s},Q).

46 CHAPTER 3. PROPERTIES OF THE TYPE SYSTEM

• Case Conditionals: By assumption

∆,G `R ob(o, σ, {σ′|if e then s1 else s2; s},Q)

and [[e]](σ◦σ′) = true. There exists ∆′ which extends ∆ with typing as-
sumptions present in σ and σ′; namely σ = T x w; θ and σ′ = T ′ x′ v; θ′,
and ∆′ = ∆, x : T , x′ : T ′. By assumption ∆′, ∅ `R x : Bool,
∆′,G′1 `R s1, ∆′,G′′1 `R s2, ∆′,G2 `R s, and ∆′,G3 `R Q where
G1 = G′1] G

′′
1 and G = G1] G2] G3. Then, by rule (T-Comp)

we have that ∆′,G′1] G2 `R s1; s. By rule (Cond-True) we obtain
ob(o, σ, {σ′|if e then s1 else s2; s},Q) → ob(o, σ, {σ′|s1; s},Q) and by
rule (T-Object) we conclude that ∆,G \ G′′1 `R ob(o, σ, {σ′|s1; s},Q).
The case (Cond-False) follows the same line as case (Cond-True), where
[[e]](σ◦σ′) = false and hence ob(o, σ, {σ′|if e then s1 else s2; s},Q) →
ob(o, σ, {σ′|s2; s},Q), then we derive ∆,G `R ob(o, σ, {σ′|s2; s},Q).

• Case Loops: By assumption

∆,G `R ob(o, σ, {σ′| while e { s }; s′},Q)

and [[e]](σ◦σ′) = true. There exists ∆′ which extends ∆ with typing as-
sumptions present in σ and σ′; namely σ = T x w; θ and σ′ = T ′ x′ v; θ′,
and ∆′ = ∆, x : T , x′ : T ′. By assumption ∆′,G1 `R while e { s }; s′, and
∆′,G2 `R Q, where G = G1] G2. By applying (T-Comp) and (T-While) we
have ∆′, ∅ `R while e { s }, and ∆′,G1 `R s′. By rule (While-True) we have
ob(o, σ, {σ′| while e { s }; s′},Q) → ob(o, σ, {σ′| s; while e { s }; s′},Q).
Since ∆′, ∅ `R s and ∆′, ∅ `R while e { s } then by applying (T-Comp)
we obtain ∆′, ∅ `R s ; while e { s }. By rule (T-Comp) we have that
∆′,G1 `R s ; while e { s }; s′. We conclude by (T-Object). The case for
[[e]](σ◦σ′) = false and rule (While-False) is similar.

• Case Awaits: By assumption

∆,G `R ob(o, σ, {σ′| await g; s},Q) N

By (Await-True), since [[g]]N
(σ◦σ′), then ob(o, σ, {σ′| await g; s},Q) N →

ob(o, σ, {σ′|s},Q) N. Trivially, ∆,G `R ob(o, σ, {σ′|s},Q) N. By
(Await-False), since ¬[[g]]N

(σ◦σ′), then ob(o, σ, {σ′| await g; s},Q) N →

ob(o, σ, {σ′| suspend; await g; s,Q) N. By (T-Suspend), ∆, ∅ `R suspend.
Then, by (T-Comp), ∆,G `R ob(o, σ, {σ′| suspend; await g; s,Q) N.

• Case (Return): By assumption

∆,G `R ob(o, σ, {σ′| return e; s},Q) fut(f,⊥)

3.2. PROOFS 47

and ∆, ∅ `R fut(f,⊥) and by reduction ruleσ′(destiny) = f and v = [[e]](σ◦σ′)
and ob(o, σ, {σ′| return e; s},Q) fut(f,⊥) → ob(o, σ, {σ′|s},Q) fut(f, v).
Trivially, ∆,G `R ob(o, σ, {σ′|s},Q). By the premises of (T-Return) we
have ∆ `R e : T and ∆(destiny) = Fut〈T 〉. By assumption σ′(destiny) = f,
hence ∆(f) = Fut〈T 〉. By assumption v = [[e]](σ◦σ′), then by applying
Lemma 3.1.1 we have ∆ `R v : T . By applying (T-Future1) we have
∆, ∅ `R fut(f, v). We conclude by applying (T-Config).

• Case (Read-Fut): By assumption

∆,G `R ob(o, σ, {σ′ | x = get(e); s},Q) fut(f, v)

where ∆, ∅ `R fut(f, v), v , ⊥ and f = [[e]](σ◦σ′). By reduction rule
ob(o, σ, {σ′ | x = get(e); s},Q) fut(f, v)→ ob(o, σ, {σ′|x = v; s},Q) fut(f, v).
By (T-Future1) ∆(f) = Fut〈T 〉 and ∆ `R v : T . Since by assumption
f = [[e]](σ◦σ′), consequently ∆, ∅ `R get(e) : T . Then, ∆, ∅ `R x = v and
hence ∆,G `R ob(o, σ, {σ′|x = v; s},Q).

• Case (Bind-Mtd): By assumption

∆,G `R ob(o, σ, p,Q) invoc(o, f, m, v)

and by reduction rule ob(o, σ, p,Q) invoc(o, f, m, v) → ob(o, σ, p,Q ∪ p′).
By (T-Config) we have ∆,G1 `R ob(o, σ, p,Q) and ∆,G2 `R invoc(o, f, m, v)
such that G = G1] G2. By assumption p′ = bind(o, f, m, v, class(o)) and
let class(o) = C. By (T-Invoc) we have mtype(m, C) = (Gm, r)(T x) → T ,
∆(o) = (C, σ(r)), ∆(f) = Fut〈σ(T)〉, and ∆ `R v : σ(T) and G2 = σ(Gm).
The bind function returns a process p′ = {T x = v; T ′ x′ = null; this = o | s}
where either (NM-Bind) or (CM-Bind) is applied, depending on whether the
method m is critical or not. Let σ = T x w; θ and let ∆′ = ∆, x : T . Then,
process p′ is well typed in ∆ augmented with f ields(C), namely ∆′, ∅ `R p′.
Then, by (T-Object) and (T-Process-Queue) ∆,G `R ob(o, σ, p,Q ∪ p′).

• Case (New-Object): By assumption

∆,G `R ob(o, σ, { σ′′ | x = new C (e); s },Q)

and ob(o, σ, { σ′′ | x = new C (e); s },Q) →

ob(o, σ, {σ′′|x = o′; s},Q) ob(o′, σ′, idle, ε). By assumption
v = [[e]](σ◦σ′′) fresh(o′) σ′ = atts(C, v, o′, c). Suppose σ = T x w; θ
and σ′′ = T ′ x′ v; θ′, and let ∆′ = ∆, x : T , x′ : T ′. By (T-Object) and
(T-Process) we have that ∆′,G1 `R x = new C (e); s and G2 is the set
of cogs in Q where G = G1] G2. By (T-Comp) ∆′, ∅ `R x = new C (e)

48 CHAPTER 3. PROPERTIES OF THE TYPE SYSTEM

and ∆′,G1 `R s. By rule (T-Assign) we have that ∆′(x) = T and
∆′, ∅ `R new C (e) : T . By the premises of the typing rule we have that
f ields(C) = T f , ∆′ ` x : T ′, tmatch(T ,T ′) = π and T ∈ crec(G, C, π),
and let π = σ ◦ σ′′. Then, by the definition of the auxiliary function
crec, it means that T = (I, G[π] ρ(f : (I, r))]) and implements(C, I). Let
r = G[π] ρ(f : (I, r))]. Since f resh(o′), then let ∆′′ = ∆, o′ : (C, r). Then,
∆′′,G1] G2 `R ob(o, σ, {σ′′|x = o′; s},Q), by (T-Process), (T-Comp), and
(T-Object). By assumption, function atts(C, v, o′, c) returns a substitution
σ′ that is well typed in ∆′′. So, ∆′′, ∅ `R ob(o′, σ′, idle, ε). Then, by
(T-Config) we have ∆′′,G `R ob(o, σ, {σ′′|x = o′; s},Q) ob(o′, σ′, idle, ε).

• Case (New-Cog-Object): By assumption

∆,G `R ob(o, σ, {σ′′|x = new cog C (e); s},Q)

and by reduction we have ob(o, σ, {σ′′|x = new cog C (e); s},Q) →
ob(o, σ, {σ′′|x = o′; s},Q) ob(o′, σ′, idle, ε) cog(c′, o′). By assumption
v = [[e]](σ◦σ′′), fresh(o′), σ′ = atts(C, v, o′, c). Suppose σ = T x w; θ and
σ′′ = T ′ x′ v; θ′, and let ∆′ = ∆, x : T , x′ : T ′. By the typing rules
(T-Object) and (T-Process) we have that ∆′,G1 `R x = new cog C (e); s
∆,G2 `R Q, where G = G1] G2. By rules (T-Comp) and (T-Assign)
∆′, {G} `R x = new cog C (e) and ∆′,G1 \ {G} `R s. By rule (T-Assign),
∆′(x) = T and ∆′, {G} `R new cog C (e) : T . By the premise of typing rule
(T-NewCog), we have that f ields(C) = T f , ∆′ ` x : T ′, tmatch(T ,T ′) = π
and T ∈ crec(G, C, π). Then, by definition of the auxiliary function crec, it
means that T = (I, G[f : π ◦ ρ(I, r)]) and implements(C, I). Let r be such
that r = G[π ◦ ρ(f : (I, r))]. Since f resh(o′) and f resh(c′), we have ∆′′ =

∆, o′ : (C, r), c′ : G. By applying typing rules (T-Process), (T-Comp), and
(T-Object) ∆′′,G1 \ {G}] G2 `R ob(o, σ, {σ′′|x = o′; s},Q). By (T-Cog) we
have ∆′′, {G} `R cog(c′, o′). By assumption, function atts(C, v, o′, c′) returns
a substitution σ′ that is well typed in ∆′′. So, ∆′′, ∅ `R ob(o′, σ′, idle, ε). By
(T-Config) we obtain the result.

• Case (Self-Sync-Call): By assumption

∆,G `R ob(o, σ, {σ′ | x = e.m(e); s},Q)

and by reduction rule ob(o, σ, {σ′ | x = e.m(e) ; s},Q) →

ob(o, σ, {σ′′ | s′; cont(f′)},Q ∪ {σ′ | x = get(f); s}) fut(f,⊥). Then, it
is the case that o = [[e]](σ◦σ′), v = [[e]](σ◦σ′), σ

′(destiny) = f′, fresh(f),
and also {σ′′|s′} = bind(o, f, m, v, class(o)) and let class(o) = C. Since,
by assumption class C is well typed in ∆, by (T-Class) this means that all

3.2. PROOFS 49

methods in C are well typed, in particular method m is well typed in C. The
auxiliary function bind returns a process {σ′′|s′}, which contains the body
s′ of the method m, which in turn by (T-Method) is well typed. Suppose
σ = T x w; θ and σ′ = T ′ x′ w′; θ′, and let ∆′ = ∆, x : T , x′ : T ′. By typ-
ing rules (T-Object) and (T-Process) we have that ∆′,G1 `R x = e.m(e); s
and ∆′,G2 `R Q, where G = G1] G2. From the first judgement by us-
ing (T-Comp), we have that ∆′,G′1 `R x = e.m(e) and ∆′,G′′1 `R s, where
G1 = G′1] G

′′
1 . By typing rules (T-Assign) and (S-Call) we have ∆′,G′1 `R

e.m(e) : ρ(T) for some substitution ρ. By the premises of (T-SCall) we
have mtype(m, I) = (Gm, r)(T x) → T , ∆′ ` e : (I, ρ(r)), ∆′ ` e : ρ(T),
coloc(ρ(r),∆′(this)) and G′1 = ρ(Gm). Since o = [[e]](σ◦σ′) then, ∆′(o′) :
(C, ρ(r)), such that implements(C, I) and mtype(m, C) = mtype(m, I). Let
σ′′ = T ′′ x′′ w′′; θ′′, then by (T-Method) we have ∆′, x′′ : T ′′,G′1 ` s′, hence
∆′,G′1 `R {σ

′′|s′}. Since σ′(destiny) = f′, then ∆′,G′1 `R {σ
′′|s′; cont(f′)}.

Since f resh(f), let ∆′′ = ∆, f : ρ(T), then ∆′′, ∅ `R x = get(f). By
rule (T-Comp) and Lemma 3.2.1 we have ∆′′,G′′1 `R x = get(f); s. Then,
∆′′,G `R ob(o, σ, {σ′′|s′; cont(f′)},Q∪ {σ′| x = get(f); s}). By (T-Future2)
we have ∆′′, ∅ `R fut(f,⊥). We conclude by (T-Config).

• Case (Self-Sync-Return-Sched): By assumption

∆,G `R ob(o, σ, {σ′′|cont(f)},Q ∪ {σ′|s})

and by reduction rule ob(o, σ, {σ′′|cont(f)},Q ∪ {σ′|s}) →

ob(o, σ, {σ′|s},Q), since σ′(destiny) = f. Suppose σ = T x v; θ, and
let ∆′ = ∆, x : T . By (T-Object) we have that ∆′,G `R Q ∪ {σ′|s}, by
(T-Process-Queue) ∆′,G1 `R Q and ∆′,G2 `R {σ

′|s}, where G = G1] G2.
By (T-Object) we have ∆,G `R ob(o, σ, {σ′|s},Q).

• Case (Async-Call): By assumption

∆,G `R ob(o, σ, {σ′ | x = e!m(e); s},Q)

and also ob(o, σ, {σ′ | x = e!m(e); s},Q) → ob(o, σ, {σ′|x =

f; s},Q) invoc(o′, f, m, v) fut(f,⊥). Suppose σ = T x w; θ and σ′ =

T ′ x′ v; θ′, and let ∆′ = ∆, x : T , x′ : T ′. By (T-Object) and (T-Process)
we have that ∆′,G1 `R x = e!m(e); s where G = G1] G2 and G2 is the set
of cogs in Q. By (T-Comp) we have ∆′,G′1 `R x = e!m(e) and ∆′,G′′1 `R s
where G1 = G′1]G

′′
1 . For the first judgement, by (T-Assign) and (T-ACall),

we have that ∆′(x) = Fut〈ρ(T)〉 and ∆′,G′1 `R e!m(e) : Fut〈ρ(T)〉, for
some substitution ρ. By the premise of (T-ACall) we have mtype(m, I) =

(Gm, r)(T x) → T , ∆′ `R e : (I, ρ(r)) and ∆′ `R e : ρ(T) and G′1 = ρ(Gm).

50 CHAPTER 3. PROPERTIES OF THE TYPE SYSTEM

By the premises of (Async-Call) we have o′ = [[e]](σ◦σ′), v = [[e]](σ◦σ′),
and since substitutions are well typed in ∆′ and by Lemma 3.1.1 it means
∆′ `R o

′ : (C, ρ(r)) for a class C such that implements(C, I) such that
mtype(m, C) = mtype(m, I). Also, by Lemma 3.1.1 ∆′ `R v : ρ(T). Since,
by assumption f resh(f), let ∆′′ = ∆′, f : Fut〈ρ(T)〉, hence f can be safely
added. By applying (T-Assign) we have ∆′′ `R x = f, and by (T-Object)
we have ∆′′,G \ G′1 `R ob(o, σ, {σ′|x = f; s},Q). By applying (T-Invoc)
we have ∆′′,G′1 `R invoc(o′, f, m, v). By applying (T-Future2) we have
∆′′, ∅ `R fut(f,⊥). Then, we conclude by applying (T-Config).

• Case (Rebind-Local): By assumption

∆,G `R ob(o, σ, { σ′ | rebind e. f = e′; s },Q)

and ob(o, σ, { σ′ | rebind e. f = e′; s },Q) → ob(o, σ[f 7→ v], { σ′ | s },Q)
and σ(nbcr) = 0, o = [[e]](σ◦σ′), and v = [[e′]](σ◦σ′). Suppose σ =

T x w; θ and σ′ = T ′ x′ v; θ′, and let ∆′ = ∆, x : T , x′ : T ′. Then,
∆′,G1 `R rebind e. f = e′; s and where G = G1] G2 and G2 is the set
of cogs in Q. By (T-Rebind) ∆′ `R e : (I, r) and ∆′,G1 `R e′ : T and
T f ∈ ports(I) and coloc(r,∆′(this)) – meaning, belonging to the same
cog. Since v = [[e′]](σ◦σ′), then by Lemma 3.1.1 ∆′ `R v : T . Then, by
(T-Object) ∆,G `R ob(o, σ[f 7→ v], { σ′ | s },Q).

• Case (Rebind-Global): By assumption

∆,G `R ob(o, σo,Kidle,Q) ob(o′, σo′ , { σ′o′ | rebind e. f = e′; s },Q′)

and ob(o, σo,Kidle,Q) ob(o′, σo′ , { σ′o′ | rebind e. f = e′; s },Q′) →
ob(o, σo[f 7→ v],Kidle,Q) ob(o′, σo′ , { σ′o′ | s },Q′). By typing rule
(T-Config) it means that ∆,G1 `R ob(o, σo,Kidle,Q) and also ∆,G2 `R

ob(o′, σo′ , { σ′o′ | rebind e. f = e′; s },Q′) and G = G1] G2. Suppose
σo′ = T x w; θ and σ′o′ = T ′ x′ w′; θ′, and let ∆′ = ∆, x : T , x′ : T ′. Then,
∆′,G′2 `R rebind e. f = e′; s and G2 = G′2] G

′′
2 and G′′2 is the set of cogs in

Q′. By (T-Rebind) ∆′ `R e : (I, r) and ∆′,G′′2 `R e′ : T and T f ∈ ports(I)
and coloc(r,∆′(this)) – meaning, belonging to the same cog. By assump-
tion o = [[e]](σo′◦σ′o′)

and v = [[e′]](σo′◦σ′o′)
, then by Lemma 3.1.1 we have

that ∆′ `R v : T . Then, trivially ∆,G1 `R ob(o, σo[f 7→ v],Kidle,Q) and
∆,G2 `R ob(o′, σo′ , { σ′o′ | s },Q

′). We conclude by (T-Config).
�

Proof of Theorem 3.1.3 on Correctness of Rebindings: If ∆,G `R N, then for
all objects ob(o, σ, { σ′ | s },Q) ∈ N and s = (rebind e. f = e′; s′) there exists an
object ob(o′, σ′′,Kidle,Q′) such that [[e]](σ◦σ′) = o′ and σ(cog) = σ′′(cog).

3.2. PROOFS 51

Proof. The proof is done by induction on the structure of N. Let N =

ob(o, σ, { σ′ | s },Q) and s = (rebind e. f = e′; s′). By assumption we have
∆,G `R ob(o, σ, { σ′ | rebind e. f = e′; s′ },Q). Suppose σ = T x v; θ and
σ′ = T ′ x′ v′; θ′ and let ∆′ = ∆, x : T , x′ : T ′. Notice that, by the well-typedness
of the configuration we also have that ∆′, ∅ `R σ and ∆′, ∅ `R σ

′. By the defini-
tion of substitution we have that σ(this) = o and let σ(cog) = c. By (T-Object)
∆′,G1 `R rebind e. f = e′; s′ and ∆′,G2 `R Q where G = G1] G2. By rules
(T-Weak2), (T-Comp) and (T-Rebind) it means that ∆′,G′1 `R rebind e. f = e′ and
∆′,G′′1 `R s′ whereG1 = G′1]G

′′
1 . By the premise of (T-Rebind) and by (T-Weak1)

and (T-Exp) we have that ∆′, ∅ `R e : (I, r) and f is a port of I. Let [[e]](σ◦σ′) = v
where v is a value produced by the runtime syntax. By Lemma 3.1.1 this means
that ∆′, ∅ `R v : (I, r). This implies that v is an object identifier o′. Then, by the
reduction rules (New-Object) or (New-Cog-Object), it means that the object was
already created, and moreover it is well typed. Let o′ have ob(o′, σ′′,Kidle,Q′) as
its configuration. We distinguish the following two cases:

• o′ = o: this means that the object is rebinding its own port. Trivially, the
cog is the same.

• o′ , o: this means that the object o is rebinding the port f of another object
o′. By typing rule (T-Rebind) and (T-Weak1) we have that the predicate
coloc is true. Namely, coloc(r,∆′(this)), which by the premise of coloc we
have that the cog of r is the same as the cog of this, namely c. This means
that σ(cog) = σ′′(cog).

The inductive case for N = ob(o, σ, { σ′ | rebind e. f = e′; s′ },Q) N′ follows by
the base case and by applying (T-Config) and (Context).

�

Proof of Theorem 3.1.4 on Correctness of Method Calls: If ∆,G `R N, then
for all objects ob(o, σ, { σ′ | s },Q) ∈ N and s = (x = e.m(e); s′) there exists an
object ob(o′, σ′′,Kidle,Q′) such that [[e]](σ◦σ′) = o′ and σ(cog) = σ′′(cog).

Proof. The proof is done by induction over the structure of N. Let N =

ob(o, σ, { σ′ | s },Q) and s = (x = e.m(e); s′). By assumption ∆,G `R

ob(o, σ, { σ′ | x = e.m(e); s′ },Q). Suppose σ = T x v; θ and σ′ = T ′ x′ v′; θ′, and
let ∆′ = ∆, x : T , x′ : T ′. Notice that, by the well-typedness of the configuration
we also have that ∆′, ∅ `R σ and ∆′, ∅ `R σ

′. By the definition of substitution we
have that σ(this) = o and let σ(cog) = c. By (T-Object) ∆′,G1 `R x = e.m(e); s′

and ∆′,G2 `R Q whereG = G1]G2. By the typing rules (T-Weak2), (T-Comp) and
(T-Rebind) it means that ∆′,G′1 `R x = e.m(e) and ∆′,G′′1 `R s′ whereG1 = G′1]G

′′
1 .

52 CHAPTER 3. PROPERTIES OF THE TYPE SYSTEM

By (T-Assign) we have ∆′,G′1 `R e.m(e) : T and ∆′(x) = T for some type T . By (T-
SCall) we have that T = ρ(T ′) for some substitution ρ of the formal return type T ′

to the actual return type and T . Moreover, mtype(m, I) = (Gm, r)(T x) → T ′, and
G′1 = ρ(Gm). Since the synchronous method call is well typed, by the premise of
(T-SCall) and (T-Weak1) we have that ∆′ `R e : (I, ρ(r)) and let [[e]](σ◦σ′) = v. By
Lemma 3.1.1 this means that ∆′, ∅ `R v : (I, ρ(r)). By following the same lines
as in the previous theorem, it is the case that v is an object identifier o′. Then,
by the reduction semantics rules (New-Object) or (New-Cog-Object), it means
that the object was already created, and in addition it is well typed. Let o′ have
ob(o′, σ′′,Kidle,Q′) as its configuration. The rest of the proof follows exactly the
same line as the correctness of rebinding proof where again by the premise of
(T-SCall) we have that the predicate coloc(ρ(r),∆′(this)) is true.

The inductive case for N = ob(o, σ, { σ′ | x = e.m(e); s′ },Q) N′ follows by the
base case and by applying (T-Config) and (Context). �

Conclusions, Related and Future
Work for Part I

In Part I we presented a type system for a component-based calculus. The cal-
culus we adopt is inspired by [77], the latter being an extension of the Abstract
Behavioural Specification (ABS) language [63]. This extension consists of the
notions of ports and rebind operations.

Ports and fields differ in a conceptual meaning: ports are the access points to
the functionalities provided by the environment whether fields are used to save
the inner state of an object. Fields are modified freely by an assignment, only by
the object that owns them, whilst ports are modified by a rebind operation by any
object in the same cog.

There are two consistency issues involving ports: i) ports cannot be modified
while in use; this problem is solved in [77] by combining the notions of ports
and critical section; ii) it is forbidden to modify a port of an object outside the
cog; this problem is solved in the present thesis by designing a type system that
guarantees the above requirement. The type system tracks an object’s membership
to a certain cog by adopting group records. Rebind statement is well typed if there
is compatibility of groups between objects involved in the operation.

In the remainder we discuss the related works by dividing them in three sep-
arate paragraphs respectively for, ABS, component extension and type systems.
We conclude with future work.

ABS Language Related Work Actor-based ABS language is designed for dis-
tributed object-oriented systems. It integrates concurrency and synchronisation
mechanisms with a functional language. Actors, called concurrent object groups
cogs, are dynamic collections of collaborating objects. Cogs offer consistency by
guaranteeing that at most one method per cog is executing at any time.

There are several concurrent object-oriented models that integrate concurrent
objects and actors, the same as cogs in ABS language, which adopt asynchronous
communication and usage of futures as first-class values, like [1, 5, 13, 24, 54, 64,
114]. As stated in [63], the concurrency model of ABS is a generalisation of the

53

54 CHAPTER 3. PROPERTIES OF THE TYPE SYSTEM

concurrency model of Creol [65] passing from one concurrent object to concur-
rent groups of objects, implemented in JCoBox [102], which is its Java exten-
sion. Creol is based on asynchronous communication and hence future values are
present. Futures are adopted in particular in [13, 114] whereas asynchronous cal-
culi for distributed systems are adopted in [1, 5, 24, 64] and in [2] which is mostly
oriented in verification of various properties.

Despite the concurrency basically performed by the communication among
different cogs, an important and typical feature of ABS is its synchronisation
mechanism inside one cog, that permits only one object at a time to be active.
The cooperation of objects inside the cog is similar to the so called cooperative
scheduling in Creol where the concurrent cogs are merely the concurrent objects.
As stated in [63] cogs in ABS can be compared to monitors in [55]. However,
differently from monitors, there is no explicit signalling. It is possible to encode
monitors in the language, as stated in [64].

The concurrent object calculus in [12] adopts both synchronous and asyn-
chronous method calls, having different semantics. This is similar to the compo-
nent extension and differs from ABS where a synchronous method call between
two different cogs reduces into an asynchronous one, whether in the component
model it is not defined which means it reduces to error.

Components Related Work Most component models [4,7,11,14,29,79,82,87]
have a notion of component different from that of object. The resulting language
is structured in two separate layers, one using objects for the main execution of the
program and the other using components for the dynamic reconfiguration. This
separation makes it harder for the (unplanned) dynamic reconfiguration requests to
be integrated in the program’s workflow. For example, models like Click [75] do
not allow runtime reconfigurations at all, whether OSGi model [4] allows addition
of classes and objects but does not allow modification of components, whether the
Fractal model [14] allows modifications by performing new bindings, which allow
addition of components.

However, there are other component models that go towards integrating the
notions of objects and components, thus having a more homogeneous semantics.
For example, models like Oz/K [79] and COMP [78] offer a more unified way of
presenting objects and components. However, both Oz/K and COMP deal with
dynamic reconfigurations in a very complex way.

The component model we adopt in the present work, inspired by [77], has a
unified description of objects and components by exploiting the similarities be-
tween them. This brings in several benefits wrt previous component models: i)
the integration of components and objects strongly simplifies the reconfiguration
requests handling, ii) the separation of concepts (component and object, port and

3.2. PROOFS 55

field) makes it easier to reason about them, for example, in static analysis, and iii)
ports are useful in the deployment phase of a system by facilitating, for example,
the connection to local communication.

Type Systems Related Work The type system for components presented in
Chapter 2 is an extension of the type system of ABS which is an extension of the
type system for Featherweight Java [61], which is nominal. However, differently
from both FJ and ABS, we also adopt the structural approach, in particular in the
subtyping relation defined in Section 2.2. Differently from FJ and similarly to
ABS, objects are typed with interfaces, and not classes, by thus having a neat dis-
tinction between the two concepts which enables abstraction and encapsulation.
Creol’s type system has more characteristic in common with our type system. It
tracks types which are implicitly associated to untyped futures by using an effect
system as in [80]. This allows more flexibility in reusing future variables with dif-
ferent return type. This feature is not present either in ABS or in our type system,
where future variables have explicit future types.

Various other type systems have been designed for components. The type
system in [115] categorises references to be either Near (i.e., in the same cog),
Far (i.e., in another cog) or Somewhere (i.e., we don’t know). The goal is to
automatically detect the distribution pattern of a system by using the inference
algorithm, and also control the usage of synchronous method calls. It is more
flexible than our type system since the assignment of values of different cogs is
allowed, but it is less precise than our analysis: consider two objects o1 and o2 in
a cog c1, and another one o3 in c2; if o1 calls a method of o3 which returns o2, the
type system will not be able to detect that the reference is Near. In [3] the authors
present a tool to statically analyse concurrency in ABS. Typically, it analyses
the concurrency structure, namely the cogs, but also the synchronisation between
method calls. The goal is to get tools that analyse concurrency for actor-based
concurrency model, instead of the traditional thread-based concurrency model.
The relation to our work is in the analysis of the cog structure.

On the other hand, our type system has some similarities with the type system
in [22] which is designed for a process calculus with ambients [23], the latter
roughly corresponding to the notion of components in a distributed scenario. The
type system is based on the notion of group which tracks communication between
ambients as well as their movement. However, groups in [22] are a “flat” structure
whether in our framework we use group records defined recursively; in addition,
the underlying language is a process calculus, whether ours is a concurrent object-
oriented one. As object-oriented languages are concerned, another similar work to
ours is the one on ownership types [25], where basically, a type consists of a class
name and a context representing object ownership: each object owns a context

56 CHAPTER 3. PROPERTIES OF THE TYPE SYSTEM

and is owned by the context it resides in. The goal of the type system is to provide
alias control and invariance of aliasing properties, like role separation, restricted
visibility etc. [56].

Future Work Our type system can be seen as a technique for tracking member-
ship of a component to a group or a context or to similar notions. Hence it can
also be applied to other component-based languages [4, 11, 14, 29] to deal with
dynamic reconfiguration and rebindings. Or, more specifically, in business pro-
cesses and web-services languages [86, 91] to check (dynamic) binding of input
or output ports and guarantee consistencies of operations, or in [76] to deal with
dynamic reconfiguration of connectors which are created from primitive channels
and resemble to ports in our setting. In addition, the group-based type system
can be applied not only to tracking membership of an object to a cog, but also to
detect misbehaviours, like deadlock, as shown in [50, 51]. So, first of all we want
to explore the various areas in which the type system can be applied. Second,
as discussed in 2.4 our current approach imposes a restriction on assignments,
namely, it is possible to assign to a variable/field/port only an object belonging to
the same cog. We plan to relax this restriction following a similar idea to the one
proposed in [51], where instead of having just one group associated to a variable,
it is possible to have a set of groups. Third, we want to deal with runtime mis-
behaviours, like deadlocks or livelocks. The idea is to use group information to
analyse dependencies between groups. We take inspiration from [50].

Part II

Safe Communication by Encoding

57

Introduction to Part II

In complex distributed systems, participants willing to communicate should pre-
viously agree on a protocol to follow. The specified protocol describes the types
of messages that are exchanged as well as their direction. In this context, session
types came into play. Session types are a formalism proposed as a foundation
to describe and model structured-communication based programming. They were
originally introduced in [57,104] and later in [58] for a polyadic π-calculus, which
is the most successful setting. After that, session types have been developed for
various paradigms, like (multi-threaded) functional programming [49, 108, 111],
component-based object systems [107], object-oriented languages [18,40–42,47],
Web Services and Contracts, W3C-CDL a language for choreography [21,88] etc.

Since their appearance, many extensions have been made to session types.
An important research direction is the one that brings from dyadic or binary ses-
sions types [38, 57, 58, 104, 109, 118], describing communication between only
two participants, to multiparty session types [10, 59], where the number of par-
ticipants can be greater than just two, or where the number of participants can
be variable, namely participants can dynamically join and leave [37] or to chore-
ographies [21, 88]. In dyadic session types, different typing features have been
added. Subtyping relation for (recursive) session types is added in [48]. Bounded
polymorphism is added in [45] as a further extension to subtyping, and parametric
polymorphism is added in [15]. The authors in [89] add higher-order primitives in
order to allow not only the mobility of channels but also the mobility of processes.

Session types describe a protocol as a type abstraction, guaranteeing privacy,
communication safety and session fidelity. Privacy requires that the session chan-
nel is owned only by the communicating parties. Communication safety is an ex-
tension to a structured sequence of interactions of the standard type safety property
in the (polyadic) π-calculus: it is the requirement that the exchanged data have the
expected type. Instead, session fidelity is a typical property of sessions and is the
requirement that the session channel has the expected structure.

Session types are defined as a sequence of input and output operations, explic-
itly indicating the types of messages being transmitted. However, they offer more
flexibility than just performing inputs and outputs: they permit choice, internal

59

60

and external one. Branch and select are typical type (and also term) constructs in
the theory of session types, the former being the offering of a set of alternatives
and the latter being the selection of one of the possible options being offered.

A fundamental notion of session types is that of duality. In order to achieve
communication safety, a binary session channel is split by giving rise to two op-
posite endpoints, each of which is owned by one of the interacting participants.
These endpoints are required to have dual behaviour and thus have dual types. So,
duality is a fundamental concept in the theory of session types as it is the ingre-
dient that guarantees communication safety and session fidelity. In order to better
understand session types and the notion of duality, let us consider a simple exam-
ple: a client and a server communicating over a session channel. The endpoints
x and y of the channel are owned by the client and the server, respectively and
should have dual types. If the type of channel endpoint x is

?Int.?Int.!Bool.end

– meaning that the process listening on channel x receives an integer value fol-
lowed by another integer value and then sends back a boolean value – then the
type of channel endpoint y should be

!Int.!Int.?Bool.end

– meaning that the process listening on channel y sends an integer value followed
by another integer value and then waits to receive back a boolean value – which
is the dual type. As shown in the next chapter, term constructs like (νxy), are
added to the syntax of processes and are used to create the endpoints of a session
channel, on which the duality relation is then checked.

Another important feature related to session types is that of session channel
transmission, namely delegation, where a session endpoint is send to a participant,
for the latter to carry out the session.

Session types and session primitives are added to the syntax of standard π-
calculus types and terms, respectively. In doing so, sessions give rise to additional
separate syntactic categories. Hence, the syntax of types need to be split into
separate syntactic categories, one for session types and the other for standard π-
calculus types [48, 58, 104, 118] (this often introduces a duplication in the typing
contexts, as well).

In this part of the thesis we try to understand to which extent this redundancy
is necessary, in the light of the following similarities between session constructs
and standard π-calculus constructs.

Consider the session type previously mentioned: ?Int.?Int.!Bool.end. This
type assigned to a session channel endpoint describes a structured sequence of
inputs and outputs by specifying the type of messages that it can transmit. This

61

recalls the linearised channels [72], which are channels used multiple times for
communication but only in a sequential manner. Linearised types can be encoded,
as shown in [72], into linear types –i.e., channel types used exactly once and
recursive types. Differently from session types, linearised channel types have the
same carried type (or payload) and the same direction of communication.

Let us now consider branch and select. These constructs added on both the
syntax of types and of processes give more flexibility by offering and selecting a
range of possibilities. This brings in mind an already existing type construct in
the typed π- calculus, namely the variant type and the case process [99, 101].

Other analogies between session types and π-types concern session creation
and duality. Session creation is modelled via the restriction construct, used to
create and bind a new private session channel. Duality describes the split of be-
haviour of session channel endpoints. This reminds us of the split of capabilities:
once a new channel is created, it can be used by two communicating processes by
owning the opposite capabilities.

The goal of this work is to investigate further the relation between session
types and standard π-types and to understand the expressive power of session
types and to which extent they are more sophisticated and complex than standard
π- calculus types. There is a plethora of papers on session types in which ses-
sion types are always taken as primitives. However, by following Kobayashi [71],
we define an encoding of session types into standard π-types and by exploiting
this encoding, session types and their theory are shown to be derivable from the
well-known theory of the typed π-calculus. For instance, basic properties such as
subject reduction and type safety in session types become straightforward corol-
laries of the encoding and the corresponding properties in the typed π-calculus.

Intuitively, a session channel is interpreted as a linear channel transmitting a
pair consisting of the original payload and a new linear channel which is going
to be used for the continuation of the communication. The contribution of this
encoding is meant to be foundational: we show that it does permit to derive session
types and their basic properties; and in the next Part of the thesis, we show that it
is robust, by examining some extensions of session types.

While the encoding first introduced by Kobayashi was generally known, its
strength, robustness, and practical impact were not. Probably, the reasons for this
are the following:

(a) Kobayashi did not prove any properties of the encoding and did not investi-
gate its robustness;

(b) as certain key features of session types do not clearly show up in the encod-
ing, the faithfulness of the encoding was unclear.

A good example for (b) is duality. In the encoding, dual session types for example,

62

the branch type and the select type, are mapped using the same type for example,
the variant type. Basically, dual session types will be mapped onto linear types
that are identical except for the outermost I/O tag – duality on session types boils
down to the duality between input and output capability of channels.

Roadmap to Part II The rest of Part II is structured as follows. Chapter 4
gives a detailed overview on the standard π- calculus. Chapter 5 gives a detailed
overview on the π-calculus with sessions. These chapters introduce both the stat-
ics and the dynamics of the calculi. Chapter 6 presents the encoding of both
session types and session processes and gives the theoretical results that follow
from the encoding.

Chapter 4

Background on π-Types

In this chapter we present the standard typed polyadic π- calculus [83–85, 101].
We start by giving the syntax of terms and the operational semantics, then we
introduce the syntax of types and the typing rules.

4.1 Syntax

P,Q ::= x!〈ṽ〉.P (output)
x?(ỹ).P (input)
if v then P else Q (conditional)
P | Q (composition)
0 (inaction)
(νx)P (channel restriction)
case v of {li xi . Pi}i∈I (case)

v ::= x (variable)
true | false (boolean values)
l v (variant value)

Figure 4.1: Syntax of the standard π-calculus

The syntax of the standard polyadic π- calculus is given in Fig. 4.1. Let P,Q
range over processes, x, y over variables, l over labels and v over values, i.e.,
variables, boolean values (and possibly other ground values like integers, strings
etc.) and variant values, which are labelled values. For our purposes, we adopt the
polyadic π-calculus where a tuple of values denoted by ṽ can be sent and replaces
a tuple of variables ỹ. We denote with ·̃ an ordered sequence of elements “·”.

The output process x!〈ṽ〉.P sends a tuple of values ṽ on channel x and proceeds
as process P; the input process x?(ỹ).P performs the opposite operation, it receives

63

64 CHAPTER 4. BACKGROUND ON π-TYPES

on channel x a tuple of values and substitutes them for the placeholders ỹ in P.
The process if v then P else Q is the standard one. The process P | Q is the
parallel composition of processes P,Q. The process 0 is the terminated process.
The process (νx)P creates a new variable x and binds it with scope P. The process
case v of {li xi .Pi}i∈I offers different behaviours depending on the (labelled) value
v. Labels li for all i in some set I are all different, and their order is not important.

We say that a process is prefixed in a variable x, if it is either of the form x!〈v〉.P
or of the form x?(y).P. For simplicity, we will avoid triggering the terminated
process, so we will omit 0 from processes in the remainder of the thesis. We
use fv(P) to denote the set of free variables in P, bv(P) to denote the bound ones
and vars(P) = fv(P) ∪ bv(P) to denote the set of all variables in P. The bound
variables are: in (νx)P variable x is bound in P, in x?(y).P variable y is bound
in P and in case v of {li xi . Pi}i∈I every variable xi is bound in Pi. If not under
the previous cases, then the variable is a free one. We will use substitution and
alpha-conversion as defined in [101]. We use P[x/y] to denote process P where
every occurrence of the free variable y is substituted by variable x. Substitution
is coupled with avoiding the unintended variable capture by the binders of the
calculus. In order to achieve this, the alpha-conversion of variables is performed,
which performs a renaming of bound variables in a process.

Definition 4.1.1 (Alpha-convertibility and Substitution). The following give a
procedure for substituting and renaming variables in a process.

1. If a variable x does not occur in a process P, then P[x/y] is the process
obtained by replacing every occurrence of y by x in P.

2. An alpha conversion of the bound variables in a process P is the replace-
ment of a subterm

• x?(y).Q by x?(w).Q[w/y] or

• (νy)Q by (νw)Q[w/y] or

• case v of {li yi . Qi}i∈I by case v of {li wi . Qi[wi/yi]}i∈I

where in each case w does not occur in Q or any wi does not occur in Qi.

3. Processes P and Q are alpha-convertible P =α Q if Q can be obtained from
P by a finite number of changes in the bound variables.

However, in this work we adopt the Barendregt variable convention, namely
that all variables in bindings in any mathematical context are pairwise distinct and
distinct from the free variables.

4.2. SEMANTICS 65

P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)

P | 0 ≡ P
(νx)0 ≡ 0

(νx)(νy)P ≡ (νy)(νx)P
(νx)P | Q ≡ (νx)(P | Q) (x < fv(Q))

Figure 4.2: Structural congruence for the standard π-calculus

P = P
P = Q implies Q = P
P = Q and Q = R implies P = R
P = Q implies C[P] = C[Q]

Figure 4.3: Rules for equational reasoning

4.2 Semantics

Before presenting the operational semantics, we introduce the notion of structural
congruence ≡ for the standard π- calculus as defined in [101]. It is the smallest
congruence relation on processes that satisfies the following axioms.

The first three axioms state respectively that the parallel composition of pro-
cesses is commutative, associative and uses process 0 as the neutral element. The
last three axioms state respectively that one can safely add or remove any restric-
tion to the terminated process, the order of restrictions is not important and the
last one called scope extrusion states that one can extend the scope of the restric-
tion to another process in parallel as long as the restricted variable is not present
in the new process included in the restriction, side condition x < fv(Q). By the
convention of names adopted, this side condition is redundant, However, for more
clarity, we report the condition as part of the last axiom.

Since ≡ is a congruence, it means that it is closed under every context C, where
informally a context is a process with a hole. Hence, in addition to the axioms
presented in Fig. 4.2, we also need the rules in Fig. 4.3 for equational reasoning,
where we read = as ≡.

The operational semantics of the standard π- calculus is given in Fig 4.4. It
is a binary reduction relation → defined over processes. We use →∗ to denote
the reflexive and transitive closure of →. We call a redex a process of the form
(x!〈ṽ〉.P | x?(ỹ).Q). Rule (Rπ-Com) is the communication rule: the process on the
left sends a tuple of values ṽ on x, while the process on the right receives the values
and substitutes them for the placeholders in ỹ. Rule (Rπ- Case), is also called a

66 CHAPTER 4. BACKGROUND ON π-TYPES

(Rπ-Com) x!〈ṽ〉.P | x?(ỹ).Q→ P | Q[ṽ/ỹ]

(Rπ-Case) case l j v of {li xi . Pi}i∈I → P j[v/x j] j ∈ I

(Rπ-IfT) if true then P else Q→ P

(Rπ-IfF) if false then P else Q→ Q

(Rπ-Res)

P→ Q

(νx)P→ (νx)Q

(Rπ-Par)

P→ P′

P | Q→ P′ | Q

(Rπ-Struct)

P ≡ P′, P′ → Q′, Q′ ≡ Q

P→ Q

Figure 4.4: Semantics of the standard π-calculus

case normalisation since it does not require a counterpart to reduce. The case
process reduces to P j substituting x j with the value v, if the label l j is selected.
This label should be among the offered labels, namely j ∈ I. Rules (Rπ- IfT) and
(Rπ- IfF) state that the conditional process if v then P else Q reduces either to P
or to Q depending on whether the value v is true or false, respectively. Rules
(Rπ-Res) and (Rπ-Par) state that communication can happen under restriction and
parallel composition, respectively. Rule (Rπ-Struct) is the standard one, stating
that reduction can happen under the structural congruence, previously introduced.

4.3 π-Types

τ ::= `i [T̃] (linear input)
`o [T̃] (linear output)
`] [T̃] (linear connection)
∅[T̃] (no capability)
· · · (other channel types)

T ::= τ (channel type)
〈li Ti〉i∈I (variant type)
Bool (boolean type)
· · · (other type constructs)

Figure 4.5: Syntax of linear π-types

4.4. π-TYPING RULES 67

The syntax of linear π-types is given in Fig. 4.5. Let α, β range over actions or
capabilities, being ‘i’ input, ‘o’ output or ‘]’ connection. Let τ range over channel
types and T range over types. Linear types are `i [T̃], `o [T̃] and `] [T̃]. These
types specify both the capability and the multiplicity of a channel i.e., how the
channel should be used and for how many times. In particular, type `i [T̃] is the
type assigned to a channel that can be used exactly once for receiving a sequence
of values of types T̃ ; type `o [T̃] is the type assigned to a channel that can be used
exactly once for sending a sequence of values of types T̃ , and type `] [T̃] is the
type assigned to a channel that can be used exactly once for receiving and once for
sending a sequence of values of types T̃ . The capability] denotes the combination
of i and o capabilities. In addition, we denote with ∅[T̃] the type of a channel
with no capabilities, namely a channel that cannot be used for communication at
all. Types include channel types τ; the variant type 〈li Ti〉i∈I and Bool type. The
variant type is a labelled form of disjoint union of types. The labels ranging in a set
I are all distinct. The order of the components does not matter. The Bool type is
the type assigned to boolean values, true and false. We include only the Bool
type just for simplicity. One can add to the syntax of types any other standard
constructs of the π- calculus. For example, other ground types like Int, String
etc., or non-linear channel types that can be used an unbounded number of times
(see [101]). We will use these types in examples.

In order to better understand linearity in the linear π-calculus, we present the
following simple examples. If x and y have types `o [T] and `i [S] respectively,
then the following processes:

x!〈v〉.P y?(z).Q

respect linearity of x and y, if x < fv(P) and y < fv(Q). Instead, the processes:

x!〈v〉.P | x!〈w〉.Q x!〈v〉.x!〈w〉.R

do not respect linearity of x since it is used twice to send a value v and value w.

4.4 π-Typing Rules
A typing context is a partial function from variables to types and is defined as
follows:

Γ ::= ∅ | Γ, x : T

The predicates lin and un on the standard π-types are defined as follows:

lin(T) if T = `α [T̃] or
(
T = 〈li Ti〉i∈I and for some j ∈ I. lin(T j)

)
un(T) otherwise

68 CHAPTER 4. BACKGROUND ON π-TYPES

Combination of π-types

`i [T̃]] `o [T̃] , `] [T̃]
T] T , T if un(T)
T] S , undef otherwise

Combination of typing contexts

(
Γ1] Γ2

)
(x) ,

Γ1(x)] Γ2(x) if both Γ1(x) and Γ2(x) are defined
Γ1(x) if Γ1(x), but not Γ2(x), is defined
Γ2(x) if Γ2(x), but not Γ1(x), is defined
undef if both Γ1(x) and Γ2(x) are undefined

Figure 4.6: Combination of π-types and typing contexts

A type is linear if it is a linear channel type or if it is a variant type containing
a linear type in at least one of its branches; otherwise it is unrestricted. These
predicates are extended to typing contexts in the expected way:

lin(Γ) if there is (x : T) ∈ Γ, such that lin(T)
un(Γ) otherwise

We define the combination of types and of typing contexts in Fig. 4.6. We use]
to denote the operator of combination. This operator is associative and hence we
do not use brackets. The combination of linear types states that a linear input type
combined with a linear output type results in a linear connection type, whenever
the tuple of carried types is the same. The combination of unrestricted types is
defined only if the two types combined are the same, otherwise it is undefined.
Notice that, in particular the unrestricted combination gives ∅[T̃]] ∅[T̃] , ∅[T̃].
The combination of typing contexts is defined by following the same line as that
of combination of types. The type of a variable x in Γ1] Γ2 is the combination of
the type of x in Γ1 and the type of x in Γ2 if x is both in Γ1 and Γ2; otherwise, it is
the type assumed either in Γ1 or in Γ2, where defined, otherwise the combination
is undefined. The combination of typing contexts Γ1] Γ2 is extended to a tuple of
typing contexts Γ1] · · ·] Γn and we denote this for simplicity as Γ̃.

We define the duality of π- types to be simply the duality on the capability of
the channel. Formally, it is defined in Fig 4.7.

Typing judgements are of the following two forms: Γ ` v : T stating that value
v is of type T in the typing context Γ; and Γ ` P stating that process P is well
typed in the typing context Γ.

4.4. π-TYPING RULES 69

`i [T̃] = `o [T̃]

`o [T̃] = `i [T̃]

∅[T̃] = ∅[T̃]

Figure 4.7: Type duality for linear π-types

The typing rules for the linear π-calculus are given in Fig 4.8. Rule (Tπ-Var)
states that a variable is of type the one assumed in the typing context. Moreover,
the typing context contains only unrestricted type assumptions. Rule (Tπ- Val)
states that a boolean value, either true or false, is of type Bool. Again, the typ-
ing context contains only unrestricted type assumptions. Rule (Tπ- Inact) states
that the terminated process 0 is well typed in every unrestricted typing context.
Rule (Tπ-Par) states that the parallel composition of two processes is well typed
in the combination of typing contexts that are used to typecheck each of the pro-
cesses. There are two typing rules for the restriction process, rule (Tπ-Res1) and
rule (Tπ- Res2). Rule (Tπ- Res1) states that the restriction process (νx)P is well
typed if process P is well typed under the same typing context augmented with
x : `] [T̃]. Since the type assumption on variable x is needed to type P and it
is a linear channel type, it means that x is free in P. Rule (Tπ- Res2) states that
the restriction (νx)P is well typed if P is well typed and variable x is not used for
communication in P. This rule is needed in the standard π-calculus to prove sub-
ject reduction stated by Theorem (see [101]). Moreover, this rule is also needed
in our encoding that we present in Chapter 6. Rule (Tπ-If) is standard, except for
the combination of typing contexts. Note that both branches of the conditional are
typed in the same typing context, since only one of the branches will be chosen.
Rules (Tπ- Inp) and (Tπ- Out) state that the input and output processes are well
typed if x is a linear channel used in input and output, respectively and the carried
types are compatible with the types of ỹ and ṽ. Note that Γ̃2 is the combination
of all the typing contexts used to type ṽ. Rule (Tπ- LVal) states that the variant
value l j v is of type variant 〈li Ti〉i∈I if v is of type T j and j is in I. Rule (Tπ-Case)
states that process case v of {li xi .Pi}i∈I is well typed if the value v has compatible
variant type and every process Pi is well typed assuming xi has type Ti. Notice
that the case process, in the same way as for the conditional one, uses only one
typing context to type its branches. Again, this does not violate linearity, since
only one of the branches is going to be executed.

70 CHAPTER 4. BACKGROUND ON π-TYPES

un(Γ)
(Tπ-Var)

Γ, x : T ` x : T

un(Γ) v = true / false
(Tπ-Val)

Γ ` v : Bool

un(Γ)
(Tπ-Inact)

Γ ` 0

Γ1 ` P Γ2 ` Q
(Tπ-Par)

Γ1] Γ2 ` P | Q

Γ, x : `] [T̃] ` P
(Tπ-Res1)

Γ ` (νx)P

Γ1 ` v : Bool Γ2 ` P Γ2 ` Q
(Tπ-If)

Γ1] Γ2 ` if v then P else Q

Γ, x : ∅[] ` P
(Tπ-Res2)

Γ ` (νx)P

Γ1 ` x : `i [T̃] Γ2, ỹ : T̃ ` P
(Tπ-Inp)

Γ1] Γ2 ` x?(ỹ).P

Γ1 ` x : `o [T̃] Γ̃2 ` ṽ : T̃ Γ3 ` P
(Tπ-Out)

Γ1] Γ̃2] Γ3 ` x!〈ṽ〉.P

Γ ` v : T j j ∈ I
(Tπ-LVal)

Γ ` l j v : 〈li Ti〉i∈I

Γ1 ` v : 〈li Ti〉i∈I Γ2, xi : Ti ` Pi ∀i ∈ I
(Tπ-Case)

Γ1] Γ2 ` case v of {li xi . Pi}i∈I

Figure 4.8: Typing rules for the standard π-calculus

4.5. MAIN RESULTS 71

4.5 Main Results
In this section we recall the main result for the linear π- calculus. We start with
the definition of closed typing context.

Definition 4.5.1 (Closed Typing Context). A typing context Γ is closed if for all
x ∈ dom(Γ), then Γ(x) , `] [T̃].

In the following we give the substitution lemma for the linear π-calculus and
the unrestricted weakening and strengthening lemmas.

Lemma 4.5.2 (Substitution Lemma for Linear π-Calculus). Let Γ, x : T ` P, and
let Γ] Γ′ be defined and Γ′ ` v : T . Then, Γ] Γ′ ` P[v/x].

Lemma 4.5.3 (Unrestricted Weakening in Linear π- Calculus). If Γ ` P, then
Γ, x : T ` P, for all x < fv(P) and un(T).

Lemma 4.5.4 (Strengthening in Linear π-Calculus). If Γ, x : T ` P and x < fv(P)
and un(T), then Γ ` P.

The following lemma states the type preservation of a linear process under
structural congruence.

Lemma 4.5.5 (Type Preservation under ≡ for Linear π-Calculus). Let Γ ` P and
P ≡ P′, then Γ ` P′.

As often in the literature, in order to prove type soundness, we show first the
subject reduction (or type preservation under reduction) and the type safety as
stated in [97]. We start with subject reduction.

Theorem 4.5.6 (Subject Reduction for Linear π- Calculus). Let Γ be a closed
linear typing context. If Γ ` P and P→ P′, then Γ ` P′.

By the statement of subject reduction for linear π- calculus, since the typing
context is closed (it has no linear channel owning both capabilities), this means
that, P reduces to P′ either by a case normalisation or by a conditional reduction
or if case a communication occurs, then it is a communication on a restricted
channel which owns both capabilities of input and output. Reduction rules under
a context are a generalisation of the above.

In the following we give the definition of well-formed processes, which is
also present in the π- calculus with session types. The notion of well-formed
processes is in opposition to that of ill-formed processes. The ill-formed processes
fall in three different categories: i) conditional processes whose guard is neither
true nor false, like if x then P else Q; ii) case processes whose guard is not
a variant value, like case x of {li xi . Pi}i∈I; and iii) two threads, each owning the
same variable and using it with the same capability, like (νx)(x?(z) | x?(z)).

72 CHAPTER 4. BACKGROUND ON π-TYPES

Definition 4.5.7 (Well-Formedness for Linear π- Calculus). A process is well
formed if for any of its structural congruent processes of the form (νx̃)(P | Q)
the following hold.

• If P is of the form if v then P1 else P2, then v is either true or false.

• If P is of the form case v of {li xi . Pi}i∈I , then v is l j w for some variable w
and for j ∈ I.

• If P is prefixed in xi and Q is prefixed in xi where xi ∈ x̃, then P | Q is a
redex.

After the definition of well-formedness of a process, we are now ready to state
the type safety property for the linear π-calculus.

Theorem 4.5.8 (Type Safety for Linear π-Calculus). If ` P, then P is well formed.

The following theorem states that a well-typed closed process does not reduce
to an ill-formed one.

Theorem 4.5.9 (Type Soundness for Linear π- Calculus). If ` P and P →∗ Q,
then Q is well formed.

Notice that this is one way of presenting the type soundness in the standard
typed π-calculus. Another way would be by introducing the notion of wrong and
extending the operational semantics with reductions to wrong and stating the type
soundness as “well-typed programs do not go wrong”. This is shown in [101].

Chapter 5

Background on Session Types

We start this chapter with an example, the “Distributed Auction System” taken
from [110].

Example 5.0.10. Distributed Auction System
There are three roles in this scenario: sellers that want to sell their items,

auctioneers that are responsible for selling the items on behalf of the sellers and
bidders that bid for the items being auctioned. We describe now the protocols of
the three roles. We will use meaningful names starting in capital letter to denote
types for values, like Item, Price etc. We describe first the protocol for sellers.
The only operation that a seller performs towards an auctioneer is selling, by first
sending to the auctioneer the kind of the item that he wants to sell and the price
that he wants the item to be sold. Then, the seller waits a for a reply from the
auctioneer, which in case the item is sold, sends to the seller the price otherwise
if the item is not sold, terminates the communication. However, in both cases the
communication terminates. Formally we have:

Seller: ⊕ {selling : !Item.!Price.&{sold : ?Price.end, not : end}}

As previously, ? and ! denote, input and output actions, respectively; whether,
& and ⊕ denote external and internal choices, receptively, which are branch and
select. Names in italics selling, sold, not indicate the labels of the choices. Item
is the type of the items, which abstractly can be a string or an identifier denoted
by a number etc. Price is the type of the price and generally can be an integer.

We now show the protocol for the auctioneers. An auctioneer communicates
with both sellers and bidders, so its session type is as follows:

Auctioneer: &{selling : ?Item.?Price. ⊕ {sold : !Price.end, not : end},
register : ?Id.!Item.!Price.?Bid.end}

73

74 CHAPTER 5. BACKGROUND ON SESSION TYPES

The auctioneer offers a choice to the seller by the selling label: it receives from the
seller the kind of item to be sold and the price and then, if the auctioneer manages
to sell the item, he sends back to the seller the price to which the item was sold,
if not, the communication ends. We can easily see the duality between the type of
the seller and the selling branch of the auctioneer’s session type.

⊕{selling : !Item.!Price.&{sold : ?Price.end, not : end} . . .}
&{selling : ?Item.?Price. ⊕ {sold : !Price.end, not : end}}

The auctioneer offers a choice to the bidder by the register branch. Id is the
type of the identity of the bidder, which abstractly can be an identity string or an
identity number. Bid is the type of price that the bidder can offer for the item
being auctioned. The register branch will be clearer once we describe the bidders
protocol. Formally we have:

Bidder: ⊕ {register : !Id.?Item.?Price.!Bid.end}

This means that a bidder selects the register branch, which is the only branch avail-
able in its internal choice operator, and sends to the auctioneer his identity, which
abstractly can be a string or a number etc. Then he receives from the auctioneer
the item being auctioned and its price. Before terminating the communication, the
bidder sends to the auctioneer his bid. Again, there is duality between the register
branch of the auctioneer’s session type and the type of the bidder.

&{. . . , register : ?Id.!Item.!Price.?Bid.end}
⊕{register : !Id.?Item.?Price.!Bid.end}

So, summing it up we have the following situation:

Auctioneer: &{selling : . . . , register : . . .}
Seller: ⊕{selling : . . .}

Bidder: ⊕{register : . . .}

Notice that, the above session types are not dual with each other, because the
auctioneer’s session type has one branch more than the seller’s and the bidder’s
session type. However, by using subtyping, which we will introduce in Chapter 7,
one can safely extend the types for seller and bidder to also include the missing
branch, by thus establishing duality.

This example involves three participants and uses multiparty session types in
order to illustrate their expressiveness; however, in our formal development we
focus on dyadic session types.

5.1. SYNTAX 75

P,Q ::= x!〈v〉.P (output)
x?(y).P (input)
x / l j.P (selection)
x . {li : Pi}i∈I (branching)
if v then P else Q (conditional)
P | Q (composition)
0 (inaction)
(νxy)P (session restriction)

v ::= x (variable)
true | false (boolean values)

Figure 5.1: Syntax of the π-calculus with sessions

5.1 Syntax

The syntax of the π-calculus with sessions is given in Fig. 5.1. Let P,Q range
over processes, x, y over variables, v over values, i.e., variables and ground values
(integers, booleans, strings) and l over labels. For simplicity, we include in the
present syntax only the boolean values, true and false. However, other ground
values can be added to the above syntax and often in examples we will use them.
The output process x!〈v〉.P sends a value v on channel x and proceeds as process
P; the input process x?(y).P receives a value on channel x, stores it in variable y
and proceeds as P. The process x / l j.P selects label l j on channel x and proceeds
as P. The branching process x . {li : Pi}i∈I offers a range of labelled alterna-
tives on channel x, followed by their respective process continuations. Branching
and selection indicate the external and the eternal choice, respectively. The or-
der of labelled processes is not important and the labels are all different. Process
if v then P else Q is the standard conditional process. Process P | Q is the par-
allel composition of processes P,Q. Process 0 is the terminated process. Process
(νxy)P restrict variables x, y with scope P. This restriction is different from the
standard one in the π-calculus. It states that variables x and y are bound with scope
P, and most importantly, are bound together, by representing two endpoints of the
same (session) channel. When occurring under the same restriction, x and y are
called co-variables. Some notational comments follow. We say that a process is
prefixed in a variable x, if it is of the form x!〈v〉.P, x?(y).P, x / l j.P, orx . {li : Pi}i∈I .
For simplicity, we will avoid triggering the terminated process, so we will omit 0
from any process in the examples to follow. The parenthesis in the terms repre-
sent bindings, in particular in (νxy)P both variables x and y are bound with scope
P; and in x?(y).P variable y is bound with scope P. A variable can be bound or
free, the latter holds when the variable does not occur under a restriction or as the

76 CHAPTER 5. BACKGROUND ON SESSION TYPES

P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R)

P | 0 ≡ P
(νxy)0 ≡ 0

(νxy)(νzw)P ≡ (νzw)(νxy)P
(νxy)P | Q ≡ (νxy)(P | Q) (x, y < fv(Q))

Figure 5.2: Structural congruence for the π-calculus with sessions

object of an input process. We denote with bv(P) the set of bound variables of
process P and with fv(P) we denote the set of free variables of process P. Hence,
we use vars(P) = bv(P) ∪ fv(P) to denote the set of variables in P. We will use
alpha-conversion and substitution which are defined in the same way as for the
standard π-calculus [101]. We use P[x/y] as a notation for process P where every
occurrence of the free variable y is substituted by variable x. As usual in the π-
calculus, substitution is coupled with alpha-conversion to avoid the unintended
capture of variables by the binders of the calculus.

Definition 5.1.1 (Alpha-convertibility and Substitution). The following give a
procedure for substituting and renaming variables in a process.

1. If a variable x does not occur in a process P, then P[x/y] is the process
obtained by replacing every occurrence of y by x in P.

2. An alpha conversion of the bound variables in a process P is the replace-
ment of a subterm x?(y).Q by x?(w).Q[w/y] or of a subterm (νxy)Q by
(νwy)Q[w/x] or by (νxw)Q[w/y] such that w does not occur in Q.

3. Processes P and Q are alpha-convertible P =α Q if Q can be obtained from
P by a finite number of changes in the bound variables.

In this work, we adopt the same variable convention as in the original pa-
per [109], namely that all variables in bindings in any mathematical context are
pairwise distinct and distinct from the free variables.

5.2 Semantics
Before presenting the operational semantics, we introduce the notion of structural
congruence ≡ which is the smallest congruence relation on session processes that
satisfies the axioms in Fig. 5.2. The first three axioms state that the parallel com-
position of processes is commutative, associative and uses process 0 as the neutral

5.2. SEMANTICS 77

(R-Com) (νxy)(x!〈v〉.P | y?(z).Q | R)→ (νxy)(P | Q[v/z] | R)

(R-Sel) (νxy)(x / l j.P | y . {li : Pi}i∈I | R)→ (νxy)(P | P j | R) j ∈ I

(R-IfT) if true then P else Q→ P

(R-IfF) if false then P else Q→ Q

(R-Res)

P→ Q

(νxy)P→ (νxy)Q

(R-Par)

P→ P′

P | Q→ P′ | Q

(R-Struct)

P ≡ P′, P′ → Q′, Q′ ≡ Q

P→ Q

Figure 5.3: Semantics of the π-calculus with sessions

element. The last three axioms state that one can safely add or remove any restric-
tion to the terminated process, the order of restrictions is not important and the last
one called scope extrusion states that one can extend the scope of the restriction
to another process in parallel. Notice that, as stated in [109], the side condition
x, y < fv(Q) is redundant, since in this calculus we adopt the variable convention
that prohibits x, y to be free in Q since they occur bound in P. However, for more
clarity, we report the condition as part of the last axiom. As for the standard π-
calculus, we need the rules for equational reasoning. They are the same as the
ones given in Section 4.2.

The semantics of the π-calculus with sessions is given in terms of the reduc-
tion relation →, which is a binary relation over processes, and it is defined by
the rules in Fig. 5.3. We denote with →∗ the reflexive and transitive closure of
→. We call redexes processes of the form (νxy)(x!〈v〉.P | y?(z).Q) or of the form
(νxy)(x/l j.P | y.{li : Pi}i∈I), for j ∈ I. Rule (R-Com) is the rule for communication:
the process on the left sends a value v on x, while the process on the right receives
the value on y and substitutes the placeholder z with it. A key difference wrt the
standard π-calculus is that the subject of the output (x) and the subject of the input
(y) are two co-variables, created and bound together by (νxy). As a consequence,
communication occurs only on bound variables. After the communication the re-
striction still persists in order to enable further possible communications. Process
R collects other usages of variables x and y. Rule (R-Sel) is similar: the commu-
nicating processes have prefixes that are co-variables according to the restriction
(νxy). The selecting process continues as P and the branching process continues

78 CHAPTER 5. BACKGROUND ON SESSION TYPES

q ::= lin | un (qualifiers)
p ::= !T.U (send)

?T.U (receive)
⊕{li : Ti}i∈I (select)
&{li : Ti}i∈I (branch)

T ::= qp (qualified pretype)
end (termination)
Bool (boolean type)

Figure 5.4: Syntax of session types

as P j where j is the selected label. Again, notice that communication occurs only
on bound variables and the restriction persists after reduction in order to enable
further communications. Process R collects other usages of variables x and y.
Rules (R-IfT) and (R-IfF) state that the conditional process if v then P else Q
reduces either to P or to Q depending on whether the value v is true or false,
respectively. Rules (R-Res) and (R-Par) state that communication can happen
under restriction and parallel composition, respectively. Rule (R-Struct) is the
structural rule. It states that reduction is closed under structural congruence.

5.3 Session Types

The syntax of session types is given in Fig. 5.4. Let q range over type qualifiers,
p over pretypes, qp over qualified pretypes, and T,U over types. A type can
be Bool, the type of boolean values, end, the type of the terminated channel
where no communication can take place further and qp, the qualified pretype.
A pretype can be !T.U or ?T.U, which respectively, is the type of sending or
receiving a value of type T with continuation of type U. Select ⊕{li : Ti}i∈I and
branch &{li : Ti}i∈I are sets of labelled types indicating, respectively, internal and
external choice. The labels are all different and the order of the labelled types
does not matter. Qualifiers are lin (for linear) or un (for unrestricted) and have the
following meaning. Linear qualified pretypes describe channels whose pretype is
executed exactly once, or said differently describe channels that are used exactly
once in one thread, the latter being any process not including parallel composition.
On the contrary, the unrestricted qualifier is used for channels that can be used an
unlimited number of times in parallel. In the rest of this thesis, we refer to types
T whose qualifier is lin as session types. Instead, we refer to the unrestricted ones
as shared channel types. In the rest of the work, we assume that the qualifier lin is
used for every pretype unless it is stated otherwise.

5.4. SESSION TYPING RULES 79

end , end

q!T.U , q?T.U
q?T.U , q!T.U

q ⊕ {li : Ti}i∈I , q&{li : T i}i∈I

q&{li : Ti}i∈I , q ⊕ {li : T i}i∈I

Figure 5.5: Type duality for session types

The following predicates state when a type is linear or unrestricted.

lin(T) if T = lin p
un(T) otherwise

A key notion in session types is duality. Type duality is standard, as in seminal
works [58, 109], and is defined in Fig 5.5. Qualifiers do not influence duality of
types. The dual of the terminated channel type is itself. The dual of an input type
is an output type and vice versa, and the dual of a branch type is a select type and
vice versa. Duality is undefined otherwise. For example, duality is not defined on
Bool. If we include other ground types to the syntax above, like Int or String,
duality would not be defined on them either. This is standard in session types
theory and the reason for this is that if Bool = Bool, then as stated in [109], the
following process would be typable.

(νxy) if x then 0 else 0

Trivially, we do not want this to be the case. To conclude, duality satisfies the

convolution property, namely T = T .

5.4 Session Typing Rules
The syntax of typing contexts is defined as follows:

Γ ::= ∅ | Γ, x : T

As usual, we consider the typing context Γ to be a partial function from variables
to types. Therefore, we write Γ,Γ′ only when Γ and Γ′ have disjoint domains.

Typing rules make use of context split and context update defined in Fig. 5.6.
The context split operator ‘◦’ adds a linear type linp to either Γ1 or Γ2, when Γ1◦Γ2

is defined. When linp is added to Γ1 it is not present in Γ2 and vice versa, when
it is added to Γ2 it is not present in Γ1. If un(T), then it is possible to add this
type to both Γ1 and Γ2. The context update operator ‘+’ is used to update the type

80 CHAPTER 5. BACKGROUND ON SESSION TYPES

Context split

∅ = ∅ ◦ ∅

Γ = Γ1 ◦ Γ2 un(T)

Γ, x : T = (Γ1, x : T) ◦ (Γ2, x : T)

Γ = Γ1 ◦ Γ2

Γ, x : lin p = (Γ1, x : lin p) ◦ Γ2

Γ = Γ1 ◦ Γ2

Γ, x : lin p = Γ1 ◦ (Γ2, x : lin p)

Context update

x < dom(Γ)

Γ + x : T = Γ, x : T

un(T)

(Γ, x : T) + x : T = Γ, x : T

Figure 5.6: Context split and context update

of a variable with the continuation type in order to enable typing after an input
(or branch) or an output (or select) has occurred. When the typing context Γ is
updated with a variable having linear type, then the variable must not be present
in dom(Γ), otherwise, if the variable is of unrestricted type, then the typing context
is updated only if the type of the variable is the same, namely un(T). We extend
the lin and un predicates to typing contexts in as expected:

lin(Γ) if there is (x : T) ∈ Γ, such that lin(T)
un(Γ) otherwise

The type system for session processes satisfies two invariants. First, linear
channels occur in exactly one thread, and second, co-variables have dual types.
The first invariant is guaranteed by context split operation on typing contexts, and
the second one is guaranteed by the typing rule for restriction. The type system
avoids communication errors such as type mismatches and race conditions.

Typing judgements for values have the form Γ ` v : T , stating that a value v
has type T in the typing context Γ, and typing judgements for processes have the
form Γ ` P, stating that a process P is well typed in the typing context Γ.

The typing rules for the π- calculus with sessions are given in Fig. 5.7. Rule
(T-Var) states that a variable x is of type T , if this is the type assumed in the typing
context. Rule (T-Val) states that a value v, being either true or false, is of type
Bool. Rule (T-Inact) states that the terminated process 0 is always well-typed.
Notice that in all the previous rules, the typing context Γ is an unrestricted one.
The reason for un(Γ) is because every time we have a linearly qualified variable,
that variable has to be used, which is not the case is these rules. Rule (T-Par)

5.4. SESSION TYPING RULES 81

un(Γ)
(T-Var)

Γ, x : T ` x : T

un(Γ) v = true / false
(T-Val)

Γ ` v : Bool

un(Γ)
(T-Inact)

Γ ` 0

Γ1 ` P Γ2 ` Q
(T-Par)

Γ1 ◦ Γ2 ` P | Q

Γ, x : T, y : T ` P
(T-Res)

Γ ` (νxy)P

Γ1 ` v : Bool Γ2 ` P Γ2 ` Q
(T-If)

Γ1 ◦ Γ2 ` if v then P else Q

Γ1 ` x : q?T.U (Γ2 + x : U), y : T ` P
(T-In)

Γ1 ◦ Γ2 ` x?(y).P

Γ1 ` x : q!T.U Γ2 ` v : T Γ3 + x : U ` P
(T-Out)

Γ1 ◦ Γ2 ◦ Γ3 ` x!〈v〉.P

Γ1 ` x : q&{li : Ti}i∈I Γ2 + x : Ti ` Pi ∀i ∈ I
(T-Brch)

Γ1 ◦ Γ2 ` x . {li : Pi}i∈I

Γ1 ` x : q ⊕ {li : Ti}i∈I Γ2 + x : T j ` P j ∈ I
(T-Sel)

Γ1 ◦ Γ2 ` x / l j.P

Figure 5.7: Typing rules for the π-calculus with sessions

82 CHAPTER 5. BACKGROUND ON SESSION TYPES

types the parallel composition of two processes, using the split operator for typing
contexts ◦ which ensures that each linearly-typed channel x, is used linearly, i.e.,
in P | Q, x occurs either in P or in Q but never in both. However, this constraint
is not required in case of unrestricted variables, which by context split definition
can be on both Γ1 and Γ2. Rule (T-Res) states that (νxy)P is well typed if P is well
typed and the co-variables have dual types, namely T and T . Rule (T-If) states
that the conditional statement is well typed if its guard is typed by a boolean type
and the branches are well typed under the same typing context. Γ2 types both P
and Q because only one of the branches is going to be executed. Rules (T-In) and
(T-Out) type, respectively, the receiving and the sending of a value; these rules
deal with both linear and unrestricted types. In (T-In) the typing context is split
in two parts, Γ1 and Γ2, respectively. Γ1 checks x is of type q?T.U, whether Γ2

augmented with y : T states the well-typedness of P. In addition, Γ2 is updated
by x : U which is the type of the continuation of the communication. Notice
that, by the definition of context update, if variable x is linearly qualified, then it
is not in dom(Γ2), otherwise, if it is unrestricted then the update is defined only
if U = q?T.U. Rule (T-Out) splits the typing context in three parts, Γ1, Γ2 and
Γ3, respectively. Γ1 checks x is of type q!T.U, Γ2 checks the value to be sent v is
of correct type T , and Γ3 updated with the continuation type U checks the well-
typedness of P. As in the previous rule, in case q = un the update operation is
defined only if U = un!T.U. Rule (T-Brch) types an external choice on channel
x, checking that each branch continuation Pi follows the respective continuation
type of x. Dually, rule (T-Sel) types an internal choice communicated on channel
x, checking that the chosen label is among the ones offered by the receiver and
that the continuation proceeds as expected by the type of x. In both rules, the
typing context is split in Γ1 ◦ Γ2. Γ1 types the variable x by q&{li : Ti}i∈I and
q ⊕ {li : Ti}i∈I , respectively. In (T-Brch), every Pi process for i ∈ I is well typed
in Γ2 updated with x having type Ti. Since only one of the processes offered in
the branching is going to be chosen, one can safely use only Γ2 to typecheck them
all. In (T-Sel), however, only the process P corresponding to the selected label l j

is typechecked. And again, the typing context Γ2 is updated by the continuation
type T j that variable x has in P. The update of Γ2 in case q = un is defined only if
Ti = un&{li : Ti}i∈I and T j = un ⊕ {li : Ti}i∈I , respectively.

However, all the four equations reported above, for the input rules, (T-Inp) and
(T-Brch) and for the output rules, (T-Out) and (T-Sel), in case variable x has an
unrestricted type, are not solvable by only using the syntax of types presented so
far. For example, consider the process

x!〈true〉 | x!〈false〉

Since x is used in two threads in parallel, it should have an unrestricted type, i.e.,
x : unBool.T . Then, by rule (T-Out) we have x : unBool.T + x : T , which

5.5. MAIN RESULTS 83

obviously is not satisfied by any type produced by the syntax of types presented in
Section 5.3. This means that the only processes typable are the ones that use only
linear channels. However, it will be possible to typecheck the process previously
written by introducing recursive types, as we will see in Chapter 10.

5.5 Main Results
In this section we present the main properties satisfied by the session type system
presented in Fig. 5.7. The following lemmas and theorems are proven in [109].

Weakening allows introduction of new unrestricted channels in a typing con-
text. It holds only for unrestricted channels, for linear ones it would be unsound,
since when a linear channel is in a typing context, this means that it should be
used in the process it types. The weakening lemma is useful when we need to
relax the typing assumptions for a process and include new typing assumptions of
variables not free in the process.

Lemma 5.5.1 (Unrestricted Weakening in Sessions). If Γ ` P and un(T), then
Γ, x : T ` P.

Strengthening is somehow the opposite operation of weakening, since it allows
us to remove unrestricted channels from the typing context that are not free in
the process being typed. This operation is mostly used after a context split is
performed.

Lemma 5.5.2 (Strengthening in Sessions). Let Γ ` P and x < FV(P), then

• x : linp < Γ

• Γ = Γ′, x : T then, Γ′ ` P.

The substitution lemma that follows is important in proving the main results
that we give at the end of the section. Notice that the lemma is not applicable in
case x = v and un(T), since there exists no Γ such that Γ = Γ1◦Γ2 where x : T ∈ Γ1

but x : U < Γ2 for all types U.

Lemma 5.5.3 (Substitution Lemma for Sessions). If Γ1 ` v : T and Γ2, x : T ` P
and Γ = Γ1 ◦ Γ2, then Γ ` P[v/x].

Another important property is the following one, stating the type preservation
of a process under structural congruence.

Lemma 5.5.4 (Type Preservation under ≡ for Sessions). Let Γ ` P and P ≡ P′,
then Γ ` P′.

84 CHAPTER 5. BACKGROUND ON SESSION TYPES

Before giving the type safety and the subject reduction properties, we first give
the definitions of well-formed and ill-formed processes. The ill-formed processes
fall in three different categories: i) conditional processes whose guard is neither
true nor false, like if x then P else Q; ii) two threads using a variable in parallel
with different actions like (x!〈true〉 | x?(z)); and iii) two threads, each owning a
co-variable but using them by not respecting duality, like (νxy)(x?(z) | y / l j.P).
In order to avoid process as the previous ones, [109] defines the notion of well-
formed processes, which we report in the following.

Definition 5.5.5 (Well-Formedness for Sessions). A process is well-formed if for
any of its structural congruent processes of the form (νx̃y)(P | Q) the following
hold.

• If P is of the form if v then P1 else P2, then v is either true or false.

• If P and Q are prefixed at the same variable, then the variable performs the
same action (input or output, branching or selection).

• If P is prefixed in xi and Q is prefixed in yi where xiyi ∈ x̃y, then P | Q is a
redex.

Notice that well-typedness of a process does not imply the process is well
formed. Consider if x then P else Q and x : Bool ` if x then P else Q. This
process is not well formed since x is not a boolean value. However, this is no
longer true when the process is closed, namely it is well typed in an empty typing
context. The following theorem holds and is proven in [109].

Theorem 5.5.6 (Type Safety for Sessions). If ` P, then P is well formed.

Another important result is the subject reduction property, stated by the fol-
lowing theorem.

Theorem 5.5.7 (Subject Reduction for Sessions). If Γ ` P and P → Q, then
Γ ` Q.

Notice that, since communication occurs only on co-variables, if P → Q as a
result of a communication, then it implies that the session channel in which the
communication occurs is restricted and is not in the typing context Γ.

We are ready now to present the main result of the session type system. The
following theorem states that a well-typed closed process does not reduce to an
ill-formed one.

Theorem 5.5.8 (Type Soundness for Sessions). If ` P and P →∗ Q, then Q is
well formed.

Chapter 6

Session Types Revisited

In this chapter we introduce the encoding of session types into linear channel types
and variant types and of session processes into standard π-calculus processes. We
start by giving first the encoding of types and then the encoding of terms.

6.1 Types Encoding
Recall that the syntax of types presented in Section 5.3 uses the notion of qual-
ifiers: lin and un. Linear pretypes denote the standard session types, as known
in the literature, whereas the unrestricted ones can be roughly associated to the
standard π- channels used multiple times in different threads, with the additional
feature of being structured and describing a communication. In this chapter, by
following [32], we present the encoding of session types into linear π- types aug-
mented with variant type. We will define the encoding of the unrestricted pretypes
in Chapter 10, when dealing with recursion and recursive types.

Formally, we encode the types produced by the following grammar:

T ::= Bool | end | linp

where the encoding of a boolean type, and in general, the encoding of any other
ground type added to the syntax of types, like Int, String, Unit . . ., is the iden-
tity function, since the same type constructs can be added to the syntax of types
in the standard π-calculus, namely:

~Bool� , Bool (E-Bool)
~Int� , Int (E-Int)

~String� , String (E-String)
~Unit� , Unit (E-Unit)

85

86 CHAPTER 6. SESSION TYPES REVISITED

~end� , ∅ [] (E-End)

~!T.U� , `o [~T�, ~U�] (E-Out)
~?T.U� , `i [~T�, ~U�] (E-Inp)

~⊕{li : Ti}i∈I� , `o [〈li ~Ti�〉i∈I] (E-Select)
~&{li : Ti}i∈I� , `i [〈li ~Ti�〉i∈I] (E-Branch)

Figure 6.1: Encoding of session types

The encoding of session types into standard π- types is given in Fig. 6.1. (E-End)
states that the encoding of the terminated communication channel is ∅ [], namely
the channel with no capability which cannot be used for communication. (E-Out)
states that the encoding of !T.U is a linear type used in output to carry a pair of
values of type the encoding of T and of type the encoding of the dual of U. The
reason for duality of U is that the sender sends to its peer the channel for the
continuation of the communication, and hence the sender sends a channel being
typed according to how the peer is going to use it. (E-Inp) states that the session
type ?T.U is encoded as the linear input channel type carrying a pair of values of
type the encoding of T and of the encoding of continuation type U. (E-Select)
and (E-Branch) define the encoding of select and branch, respectively. Select
and branch types are generalisations of output and input types, respectively. They
are interpreted as linear output and linear input channels carrying variant types
with the same labels l1 . . . ln and types the encodings of T1 . . . Tn and T1 . . . Tn,
respectively. Again, the reason for duality is the same as for the output type.

Let us now illustrate the encoding of types with a simple example. Let x : T
and y : T where

T = ?Int.?Int.!Bool.end

and
T = !Int.!Int.?Bool.end

A process well-typed in x : T uses channel x to receive in sequence two integer
numbers and then to output a boolean value. Instead, a process well-typed in y : T
uses channel y to perform exactly the opposite actions: it outputs in sequence two
integer numbers and waits for a boolean value in return.

The encoding of these types is as follows:

~T� = `i [Int, `i [Int, `o [Bool, ∅[]]]]

and
~T� = `o [Int, `i [Int, `o [Bool, ∅[]]]]

The duality on session types boils down to opposite capabilities of linear chan-
nel types. The encodings above differ only in the outermost level, that corresponds

6.2. TERMS ENCODING 87

~x� f , fx (E-Variable)
~true� f , true (E-True)
~false� f , false (E-False)

~0� f , 0 (E-Inaction)
~x!〈v〉.P� f , (νc) fx!〈~v� f , c〉.~P� f ,{x 7→c} (E-Output)
~x?(y).P� f , fx?(y, c).~P� f ,{x 7→c} (E-Input)
~x / l j.P� f , (νc) fx!〈l j c〉.~P� f ,{x 7→c} (E-Selection)

~x . {li : Pi}i∈I� f , fx?(y). case y of {li c . ~Pi� f ,{x 7→c}}i∈I (E-Branching)
~if v then P else Q� f , if ~v� f then ~P� f else ~Q� f (E-Conditional)

~P | Q� f , ~P� f | ~Q� f (E-Composition)
~(νxy)P� f , (νc)~P� f ,{x,y 7→c} (E-Restriction)

Figure 6.2: Encoding of session terms

to having `i or `o types. The π-calculus channels having these types carry exactly
the same messages. This happens because duality is incorporated in the output
typing, where the receiver’s point of view of the output type is considered, which
is therefore dual wrt that of the sender.

6.2 Terms Encoding

In this section we present the encoding of terms of the π- calculus with sessions
into terms of the standard π- calculus. The encoding of terms is different from
the encoding of types as it is parametrised by a function f , which is a partial
function from variables to variables. We use dom(f) to denote the domain of
function f . We use fx, fy as an abbreviation for f (x), f (y), respectively. Let P
be a session process. We say that function f is a renaming function for P, if f
is used in the encoding of P, i.e., ~P� f , and it satisfies the following conditions:
dom(f) ⊇ vars(P) meaning that f is defined on both free and bound variables
of P; f is the identity function on the bound variables of P and it renames only
the free variables of P. We assume that the set of variables used to rename the
free variables of P is different from all variables in P, namely different from the
set vars(P). During the encoding of a session process, its renaming function f
is updated as in f , {x 7→ c} or f , {x, y 7→ c}, where variables x and y are now
associated to c, namely f (x) and f (y) are updated to c. The notion of renaming
function is extended also to values, being ground values and variables, and is

88 CHAPTER 6. SESSION TYPES REVISITED

as expected. We now explain the reason for using a renaming function f in the
encoding of terms. Since we are using linear channel types to encode session
types, for the linearity to be guaranteed, once a channel is used it should not
be used again. However, to enable structured communication and simulate the
structure of session types, at every output action a new channel is created and is
sent along with the original payload, in order to be used for the continuation of
the session. This is called continuation-passing style. Finally, we will often refer
to a renaming function f for a session process P, simply as a function f , keeping
in mind that it satisfies all the conditions previously presented.

The encoding of terms of the π- calculus with sessions is defined in Fig. 6.2.
(E-Variable) states that a variable x is encoded by using a renaming function f for
x, meaning that f is defined on x. (E-True) and (E-False) state that the encoding
of true and false is respectively true and false under any renaming function.
In particular, this holds for every ground value, like integers, strings etc., which
can be added to both the π-calculus with and without sessions. (E-Inaction) states
that the terminated session process is interpreted as the terminated process in the
standard π-calculus by using any renaming function. The encoding of the output
process, given by (E-Output), is as follows: a new channel c is created and is
sent along with ~v� f on channel fx; the encoding of the continuation process P is
parametrised in f updated by mapping x to c. The encoding of the input process,
given by (E-Input), receives on channel fx a value that substitutes variable y and
a fresh channel c that substitutes fx in the continuation process. The encodings of
selection and branching, given by (E-Selection) and (E-Branching), are general-
isations of the output and input ones, respectively. The selection process x / l j.P
is encoded as the process that first creates a new channel c and then sends on fx

a variant value l j c, with l j being the selected label and c the channel created for
the continuation of the session, and proceeds as process P encoded in the updated
renaming function f . The encoding of branching is more complex: first, there
is an input on fx of a value (typically being a variant value), which is the guard
of the case process. According to the label of the guard one of the correspond-
ing processes ~Pi� f ,{x 7→c} for i ∈ I, will be chosen. The encoding of conditional,
given by (E-Conditional), is the conditional in the standard π-calculus where the
guard v and both branches P and Q are encoded using the renaming function f .
The encoding of the parallel composition of processes, given by (E-Composition),
is an homomorphism, namely it is the composition of the encodings of the sub-
processes. The encoding of the restriction processes is given by (E-Restriction).
A new channel c is created and the encoding of P uses a renaming function f
updated by associating both x and y to c.

Let us now illustrate the encoding of processes by a simple example. Consider
the equality test problem. There are two processes, a server and a client, where the
client sends to the server two integers, one after the other, and receives from the

6.3. PROPERTIES OF THE ENCODING 89

server a boolean value, being true if the integers are equal or false otherwise.
The processes are defined as follows:

server , x?(nr1).x?(nr2).x!〈nr1 == nr2〉.0

client , y!〈3〉.y!〈5〉.y?(eq).0

These processes communicate on a session channel by owning two opposite end-
points x and y, respectively. The system is given by

(νxy)
(
server | client

)
The client process sends over channel y two integers, being 3 and 5, respectively,
and waits for a boolean value in return which asserts the equality of the integers.
On the other hand, the server process receives the two integers, which substitutes
for the placeholders nr1 and nr2 and sends back to the client the boolean value
corresponding to the result of testing (nr1 == nr2), which in this case is false.
The encoding of the above system, by following (E-Restriction), is

~(νxy)
(
server | client

)
� f = (νz) ~

(
server | client

)
� f ,{x,y 7→z}

where the encodings of server and client processes are as follows:

~server� f ,{x,y 7→z} = z?(nr1, c).c?(nr2, c′).(νc′′)c′!〈nr1 == nr2, c′′〉.0

~client� f ,{x,y7→z} = (νc)z!〈3, c〉.(νc′)c!〈5, c′〉.c′?(eq, c′′).0

Function f , {x, y 7→ z} maps x and y to a new name z, and after that, before every
output action, a new channel is created and sent to the partner together with the
payload: first channel c, then c′ and at the end c′′ are created to accommodate
the continuation of communication. The endpoints x and y are respectively typed
with T and T , which were previously introduced and encoded.

6.3 Properties of the Encoding
In this section we present some important theoretical results regarding our encod-
ing, by following the requirements stated in [53] about an encoding being a good
means for language comparison.

In order to prove these results, the encoding is extended to typing contexts and
is presented in Fig. 6.3. The notion of renaming function is thus extended to typing
contexts and is as expected. Notice that, the ‘,’ operator in session typing contexts
is interpreted as the ‘]’ operator in linear π-calculus typing contexts. The reason is
the following: the (dual) co-variables are interpreted as the same (linear) channel,
which in order to be used for communication, must have connection capability.
Hence, by using the ‘]’ operator, the dual capabilities of linear channels can be
combined into the connection capability.

90 CHAPTER 6. SESSION TYPES REVISITED

~∅� f , ∅ (E-Empty)
~Γ, x : T� f , ~Γ� f] fx : ~T� (E-Gamma)

Figure 6.3: Encoding of session typing contexts

6.3.1 Auxiliary Results
In this section we present some auxiliary results needed to prove the correctness
of the encoding wrt typing and reduction.

The following proposition states that the encoding of typing contexts, given in
Fig. 6.3, is sound and complete wrt to predicates lin and un.

Lemma 6.3.1. Let Γ be a session typing context and q be either lin or un. Then,
q(Γ) if and only if q(~Γ� f), for all renaming functions f for Γ.

Proof. The result follows immediately by the encoding of typing contexts given
in Fig. 6.3 and by the definitions of lin and un on typing contexts in the π-calculus
with sessions and in the standard π-calculus. �

The following two lemmas give the relation between the combination operator
‘]’ and the standard ‘,’ operator in linear π-typing contexts.

Lemma 6.3.2. If Γ] x : T is defined and x < dom(Γ), then also Γ, x : T is
defined.

Proof. The result follows immediately by the definition of combination of typing
contexts. �

Lemma 6.3.3. If Γ, x : T is defined, then also Γ] x : T is defined.

Proof. By definition on ‘,’ operator, we have that x : T < Γ. The result follows
immediately by the definition of combination of typing contexts. �

The following lemmas give a relation between the context split operator ‘◦’
in session typing contexts and the combination operator ‘]’ in linear π- typing
contexts by using the encoding of typing contexts presented in Fig. 6.3.

Lemma 6.3.4 (Split to Combination). Let Γ1, . . . ,Γn be session typing contexts,
such that Γ1 ◦ . . . ◦ Γn is defined. Let f be a renaming function for all Γi, for
i ∈ 1 . . . n such that ~Γ1� f] . . .] ~Γn� f is defined. Then, ~Γ1 ◦ . . . ◦ Γn� f =

~Γ1� f] . . .] ~Γn� f .

Proof. The result follows immediately by the encoding of typing contexts, given
in Fig. 6.3, context split ‘◦’ for session typing contexts, given in Fig. 5.6 and
context combination ‘]’ for linear typing contexts, given in Fig. 4.6. �

6.3. PROPERTIES OF THE ENCODING 91

Lemma 6.3.5 (Combination to Split). Let Γ be a session typing context and f a
renaming function for Γ and ~Γ� f = Γπ1] . . .] Γπn. Then, Γ = Γ1 ◦ . . . ◦ Γn and for
all i ∈ 1 . . . n, Γπi = ~Γi� f .

Proof. The result follows immediately by the encoding of typing contexts, given
in Fig. 6.3, context split ‘◦’ for session typing contexts, given in Fig. 5.6 and
context combination ‘]’ for linear typing contexts, given in Fig. 4.6. �

Lemma 6.3.6. Let ~Γ� f ` ~P� f for some renaming function f for P. For all
functions g with dom(g) ⊇ dom(f) such that, for all x : S ∈ Γ with lin(S) and
g(x) = f (x), and for some y : T ∈ Γ with un(T) and g(y) , f (y) and g(y) is fresh,
then it is the case that ~Γ�g ` ~P�g.

Proof. The proof follows immediately from the encoding of processes, the defi-
nition of renaming functions and the typing rules for the linear π-calculus. �

The following lemma gives an important result that relates the encoding of
dual session types to dual linear π-calculus channel types.

Lemma 6.3.7 (Encoding of Dual Session Types). If ~T� = τ, then ~T� = τ.

Proof. The proof is done by induction on the structure of session type T . We use
the duality of session types defined in Fig. 5.5 and the duality of standard π-types
defined in Fig. 4.7.

• T = end

By (E-End) we have ~end� = ∅[] and T = end. It follows by duality of ∅[].

• T = !T.U
By (E-Out) we have ~!T.U� = `o [~T�, ~U�]. By duality of session types
we have !T.U = ?T.U. By (T-In) we have ~?T.U� = `i [~T�, ~U�]. We
conclude by the duality of π-types.

• T = ?T.U
By (E-In) we have ~?T.U� = `i [~T�, ~U�]. By duality of session types we

have ?T.U = !T.U. By (E-Out) we have ~!T.U� = `o [~T�, ~U�], which
by the convolution property of duality means `o [~T�, ~U�]. We conclude
by the duality of π-types.

• T = ⊕{li : Ti}i∈I

By (E-Select) we have ~⊕{li : Ti}i∈I� = `o [〈li ~Ti�〉i∈I] By duality on ses-
sion types we have ⊕{li : Ti}i∈I = &{li : T i}i∈I . By (E-Branch) we have
~&{li : T i}i∈I� = `i [〈li ~Ti�〉i∈I] We conclude by the duality of π-types.

92 CHAPTER 6. SESSION TYPES REVISITED

• T = &{li : Ti}i∈I

By (E-Branch) we have ~&{li : Ti}i∈I� = `i [〈li ~Ti�〉i∈I] By duality on
session types we have &{li : Ti}i∈I = ⊕{li : T i}i∈I . By (E-Select) we have

~⊕{li : T i}i∈I� = `o [〈li ~Ti�〉i∈I], which by the convolution property of dual-
ity means `o [〈li ~Ti�〉i∈I]. We conclude by the duality of π-types.

�

6.3.2 Typing Values by Encoding
The following two lemmas state the correctness of the encoding wrt typing values,
namely if a session value v has a session type T in a session typing context Γ, then
the encoding of v has a type encoding of T in a typing context being the encoding
of Γ, and vice versa.

Lemma 6.3.8 (Soundness: Value Typing). If ~Γ� f ` ~v� f : ~T� for some renam-
ing function f for v, then Γ ` v : T .

Proof. The proof is done by cases on the value v:

• Case v = x:
By (E-Variable) we have that ~x� f = fx and assume ~Γ� f ` fx : ~T�. By
(Tπ-Var) this means that (fx : ~T�) ∈ ~Γ� f and hence ~Γ� f = Γπ1, fx : ~T�
which by Lemma 6.3.3 and by (E-Gamma) means that Γ = Γ1, x : T , where
Γπ1 = ~Γ1� f . By (Tπ-Var) we have un(~Γ1� f). By Lemma 6.3.1 also un(Γ1)
holds. By applying rule (T-Var) we obtain the result.

• Case v = true:
By (E-True) and (E-Bool) we have that ~true� f = true and assume
~Γ� f ` true : Bool and un(~Γ� f). By Lemma 6.3.1 also un(Γ) holds.
By applying rule (T-Val) we obtain the result.

Case v = false is symmetrical to the above.
�

Lemma 6.3.9 (Completeness: Value Typing). If Γ ` v : T , then ~Γ� f ` ~v� f : ~T�
for some renaming function f for v.

Proof. The proof is done by induction on the derivation Γ ` v : T .

• Case (T-Var):
un(Γ)

Γ, x : T ` x : T

By Lemma 6.3.1 we obtain un(~Γ� f). By (E-Gamma), (E-Variable),
Lemma 6.3.2 and rule (Tπ-Var) we obtain ~Γ� f , fx : ~T� ` fx : ~T� for any
renaming function f for x.

6.3. PROPERTIES OF THE ENCODING 93

• Case (T-Val):
un(Γ) v = true / false

Γ ` v : Bool

By Lemma 6.3.1 we obtain un(~Γ� f). By applying (E-True) or (E-False)
depending on whether v is true or false, (E-Bool) and rule (Tπ-Val) we
obtain ~Γ� f ` ~v� f : ~Bool�, for any renaming function f .

�

6.3.3 Typing Processes by Encoding

Recall that we are interested in encoding session types, namely linear pretypes.
Hence, in the following we will omit q from the typing rules. The only unre-
stricted types we encode are Bool and end. Moreover, the update operator + used
in session typing rules boils down to ‘,’ operator, by following the definition of
context update given in Fig 5.6.

The following two theorems give the correctness of the encoding wrt typing
processes, namely if a session process P is well typed in a session typing context
Γ, then the encoding of P is also well typed in the encoding of Γ, and vice versa.

Theorem 6.3.10 (Soundness: Process Typing). If ~Γ� f ` ~P� f for some renaming
function f for P, then Γ ` P.

Proof. The proof is done by induction on the structure of session process P.

• Case 0:
By (E-Inaction) we have ~0� f = 0 and assume ~Γ� f ` 0, where un(~Γ� f)
holds. By Lemma 6.3.1 we obtain un(Γ). By applying (T-Inact) we con-
clude this case.

• Case P | Q:
By (E-Composition) we have that ~P | Q� f = ~P� f | ~Q� f and assume
~Γ� f ` ~P� f | ~Q� f , which by rule (Tπ-Par) means:

Γπ1 ` ~P� f Γπ2 ` ~Q� f

Γπ1] Γπ2 ` ~P� f | ~Q� f

where ~Γ� f = Γπ1] Γπ2. By Lemma 6.3.5 Γπ1 = ~Γ1� f and Γπ2 = ~Γ2� f , such
that Γ = Γ1 ◦Γ2. By induction hypothesis we have Γ1 ` P and Γ2 ` Q. Then,
by applying (T-Par) we obtain Γ1 ◦ Γ2 ` P | Q.

94 CHAPTER 6. SESSION TYPES REVISITED

• Case if v then P else Q:
By (E-Conditional) we have that:

~if v then P else Q� f = if ~v� f then ~P� f else ~Q� f

Assume ~Γ� f ` if ~v� f then ~P� f else ~Q� f , which by rule (Tπ-If) means:

Γπ1 ` ~v� f : Bool Γπ2 ` ~P� f Γπ2 ` ~Q� f

Γπ1] Γπ2 ` if ~v� f then ~P� f else ~Q� f

where ~Γ� f = Γπ1] Γπ2. By Lemma 6.3.5 Γπ1 = ~Γ1� f and Γπ2 = ~Γ2� f , such
that Γ = Γ1 ◦ Γ2. By Lemma 6.3.8 we have Γ1 ` v : Bool. By induction
hypothesis we have Γ2 ` P and Γ2 ` Q. Then, by applying (T-If) we obtain
Γ1 ◦ Γ2 ` if v then P else Q.

• Case (νxy)P:
By (E-Restriction) we have ~(νxy)P� f = (νc)~P� f ,{x,y 7→c} and assume
~Γ� f ` (νc)~P� f ,{x,y 7→c}. Then, either (Tπ- Res1) or (Tπ- Res2) is the last
typing rule applied. We consider both cases in the following:

– (Tπ-Res1) is applied.

~Γ� f , c : `] [W] ` ~P� f ,{x,y7→c}
(Tπ-Res1)

~Γ� f ` (νc)~P� f ,{x,y 7→c}

The premise of the rule asserts that c : `] [W] and c ∈ ~P� f ,{x,y 7→c},
which implies ~Γ� f , c : `β [W]] c : `β [W] ` ~P� f ,{x,y 7→c}. By
Lemma 6.3.3 we obtain ~Γ� f] c : `β [W]] c : `β [W] ` ~P� f ,{x,y 7→c}.
Let ~T� = `β [W], then by Lemma 6.3.7 we have ~T� = `β [W]. Then,
by induction hypothesis we have Γ, x : T, y : T ` P. By applying rule
(T-Res) we obtain Γ ` (νxy)P, which concludes the proof.

– (Tπ-Res2) is applied.

~Γ� f , c : ∅[] ` ~P� f ,{x,y 7→c}
(Tπ-Res2)

~Γ� f ` (νc)~P� f ,{x,y 7→c}

Since ~Γ� f , c : ∅[] ` ~P� f ,{x,y 7→c} holds, then c < dom(~Γ� f). By the
combination operation on unrestricted variables and by Lemma 6.3.3
we have ~Γ� f] c : ∅[]] c : ∅[] ` ~P� f ,{x,y 7→c}. By induction hypothesis
and by (E-End) we have Γ, x : end, y : end ` P. By (T-Res) we obtain
Γ ` (νxy)P, which concludes the case.

6.3. PROPERTIES OF THE ENCODING 95

• Case x?(y).P:
By (E-Input) we have ~x?(y).P� f = fx?(y, c).~P� f ,{x 7→c} and assume that
~Γ� f ` fx?(y, c).~P� f ,{x 7→c}, which by rule (Tπ-Inp) means:

Γπ1 ` fx : `i[T π,Uπ] Γπ2, y : T π, c : Uπ ` ~P� f ,{x 7→c}

~Γ� f ` fx?(y, c).~P� f ,{x 7→c}

where ~Γ� f = Γπ1] Γπ2. By Lemma 6.3.5 we have that Γπ1 = ~Γ1� f and
Γπ2 = ~Γ2� f , such that Γ = Γ1 ◦ Γ2. By Lemma 6.3.8 we have Γ1 ` x : ?T.U,
where T π = ~T�, Uπ = ~U�. By induction hypothesis and Lemma 6.3.3 we
have Γ2, y : T, x : U ` P, where f , {x 7→ c} is used in the encoding of the
top-right premise. By applying rule (T-Inp) we obtain the result.

• Case x!〈v〉.P:
By (E-Output) we have ~x!〈v〉.P� f = (νc) fx!〈~v� f , c〉.~P� f ,{x 7→c} and assume
~Γ� f ` (νc) fx!〈~v� f , c〉.~P� f ,{x 7→c}. Since c is a restricted channel, then either
rule (Tπ-Res1) or (Tπ-Res2) is applied. We consider only the former, as the
case where (Tπ- Res2) is applied for c : ∅[] is similar. By rule (Tπ- Res1)
and rule (Tπ-Out) we have the following derivation:

Γπ1 ` fx : `o[T π,Uπ] Γπ2 ` ~v� f : T π

Γπ3, c : `α[W] ` ~P� f ,{x 7→c} c : `α[W] ` c : `α[W]

~Γ� f , c : `][T π,Uπ] ` fx!〈~v� f , c〉.~P� f ,{x 7→c}
(Tπ-Out)

~Γ� f ` (νc) fx!〈~v� f , c〉.~P� f ,{x 7→c}
(Tπ-Res1)

where ~Γ� f = Γπ1] Γπ2] Γπ3. By Lemma 6.3.5 we have Γπ1 = ~Γ1� f ,
Γπ2 = ~Γ2� f and Γπ3 = ~Γ3� f , such that Γ = Γ1 ◦ Γ2 ◦ Γ3. Notice that the type
of c is `] [W], meaning that c owns both capabilities of input and output.
One capability of c is sent along with value ~v� f and the other one is used
in the encoding of the continuation ~P� f ,{x 7→c}. By Lemma 6.3.8 we have
Γ1 ` x : !T.U where `o[T π,Uπ] = ~!T.U�, which by (E-Out) means that
T π = ~T� and Uπ = ~U� = `α[W], for the capability α. By Lemma 6.3.8
we have Γ2 ` v : T . By induction hypothesis and by Lemma 6.3.3 we have
Γ3, x : U ` P, where f , {x 7→ c} is used in the encoding of this premise and
~U� = `α[W], which is obtained by applying Lemma 6.3.7. By rule (T-Out)
we obtain the result Γ1 ◦ Γ2 ◦ Γ3 ` x!〈v〉.P

• Case x . {li : Pi}i∈I:
By (E-Branching) ~x . {li : Pi}i∈I� f = fx?(y). case y of {li c . ~Pi� f ,{x 7→c}}i∈I .
Assume ~Γ� f ` fx?(y). case y of {li c . ~Pi� f ,{x 7→c}}i∈I which by (Tπ-Inp) and
(Tπ-Case) means that the following derivation is possible:

96 CHAPTER 6. SESSION TYPES REVISITED

(Tπ-Inp)

Γπ1 ` fx : `i[〈li T π
i 〉i∈I]

(Tπ-Case)
y : 〈li T π

i 〉i∈I ` y : 〈li T π
i 〉i∈I

Γπ2, c : T π
i ` ~Pi� f ,{x 7→c} ∀i ∈ I

Γπ2, y : 〈li T π
i 〉i∈I ` case y of {li c . ~Pi� f ,{x 7→c}}i∈I

~Γ� f ` fx?(y). case y of {li c . ~Pi� f ,{x 7→c}}i∈I

where ~Γ� f = Γπ1] Γπ2. By Lemma 6.3.5 Γπ1 = ~Γ1� f and Γπ2 = ~Γ2� f , such
that Γ = Γ1 ◦ Γ2. By Lemma 6.3.8 we have Γ1 ` x : &{li : Ti}i∈I and by
applying (E-Branch) we have ~&{li : Ti}i∈I� f = `i[〈li T π

i 〉i∈I], which implies
that for all i ∈ I ~Ti� = T π

i . By induction hypothesis and by Lemma 6.3.3,
for all i ∈ I we have Γ2, x : Ti ` Pi, where f , {x 7→ c} is used in the encoding
of this premise. By applying rule (T-Brch) we obtain Γ1 ◦Γ2 ` x . {li : Pi}i∈I .

• Case x / l j.P:
By (E-Selection) we have ~x / l j.P� f = (νc) fx!〈l j c〉.~P� f ,{x 7→c} and assume
~Γ� f ` (νc) fx!〈l j c〉.~P� f ,{x 7→c}. Since c is a restricted channel in the encod-
ing of x / l j.P, then either rule (Tπ- Res1) or (Tπ- Res2) must have been
applied. We consider only the case for (Tπ-Res1), as the one for (Tπ-Res2)
and c : ∅[] is similar. By (Tπ-Res1), (Tπ-Out), (Tπ-Lval) and (Tπ-Var) we
have the following derivation:

(Tπ-Res1)

(Tπ-Out)

Γπ1 ` fx : `o [〈li T π
i 〉i∈I] Γπ2, c : T π

j ` ~P� f ,{x 7→c}

(Tπ-Lval)
(Tπ-Var)

c : T π
j ` c : T π

j j ∈ I

c : T π
j ` l j c : 〈li T π

i 〉i∈I

~Γ� f , c : `] [W] ` fx!〈l j c〉.~P� f ,{x 7→c}

~Γ� f ` (νc) fx!〈l j c〉.~P� f ,{x 7→c}

where ~Γ� f = Γπ1] Γπ2. By using Lemma 6.3.5 we have that Γπ1 = ~Γ1� f and
Γπ2 = ~Γ2� f , such that Γ = Γ1◦Γ2. Notice that the type of c is `] [W], meaning
that c owns both capabilities of input and output, because one capability of
c is sent along with value l j c and the other one is used in the continuation
process ~P� f ,{x 7→c}. This implies that `] [W] = T π

j] T π
j . In the case where

(Tπ-Res2) is applied, c is of type ∅[] = ∅[]]∅[]. By using Lemma 6.3.8 we
have that Γ1 ` x : ⊕{li : Ti}i∈I . By (E-Select) `o [〈li T π

i 〉i∈I] = ~⊕{li : Ti}i∈I�

and for all i ∈ I. T π
i = ~Ti�. By induction hypothesis and by Lemma 6.3.3,

we have Γ2, x : T j ` P, where f , {x 7→ c} is used in the encoding of this
premise. By rule (T-Sel) we obtain the result Γ1 ◦ Γ2 ` x / l j.P.

�

6.3. PROPERTIES OF THE ENCODING 97

Theorem 6.3.11 (Completeness: Process Typing). If Γ ` P, then ~Γ� f ` ~P� f for
some renaming function f for P.

Proof. The proof is done by induction on the derivation Γ ` P.

• Case (T-Inact):
un(Γ)

(T-Inact)
Γ ` 0

By Lemma 6.3.1 we obtain un(~Γ� f). By applying (E-Inaction) and rule
(Tπ-Inact) and letting f be any function on dom(Γ), we obtain the result.

• Case (T-Par):
Γ1 ` P Γ2 ` Q

(T-Par)
Γ1 ◦ Γ2 ` P | Q

By induction hypothesis we have ~Γ1� f ′ ` ~P� f ′ for some function f ′ and
~Γ2� f ′′ ` ~Q� f ′′ for some function f ′′. Since Γ1 ◦ Γ2 is defined by assump-
tion, then for all x ∈ dom(Γ1)∩dom(Γ2) it holds that Γ1(x) = Γ2(x) = T and
un(T). Let dom(Γ1) ∩ dom(Γ2) = D and let f ′D = f ′ \

⋃
d∈D{d 7→ f ′(d)} and

f ′′D = f ′′ \
⋃

d∈D{d 7→ f ′′(d)}. Hence, for all d ∈ D we are not making any
assumption on f ′(d) and f ′′(d). We define f as f =

⋃
d∈D{d 7→ d′}∪ f ′D∪ f ′′D ,

where for all d ∈ D we create a fresh name d′ and associate d 7→ d′.
Moreover, f is a function since its subcomponents act on disjoint do-
mains. We can then rewrite the induction hypothesis as ~Γ1� f ` ~P� f and
~Γ2� f ` ~Q� f , by applying Lemma 6.3.6. By applying (E-Composition),
rule (Tπ-Par) and Lemma 6.3.4 we obtain ~Γ1 ◦ Γ2� f ` ~P | Q� f .

• Case (T-Res):
Γ, x : T, y : T ` P

(T-Res)
Γ ` (νxy)P

Notice that x, y < dom(Γ) by typability assumptions. We distinguish the
following two cases:

– Suppose T , end. By duality on session types T , end. By induction
hypothesis ~Γ, x : T, y : T� f ′ ` ~P� f ′ , for some function f ′, which by
(E-Gamma) means ~Γ� f ′] f ′x : ~T�] f ′y : ~T� ` ~P� f ′ . Let f = f ′ and
update f with {x, y 7→ c} for a fresh name c that does not occur in the
codomain of f . We will use f , {x, y 7→ c} as a renaming function. By
Lemma 6.3.7, ~T� = τ and ~T� = τ. Since T , end and T , end, we
have that ~T� = `α [W] and ~T� = `α [W] and by the combination of
linear channel types `α [W]] `α [W] = `] [W], where W denotes the

98 CHAPTER 6. SESSION TYPES REVISITED

pair of carried types, which are irrelevant for this proof. Hence, we
can rewrite the induction hypothesis as ~Γ� f]c : `] [W] ` ~P� f ,{x,y 7→c}.
By Lemma 6.3.2, ~Γ� f , c : `] [W] ` ~P� f ,{x,y 7→c}. By (Tπ- Res1) we
obtain ~Γ� f ` (νc)~P� f ,{x,y 7→c}, which concludes this case.

– Suppose T = end. By duality on session types T = end. By induction
hypothesis ~Γ, x : end, y : end� f ′ ` ~P� f ′ , for some function f ′. By
(E-Gamma) it means that ~Γ� f ′] f ′x : ~end�] f ′y : ~end� ` ~P� f ′ .
Let f = f ′ and update f with {x, y 7→ c} for a fresh name c that
does not occur in the codomain of f . We will use f , {x, y 7→ c} as a
renaming function. Hence, we can rewrite the induction hypothesis
as ~Γ� f] c : ∅[]] c : ∅[] ` ~P� f ,{x,y 7→c}, which by the combination
of unrestricted types means ~Γ� f] c : ∅[] ` ~P� f ,{x,y 7→c}. Moreover,
c < dom(~Γ� f), since c is chosen fresh. By Lemma 6.3.2 we obtain
~Γ� f , c : ∅[] ` ~P� f ,{x,y 7→c}. We conclude by applying rule (Tπ-Res2).

• Case (T-In):
Γ1 ` x : ?T.U Γ2, y : T, x : U ` P

(T-In)
Γ1 ◦ Γ2 ` x?(y).P

By Lemma 6.3.9 ~Γ1� f ′ ` f ′x : ~?T.U�, for some function f ′ and by in-
duction hypothesis ~Γ2, y : T, x : U� f ′′ ` ~P� f ′′ , for some function f ′′. By
applying (E-Inp) we have ~Γ1� f ′ ` f ′x : `i[~T�, ~U�] and by (E-Gamma) we
have ~Γ2� f ′′] f ′′y : ~T�] f ′′x : ~U� ` ~P� f ′′ . By rule (Tπ-Var) we can derive
y : ~T� ` y : ~T�. Since f ′′ is a renaming function for P and y ∈ fv(P), by
the top-right premise of (T-In), then y < dom(~Γ2� f ′′) and y , f ′′x . Then,
~Γ2� f ′′] y : ~T�] f ′′x : ~U� is defined. By Lemma 4.5.2 we obtain that
~Γ2� f ′′] y : ~T�] f ′′x : ~U� ` ~P� f ′′[y/ f ′′y]. Since Γ1 ◦ Γ2 is defined, it
means that for all x ∈ dom(Γ1) ∩ dom(Γ2) it holds that Γ1(x) = Γ2(x) = T
and un(T). Let dom(Γ1) ∩ dom(Γ2) = D and let f ′D = f ′ \

⋃
d∈D{d 7→ f ′(d)}

and f ′′D = f ′′ \
⋃

d∈D{d 7→ f ′′(d)}. Now, suppose that f ′′(x) = c. Then, we
define f as f =

⋃
d∈D{d 7→ d′} ∪ f ′D ∪ f ′′D , {y 7→ y} \ {x 7→ c}, where for all

d ∈ D we create a fresh name d′ and associate d 7→ d′. Notice that f ′′D (y)
is defined and is f ′′y from the induction hypothesis. Then, f ′′D , {y 7→ y} up-
dates f ′′y to y by the association of {y 7→ y}. Moreover, f is a function since
its subcomponents act on disjoint domains. Then, by Lemma 6.3.6 we can
rewrite the above as:

~Γ1� f ` fx : `i[~T�, ~U�]

Since x, y < dom(Γ2), then ~Γ2, y : T, x : U� f ,{x 7→c} can be optimised and
distributed as ~Γ2� f] y : ~T�] c : ~U�. Then, by Lemma 6.3.2:

~Γ2� f , y : ~T�, c : ~U� ` ~P� f ,{x 7→c}

6.3. PROPERTIES OF THE ENCODING 99

By applying (E-Input), rule (Tπ-Inp) and Lemma 6.3.4 we obtain the result
~Γ1� f] ~Γ2� f ` fx?(y, c).~P� f ,{x 7→c}.

• Case (T-Out):
Γ1 ` x : !T.U Γ2 ` v : T Γ3, x : U ` P

(T-Out)
Γ1 ◦ Γ2 ◦ Γ3 ` x!〈v〉.P

By Lemma 6.3.9 ~Γ1� f ′ ` ~x : !T.U� f ′ , for some function f ′, which by
applying (E-Out) means that ~Γ1� f ′ ` f ′x : `o[~T�, ~U�]. By Lemma 6.3.9
~Γ2� f ′′ ` ~v� f ′′ : ~T� for some function f ′′. By induction hypothesis and by
applying (E-Gamma) we have ~Γ3� f ′′′] f ′′′x : ~U� ` ~P� f ′′′ , for some f ′′′.
Since Γ1 ◦ Γ2 ◦ Γ3 is defined, then for all x ∈ dom(Γ1)∩ dom(Γ2)∩ dom(Γ3)
it must be the case that Γ1(x) = Γ2(x) = Γ3(x) = T and un(T). Now, let
D = dom(Γ1) ∩ dom(Γ2) ∩ dom(Γ3). Let f ′D = f ′ \

⋃
d∈D{d 7→ f ′(d)},

f ′′D = f ′′ \
⋃

d∈D{d 7→ f ′′(d)} and f ′′′D = f ′′′ \
⋃

d∈D{d 7→ f ′′′(d)}. Suppose
f ′′′x = c. Then, define f as f =

⋃
d∈D{d 7→ d′}∪ f ′D∪ f ′′d ∪ f ′′′D \{x 7→ c}, where

for all d ∈ D we create a fresh name d′ and associate d 7→ d′. Notice that f
is a function because its subcomponents act on disjoint domains. Then, by
Lemma 6.3.6, the above can be rewritten as:

~Γ1� f ` fx : `o[~T�, ~U�] ~Γ2� f ` ~v� f : ~T�

Since x < dom(Γ3), then ~Γ3, x : U� f ,{x 7→c} can be optimised and distributed
as ~Γ3� f] c : ~U�. Then, the induction hypothesis becomes:

~Γ3� f] c : ~U� ` ~P� f ,{x 7→c}

Assume U , end and hence U , end. By rule (Tπ- Var) we can derive
c : ~U� ` c : ~U�. By rule (Tπ-Out) and by using Lemma 6.3.7 and “]”
operator to obtain c : `] [W], we have the following derivation:

~Γ1� f ` fx : `o[~T�, ~U�] ~Γ2� f ` ~v� f : ~T�
c : ~U� ` c : ~U� ~Γ3� f] c : ~U� ` ~P� f ,{x 7→c}

~Γ1� f] ~Γ2� f] ~Γ3� f] c : `] [W] ` fx!〈~v� f , c〉.~P� f ,{x 7→c}

Then, by Lemma 6.3.2 and by applying (Tπ-Res1) we have the following:

~Γ1� f] ~Γ2� f] ~Γ3� f , c : `] [W] ` fx!〈~v� f , c〉.~P� f ,{x 7→c}

~Γ1� f] ~Γ2� f] ~Γ3� f ` (νc) fx!〈~v� f , c〉.~P� f ,{x 7→c}

The case where U = U = end, which yields c : ∅[], is symmetrical and is
obtained by using (Tπ- Res2) instead of (Tπ- Res1). By Lemma 6.3.4 and
(E-Output) we conclude this case.

100 CHAPTER 6. SESSION TYPES REVISITED

• Case (T-Brch):

Γ1 ` x : &{li : Ti}i∈I Γ2, x : Ti ` Pi ∀i ∈ I
(T-Brch)

Γ1 ◦ Γ2 ` x . {li : Pi}i∈I

By Lemma 6.3.9 ~Γ1� f ′ ` ~x : &{li : Ti}i∈I� f ′ , for some function f ′, which
by applying (E-Branch) means ~Γ1� f ′ ` f ′x : `i[〈li ~Ti�〉i∈I]. By induction
hypothesis ~Γ2� f ′′] f ′′x : ~Ti� ` ~Pi� f ′′ for all i ∈ I, for some function f ′′.
Since Γ1 ◦Γ2 is defined, it means that for all x ∈ dom(Γ1)∩dom(Γ2) it holds
that Γ1(x) = Γ2(x) = T and un(T). Let dom(Γ1) ∩ dom(Γ2) = D and define
f ′D = f ′ \

⋃
d∈D{d 7→ f ′(d)} and f ′′D = f ′′ \

⋃
d∈D{d 7→ f ′′(d)}. Now, suppose

that f ′′(x) = c. Then, define f =
⋃

d∈D{d 7→ d′} ∪ f ′D ∪ f ′′D \ {x 7→ c}, where
for all d ∈ D we create a fresh name d′ and associate d 7→ d′. Moreover,
f is a function since its subcomponents act on disjoint domains. Then, by
applying Lemma 6.3.6, the above can be rewritten as:

~Γ1� f ` fx : `i[〈li ~Ti�〉i∈I] ~Γ2� f] c : ~Ti� ` ~Pi� f ,{x 7→c} for all i ∈ I

Since x < dom(Γ2), then ~Γ2, x : Ti� f ,{x 7→c} can be optimised and distributed
as ~Γ2� f] c : ~Ti�, as we did in the previous cases. By rules (Tπ- Case),
and (Tπ- Var) for deriving y : 〈li ~Ti�〉i∈I , and Lemma 6.3.2 we have the
following derivation:

(Tπ-Case)
(Tπ-Var)

y : 〈li ~Ti�〉i∈I ` y : 〈li ~Ti�〉i∈I
~Γ2� f , c : ~Ti� ` ~Pi� f ,{x 7→c} ∀i ∈ I

~Γ2� f , y : 〈li ~Ti�〉i∈I ` case y of {li c . ~Pi� f ,{x 7→c}}i∈I

Then, by applying (Tπ-Inp) we have:

(Tπ-Inp)

~Γ1� f ` fx : `i[〈li ~Ti�〉i∈I]
~Γ2� f , y : 〈li ~Ti�〉i∈I ` case y of {li c . ~Pi� f ,{x 7→c}}i∈I

~Γ1� f] ~Γ2� f ` fx?(y). case y of {li c . ~Pi� f ,{x 7→c}}i∈I

By (E-Branching) and Lemma 6.3.4 we conclude this case.

• Case (T-Sel):

Γ1 ` x : ⊕{li : Ti}i∈I Γ2, x : T j ` P j ∈ I
(T-Sel)

Γ1 ◦ Γ2 ` x / l j.P

6.3. PROPERTIES OF THE ENCODING 101

By Lemma 6.3.9 ~Γ1� f ′ ` ~x : ⊕{li : Ti}i∈I� f ′ , for some function f ′,
which by applying (E-Select) means that ~Γ1� f ′ ` f ′x : `o[〈li ~Ti�〉i∈I].
By induction hypothesis and (E-Gamma) ~Γ2� f ′′] f ′′x : ~T j� ` ~P� f ′′ for
j ∈ I, for some function f ′′. Since Γ1 ◦ Γ2 is defined, it means that for all
x ∈ dom(Γ1) ∩ dom(Γ2) it is the case that Γ1(x) = Γ2(x) = T and un(T).
Now, let dom(Γ1) ∩ dom(Γ2) = D and let f ′D = f ′ \

⋃
d∈D{d 7→ f ′(d)} and

f ′′D = f ′′ \
⋃

d∈D{d 7→ f ′′(d)} and suppose that f ′′(x) = c. Then, define f as
f =

⋃
d∈D{d 7→ d′} ∪ f ′D ∪ f ′′D \ {x 7→ c}, where for all d ∈ D we create a

fresh name d′ and associate d 7→ d′. Moreover, f is a function since its sub-
components act on disjoint domains. Then, by Lemma 6.3.6 we can rewrite
the above as follows:

~Γ1� f ` fx : `o[〈li ~Ti�〉i∈I] ~Γ2� f] c : ~T j� ` ~P� f ,{x 7→c} for j ∈ I

Since x < dom(Γ2), then ~Γ2, x : T j� f ,{x 7→c} can be optimised and distributed
as ~Γ2� f] c : ~T j�, as we did in the previous cases. By applying (Tπ-Var)
to derive c : ~T j�, and by (Tπ-LVal) we have:

c : ~T j� ` c : ~T j�
(Tπ-Var)

c : ~T j� ` l j c : 〈li ~T j�〉i∈I

(Tπ-LVal)

Assume T j , end and hence T j , end. By rule (Tπ- Out) and by using
Lemma 6.3.7 and “]” operator to obtain c : `] [W], we have the following
derivation:

~Γ1� f ` fx : `o[〈li ~Ti�〉i∈I]
c : ~T j� ` l j c : 〈li ~T j�〉i∈I ~Γ2� f] c : ~T j� ` ~P� f ,{x 7→c} j ∈ I

~Γ1� f] ~Γ2� f] c : `][W] ` fx!〈l j c〉.~P� f ,{x 7→c}
(Tπ-Out)

Then, by Lemma 6.3.2 and by applying (Tπ-Res1) we have:

~Γ1� f] ~Γ2� f , c : `][W] ` fx!〈l j c〉.~P� f ,{x 7→c}

~Γ1� f] ~Γ2� f ` (νc) fx!〈l j c〉.~P� f ,{x 7→c}

The case where T j = T j = end, which yields c : ∅[], is symmetrical and is
obtained by using (Tπ- Res2) instead of (Tπ- Res1). By (E-Selection) and
Lemma 6.3.4 we conclude this case.

�

102 CHAPTER 6. SESSION TYPES REVISITED

6.3.4 Operational Correspondence
In this section we prove the operational correspondence. This property states that
the encoding of session-typed processes is sound and complete wrt the operational
semantics of the π- calculus with and without sessions. We start by introducing
the notion of evaluation context and give two auxiliary lemmas that are used in
the proof of the operational correspondence.

Definition 6.3.12 (Evaluation Context). An evaluation context is a process with a
hole [·] and is produced by the following grammar:

E[·] , [·] | (νxy)[·]

Given a session process P, we say that E[·] is a suitable evaluation context
for process P, if whenever E[·] = (νxy)[·], then x, y ∈ fv(P). Hence, [·] is always
a suitable evaluation context for every session process. In the remainder of the
thesis we will consider only suitable evaluation contexts and we will refer to them
simply as evaluation contexts.

Lemma 6.3.13. Let Q be a session process and let Q[v/z] denote process Q where
variable z is substituted by value v. Then,

~Q[v/z]� f = ~Q� f [~v� f / fz]

for all renaming functions f for Q and v.

Proof. It follows immediately by the encoding of processes given in Fig. 6.2 and
by the standard substitution of variables by values in a process. �

Lemma 6.3.14 (Structural Congruence and Encoding). Let P and P′ be session
processes. Then, P ≡ P′ if and only if ~P� f ≡ ~P′� f for all renaming functions f
for P and P′.

Proof. The proof is done by cases on the structural congruence relation. �

Let ↪→ denote structural congruence extended with a case normalisation,
namely a reduction by using (Rπ-Case).

Theorem 6.3.15 (Operational Correspondence). Let P be a session process, Γ a
session typing context, and f a renaming function for P such that ~Γ� f ` ~P� f .
Then, the following statements hold.

1. If P→ P′, then ~P� f →↪→ ~P′� f .

2. If ~P� f → Q, then there are P′,E[·], such that E[P]→ E[P′] and
Q ↪→ ~P′� f ′ , and either f ′ = f or f ′ = f , {x, y 7→ c} for x, y such that (νxy)
appears in E[P].

6.3. PROPERTIES OF THE ENCODING 103

Proof. Notice that, since ~Γ� f ` ~P� f , by Theorem 6.3.10 it means that Γ ` P.
We split the proof as follows.

1. The proof is done by induction on the derivation P→ P′.

• Case (R-Com):

P , (νxy)(x!〈v〉.Q1 | y?(z).Q2)→ (νxy)(Q1 | Q2[v/z]) , P′

By the encoding of session processes we have

~P� f = ~(νxy)
(
x!〈v〉.Q1 | y?(z).Q2

)
� f

= (νc)
(
~x!〈v〉.Q1 | y?(z).Q2� f ,{x,y 7→c}

)
= (νc)

(
~x!〈v〉.Q1� f ,{x,y7→c} | ~y?(z).Q2� f ,{x,y7→c}

)
= (νc)

(
(νc′)(c!〈~v� f , c′〉.~Q1� f ,{x,y 7→c,x 7→c′}) | c?(z, c′).~Q2� f ,{x,y 7→c,y7→c′}

)
→ (νc)

(
(νc′)

(
~Q1� f ,{x,y 7→c,x 7→c′} | ~Q2� f ,{x,y 7→c,y7→c′}[~v� f /z]

))
≡ (νc′)

(
~Q1� f ,{x,y7→c,x 7→c′} | ~Q2� f ,{x,y 7→c,y 7→c′}[~v� f /z]

)
Since z is bound with scope Q2 it means that fz = z. Notice that since
P is a session-typed process, it means that x < fv(Q2) and y < fv(Q1).
Then, f , {x, y 7→ c, x 7→ c′} and f , {x, y 7→ c, y 7→ c′} can be subsumed by
f , {x, y 7→ c′}. We can rewrite the above as:

(νc′)
(
~Q1� f ,{x,y 7→c′} | ~Q2� f ,{x,y7→c′}[~v� f /z]

)
On the other hand we have:

~P′� f = ~(νxy)
(
Q1 | Q2[v/z]

)
� f

= (νc′)
(
~Q1� f ,{x,y 7→c′} | ~Q2[v/z]� f ,{x,y7→c′}

)
= (νc′)

(
~Q1� f ,{x,y 7→c′} | ~Q2� f ,{x,y7→c′}[~v� f ,{x,y 7→c′}/~z� f ,{x,y 7→c′}]

)
= (νc′)

(
~Q1� f ,{x,y 7→c′} | ~Q2� f ,{x,y7→c′}[~v� f / fz]

)
= (νc′)

(
~Q1� f ,{x,y 7→c′} | ~Q2� f ,{x,y7→c′}[~v� f /z]

)
In order to obtain ~Q2� f ,{x,y7→c′}[~v� f ,{x,y 7→c′}/~z� f ,{x,y 7→c′}] in line 3 we apply
Lemma 6.3.13. Function f coincides with f , {x, y 7→ c′} when applied to
value v and variable z and fz = z, so we can obtain ~Q2� f ,{x,y 7→c′}[~v� f /z].

The above implies:
~P� f →≡ ~P′� f

104 CHAPTER 6. SESSION TYPES REVISITED

• Case (R-Sel):

P , (νxy)(x / l j.Q | y . {li : Pi}i∈I)→ (νxy)(Q | P j) , P′ if j ∈ I

By the encoding of session processes we have

~P� f = ~(νxy)
(
x / l j.Q | y . {li : Pi}i∈I

)
� f

= (νc)
(
~x / l j.Q | y . {li : Pi}i∈I� f ,{x,y 7→c}

)
= (νc)

(
~x / l j.Q� f ,{x,y 7→c} | ~y . {li : Pi}i∈I� f ,{x,y 7→c}

)
= (νc)

(
(νc′)

(
c!〈l j c′〉.~Q� f ,{x,y7→c,x 7→c′}

)
|

c?(z).case z of {li c′ . ~Pi� f ,{x,y 7→c,y7→c′}}i∈I
)

→ (νc)
(
(νc′)

(
~Q� f ,{x,y7→c,x 7→c′} |

case l j c′ of {li c′ . ~Pi� f ,{x,y 7→c,y 7→c′}}i∈I
))

→ (νc)
(
(νc′)

(
~Q� f ,{x,y7→c,x 7→c′} | ~P j� f ,{x,y 7→c,y 7→c′}

))
≡ (νc′)

(
~Q� f ,{x,y 7→c,x 7→c′} | ~P j� f ,{x,y 7→c,y 7→c′}

)
Notice that since P is a well-typed session process, it means that for all i ∈ I,
x < fv(Pi) and y < fv(Q). Then, both functions f , {x, y 7→ c, x 7→ c′} and
f , {x, y 7→ c, y 7→ c′} can be subsumed by f , {x, y 7→ c′}. We can rewrite the
above as:

(νc′)
(
~Q� f ,{x,y 7→c′} | ~P j� f ,{x,y 7→c′}

)
On the other hand we have:

~P′� f = ~(νxy)
(
Q | P j

)
� f

= (νc′)
(
~Q� f ,{x,y 7→c′} | ~P j� f ,{x,y 7→c′}

)
The above implies:

~P� f →↪→ ~P′� f

• Case (R-IfT):
if true then P1 else P2 → P1

By the encoding of processes we have

~P� f = ~if true then P1 else P2� f

= if true then ~P1� f else ~P2� f

→ ~P1� f

6.3. PROPERTIES OF THE ENCODING 105

• Case (R-Res):
P→ Q

(νxy)P→ (νxy)Q

By the encoding of session processes we have

~(νxy)P� f = (νc)~P� f ,{x,y 7→c} ~(νxy)Q� f = (νc)~Q� f ,{x,y 7→c}

By induction hypothesis we have that ~P� f ,{x,y 7→c} →↪→ ~Q� f ,{x,y 7→c}. We
conclude that (νc)~P� f ,{x,y 7→c} →↪→ (νc)~Q� f ,{x,y 7→c} by applying (Rπ- Res)
and (Rπ-Struct) and the transitivity of the reduction relation.

• Case (R-Par):
P→ Q

P | Q→ P′ | Q

By the encoding of session processes we have

~P | Q� f = ~P� f | ~Q� f ~P′ | Q� f = ~P′� f | ~Q� f

By induction hypothesis we have that ~P� f →↪→ ~Q� f . We conclude that
~P� f | ~Q� f →↪→ ~P′� f | ~Q� f by applying (Rπ-Par) and (Rπ-Struct) and
the transitivity of the reduction relation.

• Case (R-Struct):
P ≡ P′, P′ → Q′, Q′ ≡ Q

P→ Q

Trivial case, by applying (Rπ-Struct) and Lemma 6.3.14 on the induction
hypothesis.

2. The proof is done by induction on the structure of the session-typed process
P. The cases to be considered are the following:

• Case P = P1 | P2.

Since Γ ` P1 | P2, by inversion on (T-Par) we have that Γ1 ` P1 and Γ2 ` P2

and Γ = Γ1 ◦ Γ2. By (E-Composition) we have ~P1 | P2� f = ~P1� f | ~P2� f

and assume ~P1� f | ~P2� f → Q. There are only the following cases to be
considered:

– Only ~P1� f reduces. Let ~P1� f → R. Then, by rule (Rπ- Par)
~P1� f | ~P2� f → R | ~P2� f and let Q = R | ~P2� f . Since P1 is a
subprocess of P, by induction hypothesis there exist P′1,E

′

[·], such
that E

′

[P1] → E
′

[P′1] and R ↪→ ~P′1� f ′′ , where either f ′′ = f or f ′′ =

106 CHAPTER 6. SESSION TYPES REVISITED

f , {z,w 7→ d}, such that (νzw) appears in E
′

[P1]. Choose E[·] = E
′

[·].
Since E[·] is a suitable context for P1 and Γ ` P1 | P2 it means that for
all (νzw) that appear in E[P1], it is the case that z,w < fv(P2). Hence,
by structural congruence we obtain that E[P1] | P2 ≡ E[P1 | P2] (1). By
rule (R-Par) we have E[P1] | P2 → E[P′1] | P2 (2). Again, by structural
congruence we have E[P′1] | P2 ≡ E[P′1 | P2] (3). By rule (R-Struct)
on (1), (2), (3) we can conclude that E[P1 | P2] → E[P′1 | P2]. Let
P′ = P′1 | P2. We observe that E[P′1 | P2] = E[P′]. The last thing to
show is that Q ↪→ ~P′� f ′ , where either f ′ = f or f ′ = f , {x, y 7→ c}
and (νxy) appears in E[P]. Choose f ′ = f ′′.
If f ′ = f ′′ = f , then by context closure of structural congruence
and by applying rules (Rπ-Struct) and (Rπ-Par) we obtain the result
Q = R | ~P2� f ↪→ ~P′1� f | ~P2� f = ~P′� f .
If f ′ = f ′′ = f , {z,w 7→ d} and since for all (νzw) that appear in E[P1],
it is the case that z,w < fv(P2), we can use f ′ instead of f to encode
P2 and we obtain Q = R | ~P2� f ↪→ ~P′1� f ′ | ~P2� f ′ = ~P′� f ′ .

– Only ~P2� f reduces. This case is symmetrical to the previous one, by
simply exchanging the roles of P1 and P2.

– ~P1� f and ~P2� f communicate and both reduce. Since communication
occurs between two processes in parallel, it means that rule (Rπ-Com)
is applied. Let ~P1� f perform and output action and ~P2� f perform
and input action – the symmetrical case is similar. But then, since these
are encodings of session-typed processes and Γ1 ` P1 and Γ2 ` P2 and
Γ = Γ1 ◦ Γ2, there are only two possible cases:

* Case P1 | P2 = x!〈v〉.P′1 | y?(z).P′2.
By (E-Composition), (E-Output) and (E-Input), we have that:

~P1� f | ~P2� f = (νc) fx!〈~v� f , c〉.~P′1� f ,{x 7→c} | fy?(z, c).~P′2� f ,{y7→c}

→ ~P′1� f ,{x 7→c} | ~P′2� f ,{y 7→c}[~v� f /z]

= ~P′1� f ,{x,y7→c} | ~P′2� f ,{x,y 7→c}[~v� f /z]

= Q

Since z is bound with scope P′2, then fz = z. The assumption
~P� f → Q implies that fx = fy. Since Γ ` P1 | P2, it means
that x < fv(P2) and y < fv(P1). Hence, in line 3 above we used
function f , {x, y 7→ c} to subsume both f , {x 7→ c} and f , {y 7→ c}.
We will show that there are P′,E[·] such that E[P1 | P2]→ E[P′]
and Q ↪→ ~P′� f ′ , where either f ′ = f or f ′ = f , {z,w 7→ d} for

6.3. PROPERTIES OF THE ENCODING 107

z,w such that (νzw) appears in E[P]. Choose E[·] = (νxy)[·], then
by rule (R-Com) on E[P1 | P2] we have that:

(νxy)
(
x!〈v〉.P′1 | y?(z).P′2

)
→ (νxy)

(
P′1 | P

′
2[v/z]

)
Choose P′ = P′1 | P

′
2[v/z] and f ′ = f , {x, y 7→ c}. By the encoding

of P′ we have:

~P′� f ′ = ~P′1 | P
′
2[v/z]� f ′

= ~P′1� f ,{x,y7→c} | ~P′2� f ,{x,y 7→c}[~v� f / fz]

= ~P′1� f ,{x,y7→c} | ~P′2� f ,{x,y 7→c}[~v� f /z]

= Q

Line 2 above holds by Lemma 6.3.13. Notice that v , x, y and
z , x, y by the well-typedness of P. Hence, we can simply use
f instead of f ′ in the encoding of v and z and since z is bound,
fz = z. This concludes the case.

* Case P1 | P2 = x / l j.P′1 | y . {li : P′′i }i∈I .
By (E-Composition), (E-Selection) and (E-Branching) we have:

~P1� f | ~P2� f = (νc) fx!〈l j c〉.~P′1� f ,{x 7→c} |

fy?(z). case z of {li c . ~P′′i � f ,{y 7→c}}i∈I

→ ~P′1� f ,{x 7→c} | case l j c of {li c . ~P′′i � f ,{y 7→c}}i∈I

= ~P′1� f ,{x,y 7→c} | case l j c of {li c . ~P′′i � f ,{x,y 7→c}}i∈I

= Q

The assumption ~P� f → Q implies that fx = fy. Since Γ ` P1 | P2,
it means that x < fv(P2) and y < fv(P1). Hence, in line 4 above
we used function f , {x, y 7→ c} to subsume both f , {x 7→ c} and
f , {y 7→ c}. We need to show that there are P′,E[·] such that
E[P1 | P2]→ E[P′] and Q ↪→ ~P′� f ′ , where either f ′ = f or f ′ =

f , {z,w 7→ d} for z,w such that (νzw) appears in E[P]. Choose
E[·] = (νxy)[·]. Then, by rule (R-Sel) on E[P1 | P2] we have that:

E[P1 | P2] = (νxy)
(
x / l j.P′1 | y . {li : P′′i }i∈I

)
→ (νxy)

(
P′1 | P

′′
j
)

for j ∈ I

= E[P′]

108 CHAPTER 6. SESSION TYPES REVISITED

Choose P′ = P′1 | P
′′
j and f ′ = f , {x, y 7→ c}. By the encoding of

P′ we have:

~P′� f ′ = ~P′1 | P
′′
j � f ′ = ~P′1� f ,{x,y 7→c} | ~P′′j � f ,{x,y 7→c}

It remains to show that Q ↪→ ~P′� f ,{x,y 7→c}. By rules (Rπ- Case)
and (Rπ-Par) we obtain the result:

Q = ~P′1� f ,{x,y7→c} | case l j c of {li c . ~P′′i � f ,{x,y 7→c}}i∈I

→ ~P′1� f ,{x,y7→c} | ~P′′j � f ,{x,y 7→c}

= ~P′� f ,{x,y 7→c}

• Case P = (νxy)P1.

Since Γ ` (νxy)P1, then there is a session type T , such that by inversion
on (T-Res) we have Γ, x : T, y : T ` P1. By (E-Restriction) we have
~(νxy)P1� f = (νc)~P1� f ,{x,y7→c} and assume (νc)~P1� f ,{x,y 7→c} → Q. This
implies that the reduction comes from ~P1� f ,{x,y 7→c}. The reason is that in
the standard π- calculus restriction does not enable any new communica-
tion in addition to the ones performed by process ~P1� f ,{x,y 7→c}; differently
from communications in the session π-calculus which occur only under re-
stricted co-variables. Hence, Q = (νc)R. By rule (Rπ- Res) it means that
~P1� f ,{x,y 7→c} → R. By induction hypothesis there are P′1,E

′

[·] such that
E
′

[P1] → E
′

[P′1] and R ↪→ ~P′1� f ′′ , where either f ′′ = f , {x, y 7→ c} or
f ′′ = f , {x, y 7→ c}, {z,w 7→ d} such that (νzw) appears in E

′

[P1]. We need to
prove that there are P′,E[·], such that E[(νxy)P1]→ E[P′] and Q ↪→ ~P′� f ′ ,
where either f ′ = f or f ′ = f , {k, l 7→ e} such that (νkl) appears in E[P1].
We distinguish the following cases according to the structure of E

′

[·].

– E′[·] = [·]. The induction hypothesis is rewritten as P1 → P′1. By
rule (R-Res) we have (νxy)P1 → (νxy)P′1. Choose P′ = (νxy)P′1 and
E[·] = [·]. We know by induction hypothesis that R ↪→ ~P′1� f ′′ , where
either f ′′ = f , {x, y 7→ c} or f ′′ = f , {x, y 7→ c}, {z,w 7→ d}, such that
(νzw) appears in P1.
If f ′′ = f , {x, y 7→ c}, choose f ′ = f . Then, R ↪→ ~P′1� f ,{x,y 7→c} and
~P′� f ′ = (νc)~P′1� f ,{x,y7→c}. By context closure of structural congruence
and (Rπ-Struct) and (Rπ-Res) we have (νc)R ↪→ (νc)~P′1� f ,{x,y 7→c}.
If f ′′ = f , {x, y 7→ c}, {z,w 7→ d}, choose f ′ = f , {z,w 7→ d}. We can
distinguish two possible cases: either {x, y} = {z,w} and d overrides c,
or {x, y} ∩ {z,w} = ∅. All other cases would violate linearity and hence
the well-typedness assumption.

6.4. COROLLARIES FROM THE ENCODING 109

If {x, y} = {z,w} and d overrides c, then it is the case that f ′′ =

f , {x, y 7→ c}, {z,w 7→ d} = f , {x, y 7→ d} and f ′ = f , {x, y 7→ d}. Then,
the induction hypothesis can be rewritten as R ↪→ ~P′1� f ,{x,y7→d}. The
encoding of P′ under f ′ is ~P′� f ′ = (νc)~P′1� f ,{x,y 7→d},{x,y 7→c} and (νxy)
appears in E[P1] = P1. Since (νxy)P1 is well-typed and (νxy) appears
in P1, by Lemma 5.5.1 it must be that the outermost x, y are terminated
channels, namely T = T = end. The result follows by context closure
of structural congruence and by rules (Rπ-Struct) and (Rπ-Res).
If {x, y} ∩ {z,w} = ∅, then it holds that f ′′ = f , {x, y 7→ c}, {z,w 7→ d} =

f , {z,w 7→ d}, {x, y 7→ c}. Then, the induction hypothesis can be rewrit-
ten as R ↪→ ~P′1� f ,{z,w7→d},{x,y 7→c}. The encoding of P′ under f ′ is
~P′� f ′ = (νc)~P′1� f ,{z,w 7→d},{x,y7→c} and (νzw) appears in E[P1]. Hence,
by context closure of structural congruence and by rules (Rπ-Struct)
and (Rπ-Res) we have (νc)R ↪→ (νc)~P′1� f ,{z,w7→d},{x,y 7→c}.

– E′[·] = (νxy)[·]. We have that (νxy)P1 → (νxy)P′1. Let P′ = (νxy)P′1
and E[·] = [·]. The result follows by context closure of structural
congruence and by rules (Rπ-Res) and (Rπ-Struct).

– E′[·] = (νx′y′)[·], such that {x′, y′} ∩ {x, y} = ∅. We have that
(νx′y′)P1 → (νx′y′)P′1. Choose P′ = (νxy)P′1 and E[·] = E

′

[·]. We
need to show that (νx′y′)(νxy)P1 → (νx′y′)(νxy)P′1. By structural con-
gruence and by rules (R-Res) and (R-Struct) we obtain the result.

�

6.4 Corollaries from the Encoding
In this section we show how we can use our encoding and properties from the
standard typed π-calculus to derive the analogous properties in the π-calculus with
session types. Before proving the subject reduction and type safety theorems, we
give the following auxiliary lemmas. We start with an auxiliary result, that of type
preservation for the structural congruence.

Lemma 6.4.1 (Type Preservation under ≡ for Sessions by Encoding). Let P be a
session process. If Γ ` P and P ≡ P′, then Γ ` P′.

Proof. Assume Γ ` P and P ≡ P′. By Theorem 6.3.11 we have ~Γ� f ` ~P� f

for some renaming function f for P. By Lemma 6.3.14 ~P� f ≡ ~P′� f , then by
Lemma 4.5.5 we have ~Γ� f ` ~P′� f . We conclude by Theorem 6.3.10. �

Now we are ready to prove the subject reduction property for the π- calculus
with sessions by using our encoding and by the corresponding subject reduction
for the linear π-calculus.

110 CHAPTER 6. SESSION TYPES REVISITED

Theorem 6.4.2 (Subject Reduction for Sessions by Encoding). Let P be a session
process. If Γ ` P and P→ P′, then Γ ` P′.

Proof. Assume Γ ` P and P→ P′. By Theorem 6.3.11 we have ~Γ� f ` ~P� f , for
some renaming function f for P and by point 1. of Theorem 6.3.15 we have that
~P� f →↪→ ~P′� f . Let Q be the π-calculus process such that ~P� f → Q ↪→ ~P′� f .
By subject reduction for the linear π- calculus, given by Theorem 4.5.6, we have
~Γ� f ` Q. By type preservation for structural congruence, given by Lemma 4.5.5,
and by subject reduction for the linear π-calculus, we have ~Γ� f ` ~P′� f . By the
assumption that P→ P′ and the operational semantics rules in the π-calculus with
sessions which state that communication occurs only in restricted co-variables, we
can conclude that ~Γ� f is closed. By Theorem 6.3.10 we conclude that Γ ` P′. �

Theorem 6.4.3 (Type Safety for Sessions by Encoding). Let P be a session pro-
cess. If ` P, then P is well formed.

Proof. By Theorem 6.3.11 we have ` ~P� f for some renaming function f for
P. By type safety in the linear π-calculus, given by Theorem 4.5.8, we have that
~P� f is well formed. The result follows immediately by applying the notion of
well-formedness in session π-calculus, given by Definition 5.5.5 and the encoding
of processes given in Fig. 6.2. �

At this point we can derive the main result, that of type soundness, which
states the absence of runtime errors of well-typed programs. It follows imme-
diately from subject reduction given by Theorem 6.4.2 and type safety given by
Theorem 6.4.3, which we proved by using the corresponding properties in the
standard typed π-calculus and our encoding.

Theorem 6.4.4 (Type Soundness for Sessions by Encoding). Let P be a session
process. If ` P and P→∗ Q, then Q is well formed.

Proof. The result follows immediately from Theorem 6.4.2 and Theorem 6.4.3.
�

Part III

Advanced Features on Safety by
Encoding

111

Introduction to Part III

In the π- calculus with session types, different typing features have been added.
Subtyping relation for (recursive) session types is added in [48]. Bounded poly-
morphism is added in [45] as a further extension to subtyping. The authors in [89]
add higher-order primitives in order to allow not only mobility of channels but
also mobility of processes.

In most of these works, when new typing features are added, they are added on
both syntactic categories of standard π- types and session types. Also the syntax
of processes will contain both standard process constructs and session primitives.
This redundancy in the syntax leads to redundancy also in the theory, and makes
the proofs of properties of the language heavy. For instance, if a new type con-
struct is added, the corresponding properties must be checked both on ordinary
types and on session types.

In Part III we try to understand to which extent this redundancy is neces-
sary. After having analysed the effectiveness of the encoding on basic session
types, in the following chapters we show its robustness by examining non-trivial
extensions, namely subtyping, polymorphism, higher-order and recursion. Fur-
thermore, we present an optimisation of linear channels enabling the reuse of the
same channel, instead of a new one, for the continuation of the communication.

Roadmap to Part III Chapters 7, 8, 9 and 10 present the extensions to the
π- calculus with sessions and to the encoding. They present subtyping, polymor-
phism, higher-order, and recursion respectively, and study the encoding wrt these
extensions. Chapter 11 presents an optimisation on the usage of linear channels.
By enhancing the type system for linear types, we show that it is possible to avoid
the redundancy of creating a fresh channel before every output operation.

113

114

Chapter 7

Subtyping

Subtyping has been studied in the standard typed π-calculus [98,101] and later on
in the π-calculus with session types [48]. In this section we show that subtyping
in the standard π-calculus is enough to derive subtyping in session types.

7.1 Subtyping Rules

Subtyping rules for the π-calculus with sessions are given in Fig. 7.1 and the ones
for the standard typed π-calculus are given in Fig. 7.2. We use the symbol <: for
subtyping in session types, and ≤ for subtyping in the standard π-calculus.

We start with subtyping rules for session types. Rules (S-Bool) and (S-End)
state the reflexivity of subtyping on a boolean type and on a terminated channel
type, respectively. Rules (S-Inp) and (S-Out) define subtyping on input and output
session types. The input rule states that subtyping is co-variant on the payload
type, whether the output rule states that subtyping is contra-variant on the payload
type. Subtyping is co-variant on the continuation type, for both the input and
the output rules. Rules (S-Brch) and (S-Sel) are similar to the previous ones.
These rules state that subtyping is co-variant in depth in the types of values being
transmitted. Rule (S-Brch) states that subtyping is co-variant in breadth, whether
(S-Sel) states it is contra-variant in breadth.

We now focus on subtyping for standard π- calculus types. Rules (Sπ- Refl)
and (Sπ- Trans) state that subtyping is a pre-order. Rules (Sπ- ii) and (Sπ- oo)
define subtyping for input and output channel types, respectively. The input action
is co-variant in the carried types, whether the output action is contra-variant. Rule
(Sπ-Variant) defines subtyping for variant types which is co-variant both in depth
and in breadth, namely in the carried types and in the set of labelled types.

115

116 CHAPTER 7. SUBTYPING

(S-Bool)
Bool <: Bool

(S-End)
end <: end

T <: T ′ U <: U′
(S-Inp)

?T.U <: ?T ′.U′
T ′ <: T U <: U′

(S-Out)
!T.U <: !T ′.U′

I ⊆ J Ti <: T ′i ∀i ∈ I
(S-Brch)

&{li : Ti}i∈I <: &{l j : T ′j} j∈J

I ⊇ J T j <: T ′j ∀ j ∈ J
(S-Sel)

⊕{li : Ti}i∈I <: ⊕ {l j : T ′j} j∈J

Figure 7.1: Subtyping rules for the π-calculus with sessions

(Sπ-Refl)
T ≤ T

T ≤ T ′ T ′ ≤ T ′′
(Sπ-Trans)

T ≤ T ′′

T̃ ≤ T̃ ′
(Sπ- ii)

`i [T̃] ≤ `i [T̃ ′]

T̃ ′ ≤ T̃
(Sπ-oo)

`o [T̃] ≤ `o [T̃ ′]

I ⊆ J Ti ≤ T ′i ∀i ∈ I
(Sπ-Variant)

〈li Ti〉i∈I ≤ 〈l j T ′j〉 j∈J

Figure 7.2: Subtyping rules for the standard π-calculus

7.2 Properties
In order to use the encoding of the π- calculus with session types to derive basic
properties like subject reduction, type safety etc., in presence of subtyping, we
need to prove the correctness of the encoding wrt subtyping.

Lemma 7.2.1 (Subtyping on Dual Types). If ~T� ≤ ~T ′�, then ~T ′� ≤ ~T�.

Proof. The lemma follows immediately by the definition of encoding, the duality
function in standard π-types and the subtyping rules presented in Fig. 7.2. �

Theorem 7.2.2 (Soundness wrt Subtyping). If ~T� ≤ ~T ′�, then T <: T ′.

Proof. The proof is done by induction on the structure of session types T,T ′.

• Case T = T ′ = Bool:
By (E-Bool) we have ~T� = ~T ′� = Bool. By rule (Sπ-Refl) we have that
Bool ≤ Bool. By applying rule (S-Bool) we obtain the result.

7.2. PROPERTIES 117

• Case T = T ′ = end:
By (E-End) we have ~T� = ~T ′� = ∅[]. By rule (Sπ- Refl) we have that
∅[] ≤ ∅[]. By applying rule (S-End) we obtain the result.

• Case T = ?T1.U1 and T ′ = ?T2.U2:
Assume that ~?T1.U1� ≤ ~?T2.U2�, which encoding of input means
`i[~T1�, ~U1�] ≤ `i[~T2�, ~U2�]. The last rule applied is (Sπ- ii), which
by its premise asserts that ~T1� ≤ ~T2� and ~U1� ≤ ~U2�. By induction
hypothesis we have that T1 <: T2 and U1 <: U2. By applying rule (S-Inp) on
the induction hypothesis we obtain ?T1.U1 <: ?T2.U2.

• Case T = !T1.U1 and T ′ = !T2.U2:
Assume that ~!T1.U1� ≤ ~!T2.U2�, which by encoding of output means
`o[~T1�, ~U1�] ≤ `o[~T2�, ~U2�]. The last rule applied is (Sπ- oo), which
by its premise asserts that ~T2� ≤ ~T1� and ~U2� ≤ ~U1�. By Lemma 7.2.1,
we get ~U1� ≤ ~U2�. By induction hypothesis we have that T2 <: T1 and
U1 <: U2. By applying rule (S-Out) we obtain !T1.U1 <: !T2.U2.

• Case T = &{li : Ti}i∈I and T ′ = &{l j : T ′j} j∈J:
Assume that ~&{li : Ti}i∈I� ≤ ~&{l j : T ′j} j∈J�, which by encoding of branch
means `i [〈li ~Ti�〉i∈I] ≤ `i [〈l j ~T ′j�〉 j∈J]. The last rule applied must have
been (Sπ- ii), which by its premise asserts that 〈li ~Ti�〉i∈I ≤ 〈l j ~T ′j�〉 j∈J.
By rule (Sπ- Variant) this means that ~Ti� ≤ ~T ′j� for all i ∈ I and I ⊆ J.
By induction hypothesis we have that Ti <: T ′j for all i ∈ I and I ⊆ J. By
applying rule (S-Brch) we obtain &{li : Ti}i∈I <: &{l j : T ′j} j∈J.

• Case T = ⊕{li : Ti}i∈I and T ′ = ⊕{l j : T ′j} j∈J:
Assume that ~⊕{li : Ti}i∈I� ≤ ~⊕{l j : T ′j} j∈J�, which by encoding of select
means `o [〈li ~Ti�〉i∈I] ≤ `o [〈l j ~T ′j�〉 j∈J]. The last rule applied must have
been (Sπ- oo), which by its premise asserts that 〈l j ~T ′j�〉 j∈J ≤ 〈li ~Ti�〉i∈I .
By rule (Sπ-Variant), ~T ′j� ≤ ~Ti� for all j ∈ J and J ⊆ I. By Lemma 7.2.1,
we obtain ~Ti� ≤ ~T j� for all j ∈ J and J ⊆ I. By induction hypothesis we
have that Ti <: T ′j for all j ∈ J and J ⊆ I. By applying rule (S-Sel) on the
induction hypothesis we obtain ⊕{li : Ti}i∈I <: ⊕ {l j : T ′j} j∈J.

�

Theorem 7.2.3 (Completeness wrt Subtyping). If T <: T ′, then ~T� ≤ ~T ′�.

Proof. The proof is done by induction on the derivation for T <: T ′.

• Case (S-Bool):
By (E-Bool) and by rule (Sπ- Refl) we obtain Bool ≤ Bool, which con-
cludes the case.

118 CHAPTER 7. SUBTYPING

• Case (S-End):
It means end <: end. By (E-End) and rule (Sπ- Refl) we obtain ∅[] ≤ ∅[]
and this concludes the case.

• Case (S-Inp):
T <: T ′ U <: U′

?T.U <: ?T ′.U′

By induction hypothesis we have that ~T� ≤ ~T ′� and ~U� ≤ ~U′�. We
need to prove that ~?T.U� ≤ ~?T ′.U′�. By applying (E-Inp) we obtain
~?T.U� = `i [~T�, ~U�] and ~?T ′.U′� = `i [~T ′�, ~U′�]. By applying rule
(Sπ- ii) on the induction hypothesis we obtain the result.

• Case (S-Out):
T ′ <: T U <: U′

!T.U <: !T ′.U′

By induction hypothesis we have that ~T ′� ≤ ~T� and ~U� ≤ ~U′�. We
need to prove that ~!T.U� ≤ ~!T ′.U′�. By applying (E-Out) we obtain
~!T.U� = `o [~T�, ~U�] and ~!T ′.U′� = `o [~T ′�, ~U′�]. By Lemma 7.2.1
we get ~U′� ≤ ~U�. By applying rule (Sπ-oo) on the induction hypothesis
we obtain the result.

• Case (S-Brch):
I ⊆ J Ti <: T ′j ∀i ∈ I

&{li : Ti}i∈I <: &{l j : T ′j} j∈J

By induction hypothesis we have that ~Ti� ≤ ~T ′j� for all i ∈ I. We need to
prove that ~&{li : Ti}i∈I� ≤ ~&{l j : T ′j} j∈J�. By applying (E-Branch) we ob-
tain ~&{li : Ti}i∈I� = `i [〈li ~Ti�〉i∈I] and ~&{l j : T ′j} j∈J� = `i [〈l j ~T ′j�〉 j∈J].
By applying rules (Sπ-Variant) and (Sπ- ii) on the induction hypothesis we
obtain the result.

• Case (S-Sel):
I ⊇ J Ti <: T ′j ∀ j ∈ J

⊕{li : Ti}i∈I <: ⊕ {l j : T ′j} j∈J

By induction hypothesis we have that ~Ti� ≤ ~T ′j� for all j ∈ J. We need to
prove that ~⊕{li : Ti}i∈I� ≤ ~⊕{l j : T ′j} j∈J�. By applying (E-Select) we ob-
tain ~⊕{li : Ti}i∈I� = `o [〈li ~Ti�〉i∈I] and ~⊕{l j : T ′j} j∈J� = `o [〈l j ~T ′j�〉 j∈J].
By Lemma 7.2.1 we get ~T ′j� ≤ ~T j� for all j ∈ J. By (Sπ- Variant) and
(Sπ-oo) on the induction hypothesis we obtain the result.

�

7.2. PROPERTIES 119

In order to benefit from the subtyping relation, we introduce the subsumption
rule to the type system, both on the π-calculus with and without sessions.

Γ ` x : T T subtype T ′

Γ ` x : T ′

where subtype is instantiated with <: or ≤ depending on the calculus where it is
used. Then, we can prove the following results.

Lemma 7.2.4 (Value Typing). Γ ` v : T if and only if ~Γ� f ` ~v� f : ~T� for some
renaming function f for v.

Proof. The proof is split as follows.

(⇒) Follows the cases in Lemma 6.3.9; we add the case for subsumption which
is trivial, since this rule is added on both calculi.

(⇐) Follows the cases in Lemma 6.3.8; we add the case for subsumption which
is trivial, since this rule is added on both calculi.

�

Theorem 7.2.5 (Process Typing). If Γ ` P if and only if ~Γ� f ` ~P� f for some
renaming function f for P.

Proof. The proof is split as follows.

(⇒) Follows the cases in Theorem 6.3.11. Instead of Lemma 6.3.9, we apply
Lemma 7.2.4.

(⇐) Follows the cases in Theorem 6.3.10. Instead of Lemma 6.3.8 we apply
Lemma 7.2.4.

�

120 CHAPTER 7. SUBTYPING

Chapter 8

Polymorphism

Polymorphism is a common and useful type abstraction in programming lan-
guages as it allows generic operations by using an expression with several types.
In Chapter 7 we studied subtyping on both session types and standard π- types,
which is a simple form of type abstraction.

A more complex form of type abstraction is the parametric polymorphism
that is already present and well studied in the standard π-calculus [101], and in
general is the form of polymorphism best known in programming languages. In
Section 8.1 we show that, by extending the encoding and by adding parametric
polymorphism to the syntax of types and terms in the π- calculus with sessions,
we obtain the properties in the polymorphic sessions for free by deriving them
from the theory of the polymorphic π-calculus.

In [45] the author studies bounded polymorphism. To the best of our knowl-
edge, this is the first work on polymorphism in session types and the first work on
bounded polymorphism in the π-calculus. In Section 8.2 we will show how we
can obtain bounded polymorphism in the π-calculus with session types by adding
bounded polymorphism to the standard π-calculus and by extending our encoding.

8.1 Parametric Polymorphism

We start with parametric polymorphism. We present the syntax of types and term,
give the typing rules and the reduction rules. We extend the encoding and by
proving its soundness and completeness wrt typing of values and processes, we
show our encoding is robust.

121

122 CHAPTER 8. POLYMORPHISM

T ::= . . . | X (type variable)
| 〈X; T 〉 (polymorphic type)

P ::= . . . | open v as (X; x) in P (unpacking process)
v ::= . . . | 〈T ; v〉 (polymorphic value)
∆ ::= ∅ | ∆, X (type variable context)

Figure 8.1: Syntax of parametric polymorphic constructs

8.1.1 Syntax

The syntax of the polymorphic π- calculus with and without sessions is given in
Fig. 8.1. Notice that, since the new constructs for polymorphic types and terms
are the same for both the π- calculi with and without sessions, for simplicity, we
present them under the same grammar. We will distinguish them in the context and
often we will refer to the standard π-calculus constructs as the encoded constructs
of the π-calculus with sessions.

We extend both syntaxes of the π-calculus with and without sessions with the
type variable X and the polymorphic type 〈X; T 〉.

Modifications in the syntax of types trigger modifications in the syntax of
terms, as expected. So, we add the polymorphic value 〈T ; v〉 and the unpacking
process open v as (X; x) in P.

To conclude, we add another typing context ∆ containing polymorphic type
variables. We will present the new typing judgements in the following.

8.1.2 Semantics

The reduction rule for the unpacking process is given below.

(R[π]-Unpack) open 〈T ; v〉 as (X; x) in P→ P[T/X][v/x]

This reduction rule holds for both the π- calculus with and without sessions. In
order to distinguish them, we use [π] in square brackets, which means that π is
optional: where π is present, then the rule refers to the standard π- calculus, oth-
erwise it refers to the session π- calculus. This reduction is similar to the case
reduction, as it does not require any communication. We can refer to it as unpack
normalisation, in analogy to case normalisation.

Rule (R[π]-Unpack) states that process open 〈T ; v〉 as (X; x) in P, with the
guard being a polymorphic value 〈T ; v〉, reduces to process P where two sub-
stitutions occur: type T substitutes type variable X and value v substitutes the
placeholder variable x.

8.1. PARAMETRIC POLYMORPHISM 123

Γ; ∆ ` v : T [T ′/X]
(T[π]-PolyVal)

Γ; ∆ ` 〈T ′; v〉 : 〈X; T 〉

Γ1; ∆ ` v : 〈X; T 〉 Γ2, x : T ; ∆, X ` P
(T-Unpack)

Γ1 ◦ Γ2; ∆ ` open v as (X; x) in P

Γ1; ∆ ` v : 〈X; T 〉 Γ2, x : T ; ∆, X ` P
(Tπ-Unpack)

Γ1] Γ2; ∆ ` open v as (X; x) in P

Figure 8.2: Typing rules for parametric polymorphic constructs

8.1.3 Typing Rules
We are ready now to give the typing rules for the π- calculus with and without
sessions. Typing judgements are of the new form Γ; ∆ ` v : T or Γ; ∆ ` P, where
Γ is the typing context introduced in Section 5.4 for the π-calculus with sessions
and in Section 4.4 for the standard π- calculus, and ∆ collects the polymorphic
type variables, needed to type polymorphic constructs.

The typing rules for parametric polymorphism are given in Fig. 8.2. Again,
we present in the same figure both the typing rules for the session π-calculus and
the typing rules for the standard one. In order to distinguish them, we use [π] in
square brackets, which means that π is optional: where π is present, then the rule
refers to the standard π-calculus, otherwise it refers to the session π-calculus.

Rule (T[π]-PolyVal) asserts that a polymorphic value 〈T ′; v〉 is of a polymor-
phic type 〈X; T 〉, whenever the value v is of type T with T ′ substituting the type
variable X. Rule (T[π]-Unpack) states the well-typedness of the unpacking pro-
cess. Process open v as (X; x) in P is well typed if the guard v is of a polymorphic
type 〈X; T 〉 and process P is well typed in x of type T and ∆ augmented with X.

8.1.4 Encoding
The encoding of polymorphic types and terms is an homomorphism and is given
in Fig. 8.3. (E-PolyVar) states that the encoding of the type variable X is X itself.
(E-PolyType) states that the encoding of a polymorphic session type 〈X; T 〉 is a
polymorphic standard π- type 〈X; ~T�〉, acting on the same type variable X and
carrying ~T�.

The encoding of a polymorphic value and a polymorphic process is
parametrised in a function f that renames variables in the session term, as origi-
nally shown in Section 6.2. (E-PolyVal) states that the encoding of a polymorphic

124 CHAPTER 8. POLYMORPHISM

~X� , X (E-PolyVar)
~〈X; T 〉� , 〈X; ~T�〉 (E-PolyType)
~〈T ; v〉� f , 〈~T�; ~v� f 〉 (E-PolyVal)

~open v as (X; x) in P� f , open ~v� f as (X; fx) in ~P� f (E-Unpack)

Figure 8.3: Encoding of parametric polymorphic constructs

value 〈T ; v〉 added to the session π- calculus is a polymorphic value 〈~T�; ~v� f 〉

added to the standard π- calculus having type the encoding of T and the value v
is renamed according f , resulting in ~v� f . (E-Unpack) states that the encoding
of the unpacking session process open v as (X; x) in P is the unpacking process
open ~v� f as (X; fx) in ~P� f added to the standard π- calculus where the guard
is the encoded value ~v� f , the polymorphic placeholder x is renamed as fx and
process P is encoded using f , i.e., ~P� f .

The encoding of typing contexts is given by:

~∅� f , ∅ (E-Empty)
~Γ, x : T� f , ~Γ� f] fx : ~T� (E-Gamma)
~Γ; ∆� f , ~Γ� f ; ∆ (E-Delta)

We encode Γ as in Fig. 6.3, and on ∆ the encoding is the identity function,
since the encoding of type variables is the identity function.

8.1.5 Properties of the Encoding
In this section we prove the correctness of the encoding wrt typing derivations for
polymorphic processes and values and the operational correspondence. We start
with the following lemma which relates substitution of types and encoding.

Lemma 8.1.1. Let T be a session type and let T [T ′/X] denote type T where the
type variable X is substituted by type T ′. Then,

~T [T ′/X]� = ~T�[~T ′�/X]

Proof. It follows immediately from the encoding of types and the standard defi-
nition of type substitution. �

To complete Lemma 6.3.8 of soundness and Lemma 6.3.9 of completeness
of the encoding wrt typing values, it suffices to add the case for polymorphic
values. However, adding this case requires modification in the typing judgements:
previous typing judgements of the form Γ ` v : T should be now written as
Γ; ∆ ` v : T (with ∆ = ∅ in absence of polymorphism).

8.1. PARAMETRIC POLYMORPHISM 125

Proof of Lemma 6.3.8 and Lemma 6.3.9 for Parametric Polymorphic Values:

1. If ~Γ; ∆� f ` ~v� f : ~T� for some renaming function f , then Γ; ∆ ` v : T .

2. If Γ; ∆ ` v : T , then ~Γ; ∆� f ` ~v� f : ~T� for some renaming function f .

Proof. We split the proof as follows.

1. The proof is done by induction on the structure of the value v.

We consider only the case for polymorphic values, namely v = 〈T ′; v′〉.
By applying (E-PolyVal) we have ~〈T ′; v′〉� f = 〈~T�; ~v′� f 〉 and assume
~Γ; ∆� f ` 〈~T�; ~v′� f 〉 : 〈X; ~T�〉, which means that the last typing rule
applied must have been (Tπ-PolyVal).

~Γ; ∆� f ` ~v′� f : ~T�[~T ′�/X]

~Γ; ∆� f ` 〈~T�; ~v′� f 〉 : 〈X; ~T�〉

By induction hypothesis and by Lemma 8.1.1 we obtain Γ ` v′ : T [T ′/X].
We conclude by applying (T-PolyVal).

2. The proof is done by induction on the derivation for Γ; ∆ ` v : T .

We consider only the case for (T-PolyVal).

Γ; ∆ ` v′ : T [T ′/X]

Γ; ∆ ` 〈T ′; v′〉 : 〈X; T 〉

By induction hypothesis and by Lemma 8.1.1, there is f ′ such that
~Γ; ∆� f ′ ` ~v′� f ′ : ~T�[~T ′�/X]. By choosing f = f ′ and by applying
rules (Tπ-PolyVal), (E-PolyType) and (E-PolyVal), we obtain the result.

�

To complete Theorem 6.3.10 and Theorem 6.3.11 on the correctness of the en-
coding wrt typing processes, it suffices to add the case for the unpack process. As
with values, adding this case to the proofs of the previous theorems requires modi-
fications in the typing judgements: previous typing judgements of the form Γ ` Q
should be now written as Γ; ∆ ` Q, (with ∆ = ∅ in absence of polymorphism).
These modifications will affect also the statement of operational correspondence
given by Theorem 6.3.15.

126 CHAPTER 8. POLYMORPHISM

Proof of Theorem 6.3.10 and Theorem 6.3.11 for Parametric Polymorphic
Processes:

1. If ~Γ; ∆� f ` ~Q� f for some renaming function f for Q, then Γ; ∆ ` Q.

2. If Γ; ∆ ` Q, then ~Γ; ∆� f ` ~Q� f for some renaming function f for Q.

Proof. We split the proof as follows.

1. The proof is done by induction on the structure of session process Q.

We consider only the case for the unpack process. By (E-Unpack) we have
that ~Γ; ∆� f ` open ~v� f as (X; fx) in ~P� f . This means that the last rule
applied must be (Tπ-Unpack):

~Γ� f ; ∆ ` ~v� f : 〈X; ~T�〉 ~Γ� f , fx : ~T�; ∆, X ` ~P� f

~Γ� f ; ∆ ` open ~v� f as (X; fx) in ~P� f

By the soundness of the encoding wrt typing parametric polymorphic val-
ues, given previously, we have Γ; ∆ ` v : 〈X; T 〉. By induction hypothesis
Γ, x : T ; ∆, X ` P. Then, by applying (T-Unpack), we conclude the case.

2. The proof is done by induction on the derivation Γ; ∆ ` Q.

We consider only the case when (T-Unpack) is applied:

Γ1; ∆ ` v : 〈X; T 〉 Γ2, x : T ; ∆, X ` P

Γ1 ◦ Γ2; ∆ ` open v as (X; x) in P

By the completeness of the encoding wrt typing parametric polymorphic
values ~Γ� f ′; ∆ ` ~v� f ′ : 〈X; ~T�〉, for some function f ′. By induction
hypothesis ~Γ, x : T� f ′′; ∆, X ` ~P� f ′′ , for some function f ′′. By (E-Gamma)
it means ~Γ� f ′′] f ′′x : ~T�; ∆, X ` ~P� f ′′ Since Γ1 ◦ Γ2 is defined, then for
all x ∈ dom(Γ1) ∩ dom(Γ2) it holds that Γ1(x) = Γ2(x) = T and un(T).
Let dom(Γ1) ∩ dom(Γ2) = D and define f ′D = f ′ \

⋃
d∈D{d 7→ f ′(d)} and

f ′′D = f ′′ \
⋃

d∈D{d 7→ f ′′(d)}. Let f =
⋃

d∈D{d 7→ d′} ∪ f ′D∪ f ′′D , such that for
all d ∈ D we create a fresh name d′ and associate d 7→ d′. Moreover, f is a
function since its subcomponents act on disjoint domains. By Lemma 6.3.6
and since x < Γ2, by Lemma 6.3.2 we have the following:

~Γ� f ; ∆ ` ~v� f : 〈X; ~T�〉 ~Γ� f , fx : ~T�; ∆, X ` ~P� f

By applying (E-Unpack) and rule (Tπ-Unpack) we obtain the result.
�

To complete the operational correspondence given in Theorem 6.3.15, we add the
case for polymorphic processes.

8.2. BOUNDED POLYMORPHISM 127

Proof of Theorem 6.3.15 for Parametric Polymorphic Processes: Let P be
a session process, Γ,∆ session typing contexts, and f a renaming function for P
such that ~Γ; ∆� f ` ~P� f . Then, the following statements hold.

1. If P→ P′, then ~P� f →↪→ ~P′� f .

2. If ~P� f → Q, then there are P′,E[·], such that E[P]→ E[P′] and
Q ↪→ ~P′� f ′ , and either f ′ = f or f ′ = f , {x, y 7→ c} for x, y such that (νxy)
appears in E[P].

Proof. We split the proof as follows.

1. We consider only the case when (R-Unpack) is applied.

If open 〈T ; v〉 as (X; x) in P → P[T/X][v/x], then by (E-Unpack),
Lemma 8.1.1 and Lemma 6.3.13 and by reduction (Rπ- Unpack) we can
obtain ~open 〈T ; v〉 as (X; x) in P� f →≡ ~P[T/X][v/x]� f .

2. We consider only the case for the unpack process.

If ~open 〈T ; v〉 as (X; x) in P� f → Q, then by applying (E-Unpack),
rule (R-Unpack), the definition of structural congruence and by applying
Lemma 8.1.1 and Lemma 6.3.13 we obtain open 〈T ; v〉 as (X; x) in P→ P′

and Q ≡ ~P′� f . Notice that f ′ = f and E[·] = [·].
�

8.2 Bounded Polymorphism

We now consider bounded polymorphism, which is studied in [45]. This kind of
polymorphism has not been studied in the standard π-calculus; we add it and show
how we can derive bounded polymorphism in session π-calculus passing through
the standard one. Bounded polymorphism for session types in [45] is added only
to the labels of branch and select type and term constructs. In our work, we specify
only upper bounds and use only basic types in the bounds. This is a simplification
wrt [45] which is sufficient to illustrate how the encoding works.

8.2.1 Syntax

In this section we present both the bounded polymorphic π- calculus with and
without sessions. We give the syntax of types and terms, the typing rules and the
reduction rules.

128 CHAPTER 8. POLYMORPHISM

Ts ::= . . . | B (basic type)
p ::= . . . | ⊕ {li(Xi <: Bi) : Ti}i∈I (bounded polymorphic select)

| &{li(Xi <: Bi) : Ti}i∈I (bounded polymorphic branch)
Ps ::= . . . | x / l j(B).P (bounded polymorphic selection)

| x . {li(Xi <: Bi) : Pi}i∈I (bounded polymorphic branching)

Figure 8.4: Syntax of bounded polymorphic session constructs

Syntax of bounded polymorphic constructs in session π-calculus We give in
Fig. 8.4 only the new constructs added to the syntax of types and terms.

Type B stands for basic types e.g., integer, boolean, X, . . . Types produced by
Ts, in addition to linp | end, include basic types B. Recall that in Section 5.3
we adopted only the boolean type and stated that every other ground type can
be added as well as data structures. In this section, we adopt the same syntax
as in the original paper [45], so we include data structures explicitly. The pre-
types produced by p report modifications only in the select and branch types,
where labels are annotated with conditions of the form (Xi <: Bi), resulting in
⊕{li(Xi <: Bi) : Ti}i∈I and &{li(Xi <: Bi) : Ti}i∈I , respectively. This basically means
that the variables Xi, which can occur in Ti, can be instantiated by types that re-
spect the condition, where <: indicates the subtyping relation on session types
presented in Fig. 7.1. Processes produced by Ps report modifications only in selec-
tion and branching, namely x / l j(B).P and x . {li(Xi <: Bi) : Pi}i∈I , respectively. In
the bounded polymorphic branching every label li is annotated with the condition
(Xi <: Bi), which has the same meaning as for the types. In the bounded polymor-
phic selection, the selected label is accompanied also with a selected basic type.
The reduction rules, introduced in the next section, give a better understanding of
how label annotations are used.

Type duality for the bounded polymorphic pretypes is as expected, by follow-
ing the standard definition of type duality for session types.

⊕{li(Xi <: Bi) : T }i∈I , &{li(Xi <: Bi) : Ti}i∈I

&{li(Xi <: Bi) : T }i∈I , ⊕{li(Xi <: Bi) : Ti}i∈I

Syntax of bounded polymorphic constructs in standard π- calculus We add
bounded polymorphism in the standard typed π- calculus, by following the same
idea as for session types: we add type constraints to the labels of variant types and
values. We give in Fig. 8.5 only the new constructs or the modifications made to
the syntaxes of standard π- types and π- processes introduced in Section 4.3 and
Section 4.1, respectively.

8.2. BOUNDED POLYMORPHISM 129

Tπ ::= . . . | B (basic type)
| 〈li(Xi ≤ Bi) Ti〉i∈I (bounded poly variant)

Pπ ::= . . . | case v of {li(Xi ≤ Bi) xi . P}i∈I (bounded poly case)
vπ ::= . . . | l(B) v (bounded poly variant value)

Figure 8.5: Syntax of bounded polymorphic π-constructs

Types produced by Tπ include basic types, which can be data types and type
variables, and a modified version of variant type, called bounded polymorphic
variant. The difference wrt the standard variant is the presence of constraints of
the form (Xi ≤ Bi), which are added to the labels of the variant. The meaning
of this constraint is the same as for session types, namely the variables Xi which
occur in Ti can be instantiated be types that respect the condition, where ≤ indi-
cates the subtyping relation on π-types presented in Fig. 7.2. As long as terms are
concerned, the modification of variant type triggers modifications in the case pro-
cess and in the variant value, which now are bounded polymorphic forms of the
standard ones. The bounded polymorphic case, as the variant type, has attached
to the labels li the constraints (Xi ≤ Bi), whether the bounded polymorphic value,
has attached to its label l a chosen basic type B. Again, the reduction rules, will
give us a better understanding of how label annotations are used.

8.2.2 Semantics

We now introduce the reduction rules for bounded polymorphic processes for both
the π-calculus with and without sessions. We start with session π-calculus.

(R-BPolySel) (νxy)(x / l j(B).P | y . {li(Xi <: Bi) : Pi}i∈I)→
(νxy)(P | P j[B/X j]) j ∈ I

(Rπ-BPolyCase) case l j(B) v of {li(Xi ≤ Bi) xi . P}i∈I → P j[B/X j][v/x j] j ∈ I

Rule (R-BPolySel) states that a communication occurs between a selection
process l j(B).P and a branching process y . {li(Xi <: Bi) : Pi}i∈I , whenever x and
y are co-variables. In addition, together with the selected label l j there is also a
selection of type B. This communication reduces to P composed with the j-th pro-
cess offered by branching where the corresponding type variable X j is substituted
by the selected basic type B.

Rule (Rπ-BPolyCase) states that a case normalisation occurs when the guard
of case is a variant value l j(B) v. This reduces to the j-th process offered by the
bounded polymorphic case where in addition to the standard substitution of the

130 CHAPTER 8. POLYMORPHISM

Γ1; ∆ ` x : ⊕{li(Xi <: Bi) : Ti}i∈I

Γ2, x : T j[B/X j]; ∆ ` P j ∈ I B <: Bi ∀i ∈ I

Γ1 ◦ Γ2; ∆ ` x / l j(B).P
(T-BPolySel)

Γ1; ∆ ` x : &{li(Xi <: Bi) : Ti}i∈I

Γ2, x : Ti; ∆, Xi <: Bi ` Pi ∀i ∈ I

Γ1 ◦ Γ2; ∆ ` x . {li(Xi <: Bi) : Pi}i∈I
(T-BPolyBrch)

Figure 8.6: Typing rules for bounded polymorphic session constructs

placeholder x by v, also the type variable X j is substituted by the selected basic
type B. In both cases, the reduction rules succeed only if j ∈ I.

8.2.3 Typing Rules
We now give the typing rules for both the π-calculus with and without sessions.

Typing rules for bounded polymorphic session π-calculus The typing judge-
ments now are of the form Γ; ∆ ` v : Ts stating that a session value v is of bounded
polymorphic session type Ts in a typing context Γ and a set of type variables ∆,
and Γ; ∆ ` Ps stating that a bounded polymorphic session process is well typed in
a typing context Γ and a set of type variables ∆.

The new typing rules for the bounded polymorphic branching and selection are
given in Fig. 8.6. Rule (T-BPolySel) states that the selection process, where label
l j together with the basic type B are selected, is well typed whenever channel x is
of bounded polymorphic select type and B <: Bi for all i ∈ I. In addition, process
P is well typed under x having the appropriate type where type variable X j is
substituted by the selected type B. Rule (T-BPolyBrch) states that the branching
process is well typed whenever channel x is of bounded polymorphic branch type
and every process Pi in the branching is well typed under the condition Xi <: Bi.

Typing rules for bounded polymorphic standard π- calculus The typing
judgements in the bounded polymorphic π-calculus are of the form Γ; ∆ ` v : Tπ,
stating that a value v is of type Tπ in a typing context Γ and a set of type variables
∆, and Γ; ∆ ` Pπ, stating that the bounded polymorphic process Pπ is well typed
in a typing context Γ and a set of type variables ∆.

The new typing rules for the standard π- calculus are presented in Fig. 8.7.
Rule (Tπ- BPolyLVal) states that the bounded polymorphic variant value l j(B) v
is of bounded polymorphic variant type 〈li(Xi ≤ Bi) Ti〉i∈I , whenever B ≤ Bi for

8.2. BOUNDED POLYMORPHISM 131

Γ; ∆ ` v : T j[B/X j] j ∈ I
B ≤ Bi ∀i ∈ I

Γ; ∆ ` l j(B) v : 〈li(Xi ≤ Bi) Ti〉i∈I
(Tπ-BPolyLVal)

Γ1; ∆ ` v : 〈li(Xi ≤ Bi) Ti〉i∈I

Γ2, xi : Ti; ∆, Xi ≤ Bi ` Pi ∀i ∈ I

Γ1] Γ2; ∆ ` case v of {li(Xi ≤ Bi) xi . P}i∈I
(Tπ-BPolyCase)

Figure 8.7: Typing rules for bounded polymorphic π-constructs

~B� , B (E-BPolyB)
~⊕{li(Xi <: Bi) : Ti}i∈I� , `o [〈li(Xi ≤ Bi) ~Ti�〉i∈I] (E-BPolySel)
~&{li(Xi <: Bi) : Ti}i∈I� , `i [〈li(Xi ≤ Bi) ~Ti�〉i∈I] (E-BPolyBrch)

Figure 8.8: Encoding of bounded polymorphic types

all i ∈ I and value v is of type T j where the corresponding type variable X j is
substituted by the selected basic type B. Rule (Tπ- BPolyCase) states that the
bounded polymorphic case is well typed whenever the guard v is of the appropriate
variant type and every process Pi is well typed under the augmented typing context
with the type assumption xi : Ti and the constraint Xi ≤ Bi.

8.2.4 Encoding

The encoding of bounded polymorphic types is defined in Fig. 8.8. (E-BPolyB)
states that the encoding is the identity function on a basic type, namely the encod-
ing of a data type and of a type variable is the same data type and type variable
in the standard π- calculus. (E-BPolySel) states that the encoding of a bounded
polymorphic select type is a linear channel type, used to output a value of type
bounded polymorphic variant where subtyping constraint Xi <: Bi in the select
type is interpreted as the subtyping constraint Xi ≤ Bi in the variant type and the
types in the branches of the variant type are ~Ti� for all i ∈ I. (E-BPolyBrch)
states the dual of the previous one: the bounded polymorphic branch is encoded
as a linear input channel type. The subtyping constraints are the same and the
types in the branches of the variant type are ~Ti� for all i ∈ I.

The encoding of bounded polymorphic terms is defined in Fig. 8.9. The differ-
ence wrt (E-Selection) and (E-Branching) is the annotation of labels with types.
(E-BPolySelection) states that the bounded polymorphic selection is interpreted

132 CHAPTER 8. POLYMORPHISM

(E-BPolySelection)
~x / l j(B).P� f , (νc) fx!〈l j(B) c〉.~P� f ,{x 7→c}

(E-BPolyBranching)
~x . {li(Xi <: Bi) : Pi}i∈I� f , fx?(y). case y of {li(Xi ≤ Bi) c . ~Pi� f ,{x 7→c}}i∈I

Figure 8.9: Encoding of bounded polymorphic terms

as an output with subject the renamed variable x and object a bounded polymor-
phic variant value, where the selected label and the basic type are the same as the
original ones and the value carried by the variant value is a freshly created channel
c, used in the rest of the communication. The continuation process P is encoded
in f updated with x renamed as c. (E-BPolyBranching) states that the bounded
polymorphic branching is interpreted as an input with subject the renamed x fol-
lowed by a case process having as guard the object of the input. The branches of
case are encoded as in (E-Branching).

The encoding of typing contexts is defined as follows:

~Γ; ∆� f , ~Γ� f ; ∆

and is the same as in the case of parametric polymorphism.

8.2.5 Properties of the Encoding
In this section we prove the correctness of the encoding of bounded polymorphic
constructs wrt typing and reduction. This means that by using the encoding and
bounded polymorphism in the standard π-calculus, we can derive bounded poly-
morphism in the π-calculus with session types.

To complete Lemma 6.3.8 of soundness and Lemma 6.3.9 of completeness
of the encoding wrt typing values, it suffices to add the cases for bounded poly-
morphic variables. However, adding this case requires modification in the typing
judgements: previous typing judgements of the form Γ ` v : T should be now
written as Γ; ∆ ` v : T , (with ∆ = ∅ in absence of polymorphism).

The cases for bounded polymorphic variables for Lemma 6.3.8 and
Lemma 6.3.9, follow immediately by (E-BPolySel) and (E-BPolyBrch) and by
rules (T-Var) and (Tπ-Var).

To complete Theorem 6.3.10 and Theorem 6.3.11 on the correctness of the
encoding wrt typing processes, it suffices to add the cases for bounded branching
and selection. Adding these cases to the proofs of the previous theorems requires
modification in the typing judgements: previous typing judgements of the form

8.2. BOUNDED POLYMORPHISM 133

Γ ` Q should be now written as Γ; ∆ ` Q, (with ∆ = ∅ in absence of polymor-
phism). These modifications will also influence the operational correspondence,
as we will show in the following.

Proof of Theorem 6.3.10 for Bounded Polymorphic Processes:
If ~Γ; ∆� f ` ~Q� f for some renaming function f for Q, then Γ; ∆ ` Q.

Proof. The proof is done by induction on the structure of session process Q.
We consider only the new cases for bounded polymorphic processes.

• Case Q = x / l j(B).P:
By (E-BPolySelection) we have ~x / l j(B).P� f = (νc) fx!〈l j(B) c〉.~P� f ,{x 7→c}

and assume ~Γ� f ; ∆ ` (νc) fx!〈l j(B) c〉.~P� f ,{x 7→c}. Since c is a restricted
channel in the encoding of Q, then either rule (Tπ- Res1) or (Tπ- Res2)
must be applied. We consider only the case for (Tπ- Res1), as the one for
(Tπ-Res2) is symmetrical. Then, by (Tπ-Res1) and (Tπ-Out) we have the
following derivation:

(Tπ-Res1)
(Tπ-Out)
Γπ1; ∆ ` fx : `o [〈li(Xi ≤ Bi) T π

i 〉i∈I] Γπ2, c : T π
j [B/X j]; ∆ ` ~P� f ,{x 7→c}

c : T π
j [B/X j]; ∆ ` l j(B) c : 〈li(Xi ≤ Bi) T π

i 〉i∈I

~Γ� f , c : `] [W][B/X j]; ∆ ` fx!〈l j(B) c〉.~P� f ,{x 7→c}

~Γ� f ; ∆ ` (νc) fx!〈l j(B) c〉.~P� f ,{x 7→c}

and ~Γ� f = Γπ1] Γπ2. By Lemma 6.3.5 Γπ1 = ~Γ1� f , and Γπ2 = ~Γ2� f such
that Γ = Γ1 ◦Γ2. By applying (Tπ-Var) and (Tπ-BPolyLval) for some j ∈ I,
we have the following derivation:

(Tπ-Var)

c : T π
j [B/X j]; ∆ ` c : T π

j [B/X j]
B ≤ Bi ∀i ∈ I

c : T π
j [B/X j]; ∆ ` l j(B) c : 〈li(Xi ≤ Bi) T π

i 〉i∈I
(Tπ-BPolyLVal)

Notice that c is of type `] [W][B/X j], which is T π
j [B/X j]] T π

j [B/X j]
and one capability of c is sent along l j(B) c whether the other one is
used in the continuation ~P� f ,{x 7→c}. In the case where (Tπ- Res2) is ap-
plied, c is of type ∅[]] ∅[]. By the correctness of the encoding wrt typ-
ing bounded polymorphic values, as shown earlier in Section 8.2.5, we
have Γ1; ∆ ` x : ⊕{li(Xi ≤ Bi) : Ti}i∈I which by (E-BPolySel) means

134 CHAPTER 8. POLYMORPHISM

~⊕{li(Xi ≤ Bi) : Ti}i∈I� = `o [〈li(Xi ≤ Bi) ~T π
i �〉i∈I] and T π

i = ~Ti� for all
i ∈ I. By induction hypothesis Γ2, x : T j[B/X j]; ∆ ` P. By Theorem 7.2.2
we obtain B <: Bi for all i ∈ I. By applying typing rule (T-BPolySel) we
obtain Γ1 ◦ Γ2; ∆ ` x / l j(B).P, as required.

• Case Q = x . {li(Xi ≤ Bi) : Pi}i∈I:
By (E-BPolyBranching) we have

~x . {li(Xi ≤ Bi) : Pi}i∈I� f = fx?(y). case y of {li(Xi ≤ Bi) c . ~Pi� f ,{x 7→c}}i∈I

and assume ~Γ� f ; ∆ ` fx?(y). case y of {li(Xi ≤ Bi) c . ~Pi� f ,{x 7→c}}i∈I , which
by rules (Tπ-Inp) means that:

(Tπ-Inp)
Γπ1; ∆ ` fx : `i [〈li(Xi ≤ Bi) T π

i 〉i∈I]
Γπ2, y : 〈li(Xi ≤ Bi) T π

i 〉i∈I; ∆ ` case y of {li(Xi ≤ Bi) c . ~Pi� f ,{x 7→c}}i∈I

~Γ� f ; ∆ ` fx?(y). case y of {li(Xi ≤ Bi) c . ~Pi� f ,{x 7→c}}i∈I

and ~Γ� f = Γπ1] Γπ2. By Lemma 6.3.5 we have that Γπ1 = ~Γ1� f , and
Γπ2 = ~Γ2� f such that Γ = Γ1 ◦ Γ2.

By (Tπ-BPolyCase) and (Tπ-Var) we have the following derivation:

(Tπ-BPolyCase)
(Tπ-Var)

y : 〈li(Xi ≤ Bi) T π
i 〉i∈I; ∆ ` y : 〈li(Xi ≤ Bi) T π

i 〉i∈I

Γπ2, c : T π
i ; ∆, Xi ≤ Bi ` ~Pi� f ,{x 7→c} ∀i ∈ I

Γπ2, y : 〈li(Xi ≤ Bi) T π
i 〉i∈I; ∆ ` case y of {li(Xi ≤ Bi) c . ~Pi� f ,{x 7→c}}i∈I

By the correctness of the encoding wrt typing bounded polymorphic values,
we have that Γ1; ∆ ` x : &{li(Xi ≤ Bi) : Ti}i∈I where by (E-BPolyBrch)
~&{li(Xi ≤ Bi) : Ti}i∈I� f = `i [〈li(Xi ≤ Bi) T π

i 〉i∈I] and ~Ti� = T π
i for all i ∈ I.

By the premise of (Tπ-Inp) ~Γ2� f , c : ~Ti�; ∆, Xi ≤ Bi ` ~Pi� f ,{x 7→c}, then by
induction hypothesis we have Γ2, x : Ti; ∆, Xi <: Bi ` Pi for all i ∈ I. By
(T-BPolyBrch) we obtain Γ1 ◦ Γ2; ∆ ` x . {li(Xi ≤ Bi) : Pi}i∈I , as required.

�

Proof of Theorem 6.3.11 for Bounded Polymorphic Processes:
If Γ; ∆ ` Q, then ~Γ; ∆� f ` ~Q� f for some renaming function f for Q.

Proof. The proof is done by induction on the derivation Γ; ∆ ` Q. We examine
only the cases where either (T-BPolySel) or (T-BPolyBrch) is applied.

8.2. BOUNDED POLYMORPHISM 135

• Case (T-BPolySel):

Γ1; ∆ ` x : ⊕{li(Xi ≤ Bi) : Ti}i∈I

Γ2, x : T j[B/X j]; ∆ ` P j ∈ I B <: Bi ∀i ∈ I

Γ1 ◦ Γ2; ∆ ` x / l j(B).P
(T-BPolySel)

By the correctness of the encoding wrt typing bounded polymorphic values,
as shown in Section 8.2.5, ~Γ1� f ′; ∆ ` f ′x : `o [〈li(Xi ≤ Bi) ~Ti�〉i∈I] for
some function f ′. By induction hypothesis, (E-Gamma) and Lemma 8.1.1
we have that ~Γ2� f ′′] f ′′x : ~T j�[B/X j]; ∆ ` ~P� f ′′ for j ∈ I for some
function f ′′. By Theorem 7.2.3 B ≤ Bi for all i ∈ I. Since Γ1 ◦Γ2 is defined,
then for all x ∈ dom(Γ1) ∩ dom(Γ2) it holds that Γ1(x) = Γ2(x) = T and
un(T). Let dom(Γ1) ∩ dom(Γ2) = D and let f ′D = f ′ \

⋃
d∈D{d 7→ f ′(d)}

and f ′′D = f ′′ \
⋃

d∈D{d 7→ f ′′(d)}. Now, suppose f ′′(x) = c, then define
f =

⋃
d∈D{d 7→ d′} ∪ f ′D ∪ f ′′D \ {x 7→ c}, where for all d ∈ D we create

a fresh name d′ and associate d 7→ d′. Moreover, f is a function since its
subcomponents act on disjoint domains. Hence, by Lemma 6.3.6 we can
rewrite the induction hypothesis as follows:

~Γ1� f ; ∆ ` fx : `o [〈li(Xi ≤ Bi) ~Ti�〉i∈I]

and for j ∈ I
~Γ2� f] c : ~T j�[B/X j]; ∆ ` ~P� f ,{x 7→c}

Since x < dom(Γ2), then ~Γ2, x : T j[B/X j]� f ,{x 7→c} can be optimised and dis-
tributed as ~Γ2� f] c : ~T j�[B/X j]. By applying (Tπ-Var) in order to derive
c : ~T j�, rule (Tπ- BPolyLVal) and by Theorem 7.2.3 on completeness of
subtyping wrt to encoding we have the following:

c : ~T j�[B/X j]; ∆ ` c : ~T j�[B/X j]
(Tπ-Var)

j ∈ I
B ≤ Bi ∀i ∈ I

c : ~T j�[B/X j]; ∆ ` l j(B) c : 〈li(Xi ≤ Bi) ~Ti�〉i∈I

(Tπ-BPolyLVal)

Suppose that T j , end and hence T j , end. By applying rule (Tπ-Out) we
have the following derivation:

~Γ1� f ; ∆ ` fx : `o [〈li(Xi ≤ Bi) ~Ti�〉i∈I]
c : ~T j�[B/X j]; ∆ ` l j(B) c : 〈li(Xi ≤ Bi) ~Ti�〉i∈I

~Γ2� f] c : ~T j�[B/X j]; ∆ ` ~P� f ,{x 7→c} j ∈ I

~Γ1� f] ~Γ2� f] c : `][W][B/X j]; ∆ ` fx!〈l j(B) c〉.~P� f ,{x 7→c}

136 CHAPTER 8. POLYMORPHISM

In the above derivation we have that c : ~T j�[B/X j] and c : ~T j�[B/X j] are
combine and Lemma 6.3.7 we obtain c : `][W][B/X j], where ~T j� = `α[W]
and ~T j� = `α[W]. We conclude by applying Lemma 6.3.2 and (Tπ-Res1):

~Γ1� f] ~Γ2� f , c : `][W][B/X j]; ∆ ` fx!〈l j(B) c〉.~P� f ,{x 7→c}

~Γ1� f] ~Γ2� f ; ∆ ` (νc) fx!〈l j(B) c〉.~P� f ,{x 7→c}

The case where T j = T j = end, which yields c : ∅[], is symmetrical and is
obtained by using (Tπ-Res2) instead of (Tπ-Res1).

• Case (T-BPolyBrch):

(T-BPolyBrch)
Γ1; ∆ ` x : &{li(Xi ≤ Bi) : Ti}i∈I Γ2, x : Ti; ∆, Xi <: Bi ` Pi ∀i ∈ I

Γ1 ◦ Γ2; ∆ ` x . {li(Xi ≤ Bi) : Pi}i∈I

By the correctness of the encoding wrt typing bounded polymorphic val-
ues, we have ~Γ1� f ′; ∆ ` f ′x : `i [〈li(Xi ≤ Bi) ~Ti�〉i∈I] for some function f ′.
By induction hypothesis, by (E-Gamma) and Theorem 7.2.3 we have that
~Γ2� f ′′] f ′′x : ~Ti�; ∆, Xi ≤ Bi ` ~Pi� f ′′ for all i ∈ I and for some function
f ′′. Since Γ1 ◦ Γ2 is defined, it means that for all x ∈ dom(Γ1) ∩ dom(Γ2)
it holds that Γ1(x) = Γ2(x) = T and un(T). Let dom(Γ1) ∩ dom(Γ2) = D.
Then, we define f ′D = f ′\

⋃
d∈D{d 7→ f ′(d)} and f ′′D = f ′′\

⋃
d∈D{d 7→ f ′′(d)}.

Suppose f ′′(x) = c. We let f =
⋃

d∈D{d 7→ d′}∪ f ′D∪ f ′′D \{x 7→ c}, where for
all d ∈ D we create a fresh name d′ and associate d 7→ d′. Moreover, f is a
function since its subcomponents act on disjoint domains. We now have:

~Γ1� f ; ∆ ` fx : `i [〈li(Xi ≤ Bi) ~Ti�〉i∈I]

and for all i ∈ I,

~Γ2� f] c : ~Ti�; ∆, Xi ≤ Bi ` ~Pi� f ,{x 7→c}

Since x < dom(Γ2), then ~Γ2, x : T j� f ,{x 7→c} can be optimised and distributed
as ~Γ2� f] c : ~T j�. By (Tπ-Var) in order to derive y : 〈li(Xi ≤ Bi) ~Ti�〉i∈I ,
and (Tπ-BPolyCase) and Lemma 6.3.2 we have the following derivation:

(Tπ-BPolyCase)
(Tπ-Var)

y : 〈li(Xi ≤ Bi) ~Ti�〉i∈I; ∆ ` y : 〈li(Xi ≤ Bi) ~Ti�〉i∈I

~Γ2� f , c : ~Ti�; ∆, Xi ≤ Bi ` ~Pi� f ,{x 7→c} ∀i ∈ I

~Γ2� f , y : 〈li(Xi ≤ Bi) ~Ti�〉i∈I; ∆ ` case y of {li(Xi ≤ Bi) c . ~Pi� f ,{x 7→c}}i∈I

8.2. BOUNDED POLYMORPHISM 137

Then, by applying (Tπ-Inp) we conclude as follows:

~Γ1� f ; ∆ ` fx : `i [〈li(Xi ≤ Bi) ~Ti�〉i∈I]
~Γ2� f , y : 〈li(Xi ≤ Bi) ~Ti�〉i∈I; ∆ ` case y of {li c(Xi ≤ Bi) . ~Pi� f ,{x 7→c}}i∈I

~Γ1� f] ~Γ2� f ; ∆ ` fx?(y). case y of {li(Xi ≤ Bi) c . ~Pi� f ,{x 7→c}}i∈I

�

In the following, we prove the operational correspondence in the case of
bounded polymorphic processes.

Proof of Theorem 6.3.15 for Bounded Polymorphic Processes: Let P be a
session process, Γ,∆ session typing contexts, and f a renaming function for P
such that ~Γ; ∆� f ` ~P� f . Then, the following statements hold.

1. If P→ P′, then ~P� f →↪→ ~P′� f .

2. If ~P� f → Q, then there are P′,E[·], such that E[P]→ E[P′] and
Q ↪→ ~P′� f ′ , and either f ′ = f or f ′ = f , {x, y 7→ c} for x, y such that (νxy)
appears in E[P].

Proof. Since ~Γ; ∆� f ` ~P� f , then by Theorem 6.3.10 for bounded polymorphic
processes, given earlier in this section, it is the case that Γ; ∆ ` P. We consider
both cases in the following.

1. We consider only the case where rule (R-BPolySel) is applied.

P , (νxy)(x/l j(B).Q | y.{li(Xi ≤ Bi) : Pi}i∈I)→ (νxy)(Q | P j[B/X j]) , P′ j ∈ I

By the encoding of bounded polymorphic processes we have

~P� f = ~(νxy)(x / l j(B).Q | y . {li(Xi ≤ Bi) : Pi}i∈I)� f

= (νc)
(
~x / l j(B).Q� f ,{x,y7→c} | ~y . {li(Xi ≤ Bi) : Pi}i∈I� f ,{x,y 7→c}

)
= (νc)

(
(νc′)

(
c!〈l j(B) c′〉.~Q� f ,{x,y 7→c,x 7→c′}

)
|

c?(z). case z of {li(Xi ≤ Bi) c′ . ~Pi� f ,{x,y7→c,y 7→c′}}i∈I
)

→ (νc)
(
(νc′)

(
~Q� f ,{x 7→c,c 7→c′} |

case l j(B) c′ of {li(Xi ≤ Bi) c′ . ~Pi� f ,{y 7→c,c 7→c′}}i∈I
))

→ (νc)
(
(νc′)

(
~Q� f ,{x,y 7→c,x 7→c′} | ~P j� f ,{x,y 7→c,y 7→c′}[B/X j]

))
≡ (νc′)

(
~Q� f ,{x,y 7→c,x 7→c′} | ~P j� f ,{x,y7→c,y7→c′}[B/X j]

)

138 CHAPTER 8. POLYMORPHISM

Notice that since P is a well-typed session process, it means that for all i ∈ I,
x < fv(Pi) and y < fv(Q). Then, function f , {x, y 7→ c, x 7→ c′} and function
f , {x, y 7→ c, y 7→ c′} can both be subsumed by f , {x, y 7→ c′}. We can rewrite
the above as:

(νc′)
(
~Q� f ,{x,y 7→c′} | ~P j� f ,{x,y 7→c′}

)
On the other hand we have:

~P′� f = ~(νxy)(Q | P j[B/X j])� f

= (νc′)
(
~Q� f ,{x,y 7→c′} | ~P j� f ,{x,y 7→c′}[B/X j]

)
We use Lemma 8.1.1 to obtain ~P j� f ,{x,y7→c′}[B/X j]. The above implies:

~P� f →≡ ~P′� f

2. Case P = P1 | P2 = x / l j(B).P′1 | y . {li(Xi ≤ Bi) : P′′i }i∈I .

By (E-Composition), (E-BPolySelection) and (E-BPolyBranching), we
have that:

~P1� f | ~P2� f

= (νc) fx!〈l j(B) c〉.~P′1� f ,{x 7→c} |

fy?(z). case z of {li(Xi ≤ Bi) c . ~P′′i � f ,{y 7→c}}i∈I

→ ~P′1� f ,{x 7→c} | case l j(B) c of {li(Xi ≤ Bi) c . ~P′′i � f ,{y7→c}}i∈I[B/X j]

= ~P′1� f ,{x,y 7→c} | case l j(B) c of {li(Xi ≤ Bi) c . ~P′′i � f ,{x,y7→c}}i∈I[B/X j]

= Q

The assumption ~P1� f | ~P2� f → Q implies that fx = fy. Since by as-
sumption Γ; ∆ ` P1 | P2, it means that x < fv(P2) and y < fv(P1). Hence,
in the last line before Q above we used function f , {x, y 7→ c} to subsume
both f , {x 7→ c} and f , {y 7→ c}. We need to show that there are P′,E[·]
such that E[P1 | P2] → E[P′] and Q ↪→ ~P′� f ′ , where either f ′ = f
or f ′ = f , {z,w 7→ d} for z,w such that (νzw) appears in E[P]. Choose
E[·] = (νxy)[·]. Then, by rule (R-BPolySel) on E[P1 | P2] we have that:

E[P1 | P2] = (νxy)
(
x / l j(B).P′1 | y . {li(Xi ≤ Bi) : P′′i }i∈I

)
→ (νxy)

(
P′1 | P

′′
j [B/X j]

)
= E[P′]

Choose P′ = P′1 | P
′′
j [B/X j] and f ′ = f , {x, y 7→ c}. By the encoding of P′

we have:

~P′� f ′ = ~P′1 | P
′′
j [B/X j]� f ′ = ~P′1� f ,{x,y 7→c} | ~P′′j � f ,{x,y7→c}[B/X j]

8.2. BOUNDED POLYMORPHISM 139

It remains to show that Q ↪→ ~P′� f ,{x,y 7→c}. By rules (Rπ- BPolyCase) and
(Rπ-Par) and Lemma 8.1.1 we have:

Q = ~P′1� f ,{x,y 7→c} | case l j(B) c of {li(Xi ≤ Bi) c . ~P′′i � f ,{x,y 7→c}}i∈I[B/X j]

→ ~P′1� f ,{x,y 7→c} | ~P′′j � f ,{x,y7→c}[B/X j]

= ~P′� f ,{x,y7→c}

This concludes the proof.
�

140 CHAPTER 8. POLYMORPHISM

Chapter 9

Higher-Order Communication

Higher-Order π-calculus (HOπ) models mobility of processes that can be sent
and received and can be run locally [101]. Higher-order communication has also
been studied in the π- calculus with sessions [89]. Following the same line as
in the previous chapters, we want to use standard HOπ to obtain higher-order
communication in the π-calculus with sessions by exploiting the encoding.

9.1 Syntax

σ ::= . . . | T (general type)
| ♦ (process type)

T ::= . . . | Unit (unit type)
| T → σ (functional type)

| T
1
→ σ (linear functional type)

P ::= . . . | PQ (application)
| v (values)

v ::= . . . | λx : T.P (abstraction)
| ? (unit value)

Figure 9.1: Syntax of higher-order constructs

We present in Fig. 9.1 the modifications done to the syntax of types and terms
for both the π-calculus with and without sessions. We will distinguish the session
constructs from the standard π-calculus ones by the context in which they are used
and in particular, we will often refer to the standard π- calculus constructs as the
encoded constructs of the π-calculus with sessions.

141

142 CHAPTER 9. HIGHER-ORDER COMMUNICATION

(R[π]-Beta) (λx : T.P)v→ P[v/x]

(R[π]-ApplLeft)

P→ P′

PQ→ P′Q

(R[π]-ApplRight)

P→ P′

vP→ vP′

Figure 9.2: Semantics of higher-order constructs

Let ♦ denote the type of a process and let σ range over a general type T in the
π-calculus with and without sessions, and on the type of processes ♦. We add to
the syntax of types T the type Unit, the functional type T → σ, assigned to a
functional term that can be used without any restriction and the linear functional

type T
1
→ σ, assigned to a term that should be used exactly once. The reason

for the linear functional type is privacy and communication safety properties that
we want to guarantee in session types. In particular, a function may contain free
session channels, hence it should necessarily be used at least once, in order to
complete the session and so to ensure communication safety and on the other
hand it should not be used more than once, so not to violate privacy. As long as
terms are concerned, they include constructs borrowed from the λ-calculus: the
abstraction and the application, used to enable mobility not only of values but
also of processes. A process can be the application PQ of a process P, typically
being a functional value, to a process Q. A value v can be an abstraction λx : T.P
having exactly the same meaning as in λ-calculus, where variable x is bound with
scope P, or a unit value ? having Unit type.

9.2 Semantics

In this section we present the new reduction rules added to the existing ones pre-
sented in Section 5.2 for sessions and in Section 4.2 for standard π- calculus, re-
spectively. We give them in Fig. 9.2. We will distinguish the reduction rules for
the π- calculus with sessions from the ones for the standard π- calculus by the
presence of [π] in the rule name.

Rule (R[π]-Beta) states that the application of an abstraction λx : T.P to a
value v reduces to P where v substitutes x. Rules on context closure, given by
(R[π]-ApplLeft) and (R[π]-ApplRight), state that the application process reduces
if one of its subprocesses reduces as well.

9.3. TYPING RULES 143

9.3 Typing Rules
In this section we present the typing rules for the HOπ with and without sessions.
Typing judgements are of the form Φ; Γ;S ` P : σ. For simplicity, in case P is a
process and not a value, we use Φ; Γ;S ` P instead Φ; Γ;S ` P : ♦.

9.3.1 HOπ Session Typing Rules
The session typing contexts are defined as follows:

Φ ::= ∅ | Φ, x : Bool | Φ, x : Unit

Φ, x : T → σ | Φ, x : T
1
→ σ (general typing context)

Γ ::= ∅ | Γ, x : linp | Γ, x : end (session typing context)

S ::= ∅ | S ∪ {x} (linear functional variables)

where Φ associates value types, except session types, to identifiers. Γ associates
linear pretypes or terminated channel types, namely session types, to channels. S
denotes the set of linear functional variables. The context split ◦ is defined as in
Fig. 5.6. We state that a typing judgement is well formed if S ⊆ dom(Φ) and
dom(Φ)∩dom(Γ) = ∅. The predicates lin and un are defined in Section 5.3. Since
we use only linear pretypes, this means that the only unrestricted types are the
ground types, like Bool, Unit . . . and the terminated channel type end.

The typing rules for the HOπ with sessions are given in Fig. 9.3 and Fig. 9.4.
We start with Fig. 9.3. Rule (T-HoSess) states that a variable x has session type T ,
if this is assumed in Γ. Rule (T-HoVar) states that a variable has type T different
from a session type and from a linear functional type, if this is assumed in Φ. Rule
(T-HoBool) states that a boolean value, true or false, is of type Bool where
Γ is unrestricted and S = ∅. Rule (T-HoFun) states that a variable is of a linear
functional type, if this is assumed in Φ. Rule (T-HoUnit) is similar to (T-HoBool).
There are two typing rules for abstractions, depending on the type of the binder
x in the λ-abstraction. Rule (T-HoAbs1) states that λx : T.P is of type T → σ
if process P is of type σ and x has a value type. In case x is a linear functional
variable, then it appears in S. Rule (T-HoAbs2) is similar to the previous one, but
in this case x has a session type. Rule (T-HoSub) is a subsumption typing rule.
It states that a functional type can be lifted to a linear functional type. Rule (T-
HoApp) states that the application of process P to Q has type σ if P is of a linear

functional type T
1
→ σ and Q is of type T . In case the type of Q is a standard

functional type, then Q does not have any session channel, enforced by condition
un(Γ2), or any linear functional variables, enforced by conditionS2 = ∅, otherwise
this would violate linearity.

144 CHAPTER 9. HIGHER-ORDER COMMUNICATION

un(Γ)

Φ; Γ, x : T ; ∅ ` x : T
(T-HoSess)

T , T ′
1
→ σ un(Γ)

Φ, x : T ; Γ; ∅ ` x : T
(T-HoVar)

un(Γ) v = true / false

Φ; Γ; ∅ ` v : Bool
(T-HoBool)

un(Γ)

Φ, x : T
1
→ σ; Γ; {x} ` x : T

1
→ σ

(T-HoFun)

un(Γ)

Φ; Γ; ∅ ` ? : Unit
(T-HoUnit)

Φ, x : T ; Γ;S ` P : σ

if T = T ′
1
→ σ then x ∈ S

Φ; Γ;S − {x} ` λx : T.P : T → σ
(T-HoAbs1)

Φ; Γ, x : T ;S ` P : σ

Φ; Γ;S ` λx : T.P : T → σ
(T-HoAbs2)

Φ; Γ;S ` P : T → σ

Φ; Γ;S ` P : T
1
→ σ

(T-HoSub)

Φ; Γ1;S1 ` P : T
1
→ σ Φ; Γ2;S2 ` Q : T

if T = T ′ → σ′ then un(Γ2) and S2 = ∅

Φ; Γ1 ◦ Γ2;S1 ∪ S2 ` PQ : σ
(T-HoApp)

Figure 9.3: Typing rules for the HOπ with sessions: values

The typing rules for processes are given in Fig. 9.4. Rule (T-Inact) states that
the terminated process is well typed in any typing context without assumptions on
session types or linear functional types. Rule (T-HoPar) is straightforward, it uses
context split and union of sets of linear functional variables. Rules (T-HoRes) and
(T-HoIf) are straightforward. There are two typing rules for the input process,
depending on the type of the placeholder of the input prefix. Rule (T-HoInp1)
is similar to (T-Inp) where the type of the placeholder y is a session type. Rule
(T-HoInp2) states the well-typedness of the input process where y is of a value
type. In case y is a linear functional variable, then it occurs in the set S. Rule
(T-HoOut) states the well-typedness of the output process by using the context
split operator and the union of sets of linear functional variables present in v and
P. This rule is used when a session channel is sent (and in that case it can be
read as (T-Out)), or when a value is sent. In the latter case, if the value v is of
a standard functional type, then it does not contain either free session channels
or linear functional variable. This condition is the same as for (T-HoApp). Rules
(T-HoBrch) and (T-HoSel) are the same as the standard ones, the only difference
is in the typing contexts, which are split in three parts.

9.3. TYPING RULES 145

(T-HoInact)
un(Γ)

Φ; Γ; ∅ ` 0

(T-HoPar)
Φ; Γ1;S1 ` P Φ; Γ2;S2 ` Q

Φ; Γ1 ◦ Γ2;S1 ∪ S2 ` P | Q

(T-HoRes)
Φ; Γ, x : T, y : T ;S ` P

Φ; Γ;S ` (νxy)P

(T-HoInp1)
Φ; Γ1; ∅ ` x : ?T.U

Φ; Γ2, x : U, y : T ;S ` P

Φ; Γ1 ◦ Γ2;S ` x?(y).P

(T-HoIf)
Φ; Γ1;S1 ` v : Bool

Φ; Γ2;S2 ` P Φ; Γ2;S2 ` Q

Φ; Γ1 ◦ Γ2;S1 ∪ S2 ` if v then P else Q

(T-HoInp2)
Φ; Γ1; ∅ ` x : ?T.U

Φ, y : T ; Γ2, x : U;S ` P

if T = T ′
1
→ σ then y ∈ S

Φ; Γ1 ◦ Γ2;S − {y} ` x?(y).P

(T-HoOut)
Φ; Γ1; ∅ ` x : !T.U Φ; Γ2;S2 ` v : T

Φ; Γ3, x : U;S3 ` P if T = T ′ → σ′ then un(Γ2) and S2 = ∅

Φ; Γ1 ◦ Γ2 ◦ Γ3;S2 ∪ S3 ` x!〈v〉.P

(T-HoBrch)
Φ; Γ1; ∅ ` x : &{li : Ti}i∈I Φ; Γ2, x : Ti;S ` Pi ∀i ∈ I

Φ; Γ1 ◦ Γ2;S ` x . {li : Pi}i∈I

(T-HoSel)
Φ; Γ1; ∅ ` x : ⊕{li : Ti}i∈I Φ; Γ2, x : T j;S ` P j ∈ I

Φ; Γ1 ◦ Γ2;S ` x / l j.P

Figure 9.4: Typing rules for the HOπ with sessions: processes

146 CHAPTER 9. HIGHER-ORDER COMMUNICATION

9.3.2 HOπ Typing Rules
The typing contexts for the standard HOπ are defined as follows:

Φ ::= ∅ | Φ, x : Bool | Φ, x : Unit
Φ, x : 〈li Ti〉i∈I | Φ, x : T → σ

Φ, x : T
1
→ σ (general typing context)

Γ ::= ∅ | Γ, x : τ (channel typing context)

S ::= ∅ | S ∪ {x} (linear functional variables)

where Φ associates value types, except channel types, to identifiers. Γ associates τ
types to channels. S denotes the set of linear functional variables. The] operation
is defined as in Fig. 4.6. As for sessions, we state that a typing judgement is well
formed if S ⊆ dom(Φ) and dom(Φ) ∩ dom(Γ) = ∅. The predicates lin and un are
defined as in Section 4.3. However, since we use only linear channel types, this
means that the only unrestricted types are the ground types, like Bool, Unit . . .
and the type of a channel with no capabilities ∅[].

The typing rules for the standard HOπ are given in Fig. 9.5 and Fig. 9.6, for
values and processes, respectively. Most of the rules follow the same line as the
corresponding ones in HOπ with sessions. We comment only on the typing rules
that are new or different wrt the ones previously presented. Rule (Tπ-HoLVal) is
the same as (Tπ- LVal), the only difference is the split of the typing contexts in
three parts. There are two typing rules for restriction, as in the case of first-order
standard π- calculus. Rule (Tπ- HoCase) is similar to (Tπ- Case). In addition,
it uses a set of linear functional variables that comes from the union of linear
variables in the guard v and in Pi for all i ∈ I. In the same way as for the branching
process, the set of linear variables for every Pi is the same set S2, considering that
only one of such processes will be executed.

9.4 Encoding
We start with the encoding of typing contexts, defined in the following:

~∅� f , ∅ (E-Empty)
~Φ; Γ;S� f , ~Φ� f ; ~Γ� f ; ~S� f (E-HOContext)
~Γ, x : T� f , ~Γ� f] fx : ~T� (E-Gamma)
~Φ, x : T� , ~Φ� f , fx : ~T� (E-Phi)

The encoding of Γ is the same as in Fig. 6.3. The encoding on the typing contexts
Φ and S is an homomorphism.

9.4. ENCODING 147

(Tπ-HoSess)
un(Γ)

Φ; Γ, x : T ; ∅ ` x : T

(Tπ-HoVar)

T , T ′
1
→ σ un(Γ)

Φ, x : T ; Γ; ∅ ` x : T

(Tπ-HoBool)
un(Γ) v = true / false

Φ; Γ; ∅ ` v : Bool

(Tπ-HoFun)
un(Γ)

Φ, x : T
1
→ σ; Γ; {x} ` x : T

1
→ σ

(Tπ-HoUnit)
un(Γ)

Φ; Γ; ∅ ` ? : Unit

(Tπ-HoAbs1)
Φ, x : T ; Γ;S ` P : σ

if T = T ′
1
→ σ then x ∈ S

Φ; Γ;S − {x} ` λx : T.P : T → σ

(Tπ-HoAbs2)
Φ; Γ, x : T ;S ` P : σ

Φ; Γ;S ` λx : T.P : T → σ

(Tπ-HoSub)
Φ; Γ;S ` P : T → σ

Φ; Γ;S ` P : T
1
→ σ

(Tπ-HoLVal)
Φ; Γ;S ` v : T j j ∈ I

Φ; Γ;S ` l j v : 〈li Ti〉i∈I

(Tπ-HoApp)

Φ; Γ1;S1 ` P : T
1
→ σ Φ; Γ2;S2 ` Q : T

if T = T ′ → σ′ then un(Γ2) and S2 = ∅

Φ; Γ1] Γ2;S1 ∪ S2 ` PQ : σ

Figure 9.5: Typing rules for the standard HOπ: values

148 CHAPTER 9. HIGHER-ORDER COMMUNICATION

(Tπ-HoInact)
un(Γ)

Φ; Γ; ∅ ` 0

(Tπ-HoPar)
Φ; Γ1;S1 ` P Φ; Γ2;S2 ` Q

Φ; Γ1] Γ2;S1 ∪ S2 ` P | Q

(Tπ-HoRes1)
Φ; Γ, x : `α[T̃];S ` P

Φ; Γ;S ` (νx)P

(Tπ-HoRes2)
Φ; Γ;S ` P

Φ; Γ;S ` (νx)P

(Tπ-HoIf)
Φ; Γ1;S1 ` v : Bool Φ; Γ2;S2 ` P Φ; Γ2;S2 ` Q

Φ; Γ1] Γ2;S1 ∪ S2 ` if v then P else Q

(Tπ-HoInp)
Φ; Γ1; ∅ ` x : `i[T̃] (Φ; Γ2), ỹ : T̃ ;S ` P

if ∃ ˜̃y : ˜̃T ⊆ ỹ : T̃ s.t. Ti = T ′
1
→ σ, Ti ∈

˜̃T then ˜̃y ∈ S

Φ; Γ1] Γ2;S − { ˜̃y} ` x?(ỹ).P

(Tπ-HoOut)
Φ; Γ1; ∅ ` x : `o[T̃] Φ; Γ̃2; S̃2 ` ṽ : T̃

Φ; Γ3;S3 ` P if Ti = T ′ → σ′, then un(Γ2i) and S2i = ∅

Φ; Γ1] Γ̃2] Γ3; S̃2 ∪ S3 ` x!〈ṽ〉.P

(Tπ-HoCase)
Φ; Γ1;S1 ` v : 〈li Ti〉i∈I Φ; Γ2, xi : Ti;S2 ` Pi ∀i ∈ I

Φ; Γ1] Γ2;S1 ∪ S2 ` case v of {li xi . Pi}i∈I

Figure 9.6: Typing rules for the standard HOπ: processes

9.5. PROPERTIES OF THE ENCODING 149

~♦� , ♦ (E-ProcType)

~T
1
→ σ� , ~T�

1
→ ~σ� (E-LinFunType)

~T → σ� , ~T�→ ~σ� (E-FunType)
~?� f , ? (E-Star)

~λx : T.P� f , λx : ~T�.~P� f (E-Abstraction)
~PQ� f , ~P� f~Q� f (E-Application)

Figure 9.7: Encoding of HOπ types and terms

The encoding of HOπ session types and terms is an homomorphism and is given
in Fig. 9.7. The process type, functional types, ?, abstraction and application
in the HOπ calculus with sessions are encoded respectively as the process type,
functional types, ?, abstraction and application in the standard HOπ calculus.

9.5 Properties of the Encoding
In this section we present the correctness of the encoding of HOπ constructs wrt
typing derivations for values and processes. Since processes include values, we
present the result in the same theorem. We also give the operational correspon-
dence for HOπ constructs.

9.5.1 Typing HOπ Processes by Encoding
We start this section by introducing the following auxiliary lemmas.

Lemma 9.5.1. Let S1, . . . ,Sn be sets of linear functional variables such that their
union is defined. Let f be a renaming function for all Si for i ∈ 1 . . . n such that
~S1� f ∪ . . . ∪ ~Sn� f is defined. Then, ~S1 ∪ . . . ∪ Sn� f = ~S1� f ∪ . . . ∪ ~Sn� f .

Proof. The proof follows immediately by applying any renaming function on the
disjoint union of sets of linear session functional variables. �

Lemma 9.5.2. The following hold.

• Let S be a set of linear functional variables and f a renaming function for
S and ~S� f = Sπ1 ∪ . . .∪S

π
n. Then, S = S1 ∪ . . .∪Sn and for all i ∈ 1 . . . n,

Sπi = ~Si� f .

• Let Sπ = ~S1� f ∪ . . . ∪ ~Sn� f and f a renaming function for all Si for
i ∈ 1 . . . n. Then, S = S1 ∪ . . . ∪ Sn and Sπ = ~S� f .

150 CHAPTER 9. HIGHER-ORDER COMMUNICATION

Proof. The proof follows immediately from the definition of the encoding of S
and the disjoint union of subsets of S. �

Lemma 9.5.3 (Substitution Lemma for Linear HOπ Calculus). Let P be a HOπ
process. The following hold.

• If Φ; Γ, x : T ;S ` P or

• If Φ, x : T ; Γ;S ` P or

• If Φ, x : T ; Γ;S, {x} ` P and

Φ′; Γ′;S′ ` v : T and Φ,Φ′, and Γ] Γ′ and S,S′ are defined, then it holds
Φ,Φ′; Γ] Γ′;S,S′ ` P[v/x].

Proof. The result is immediate as it is a generalisation of Lemma 4.5.2. �

We are ready now to present the main contribution of this chapter, namely the
correctness of the encoding of higher-order processes wrt typing.

Theorem 9.5.4 (Soundness: Typing HOπ Processes). If ~Φ; Γ;S� f ` ~P� f : ~σ�
for some renaming function f for P, then Φ; Γ;S ` P : σ.

Proof. The proof is done by induction on the structure of process P.
The cases for values different from λ-abstractions are trivial, as the encoding

is an homomorphism and the typing rules for both the HOπ calculus with and
without sessions follow the same line. We present only the case for a value being
a λ-abstraction.

• Case λx : T.P:
By applying (E-Abstraction) and (E-FunType) we have

~λx : T.P� f = λx : ~T�.~P� f

and ~T → σ� = ~T� → ~σ�. Since x is bound with scope P, then fx = x.
Assume

~Φ� f ; ~Γ� f ; ~S� f ` λx : ~T�.~P� f : ~T�→ ~σ�

This implies that either rule (Tπ-HoAbs1) or rule (Tπ-HoAbs2) is applied.
We consider both cases in the following:

– Rule (Tπ-HoAbs1) is applied:

~Φ� f , x : ~T�; ~Γ� f ;Sπ1 ` ~P� f : ~σ�

if ~T� = T π
1

1
→ σπ

1 then x ∈ Sπ1
~Φ� f ; ~Γ� f ;Sπ1 − {x} ` λx : ~T�.~P� f : ~T�→ ~σ�

9.5. PROPERTIES OF THE ENCODING 151

where ~S� f = Sπ1 − {x}, which implies Sπ1 = ~S� f ∪ {x}. By
Lemma 9.5.2 ~S1� f = Sπ1 and thus S = S1 − x. By induction hypoth-
esis we have Φ, x : T ; Γ;S1 ` P : σ. We conclude by (T-HoAbs1).

– Rule (Tπ-HoAbs2) is applied:

~Φ� f ; ~Γ� f , x : ~T�; ~S� f ` ~P� f : ~σ�

~Φ� f ; ~Γ� f ; ~S� f ` λx : ~T�.~P� f : ~T�→ ~σ�

By induction hypothesis Φ; Γ, x : T ;S ` P : σ. Then, we obtain the
result by applying rule (T-HoAbs1).

• Case PQ:
By (E-Application) we have ~PQ� f = ~P� f~Q� f and assume

~Φ� f ; ~Γ� f ; ~S� f ` ~P� f~Q� f : ~σ�

Then, rule (Tπ-HoApp) is applied:

~Φ� f ; Γπ1;Sπ1 ` ~P� f : T π 1
→ ~σ�

~Φ� f ; Γπ2;Sπ2 ` ~Q� f : T π if T π = T π
1 → σπ

1 then un(Γπ2) and Sπ2 = ∅

~Φ� f ; Γπ1] Γπ2;Sπ1 ∪ S
π
2 ` ~P� f~Q� f : ~σ�

We have that ~Γ� f = Γπ1] Γπ2 and ~S� f = Sπ1 ∪ S
π
2. By Lemma 6.3.5 we

have Γπ1 = ~Γ1� f and Γπ2 = ~Γ2� f , such that Γ = Γ1 ◦Γ2. By Lemma 9.5.2 we
have that ~S1� f = Sπ1 and ~S2� f = Sπ2 such that S = S1 ∪ S2. By induction

hypothesis Φ; Γ1;S1 ` P : T
1
→ σ where T π = ~T�, and Φ; Γ2;S2 ` Q : T .

Then, the result follows immediately by applying rule (T-HoApp) on the
induction hypothesis.

• Case x?(y).P:
By assumption and by (E-Input) we have that

~Φ� f ; ~Γ� f ; ~S� f ` fx?(y, c).~P� f ,{x 7→c}

Then, rule (Tπ-HoInp) is applied:

~Φ� f ; Γπ1; ∅ ` fx : `i[T π,Uπ] (~Φ� f ; Γπ2), y : T π, c : Uπ;Sπ1 ` ~P� f ,{x 7→c}

if T π = T π
1

1
→ σπ, then y ∈ Sπ1

~Φ� f ; Γπ1] Γπ2;Sπ1 − {y} ` fx?(y, c).~P� f ,{x 7→c}

We have that ~Γ� f = Γπ1] Γπ2. By Lemma 6.3.5 we obtain Γπ1 = ~Γ1� f

and Γπ2 = ~Γ2� f , such that Γ = Γ1 ◦ Γ2. Moreover, ~S� f = Sπ1 − {y},

152 CHAPTER 9. HIGHER-ORDER COMMUNICATION

namely Sπ1 = ~S� f ∪ {y} and notice that since y is bound, then fy = y. By
Lemma 9.5.2 ~S1� f = Sπ1 and S = S1−y. By induction hypothesis we have
Φ; Γ1; ∅ ` x : ?T.U and, depending on whether y is a channel variable or
not, we have one of the following:

Φ; Γ2, x : U, y : T ;S ` P or Φ, y : T ; Γ2, x : U;S ` P

where T π = ~T�, Uπ = ~U�. Then, we apply either rule (T-HoInp1) or rule
(T-HoInp2) to obtain the result.

• Case x!〈v〉.P:
By assumption and by (E-Output) we have

~Φ� f ; ~Γ� f ; ~S� f ` (νc) fx!〈~v� f , c〉.~P� f ,{x 7→c}

By rule (Tπ-HoSess) we have

~Φ� f ; c : `α[W]; ∅ ` c : `α[W]
(Tπ-HoSess)

By rules (Tπ-HoRes1) and (Tπ-HoOut), we have the following derivation:

(Tπ-HoRes1)
(Tπ-HoOut)

~Φ� f ; Γπ1; ∅ ` fx : `o[T π,Uπ] ~Φ� f ; Γπ2;Sπ2 ` ~v� f : T π

~Φ� f ; Γπ3, c : `α[W];Sπ3 ` ~P� f ,{x 7→c} ~Φ� f ; c : `α[W]; ∅ ` c : `α[W]
if T π = T π

1 → σπ
1, then un(Γπ2) and Sπ2 = ∅

~Φ� f ; Γπ1] Γπ2] Γπ3, c : `][T π,Uπ];Sπ2 ∪ S
π
3 ` fx!〈~v� f , c〉.~P� f ,{x 7→c}

~Φ� f ; Γπ1] Γπ2] Γπ3;Sπ2 ∪ S
π
3 ` (νc) fx!〈~v� f , c〉.~P� f ,{x 7→c}

We have ~Γ� f = Γπ1] Γπ2] Γπ3. By Lemma 6.3.5 we have that Γπ1 = ~Γ1� f ,
Γπ2 = ~Γ2� f and Γπ3 = ~Γ3� f , such that Γ = Γ1 ◦ Γ2 ◦ Γ3. We also have
~S� f = Sπ2∪S

π
3. By Lemma 9.5.2 we have that ~S2� f = Sπ2 and ~S3� f = Sπ3

such that S = S2∪S3. By induction hypothesis we have Φ; Γ1; ∅ ` x : !T.U
where `o[T π,Uπ] = ~!T.U�, which by (E-Out) means that T π = ~T� and
Uπ = ~U� = `α[W], and Φ; Γ2;S2 ` v : T , and Φ; Γ3, x : U;S3 ` P, where
~U� = `α[W], by Lemma 6.3.7. By applying (T-HoOut) on the induction
hypothesis we obtain the result Φ; Γ1 ◦ Γ2 ◦ Γ3;S2 ∪ S3 ` x!〈v〉.P. Notice
that in the above we have used rule (Tπ- HoRes1) and hence we have that
~U� = `α[W] and ~U� = `α[W]. The case for ~U� = ~U� = ∅[] and rule
(Tπ-HoRes2) is symmetrical.

�

9.5. PROPERTIES OF THE ENCODING 153

Theorem 9.5.5 (Completeness: Typing HOπ Processes). If Φ; Γ;S ` P : σ, then
~Φ; Γ;S� f ` ~P� f : ~σ� for some renaming function f for P.

Proof. The proof is done by induction on the derivation Φ; Γ;S ` P : σ.

• Case (T-HoFun):

un(Γ)

Φ, x : T
1
→ σ; Γ; {x} ` x : T

1
→ σ

We need to prove that ~Φ� f , fx : ~T
1
→ σ�; ~Γ� f ; { fx} ` fx : ~T

1
→ σ�. By

Lemma 6.3.1 we obtain un(~Γ� f). By (E-LinFunType) and by applying rule
(Tπ-HoFun) we conclude the case.

• Case (T-HoAbs1):

Φ, x : T ; Γ;S ` P : σ

if T = T ′
1
→ σ then x ∈ S

Φ; Γ;S − {x} ` λx : T.P : T → σ

By induction hypothesis ~Φ� f ′ , f ′x : ~T�; ~Γ� f ′; ~S� f ′ ` ~P� f ′ : ~σ� for

some function f ′ and if ~T� = ~T ′
1
→ σ�, then f ′x ∈ ~S� f ′ . Since f ′

is a renaming function for P and x ∈ fv(P), then x < dom(~Φ� f ′) and
x < dom(~Γ� f ′). We distinguish two cases, according to the shape of type

T . If T , T ′
1
→ σ, then also ~T� , ~T ′

1
→ σ�. By typing rule (Tπ-HoVar)

we have x : ~T�; ∅; ∅ ` x : ~T�. Otherwise, if T = T ′
1
→ σ, then also

~T� = ~T ′
1
→ σ�. By rule (Tπ-HoFun) we have x : ~T�; ∅; {x} ` x : ~T�.

Then, ~Φ� f ′ , x : ~T�; ~Γ� f ′; ~S� f ′[x/ f ′x] is defined. Finally, by applying
Lemma 9.5.3 ~Φ� f ′ , x : ~T�; ~Γ� f ′; ~S� f ′[x/ f ′x] ` ~P� f ′[x/ f ′x] : ~σ�. Let

f = f ′, {x 7→ x}. It holds that if ~T� = ~T ′
1
→ σ� then x ∈ ~S� f . Then,

we write the induction hypothesis as ~Φ� f , x : ~T�; ~Γ� f ; ~S� f ` ~P� f . By
applying (E-Abstraction) and (E-FunType) and by rule (Tπ- HoAbs1) and
Lemma 9.5.1 on the induction hypothesis, we obtain the result.

• Case (T-HoAbs2):
Φ; Γ, x : T ;S ` P : σ

Φ; Γ;S ` λx : T.P : T → σ

We need to prove that ~Φ� f ; ~Γ� f ; ~S� f ` ~λx : T.P� f : ~T → σ�. By
induction hypothesis ~Φ� f ′; ~Γ� f ′ , f ′x : ~T�; ~S� f ′ ` ~P� f ′ : ~σ�, for some

154 CHAPTER 9. HIGHER-ORDER COMMUNICATION

function f ′. By rule (Tπ- HoSess) we can derive ∅; x : ~T�; ∅ ` x : ~T�.
As in (T-HoAbs1) it means that ~Φ� f ′; ~Γ� f ′ , x : ~T�; ~S� f ′ is defined and
by Lemma 9.5.3 ~Φ� f ′; ~Γ� f ′ , x : ~T�; ~S� f ′ ` ~P� f ′[x/ f ′x] : ~σ�. Let
f = f ′, {x 7→ x}. By applying (E-Abstraction), (E-FunType) and typing
rule (Tπ-HoAbs2) we obtain the result.

• Case (T-HoApp):

Φ; Γ1;S1 ` P : T
1
→ σ Φ; Γ2;S2 ` Q : T

if T = T ′ → σ′ then un(Γ2) and S2 = ∅

Φ; Γ1 ◦ Γ2;S1 ∪ S2 ` PQ : σ

By induction hypothesis ~Φ� f ′; ~Γ1� f ′; ~S1� f ′ ` ~P� f ′ : ~T�
1
→ ~σ� for

some function f ′ and ~Φ� f ′′; ~Γ2� f ′′; ~S2� f ′′ ` ~Q� f ′′ : ~T� for some func-
tion f ′′. Since Γ1 ◦Γ2 is defined, then for all x ∈ dom(Γ1)∩dom(Γ2) it holds
that Γ1(x) = Γ2(x) = T and un(T). Let dom(Γ1)∩dom(Γ2) = D and let f ′D =

f ′ \
⋃

d∈D{d 7→ f ′(d)} and f ′′D = f ′′ \
⋃

d∈D{d 7→ f ′′(d)} \
⋃

q∈Φ{q 7→ f ′′(q)}.
Hence, for all d ∈ D we are not making any assumption on f ′(d) and f ′′(d).
Let f =

⋃
d∈D{d 7→ d′} ∪ f ′D ∪ f ′′D , where for all d ∈ D we create a fresh

name d′ and associate d 7→ d′. Moreover, f is a function since its subcom-
ponents act on disjoint domains. By applying Lemma 6.3.6, the induction
hypothesis can be rewritten as follows:

~Φ� f ; ~Γ1� f ; ~S1� f ` ~P� f : ~T�
1
→ ~σ�

and
~Φ� f ; ~Γ2� f ; ~S2� f ` ~Q� f : ~T�

By (E-Application), (Tπ- HoApp), by Lemma 6.3.4 and Lemma 9.5.1 we
obtain the result: ~Φ� f ; ~Γ1� f] ~Γ2� f ; ~S1� f ∪ ~S2� f ` ~P� f~Q� f : ~σ�.

• Case (T-HoInp1):

Φ; Γ1; ∅ ` x : ?T.U Φ; Γ2, x : U, y : T ;S ` P

Φ; Γ1 ◦ Γ2;S ` x?(y).P

By induction hypothesis and by (E-Inp) ~Φ� f ′; ~Γ1� f ′; ∅ ` f ′x : `i[~T�, ~U�],
for some function f ′. By induction hypothesis and by (E-Gamma) we have
~Φ� f ′′; ~Γ2� f ′′] f ′′x : ~U�] f ′′y : ~T�; ~S� f ′′ ` ~P� f ′′ for some function f ′′.
By rule (Tπ- HoSess) we can derive ∅; y : ~T�; ∅ ` y : ~T�. Since f ′′ is a
renaming function for P and y ∈ fv(P), by the top-right premise of typing

9.5. PROPERTIES OF THE ENCODING 155

rule (T-HoInp1), then y < dom(~Φ� f ′′), y < dom(~Γ2� f ′′) and y , f ′′x . Then,
~Φ� f ′′; ~Γ2� f ′′] f ′′x : ~U�] y : ~T�; ~S� f ′′ is defined. By Lemma 9.5.3
we obtain that ~Φ� f ′′; ~Γ2� f ′′] f ′′x : ~U�] y : ~T�; ~S� f ′′ ` ~P� f ′′[y/ f ′′y].
Since Γ1 ◦ Γ2 is defined, then for all x ∈ dom(Γ1) ∩ dom(Γ2) it holds that
Γ1(x) = Γ2(x) = T and un(T). Let dom(Γ1)∩ dom(Γ2) = D and define f ′D =

f ′ \
⋃

d∈D{d 7→ f ′(d)} and f ′′D = f ′′ \
⋃

d∈D{d 7→ f ′′(d)} \
⋃

q∈Φ{q 7→ f ′′(q)},
meaning that only f ′D acts on variables in Φ. Suppose f ′′(x) = c. We let
f =

⋃
d∈D{d 7→ d′} ∪ f ′D ∪ f ′′D , {y 7→ y} \ {x 7→ c}, where for all d ∈ D we

create a fresh name d′ and associate d 7→ d′. Notice that f ′′D (y) is defined and
is f ′′y from the induction hypothesis. Then, f ′′D , {y 7→ y} updates f ′′y to y by
mapping {y 7→ y}. Moreover, f is a function since its subcomponents act on
disjoint domains. By applying Lemma 6.3.6, we can rewrite the induction
hypothesis as:

~Φ� f ; ~Γ1� f ; ∅ ` fx : `i[~T�, ~U�]

and
~Φ� f ; ~Γ2� f] c : ~U�] y : ~T�; ~S� f ` ~P� f ,{x 7→c}

Since x, y < dom(Γ2), then ~Γ2, x : U, y : T� f ,{x 7→c} can be optimised as
~Γ2� f] c : ~U�] y : ~T�. Also in ~Φ� f and ~S� f we simply use f . Then,
by Lemma 6.3.2 we have ~Φ� f ; ~Γ2� f , c : ~U�, y : ~T�; ~S� f ` ~P� f ,{x 7→c}.
By (E-Input), rule (Tπ- HoInp) and by Lemma 6.3.4 we obtain the result
~Φ� f ; ~Γ1� f] ~Γ2� f ; ~S� f ` fx?(y, c).~P� f ,{x 7→c}.

• Case (T-HoInp2):

Φ; Γ1; ∅ ` x : ?T.U

Φ, y : T ; Γ2, x : U;S ` P if T = T ′
1
→ σ then y ∈ S

Φ; Γ1 ◦ Γ2;S − {y} ` x?(y).P

By induction hypothesis and by (E-Inp) ~Φ� f ′; ~Γ1� f ′; ∅ ` f ′x : `i[~T�, ~U�],
for some function f ′. By induction hypothesis and by (E-Gamma)
~Φ� f ′′ , f ′′y : ~T�; ~Γ2� f ′′] f ′′x : ~U�; ~S� f ′′ ` ~P� f ′′ , for some function f ′′.
Since f ′′ is a renaming function for P and y ∈ fv(P), by the second premise
of (T-HoInp2), then y < dom(~Φ� f ′′), y < dom(~Γ2� f ′′) and y , f ′′x . Then,
by following the same reasoning as in (T-HoAbs1) and by Lemma 9.5.3
we have ~Φ� f ′′ , y : ~T�; ~Γ2� f ′′] f ′′x : ~U�; ~S� f ′′[y/ f ′′y] ` ~P� f ′′[y/ f ′′y].
Since Γ1 ◦ Γ2 is defined, then for all x ∈ dom(Γ1) ∩ dom(Γ2) it holds that
Γ1(x) = Γ2(x) = T and un(T). Let dom(Γ1)∩ dom(Γ2) = D and define f ′D =

f ′ \
⋃

d∈D{d 7→ f ′(d)} and f ′′D = f ′′ \
⋃

d∈D{d 7→ f ′′(d)} \
⋃

q∈Φ{q 7→ f ′′(q)},
meaning that only f ′D acts on variables in Φ. Suppose f ′′(x) = c. We let

156 CHAPTER 9. HIGHER-ORDER COMMUNICATION

f =
⋃

d∈D{d 7→ d′} ∪ f ′D ∪ f ′′D , {y 7→ y} \ {x 7→ c}, where for all d ∈ D we cre-
ate a fresh name d′ and associate d 7→ d′. Notice that f ′′D (y) is defined and
is f ′′y from the induction hypothesis. Then, f ′′D , {y 7→ y} updates f ′′y to y by
mapping {y 7→ y}. Moreover, f is a function since its subcomponents act on
disjoint domains. By applying Lemma 6.3.6, we can rewrite the induction
hypothesis as:

~Φ� f ; ~Γ1� f ; ∅ ` fx : `i[~T�, ~U�]

and
~Φ� f , y : ~T�; ~Γ2� f] c : ~U�; ~S� f ` ~P� f ,{x 7→c}

Since x < dom(Γ2), then ~Γ2, x : U� f ,{x 7→c} can be optimised and distributed
as ~Γ2� f] c : ~U�. We also use f in ~Φ� f and ~S� f . Moreover, the

condition “if ~T� = ~T ′�
1
→ ~σ� then y ∈ S” holds. By (E-Input), typing

rule (Tπ-HoInp) and by Lemma 6.3.2 and Lemma 6.3.4 we obtain the result
~Φ� f ; ~Γ1� f] ~Γ2� f ; ~S� f − {y} ` fx?(y, c).~P� f ,{x 7→c}.

• Case (T-HoOut):

Φ; Γ1; ∅ ` x : !T.U Φ; Γ2;S2 ` v : T
Φ; Γ3, x : U;S3 ` P if T = T ′ → σ′ then un(Γ2) and S2 = ∅

Φ; Γ1 ◦ Γ2 ◦ Γ3;S2 ∪ S3 ` x!〈v〉.P

By induction hypothesis and (E-Out) ~Φ� f ′; ~Γ1� f ′; ∅ ` f ′x : `o[~T�, ~U�],
for some function f ′ and ~Φ� f ′′; ~Γ2� f ′′; ~S2� f ′′ ` ~v� f ′′ : ~T� for some
function f ′′ and by (E-Gamma) ~Φ� f ′′′; ~Γ3� f ′′′] f ′′′x : ~U�; ~S3� f ′′′ ` ~P� f ′′′

for some function f ′′′. Since Γ1 ◦ Γ2 ◦ Γ3 is defined by assumption, then for
all x ∈ dom(Γ1) ∩ dom(Γ2) ∩ dom(Γ3), we have Γ1(x) = Γ2(x) = Γ3(x) = T
and un(T). Now, let D = dom(Γ1) ∩ dom(Γ2) ∩ dom(Γ3). We define f ′D =

f ′ \
⋃

d∈D{d 7→ f ′(d)} and f ′′D = f ′′ \
⋃

d∈D{d 7→ f ′′(d)} \
⋃

q∈Φ{q 7→ f ′′(q)}
and f ′′′D = f ′′′ \

⋃
d∈D{d 7→ f ′′′(d) \

⋃
q∈Φ{q 7→ f ′′(q)}. Suppose f ′′′x = c.

Then, define f =
⋃

d∈D{d 7→ d′}∪ f ′D∪ f ′′d ∪ f ′′′D \{x 7→ c}, where for all d ∈ D
we create a fresh name d′ and associate d 7→ d′. Notice that f is a function
because its subcomponents act on disjoint domains. Then, by Lemma 6.3.6,
the induction hypothesis can be rewritten as follows:

~Φ� f ; ~Γ1� f ; ∅ ` fx : `o[~T�, ~U�] ~Φ� f ; ~Γ2� f ; ~S2� f ` ~v� f : ~T�

and
~Φ� f ; ~Γ3� f] c : ~U�; ~S3� f ` ~P� f ,{x 7→c}

Since x < dom(Γ3), then ~Γ3, x : U� f ,{x 7→c} can be optimised and distributed
as ~Γ3� f] c : ~U�. Assume U , end and hence U , end. By (Tπ-HoSess)

9.5. PROPERTIES OF THE ENCODING 157

we can derive c : ~U� ` c : ~U�. By rule (Tπ- HoOut) and by using
Lemma 6.3.7 and “]” operator to obtain c : `] [W], we have the following:

~Φ� f ; c : ~U�; ∅ ` c : ~U�
~Φ� f ; ~Γ1� f ; ∅ ` fx : `o[~T�, ~U�] ~Φ� f ; ~Γ2� f ; ~S2� f ` ~v� f : ~T�

~Φ� f ; ~Γ3� f] c : ~U�; ~S3� f ` ~P� f ,{x 7→c}

~Φ� f ; ~Γ1� f] ~Γ2� f] ~Γ3� f] c : `][W]; ~S2� f ∪ ~S3� f ` fx!〈~v� f , c〉.~P� f ,{x 7→c}

Then, by Lemma 6.3.2 and by applying (Tπ-Res1) we have the following:

~Φ� f ; ~Γ1� f] ~Γ2� f] ~Γ3� f , c : `][W]; ~S2� f ∪ ~S3� f ` fx!〈~v� f , c〉.~P� f ,{x 7→c}

~Φ� f ; ~Γ1� f] ~Γ2� f] ~Γ3� f ; ~S2� f ∪ ~S3� f ` (νc) fx!〈~v� f , c〉.~P� f ,{x 7→c}

The case where U = U = end, which yields c : ∅[], is symmetrical and
is obtained by using (Tπ- Res2) instead of (Tπ- Res1). By (E-Output) and
Lemma 6.3.4 and Lemma 9.5.1 we conclude the proof.

�

9.5.2 Operational Correspondence for HOπ
In the following, we prove the operational correspondence in the case of higher-
order constructs.

Proof of Theorem 6.3.15 for Higher-Order Terms: Let P be a session pro-
cess, Φ,Γ,S session typing contexts, and f a renaming function for P such that
~Φ� f ; ~Γ� f ; ~S� f ` ~P� f . Then, the following statements hold.

1. If P→ P′, then ~P� f →↪→ ~P′� f .

2. If ~P� f → Q, then there are P′,E[·], such that E[P]→ E[P′] and
Q ↪→ ~P′� f ′ , and either f ′ = f or f ′ = f , {x, y 7→ c} for x, y such that (νxy)
appears in E[P].

Proof. Since ~Φ� f ; ~Γ� f ; ~S� f ` ~P� f , then by Theorem 9.5.4 it is the case that
Φ; Γ;S ` P. We consider both cases in the following.

1. The proof is done by induction on the derivation P→ P′.

• Case (R-Beta):

P , (λx : T.Q)v→ Q[v/x] , P′

158 CHAPTER 9. HIGHER-ORDER COMMUNICATION

By the encoding of abstraction in HOπ with session types we have:

~P� f = ~(λx : T.Q)v� f

= (λx : ~T�.~Q� f)~v� f

→ ~Q� f [~v� f /x]

Notice that x is bound with scope Q, hence fx = x. On the other hand,
by the encoding of P′ and by using Lemma 6.3.13 we have:

~P′� f = ~Q[v/x]� f = ~Q� f [~v� f / fx] = ~Q� f [~v� f /x]

This implies that ~P� f →≡ ~P′� f .

• Case (R-ApplLeft):
P→ P′

PQ→ P′Q

By induction hypothesis ~P� f →↪→ ~P′� f . We conclude by context
closure of structural congruence and by applying rules (Rπ-ApplLeft)
and (Rπ-Struct).

• Case (R-ApplRight):
P→ P′

vP→ vP′

This case is symmetrical to the previous one. By induction hypothe-
sis ~P� f →↪→ ~P′� f . We conclude by context closure of structural
congruence and by applying rules (Rπ-ApplRight) and (Rπ-Struct).

2. The proof is done by induction on the structure of the higher-order session
process P. There is only one case to be considered in addition to the cases of
Theorem 6.3.15, namely P = P1P2. By (E-Application) and by assumption
we have ~P1� f~P2� f → Q. We need to show that there exist P′,E[·], such
that E[P]→ E[P′] and Q ↪→ ~P′� f ′ , and either f ′ = f or f ′ = f , {x, y 7→ c}
for x, y such that (νxy) appears in E[P]. There are only the following cases
to be considered:

• P = P1P2 = (λx : T.Q′)v and the abstraction λx : T.Q′ is applied on v.
By assumption we have that ~λx : T.Q′� f~v� f → Q, for some Q.
By (E-Abstraction) ~λx : T.Q′� f = λx : ~T�.~Q′� f and since x is
bound with scope Q′, then fx = x. Then, by rule (Rπ-Beta) we have
(λx : ~T�.~Q′� f)~v� f → ~Q′� f [~v� f /x]. Let Q = ~Q′� f [~v� f /x].
We need to show that there exist P′,E[·], such that E[P]→ E[P′] and

9.5. PROPERTIES OF THE ENCODING 159

Q ↪→ ~P′� f ′ , where either f ′ = f or f ′ = f , {z,w 7→ c} such that
(νzw) appears in E[P]. Let E[·] = [·], P′ = Q′[v/x] and f ′ = f . Then,
it is the case that P → Q′[v/x] and ~P′� f = ~Q′[v/x]� f , which by
Lemma 6.3.13 means that ~Q′[v/x]� f = ~Q′� f [~v� f / fx]. Again, since
fx = x, then Q ≡ ~Q′� f [~v� f /x].

• Only ~P1� f reduces.
Let ~P1� f → R. By rule (Rπ-ApplLeft) ~P1� f~P2� f → R~P2� f . Let
Q = R~P2� f . By induction hypothesis, since P1 is a subprocess of P
and ~P1� f → R, there exist P′1,E

′

[·], such that E
′

[P1] → E
′

[P′1] and
R ↪→ ~P′1� f ′′ , where either f ′′ = f or f ′′ = f , {z,w 7→ c}, such that
(νzw) appears in E

′

[P1]. Let E[·] = E
′

[·]. Since E[·] is a suitable con-
text for P1 and Φ; Γ;S ` P1P2 it means that for all (νzw) that appear in
E[P1], it is the case that z,w < fv(P2). Hence, by structural congruence
we obtain that E[P1]P2 ≡ E[P1P2] (1). By rule (R-ApplLeft) we have
E[P1]P2 → E[P′1]P2 (2). Again, by structural congruence we have
E[P′1] | P2 ≡ E[P′1 | P2] (3). By rule (R-Struct) on (1), (2), (3) we can
conclude that E[P1P2] → E[P′1P2]. Let P′ = P′1P2 and f ′ = f . Then,
R~P2� f ↪→ ~P′1� f~P2� f = ~P′� f .

• Only ~P2� f reduces.
This case is symmetrical to the previous one where the roles of P1 and
P2 are exchanged and rules (Rπ- ApplRight) and (R-ApplRight) are
used instead of (Rπ-ApplLeft) and (R-ApplLeft), respectively.

�

160 CHAPTER 9. HIGHER-ORDER COMMUNICATION

Chapter 10

Recursion

So far we have worked with processes that have a finite behaviour. In this chapter,
we introduce recursion, which is widely known and used not only in process cal-
culi, but also in other programming paradigms. Replication, on the other hand, is
a simple form of recursion. It states what is exactly needed, for example in repre-
senting data and functions [101]. There is a strong relation between recursion and
replication. In [101] it is shown that recursion definitions can be represented by
replication and replication is redundant in the presence of recursion. In [95] the
authors show an encoding that relates the two constructs.

10.1 Syntax

In this section we present the syntax of types and terms for both the π- calculus
with and without sessions.

Recursion in the π- calculus with sessions The syntax of recursive types and
recursive processes in the π-calculus with sessions is given in Fig. 10.1.

T ::= t (type variable)
µt.T (recursive type)
· · · (other type constructs)

P ::= X (process variable)
recX.P (recursive process)
· · · (other process constructs)

Figure 10.1: Syntax of recursive session types and terms

161

162 CHAPTER 10. RECURSION

Recursion in the standard π-calculus The syntax of recursive types and recur-
sive processes in the standard π-calculus is given in Fig. 10.2.

mα ::= `α (linear qualifier used in capability α)
α (unrestricted qualifier used in capability α)

τ ::= mα[T̃] (channel type used in capability mα)
∅[T̃] (channel with no capability)

T ::= τ (channel type)
t | t (type variable)
µt.T (recursive type)
· · · (other type constructs)

P ::= X (process variable)
recX.P (recursive process)
· · · (other process constructs)

Figure 10.2: Syntax of recursive standard π-calculus types and terms

Recall that α ranges over ‘i’ input, ‘o’ output, or ‘]’ connection capabilities. A
channel can be of a linear type `α[T̃], or of an unrestricted type α[T̃], or without
any capability ∅[T̃]. The syntax of types includes type variables t, t and recursive
types, in addition to the types given in Fig. 4.5. µ and rec are binders of the
type and process variables, respectively. Type µt.T is the solution to the equation
t = T , which is obtained by replacing the free occurrence of the type variable
t in T with T itself. In order to avoid meaningless types, like µt.t, we require
that our recursive types, on both π-calculus with and without sessions, satisfy the
constraint that the type variable t of the µt.T expression is guarded in the type
T , which means that can occur free only underneath at least one of the other type
constructs in the syntax. Moreover, recursive types are contractive, i.e., do not
contain subexpressions like µt1 . . . µtn.T .

10.2 Semantics
The reduction rule for the recursive process is the same in both the π- calculus
with and without sessions and is given in the following.

(R[π]-Rec)

P[recX.P/X]→ P′

recX.P→ P′

Rule (Rπ-Rec) states that a recursive process recX.P reduces to a process P′

if process P where X is substituted by the recursion process recX.P, reduces to

10.3. TYPING RULES 163

the same P′. The rest of the reduction rules are the same as in the corresponding
sections where the operational semantics is given.

10.3 Typing Rules
On types for the π- calculus with sessions Type duality for session types ex-
tends the inductive type duality for finite types, earlier defined, to accommodate
recursive types.

t , t
µt.T , µt.T

However, type duality for recursive session types is a delicate matter. Recent
work [8, 9] has shown that inductive duality is not complete. In particular, in the
presence of recursive types having a type variable as a carried type, for example
µt.!t, it is unsafe to adopt inductive duality ·, since it does not commute with
unfolding. In order to overcome this problem, we follow the standard way adopted
in the literature, considering the above type to be ill-formed, and thus ruling it out.
We let the exploration of more accurate duality relations as future work.

On types for the standard π- calculus Type duality for standard π- types is
defined as follows:

mi [T̃] , mo [T̃]

mo [T̃] , mi [T̃]

∅[T̃] , ∅[T̃]
t , t

µt.T , µt.T [t/t]

It also holds that t = t. A type variable t and its dual t are treated differently as
long as substitution is concerned, which is defined in the following.

Definition 10.3.1. The substitution of a standard π- calculus type T for a type
variable t is defined as follows:

t[T/t] , T
t[T/t] , T

The combination of types is defined as follows:

mo [T̃]] mi [T̃] , m] [T̃]
T] T , T if un(T)
T] S , undef otherwise

In particular, the second definition implies ∅[T̃]] ∅[T̃] = ∅[T̃].

164 CHAPTER 10. RECURSION

Θ(X) = Γ
(T[π]-RecVar)

Θ; Γ ` X

Θ, X : Γ; Γ ` P
(T[π]-RecProc)

Θ; Γ ` recX.P

Θ,Γ ` v : T T ∼type S
(T[π]-EqVal)

Θ,Γ ` v : S

Figure 10.3: Typing rules for recursive constructs

Typing contexts The typing context Γ is defined for both the π-calculi with and
without sessions as follows:

Γ ::= ∅ | Γ, x : T

In addition to this typing context, we introduce a new typing context Θ, used to
accommodate the recursion variables, namely:

Θ ::= ∅ | Θ, X : Γ

Then, the typing judgements for both the π-calculi with recursion constructs have
the form:

Θ; Γ ` P

The generalisation of the lin and un predicates to typing contexts is the same as in
the previous sections.

Type equality An important notion related to the recursive types is that of type
equality denoted with ∼type. Following [101] we write T1 ∼type T2 to mean that
the underlying (possibly infinite) trees of T1 and T2 are the same. To formalise it,
we say that ∼type is a congruence and satisfies the following:

(Eq-Unfold)
µt.T ∼type T [µt.T/t]

Typing rules for the π-calculus with and without sessions The typing rules for
the recursive process added to the π- calculus with and without sessions is given
in Fig. 10.3. The rest of the typing rules are the same as in Section 5.4 for the
π-calculus with sessions and Section 4.4 for the standard π-calculus, respectively
and the typing judgements are augmented with Θ.

Rule (T[π]-RecVar) states that a process variable X is well typed in Θ; Γ if it is
assumed in Θ that X has “type” Γ . Rule (T[π]-RecProc) states that the recursive
process recX.P is well typed in Θ; Γ if process P is well typed in a typing context
where X is associated with Γ. Rule (T[π]-EqVal) is a subsumption rule for the
equality relation ∼type on infinite recursive types. It states that a value v is of type
S if it has type T by the premise of the typing rule and T ∼type S .

10.4. ENCODING 165

10.4 Encoding

The encodings of recursive types, recursive processes and typing contexts, are
given in Fig. 10.4.

Types Encoding:

~end� , ∅[] (E-qEnd)
~q!T.U� , mo[~T�, ~U�] (E-qOut)
~q?T.U� , mi[~T�, ~U�] (E-qInp)

~q ⊕ {li : Ti}i∈I� , mo[〈li ~Ti�〉i∈I] (E-qSelect)
~q&{li : Ti}i∈I� , mi[〈li ~Ti�〉i∈I] (E-qBranch)

~t� , t (E-TVar)
~µt.T� , µt.~T� (E-TRec)

Terms Encoding:

~X� f , X (E-PVar)
~recX.P� f , recX.~P� f (E-PRec)

Typing Context Encoding:

~∅� f , ∅ (E-Empty)
~Γ, x : T� f , ~Γ� f] fx : ~T� (E-Gamma)
~Θ, X : Γ� f , ~Θ� f , X : ~Γ� f (E-Theta)
~Θ; Γ� f , ~Θ� f ; ~Γ� f (E-CtxRec)

Figure 10.4: Encoding of recursive types, terms and typing contexts

The encoding of types is a conservative extension of the encoding presented
in Section 6.1. Here, we give the encoding of both the linear and the unrestricted
pretypes as well as the recursive types that we introduced at the beginning of
this chapter. The encoding of linear pretypes is exactly as in Section 6.1, by
letting the lin qualifier be interpreted as `α, where α is the action that follows
the qualifier. The encoding of unrestricted pretypes follows the same idea as for
the linear ones, by letting the un qualifier be interpreted as α, the latter being
the action that follows the qualifier. Put together, the encoding of a q pretype is
a channel type with action α and multiplicity m, linear or unrestricted, namely
mα. The encoding of recursive type constructs is an homomorphism and is given
by (E-TVar) and (E-TRec), respectively for the recursive type variable t and for
the recursive type µt.T . It is important to notice that, the duality function in the

166 CHAPTER 10. RECURSION

encoding of session types in rules (E-qOut) and (E-qSelect), is now applied on the
encoded session type rather than on the session type itself. This is to accommodate
the encoding of dual type variables. Moreover, it is easy to see that for all finite
session types T it is the case that ~T� = ~T�.

The encoding of processes is the one presented in Section 6.2, with the ad-
dition of two new definitions for recursion, being (E-Pvar) and (E-Prec): the
encoding of a process variable and a recursive process is an homomorphism. The
encoding of typing contexts is as expected.

Finally, in order to better understand the non-standard substitution in Defini-
tion 10.3.1, we give the following example.

Example 10.4.1. Let S , µt.!Bool.t be a session type. Then, by duality on
recursive session types, given in Section 10.3, the dual of S is S = µt.!Bool.t =

µt.!Bool.t = µt.?Bool.t. By the encoding of recursive session types, we have

T , ~µt.!Bool.t� = µt.`o [~Bool�, ~t�] = µt.`o [Bool, t]

and
T = ~µt.?Bool.t� = µt.`i [~Bool�, ~t�] = µt.`i [Bool, t]

If we unfold the above types, we have

T = µt.`o [Bool, t]
∼type `o [Bool, t[T/t]]

= `o [Bool,T]
= `o [Bool, µt.`i [Bool, t]]

and

T = µt.`i [Bool, t]

∼type `i [Bool, t[T/t]]

= `i [Bool,T]
= `i [Bool, µt.`i [Bool, t]]

10.5 Properties of the Encoding
In this section we present the main properties related to the encoding of recursive
types and terms. Notice in the following that the typing judgements are differ-
ent wrt the ones in the original theorem, in that they are augmented with Θ to
accommodate assumptions on recursive variables.

10.5. PROPERTIES OF THE ENCODING 167

To complete Theorem 6.3.10 and Theorem 6.3.11 on the correctness of the
encoding wrt typing processes, it suffices to add the case for recursive processes.
In order to accommodate recursion, the new typing context Θ has to be considered.
Previous typing judgements of the form Γ ` P should be now written as Θ; Γ ` P,
(with Θ = ∅ in absence of recursion). These modifications will affect also the
statement of operational correspondence given by Theorem 6.3.15.

Proof of Theorem 6.3.10 and Theorem 6.3.11 for Recursive Processes:

1. If ~Θ; Γ� f ` ~P� f for some renaming function f for P, then Θ; Γ ` P.

2. If Θ; Γ ` P, then ~Θ; Γ� f ` ~P� f for some renaming function f for P.

Proof. We split the proof as follows:

1. The proof is done by induction on the structure of the process.

We consider only the case for the recursive process recX.P. By (E-PRec)
we have ~recX.P� f = recX.~P� f and assume that ~Θ� f ; ~Γ� f ` ~recX.P� f .
This means that the last rule applied must have been (Tπ-RecProc). By
induction hypothesis ~Θ� f ′ , X : ~Γ� f ′; ~Γ� f ′ , ` ~P� f ′ , for some function f ′.
We conclude by letting f = f ′ and by applying (T-RecProc).

2. The proof is done by induction on the derivation Θ; Γ ` P.

We consider only the case for (T-RecProc). By induction hypothesis we
have that ~Θ� f ′ , X : ~Γ� f ′; ~Γ� f ′ ` ~P� f ′ , for some function f ′. By letting
f = f ′ and by rule (Tπ-RecProc) we obtain ~Θ� f ; ~Γ� f ` ~recX.P� f .

�

In the following we show the operational correspondence in the case of recursive
processes. We first start with an auxiliary definition.

Lemma 10.5.1. Let Q be a session process and let Q[recX.Q/X] denote process
Q where process variable X is substituted by µX.Q. Then,

~Q[recX.Q/X]� f = ~Q� f [recX.~Q� f /X]

for all renaming functions f for Q and recX.Q.

Proof. Immediate by the definition of encoding and substitution. �

168 CHAPTER 10. RECURSION

Proof of Theorem 6.3.15 for Recursive Processes: Let P be a session pro-
cess, Θ,Γ session typing contexts, and f a renaming function for P such that
~Θ� f ; ~Γ� f ` ~P� f . Then, the following statements hold.

1. If P→ P′, then ~P� f →↪→ ~P′� f .

2. If ~P� f → Q, then there are P′,E[·], such that E[P]→ E[P′] and
Q ↪→ ~P′� f ′ , and either f ′ = f or f ′ = f , {x, y 7→ c} for x, y such that (νxy)
appears in E[P].

Proof. Since by assumption ~Θ� f ; ~Γ� f ` ~P� f , then by Theorem 6.3.10 for re-
cursive processes given above, we have that Θ; Γ ` P.

1. The proof is done by induction on the derivation P → P′. The only case to
be considered is when (R-Rec) is applied.

P[recX.P/X]→ P′

P→ P′

By induction hypothesis we have that ~P[recX.P/X]� f →↪→ ~P′� f . By
applying (Rπ-Rec) and (Rπ-Struct) we conclude that ~P� f →↪→ ~P′� f .

2. The proof is done by induction on the derivation for ~P� f → Q. The case
to be considered is when (Rπ-Rec) is applied. By the premise of (Rπ-Rec)
and Lemma 10.5.1 we have that ~P� f [recX.~P� f /X]→ Q. We conclude by
induction hypothesis, by (R-Rec) and by letting E[·] = [·] and Q ≡ ~P′� f .

�

Chapter 11

From π-Types to Session Types

11.1 Further Considerations
As explained in the previous sections, a session type is encoded as a linear channel
type, which in turn carries a linear channel. In order to satisfy linearity, a fresh
channel is created at every step of communication and is sent along together with
the original payload. This fresh channel is then used to continue the rest of the
communication. The continuation-passing of channels simulates the structure of
session types. There are two processes in the encoding presented in Chapter 6 that
create a new channel, the output process and the selection process, the latter being
a generalisation of the former. Namely

~x!〈v〉.P� f , (νc) fx!〈~v� f , c〉.~P� f ,{x 7→c}

~x / l j.P� f , (νc) fx!〈l j c〉.~P� f ,{x 7→c}

One can argue that there is an overhead in creating at every output a new channel
for the continuation of the communication. In the following, we show that the
transmission of new channels is not necessary. What are going to modify the
encoding in order to mimic a session type even more faithfully. In this optimised
approach we reuse the same channel. But then, since channel variables have linear
types, doing so would violate linearity. In order to overcome this problem, we
modify the typing rules for both the output and the selection processes.

Output Consider the output process x!〈v〉.P in the session π- calculus, which
again is encoded as:

~x!〈v〉.P� f , (νc) fx!〈~v� f , c〉.~P� f ,{x 7→c} (11.1)

The optimised encoding is as follows:

~x!〈v〉.P� , x!〈~v� f , x〉.~P� (11.2)

169

170 CHAPTER 11. FROM π-TYPES TO SESSION TYPES

In order to overcome the linearity violation, we modify the type system by intro-
ducing the following typing rule for the output:

Γ1 ` x : `o [T̃] Γ̃2, x : `α [S̃] ` ṽ : T̃ Γ3, x : `α [S̃] ` P
(Tπ-OutBis)

Γ1] Γ̃2] Γ3 ` x!〈ṽ〉.P

The above typing rule states that the output process x!〈ṽ〉.P is well typed if The
variable x is a linear channel used in output to transmit values of type T̃ , and
the sequence of values ṽ is of the expected sequence of types T̃ . Notice that the
typing context Γ̃, differently from the original (Tπ- Out), is augmented with the
type assumption of x having type `α [S̃]. Since this is a linear type, it implies that
x ∈ ṽ. In addition, process P is well typed under the assumption that x has the
dual type of the type it has when transmitted, namely `α [S̃].

Selection Consider the selection process x / l j.P in the session π- calculus,
which again is encoded as:

~x / l j.P� f , (νc) fx!〈l j c〉.~P� f ,{x 7→c} (11.3)

The optimised encoding is as follows:

~x / l j.P� , x!〈l j x〉.~P� (11.4)

By using (Tπ-LVal)

Γ, x : `α [S̃] ` x : `α [S̃] = T j j ∈ I
(Tπ-LVal)

Γ, x : `α [S̃] ` l j x : 〈li Ti〉i∈I

And using (Tπ-OutBis), we type the encoding of the selection process.
Notice that the encoding of session types remains as in Fig. 6.1, and the encod-

ing of session processes remains as in Fig. 6.2, except for equations 11.2 and 11.4
which substitute respectively 11.1 and 11.3.

11.2 Typed Behavioural Equivalence
In this section we show that 11.1 and 11.2 as well as 11.3 and 11.4 are typed strong
barbed congruent. We first give a few definitions, taken from [101], that can lead
us to our result. We start with the following two auxiliary definitions:

Definition 11.2.1 (Context). A context in the π-calculus is obtained when the hole
[·] replaces an occurrence of the terminated process 0 in a process term produced
by the grammar in Section 4.1.

11.2. TYPED BEHAVIOURAL EQUIVALENCE 171

Definition 11.2.2 (Strong Barbed Bisimilarity). Strong barbed bisimilarity is the
largest, symmetric relation ∼ such that if whenever P ∼ Q,

1. If P performs an input/output action with subject x, then Q also performs
an input/output action with subject x.

2. P→ P′ implies Q→ Q′ for some process Q′ with P′ ∼ Q′.

Two processes P,Q are strong barbed bisimilar if P ∼ Q.

Definition 11.2.3 (Strong Barbed Congruence). Two processes are strong barbed
congruent if they are strong barbed bisimilar for every arbitrary context they are
placed into.

We pass now from the definition of strong barbed congruence to the typed
version of it.

Definition 11.2.4 (Typed Strong Barbed Congruence). Let ∆ ` P and ∆ ` Q. We
say that processes P,Q are strong barbed congruent at ∆, denoted ∆ B P 'c Q, if
they are strong barbed congruent for every (Γ/∆)-context, with Γ closed.

We explain intuitively a (Γ/∆)-context. We refer to [101] for the formal def-
inition. A (Γ/∆)-context, when filled with a well-typed process in ∆ becomes a
well-typed process in Γ.

An important result, which will act as a proof technique in the following, is
the Context Lemma for the typed strong barbed congruence.

Definition 11.2.5. Suppose ∆ ` P and ∆ ` Q. We write ∆ B P 's Q if for every
closed Γ that extends ∆, for every ∆-to-Γ substitution σ and every process R such
that Γ ` R, it holds that R | σ(P) is strong barbed bisimilar to R | σ(Q).

Lemma 11.2.6 (Context Lemma). Suppose ∆ ` P and ∆ ` Q. ∆ B P 's Q if and
only if ∆ B P 'c Q.

11.2.1 Equivalence Results for the Encoding
We present in the following the result on typed strong barbed congruence of the
encoding of the output and the selection processes.

Output Let
Γ , x : `o [T, `α [S̃]], v : T,Γ′

P , (νc)x!〈v, c〉.~R� f ,{x 7→c}

Q , x!〈v, x〉.~R�

172 CHAPTER 11. FROM π-TYPES TO SESSION TYPES

Γ′ ` ~R� f ,{x 7→c} and Γ′, x : `α [S̃] ` ~R�.
Then

Γ B P 'c Q (11.5)

Selection Let
Γ , x : `o [〈li Ti〉i∈I],Γ′

P , (νc)x!〈l j c〉.~R� f ,{x 7→c}

Q , x!〈l j x〉.~R�

Γ′ ` ~R� f ,{x 7→c} and Γ′, x : T j ` ~R�.
Then

Γ B P 'c Q (11.6)

Above, P is the encoding of output (respectively selection) by following the rules
in Fig. 6.2 and Q is the encoding of output (respectively selection) by following
the rules in Section 11.1. By using the typing context Γ for output (respectively
selection), (11.5) and (11.6) follow by Theorem 4.5.6 and the Lemma 11.2.6.

Conclusions, Related and Future
Work for Part II and III

In Part II and III of this thesis we proposed an interpretation of session types into
ordinary π-types, more precisely into linear channel types and variant types.

Linearity is a concept widely used in various areas of computer science. Intu-
itively, when linearity of a resource is enforced, it means that the resource is used
exactly once, namely it cannot be used more than once and on the other hand it
must be used at least once. Linear channel types [72,101] assure that a channel is
used exactly once for communication.

Variant types [99, 101] are labelled disjoint union of types, where the order of
components does not matter and labels are all distinct. A variant value is a labelled
value and a case process is a process construct native of the standard π-calculus.
The branching and selection processes in the session π- calculus are similar and
are inspired by the case process, in that they offer a sequence of labelled processes
from which the communicating party can choose.

In Part II we developed Kobayashi’s proposal of an encoding of session types
into into linear channel types and variant types. We showed that the encoding
is faithful, in that it allows us to derive all the basic properties of session types,
by exploiting the analogous properties of π- types. In Part III we showed that
the encoding is robust, by analysing a few non-trivial extensions to session types,
namely subtyping, polymorphism and higher-order. Finally, we proposed an op-
timisation of linear channels permitting the reuse of the same channel for the
continuation of the communication and proved a typed barbed congruence result.
This optimisation considerably simplifies the encoding, which is parametrised in
function f which on some terms, like in input and output processes becomes the
identity function. The encoding of session types, however is the same as before.

Contribution The encoding we presented in Part II and III has several benefits.
We list them in the following.

• The elimination of the redundancy introduced both in the syntax of types
and in the syntax of terms.

173

174 CHAPTER 11. FROM π-TYPES TO SESSION TYPES

• The derivation of properties like subject reduction and type safety as
straightforward corollaries, thus eliminating redundancy also in the proofs.

• Privacy, communication safety and session fidelity requirements in session
types are enforced by the check of linearity and the encoding in the standard
typed π-calculus. Duality boils down to opposite outermost capabilities of
linear channel types.

• The encoding is robust wrt extensions like subtyping, polymorphism,
higher-order communication and recursion. This allows us to derive prop-
erties for these new features by exploiting the encoding and the theory of
the standard typed π-calculus.

As the last point states, the encoding allows us to easily obtain extensions of the
session calculus, by exploiting the theory of the π-calculus. In particular, as shown
in Section 8.2 about the bounded polymorphism, our approach makes it easy even
when the intended extension was not already present in the π-calculus. In these
cases one can just provide the π-calculus with the intended capability and obtain
the same capability in sessions. The whole process has shown to be much easier
passing through π-calculus than doing it from scratch for sessions.

Related and Future Work The idea of encoding session types into π-calculus
linear types is not new. Kobayashi [71] was the first to propose such an encoding,
but he did not prove any properties and did not investigate its robustness; more-
over, as certain key features of session types do not clearly show up in the encod-
ing, like duality, the faithfulness of the encoding was unclear. Later on, Dardha
et al. [32] studied such encoding by showing its soundness and completeness wrt
typing and reduction. Advanced features, such as subtyping, polymorphism and
higher-order communication are introduced to prove the robustness of the encod-
ing. In [30], the author investigates recursion. The interesting part of [30] is the
use of the complement function as opposed to the inductive duality function ·,
since the latter does not commute with the unfolding of recursive session types,
as stated in Chapter 10 and [8, 9].

Demangeon and Honda [35] provide a subtyping theory for a π-calculus aug-
mented with branch and select constructs and show an encoding of the session
calculus. They prove the soundness of the encoding and the full abstraction. The
main differences wrt our work are: i) the target language is closer to the session
calculus having branch and select constructs, instead we adopt the standard π-
calculus where in place of branching and selection we provide the native case
process and in place of the branch and select type we provide the standard variant
type; ii) a refined subtyping theory is provided, instead we focus on encoding of

11.2. TYPED BEHAVIOURAL EQUIVALENCE 175

the session calculus in the standard π-calculus in order to exploit its rich and well-
established theory; iii) we study the encoding in a systematic way as a means to
formally derive session types and all their properties, in order to provide a method-
ology for the treatment of session types and their extensions without the burden
of establishing the underlying theory.

Variant types are essential type constructs in the typed π- calculus. This has
been proved also by other works on encodings where variant types have been used,
in particular, we mention the encoding of a typed object-oriented calculus into the
typed π-calculus with variant types [99].

Other expressivity results regarding session types include the work by Caires
and Pfenning [16]. This paper presents a type system for the π-calculus that corre-
sponds to the standard sequent calculus proof system for dual intuitionistic linear
logic (DILL). It gives an interpretation of intuitionistic linear logic formulas as a
form of session types. These results are complemented and strengthened with a
theory of logical relations [96]. An interpretation of the simply-typed λ-calculus
in the π-calculus with session is given in [105]. As stated by the authors this en-
coding is done in two steps: first by giving a standard embedding of simply-typed
λ-calculus in a linear λ-calculus and second by a translation of linear natural de-
duction into linear sequent calculus. Another work on expressivity is the one by
Wadler [113], which follows the line of [16]. In this paper, the author proposes a
calculus where propositions of classical linear logic correspond to session types.

Igarashi and Kobayashi [60] have developed a single generic type system
(GTS) for the π-calculus from which numerous specific type systems can be ob-
tained by varying certain parameters. A range of type systems are thus obtained
as instances of the generic one. In [46] the authors define an interpretation from
session types and terms into GTS by proving operational correspondence and cor-
rectness of the encoding. However, as the authors state, the encoding they present
is very complex and deriving properties of sessions passing through GTS would
be more difficult than proving them directly. Instead, the encoding we present is
very simple and properties of sessions are derived as straightforward corollaries
from the corresponding ones in the π-calculus.

All the above works are clearly an expressivity result. The encoding we pro-
pose is an expressivity result, as well. However, in addition our encoding is a
powerful means for deriving the theory of session types and its possible exten-
sions by the well-known theory of the standard π-calculus.

As future work on the encoding we want to investigate the multiparty session
types [59]. In a nutshell, multiparty session types differ from dyadic session types
in the interleaving of channels used among different participants. The order in
which these channels are used is important to guarantee communication safety
and session fidelity. Our encoding should be extended in order to accommodate
this notion of causality of channels introduced in [59].

176 CHAPTER 11. FROM π-TYPES TO SESSION TYPES

Part IV

Progress of Communication

177

Introduction to Part IV

Progress is a fundamental characteristic of safe programs. Intuitively, it means
that a safe program never gets “stuck”, i.e., reach a state that is not designated as
a final value and the semantics of the language does not tell how to evaluate fur-
ther [97]. The notion of progress is well understood in computational models like
the λ-calculus [6] and it is typically analysed in closed terms using type systems.
We have only recently begun to research its meaning in computational models for
concurrency and distributed systems.

The most basic property related to progress in concurrency is that of deadlock
freedom: “a process is deadlock-free if it can always reduce until it eventually
terminates” [69–71]. Said differently, a communication will eventually succeed
unless the whole process diverges. Observe that a deadlock-free process can di-
verge, and more interestingly, some subprocesses can get stuck. For instance,
consider the following process:

P = (νx)
(
x?(y).0 | Ω)

where Ω is a diverging process executing an infinite series of internal actions.
Even though the subterm x?(y).0 will never reduce, process P is deadlock-free.

In order to cope with this limitation of deadlock freedom, lock freedom
or livelock freedom has been proposed as a stronger property that requires ev-
ery input/output action to be eventually executed under fair process schedul-
ing [68,69,71]. Said differently, a communication will eventually succeed even if
the whole process diverges. Different techniques have been proposed for guaran-
teeing deadlock freedom and lock freedom, mostly based on type systems for the
π-calculus [66, 68–71, 74].

All the aforementioned techniques are applied to closed processes, i.e., pro-
cesses that do not communicate with the environment. However, a useful appli-
cation of process calculi is to model open-ended systems where participants can
join the system dynamically [37,88,91]. A recent line of work [10,20,27,39] has
begun investigating the meaning of progress for such open-ended systems. Intu-
itively, in this setting a process has the progress property if it can reduce when
it is put in a suitable context. This notion has been analysed when considering

179

180

only the behaviour of each single channel in isolation [32, 109] and of the whole
system [10, 20, 27] in the context of session types.

We observe that progress in open-ended systems is a compositional notion,
since an open process that has progress can be composed with another compatible
process to obtain a system that reduces and does not get stuck. Interestingly, this
compositionality seems to lead back to the notion of lock freedom, in that both
notions inspect subprocesses of a system. Thus, we pose the research question:

What is the relationship between the notions of lock freedom and progress for
open-ended systems?

Answering the question above would lead to a better understanding of the progress
property in concurrency. Ideally, it would allow techniques and results obtained
for one property to be applied to the other. This part of the thesis is based on [19].
In the following we list the major contributions and give the roadmap to Part IV.

Progress in the π-calculus with sessions We discuss the relationship between
progress and lock freedom in the setting of π-calculus with sessions (Section
14.3), by studying the properties of processes that are well typed in the session
type system given in [109]. Our first result is that for well-typed closed processes,
progress and lock freedom properties coincide: a well-typed closed process has
progress if and only if it is lock-free (Section 14.3.1). We then focus on open pre-
cesses and we prove that it is possible to relate progress to lock freedom even for
processes with open sessions (Section 14.3.2): a well-typed process has progress
if and only if it can be put in a context such that the composition is a well-typed
closed process and lock-free. In other words, we prove that for well-typed pro-
cesses in the π-calculus with sessions, progress is a compositional form of lock
freedom. Crucial to our development is the definition of a new “closure” proce-
dure for generating well-typed contexts that are guaranteed not to introduce locks.

A static analysis for progress in the π- calculus with sessions Based on the
fact that progress is related to lock freedom, we show that it is possible to build a
static analysis for progress in the π-calculus with sessions by reusing a static anal-
ysis for lock freedom in the standard π- calculus. We present how Kobayashi’s
type system for lock freedom [68] can be reused to check whether a process has
progress. Using Kobayashi’s type system for progress analysis yields a new tech-
nique, which is more accurate than previous techniques in the literature.

Roadmap to Part IV The rest of Part IV is organised as follows. Chapter 12
gives a background on the standard π-calculus by focusing on the syntax of types
and typing rules for guaranteeing the lock freedom property. Chapter 13 gives

181

a background on the π- calculus with sessions which reports a few modifications
wrt the one introduced in Part II: it includes recursion and recursive types and the
choice operator is enhanced to accommodate the progress property. Chapter 14
introduces the notion of progress for the π- calculus with sessions, by relating it
to the notion of lock freedom for sessions. In addition it gives a static way for
checking progress by using the type system for lock freedom given in Chapter 12.

182

Chapter 12

Background on π-types for Lock
Freedom

In this chapter we introduce Kobayashi’s type system for lock freedom [68]. The
syntax of terms and the operational semantics are the same as in Chapter 4. For
simplicity, we recall them in this chapter. We then introduce the usage types and
give the type system with usage types, which guarantees lock freedom.

12.1 Syntax

The syntax of terms for the standard π-calculus is the same as in Section 4.1 with
the addition of recursive term constructs given in Section 10.1. We present the
complete syntax of terms in Fig. 12.1.

Processes include the output x!〈ṽ〉.P and the input x?(ỹ).P processes, where a
tuple of values ṽ is transmitted and a tuple of placeholders ỹ is used, respectively;
conditional if v then P else Q; other standard constructs like parallel composition
P | Q, inaction 0 and restriction (νx)P; the case process and term constructs for
recursion, which are the process variable X and the recursive process recX.P.
Values include variables ranged by x, ground values, in particular the boolean
ones true and false, and variant value, which is simply a labelled value l v.

12.2 Semantics

We give some of the reduction rules for the standard π- calculus in Fig. 12.2.
These rules are presented in Section 4.2 and in Section 10.2. We do not give the
reduction rules for context closure under composition, restriction and structural
congruence, which are standard and are given in Section 4.2.

183

184 CHAPTER 12. BACKGROUND ON π-TYPES FOR LOCK FREEDOM

P,Q ::= x!〈ṽ〉.P (output)
x?(ỹ).P (input)
if v then P else Q (conditional)
P | Q (composition)
0 (inaction)
(νx)P (channel restriction)
case v of {li xi . Pi}i∈I (case)
X (process variable)
recX.P (recursive process)

v ::= x (variable)
true | false (boolean values)
l v (variant value)

Figure 12.1: Syntax of the standard π-calculus: repeated

(Rπ-Com) x!〈ṽ〉.P | x?(z̃).Q→ P | Q[ṽ/z̃]

(Rπ-Case) case l j v of {li xi . Pi}i∈I → P j[v/x j] j ∈ I

(Rπ-Rec)

P[recX.P/X]→ P′

recX.P→ P′

Figure 12.2: Semantics of the standard π-calculus: repeated

12.3. π-TYPES FOR LOCK FREEDOM 185

U ::= ioc .U (used in input) ∅ (not usable)
oo

c .U (used in output) (U1 | U2) (used in parallel)
t (usage variable) µt.U (recursive usage)

T ::= [T̃]mU (channel types) 〈li Ti〉i∈I (variant type)
Bool (boolean type)

Figure 12.3: Syntax of usage types

Rule (Rπ-Com) is the communication rule: the process on the left sends a tuple
of values ṽ on x, while the process on the right receives the values and substitutes
them for the placeholders in ỹ. Rule (Rπ-Case) states that the case process reduces
to P j substituting x j with the value v, if the label l j is selected. This label should
be among the offered labels, namely j ∈ I. Rule (Rπ-Rec) states that a recursive
process recX.P reduces to a process P′ if process P where X is substituted by the
recursion process recX.P, reduces to the same P′.

12.3 π-Types for Lock Freedom

The syntax of usage types is given in Fig. 12.3 and is inspired by Kobayashi’s
works on lock freedom [68, 70, 71]. Let o, c range over natural numbers, α range
over actions, being only ‘i’ input or ‘o’ output. Let U range over usages and T over
types. Let mU be either `U, for a linear usage U, or simply U for an unrestricted
usage U. Usages U are used to build channel types. A usage can be an empty
usage ∅, which denotes a channel that cannot be used at all for communication;
we will often omit it when it is not necessary. Usage ioc .U describes a channel used
once for input and then used according to U. Symmetrically, usage oo

c .U describes
a channel used once for output and then used according to U. We will comment
on o and c numbers in the following. Usage U1 | U2 describes a channel used
according to U1 and U2 possibly in parallel. Usage variable t is combined with
the recursive usage µt.U which is used according to U[µt.U/t]. A type T can be
a channel type [T̃]mU, used according usage mU to transmit a sequence of values
of types T̃ . Notice that, the usages describe a channel used in structured way,
differently from the linear types presented in Fig. 4.5 and similar to session types.
However, the main difference wrt session types is that the carried type associated
to a usage is always the same T̃ . A type can also be variant type 〈li Ti〉i∈I or a
ground type like Bool, or other type constructors, as stated in Section 4.3.

The annotations o and c in the actions are called obligation level and capability
level of that action, respectively. We will commonly refer to them as tags or

186 CHAPTER 12. BACKGROUND ON π-TYPES FOR LOCK FREEDOM

attributes. They are thought of and defined as abstract representations of time
tags or reduction steps. The reason for this vague interpretation of tags is that
what matters is their relative meaning and how tags are ordered among them,
rather than their absolute meaning. They capture the inter-channel dependencies
in communications. Intuitively, the obligation level o of an action (input or output)
denotes the necessity of the action to be executed, namely when the action is ready
to be performed; the capability level c of an action denotes the guarantee for
success of the action, namely how long it take for the action to find its co-action.
By citing Kobayashi’s works [68, 70, 71], their relation may be described as:

• An obligation of level n must be fulfilled by using only capabilities of level
less than n. Said differently, an action of obligation n must be prefixed by
actions of capabilities less than n.

• For an action with capability of level n, there must exist a co-action with
obligation of level less than or equal to n.

It is important to notice that in the original works [68,70,71], tags may also range
over ‘∞’, which means that the success of the action is not guaranteed, or even that
the action itself need not be executed at all. In this work, since we are considering
processes that correspond to the encoding of a session process and we want that
every action eventually takes place and succeeds, we exclude ‘∞’ and require that
tags range over natural numbers. We illustrate the usage of tags with two simple
examples, given in the following. The first example shows how tags work on a
deadlocked process and the second example shows how tags work on a deadlock-
free but livelocked process.

Example 12.3.1. The process (νx)(νy)(x?().y!〈〉 | y?().x!〈〉) is deadlocked. Sup-
pose that x has usage io1

c1 | o
o2
c2 and y has usage io3

c3 | o
o4
c4 . Since x?() must wait for

the corresponding output x!〈〉 to be executed, it must be the case that o2 ≤ c1;
for the same reason o4 ≤ c3. Moreover, from the left-hand side of the parallel
composition we know that y is used for output only after the input on x succeeds,
which yields c1 < o4; for the same reason c3 < o2. From these inequations we
have o2 ≤ c1 < o4 ≤ c3 < o2, which is a contradiction.

Example 12.3.2. The following process is deadlock-free but livelocked:
(νx)(x?(w) | (νy)(y!〈x〉 | y?(z).recX.(y!〈z〉 | y?(z).X))) This process is never stuck,
because of infinite sendings, however the first input on x will be never executed,
thus making the process livelocked. Suppose y sends x having usage oo1

c1 . A mes-
sage sent on y is received by its counterpart in o3(> 0) steps. The subprocess
y?(z).recX.(y!〈z〉 | y?(z).X) receives z of usage oo1

c1 and so it is supposed to use it in
time o1 for output. Then, z is resent again on y which means it needs o3 steps to
be received, as previously stated. Then o1 + o3 ≤ o1, which is a contradiction.

12.4. π-TYPING RULES FOR LOCK FREEDOM 187

12.4 π-Typing Rules for Lock Freedom
In this section we present the type system for lock freedom, which is an extension
of the type system in [68, 71] with case process and variant values. We start
by giving some auxiliary definitions and operations on types and typing contexts
taken from [68].

Definition 12.4.1 (Normal Form). A process is in normal form if it a restriction of
parallel composition, namely (νx̃)(R1 | . . . | Rn) and all variables in x̃ are different
from each other and from the free ones in the process.

Definition 12.4.2 (Reduction Sequence). A set of processes {Pi}i∈I for I ⊆ Nat is
called a reduction sequence, if Pi−1 → Pi for all i ∈ I \ {0}.
A reduction sequence is normal if i) for all i ∈ I, Pi is in normal form and ii)
the sequence of the restricted channels of Pi−1 is a prefix of the sequence of the
restricted channels of Pi.
A reduction sequence is complete if either I = Nat or I = [n] and Pn 9.

Definition 12.4.3 (Fair Reduction Sequence). A normal, complete reduction se-
quence P0 → P1 → P2 → . . . is fair if the following conditions hold.

1. If there exists an infinite increasing sequence n0 < n1 < . . . of natu-
ral numbers such that Pn j ≡ (νx̃ j)(x!〈v〉.Q | x?(z).Q j | R j), for all n j,
then there exists n ≥ n0 such that Pn ≡ (νx̃)(x!〈v〉.Q | x?(z).Q′ | R′) and
(νx̃)(Q | Q′[v/z] | R′) ≡ Pn+1.

2. If there exists an infinite increasing sequence n0 < n1 < . . . of natu-
ral numbers such that Pn j ≡ (νx̃ j)(x?(z).Q | x!〈v〉.Q j | R j), for all n j,
then there exists n ≥ n0 such that Pn ≡ (νx̃)(x?(z).Q | x!〈v〉.Q′ | R′) and
(νx̃)(Q[v/z] | Q′ | R′) ≡ Pn+1.

We are ready now to give the definition of the lock freedom property in the
standard π-calculus.

Definition 12.4.4 (Lock Freedom for Standard π-Calculus). A process P0 in nor-
mal form is lock-free under fair scheduling, if for any fair reduction sequence
P0 → P1 → P2 → . . . the following hold.

1. if Pi ≡ (νx̃)(x!〈v〉.Q | R) some i ≥ 0, then there exists n ≥ i such that
Pn ≡ (νx̃′)(x!〈v〉.Q | x?(z).R1 | R2) and Pn+1 ≡ (νx̃′)(Q | R1[v/z] | R2).

2. if Pi ≡ (νx̃)(x?(z).Q | R) for some i ≥ 0, then there exists n ≥ i such that
Pn ≡ (νx̃′)(x?(z).Q | x!〈v〉.R1 | R2) and Pn+1 ≡ (νx̃′)(Q[v/z] | R1 | R2).

188 CHAPTER 12. BACKGROUND ON π-TYPES FOR LOCK FREEDOM

Remark 12.4.5. Note that in the original work [68], the lock freedom property
states that a process annotated with a mark c, eventually succeeds; for the non
marked processes it is not required such a constraint. In our framework, we drop
the mark and proceed as if all processes were marked, since we want all processes
to satisfy the lock freedom property, and eventually communicate.

The unary operation ↑t applied to a usage U lifts its obligation level up to t,
and is inductively defined as follows:

↑t ∅ , ∅

↑t αo
c .U , αmax(o,t)

c .U
↑t (U1 | U2) , (↑t U1 | ↑

t U2)
↑t t , t

↑t µt.U , µt. ↑t U

The ↑t operator is extended to types and typing contexts in the expected way and
is given in the following. It is undefined otherwise.

↑t [T̃]mU , [T̃]m ↑t U
(↑t Γ)(x) , ↑t (Γ(x))

The composition operation on types, denoted | , is based on the composition of
usages and is defined as follows:

U1[T̃] | U2[T̃] , (U1 | U2)[T̃]
T | T , T if un(T)

T] S , undef otherwise

Its generalisation to typing contexts, denoted (Γ1 | Γ2)(x), is as expected and is
defined in the following:

x : T ∈ Γ1 | Γ2 iff

x : T1 ∈ Γ1 and x : T2 ∈ Γ2

and T = T1 | T2

x : T ∈ Γ1 and x < dom(Γ2)

x : T ∈ Γ2 and x < dom(Γ1)

Notice that the parallel operator | is defined similarly to the combination operator
] given in Section 4.4. As a result we remove the connection] from the syntax
of actions as it is simulated by | present in the syntax of usages. In particular,]
and | on types (as well as] and | on typing contexts) denote channels capable
of both input and output actions possibly in parallel.

12.4. π-TYPING RULES FOR LOCK FREEDOM 189

The operator † is defined on typing contexts. ∆ = x : [T] αo
c † Γ is such that

the following holds:

dom(∆) = {x} ∪ dom(Γ)

∆(x) =

 [T̃]αo
c .U if Γ(x) = [T̃] U

[T̃]αo
c if x < dom(Γ)

∆(y) =↑c+1 Γ(y) if y , x

The final required notion is that of a reliable usage. Intuitively, a usage U is
said to be reliable, denoted with rel(U), if after any reduction step, whenever it
contains an action (input or output) having capability level c, it also contains the
co-action having obligation level at most c. The following definitions are taken
from [68, 70].

Definition 12.4.6. Let U be a usage. The input and output obligation levels (resp.
capability levels) of U, written obi(U) and obo(U) (resp. capi(U) and capo(U)),
are defined as follows:

obα(αo
c .U) = o

capα(αo
c .U) = c

obα(U1 | U2) = min(obα(U1), obα(U2))
capα(U1 | U2) = min(capα(U1), capα(U2))

The definition of reliable usages depends on a reduction relation on usages,
noted U → U′. Intuitively, U → U′ means that if a channel of usage U is used
for communication, then after the communication occurs, the channel should be
used according to usage U′. Thus, e.g., ioc .U1 | io

′

c′ .U2 reduces to U1 | U2.

Definition 12.4.7 (Reliability). We write conα(U) when obα(U) ≤ capα(U). We
write con(U) when coni(U) and cono(U) hold. Usage U is reliable, noted rel(U),
if con(U′) holds for all U′ such that U →∗ U′.

The typing judgements are of the form Γ `LF v : T , for values and Γ `LF P, for
processes. We use `LF instead of ` in order to distinguish the type system for lock
freedom from the type system for the linear π-calculus given in Section 4.4.

The typing rules for lock-freedom are given in Fig. 12.4. (LF-Var), (LF-Val)
and (LF-LVal) are the same as the corresponding ones given in Section 4.4, where
linear types are used. Rules (LF-Inact), (LF-If),(LF-Par) and (LF-Case) are the
same as the corresponding ones in Section 4.4, but instead of the] operator on
linear types we use the | operator on usages. Rule (LF-In) states that the input
process x?(ỹ).P is well typed if x is a channel used in input with obligation level
0. The obligations of the other channels in Γ are raised by using the operator
†, because the actions inside process P are prefixed by the input action and will
thus become available one step later. Rule (LF-Out) states that the output process

190 CHAPTER 12. BACKGROUND ON π-TYPES FOR LOCK FREEDOM

un(Γ)
(LF-Var)

Θ; Γ, x : T `LF x : T

un(Γ) v = true / false
(LF-Val)

Θ; Γ `LF v : Bool

Θ; Γ `LF v : T
(LF-LVal)

Θ; Γ `LF l v : 〈l T 〉

un(Γ)
(LF-Inact)

Θ; Γ `LF 0

Θ; Γ1 `LF v : Bool Θ; Γ2 `LF P Θ; Γ2 `LF Q
(LF-If)

Θ; Γ1 | Γ2 `LF if v then P else Q

Θ; Γ, ỹ : T̃ `LF P
(LF-In)

Θ; x : [T̃] m i0c † Γ `LF x?(ỹ).P

Θ; Γ1 `LF ṽ :↑ T̃ Θ; Γ2 `LF P
(LF-Out)

Θ; x : [T̃] m o0
c † (Γ1 | Γ2) `LF x!〈ṽ〉.P

Θ; Γ1 `LF P Θ; Γ2 `LF Q
(LF-Par)

Θ; Γ1 | Γ2 `LF P | Q

Θ; Γ, x : [T̃] mU `LF P rel(U)
(LF-Res)

Θ; Γ `LF (νx)P

Θ; Γ1 `LF v : 〈l T 〉i∈I Θ; Γ2, xi : Ti `LF Pi ∀i ∈ I
(LF-Case)

Θ; Γ1 | Γ2 `LF case v of {li xi . Pi}i∈I

Θ(X) = Γ
(LF-RecVar)

Θ; Γ ` X

Θ, X : Γ; Γ ` P
(LF-RecProc)

Θ; Γ ` recX.P

Θ; Γ ` v : T T ∼type S
(LF-EqVal)

Θ; Γ ` v : S

Figure 12.4: Typing rules for the π-calculus with usage types

12.4. π-TYPING RULES FOR LOCK FREEDOM 191

x!〈ṽ〉.P is well typed and ready for execution if x is a channel used in output and
has obligation level 0. Moreover, the obligation level of the values ṽ is decre-
mented by 1, by applying the operation ↑ T̃ in the premise of the rule: this is
to reflect the fact that the actions on these values will become available one step
later, since they have to be transmitted first through the output action that is being
typed. Finally, the obligations of channels in Γ1 | Γ2 are raised by † for the same
reasons as in rule (LF-In). As stated in [69, 71], the typing rule for the output
process is the only one that differs in the type system for deadlock freedom from
the type system for lock freedom. The decrement operation on the obligation level
avoids infinite sendings, and hence livelocks, as shown in Example 12.3.2. Rule
(LF-Res) is the key rule for establishing lock freedom; it states that the restriction
of a name x in a process P is well typed if x is used reliably in P. The notion of re-
liability is checked by the predicate rel(U) which we previously introduced. Rules
(LF-RecVar), (LF-RecProc) and (LF-EqVal) are the same as the ones presented
in Section 10.3.

The next theorems imply that well-typed processes by the type system in
Fig. 12.4 are lock-free.

Theorem 12.4.8 (Subject Reduction for Usage Types). If Γ `LF P and P → Q,
then Γ′ `LF Q for some Γ′ such that Γ→ Γ′.

Theorem 12.4.9 (Lock Freedom). If ∅ `LF P, then P→ Q for some Q.

Corollary 12.4.10. If ∅ `LF P, then P is lock-free.

192 CHAPTER 12. BACKGROUND ON π-TYPES FOR LOCK FREEDOM

Chapter 13

Background on Session Types for
Progress

In this chapter we recall the π-calculus with session types given in Chapter 5. We
male some modifications to the syntax of types and terms in order to accommodate
the progress property.

13.1 Syntax

The syntax of terms of the π- calculus with sessions is presented in Fig. 13.1.
Processes include the output x!〈v〉.P and the input x?(y).P processes, conditional
if v then P else Q, parallel composition P | Q and inaction 0. Process (νxy)P is
the restriction of co-variables and X and recX.P model recursion. Branching is
the standard one x . {li : Pi}i∈I as in Section 5.1. We adopt a more general notion
of selection x / {li : Pi}i∈I , which substitutes the standard selection x / l j.P. The
reason for this modification is to accommodate the notion of progress for sessions,
as we will show in the next sections.

13.2 Semantics

The reduction rules are the same as the ones given in Section 5.2. We give some of
the most important ones in Fig. 13.2. Rules (R-Com), (R-Sel) and (R-Rec), were
explained in details in the previous chapters. Rule (R-SelNorm) is a selection
normalisation, stating that the generalised selection process x / {li : Pi}i∈I reduces
to x / l j.P being j one of the indexes in I. We omit the context closure rules
for parallel composition, restriction and structural congruence and the reader can
refer to Section 5.2 for a detailed presentation.

193

194 CHAPTER 13. BACKGROUND ON SESSION TYPES FOR PROGRESS

P,Q ::= x!〈v〉.P (output)
x?(y).P (input)
x / {li : Pi}i∈I (selection)
x . {li : Pi}i∈I (branching)
if v then P else Q (conditional)
P | Q (composition)
0 (inaction)
(νxy)P (session restriction)
X (process variable)
recX.P (recursive process)

v ::= x (variable)
true | false (boolean values)

Figure 13.1: Syntax of the π-calculus with sessions: updated

(R-Com) (νxy)(x!〈v〉.P | y?(z).Q | R)→ (νxy)(P | Q[v/z] | R)

(R-Sel) (νxy)(x / l j.P | y . {li : Pi}i∈I | R)→ (νxy)(P | P j | R) j ∈ I

(R-SelNorm) x / {li : Pi}i∈I → x / l j.P j j ∈ I

(R-Rec)

P[recX.P/X]→ P′

recX.P→ P′

Figure 13.2: Semantics of the π-calculus with sessions: updated

13.3. SESSION TYPES 195

q ::= lin | un (qualifiers)
p ::= !T.U (send)

?T.U (receive)
⊕{li : Ti}i∈I (select)
&{li : Ti}i∈I (branch)

T ::= q p (qualified pretype)
end (termination)
Bool (boolean type)
t (type variable)
µt.T (recursive type)

Figure 13.3: Syntax of session types: updated

13.3 Session Types
The syntax of session types is given in Fig. 13.3 and is an extension of the syntax
of session types given in Section 5.3, since it includes t and µt.T . Recursive types
are needed not only to model infinite behaviour of processes, but also to be able
to use unrestricted types, as we explained in Section 5.4.

Qualifiers are lin (for linear) or un (for unrestricted) and have the usual mean-
ing. A type can be qp, the qualified pretype; end, the type of the terminated chan-
nel where no communication can take place further; Bool, the type of boolean
values; or recursive types and recursive variables. A pretype can be !T.U or ?T.U,
which respectively, is the type of sending or receiving a value of type T with con-
tinuation of type U. Select ⊕{li : Ti}i∈I and branch &{li : Ti}i∈I are sets of labelled
types indicating, respectively, internal and external choice.

13.4 Session Typing Rules
The typing judgements now have the form Θ; Γ ` v : T , for values and Θ; Γ ` P,
for processes, such that:

Γ ::= ∅ | Γ, x : T Θ ::= ∅ | Θ, X : Γ

The typing context Γ is the same as in Section 5.4 and the typing context Θ is used
to accommodate recursive processes.

The typing rules are given in Fig. 13.4. The differences wrt the typing rules
in Section 5.4 is the presence of Θ and rule (T-Sel) which types the new selection
process. This typing rule is very similar to the typing rule for branching, since
the selection process chooses over a set of labels and not only one label. For
completeness, we present all the updated typing rules.

196 CHAPTER 13. BACKGROUND ON SESSION TYPES FOR PROGRESS

un(Γ)
(T-Var)

Θ; Γ, x : T ` x : T

un(Γ) v = true / false
(T-Val)

Θ; Γ ` v : Bool

un(Γ)
(T-Inact)

Θ; Γ ` 0

Θ; Γ1 ` P Θ; Γ2 ` Q
(T-Par)

Θ; Γ1 ◦ Γ2 ` P | Q

Θ; Γ, x : T, y : T ` P
(T-Res)

Θ; Γ ` (νxy)P

Θ; Γ1 ` v : Bool Θ; Γ2 ` P Θ; Γ2 ` Q
(T-If)

Θ; Γ1 ◦ Γ2 ` if v then P else Q

Θ; Γ1 ` x : q?T.U Θ; (Γ2 + x : U), y : T ` P
(T-In)

Θ; Γ1 ◦ Γ2 ` x?(y).P

Θ; Γ1 ` x : q!T.U Θ; Γ2 ` v : T Θ; Γ3 + x : U ` P
(T-Out)

Θ; Γ1 ◦ Γ2 ◦ Γ3 ` x!〈v〉.P

Θ; Γ1 ` x : q&{li : Ti}i∈I Θ; Γ2 + x : Ti ` Pi ∀i ∈ I
(T-Brch)

Θ; Γ1 ◦ Γ2 ` x . {li : Pi}i∈I

Θ; Γ1 ` x : q ⊕ {li : Ti}i∈I Θ; Γ2 + x : Ti ` Pi ∀i ∈ I
(T-Sel)

Θ; Γ1 ◦ Γ2 ` x / {li : Pi}i∈I

Θ(X) = Γ
(T-RecVar)

Θ; Γ ` X

Θ, X : Γ; Γ ` P
(T-RecProc)

Θ; Γ ` recX.P

Θ,Γ ` v : T T ∼type S
(T-EqVal)

Θ,Γ ` v : S

Figure 13.4: Typing rules for the π-calculus with sessions: updated

Chapter 14

Progress as Compositional Lock
Freedom

In this chapter we present our main results about progress and lock freedom in the
π- calculus with session types. We start by giving the definition of lock freedom
for session communication, which is an adaptation of the corresponding definition
in the standard π- calculus and we give a relation between lock freedom and the
notion of progress, the latter being already defined for sessions [10, 20, 27].

14.1 Lock Freedom for Sessions
In order to formally define lock freedom for session communication, we need the
definitions of normal form and reduction sequence. These definitions are the same
as the ones for the standard π-calculus which are given in Section 12.4.

We now give the definition of fair reduction sequence, which is an adaptation
of Definition 12.4.3 given Section 12.4.

Definition 14.1.1 (Fair Reduction Sequence for Sessions). A normal, complete
reduction sequence P0 → P1 → P2 → . . . is fair if the following conditions hold.

1. If there exists an infinite increasing sequence n0 < n1 < . . . of natural
numbers such that Pn j ≡ (νx̃ jy j)(x!〈v〉.Q | y?(z).Q j | R j), for all n j, then
there exists n ≥ n0, such that Pn ≡ (νx̃y)(x!〈v〉.Q | y?(z).Q′ | R′) and
(νx̃y)(Q | Q′[v/z] | R′) ≡ Pn+1.

2. If there exists an infinite increasing sequence n0 < n1 < . . . of natural
numbers such that Pn j ≡ (νx̃ jy j)(x?(z).Q | y!〈v〉.Q j | R j), for all n j, then
there exists n ≥ n0, such that Pn ≡ (νx̃y)(x?(z).Q | y!〈v〉.Q′ | R′) and
(νx̃y)(Q[v/z] | Q′ | R′) ≡ Pn+1.

197

198 CHAPTER 14. PROGRESS AS COMPOSITIONAL LOCK FREEDOM

3. If there exists an infinite increasing sequence n0 < n1 < . . . of natural num-
bers such that Pn j ≡ (νx̃ jy j)(x . {li : Pi}i∈I | y / {li : Qi}i∈I | R j), for all n j, then
there exists n ≥ n0, such that Pn ≡ (νx̃y)(x . {li : Pi}i∈I | y / {li : Q′i}i∈I | R′)
and (νx̃y)(x . {li : Pi}i∈I | y / lk.Q′k | R′) ≡ Pn+1 for some k ∈ I and
(νx̃y)(Pk | Q′k | R

′) ≡ Pn+2.

4. If there exists an infinite increasing sequence n0 < n1 < . . . of natural num-
bers such that Pn j ≡ (νx̃ jy j)(x / {li : Pi}i∈I | y . {li : Qi}i∈I | R j), for all n j, then
there exists n ≥ n0, such that Pn ≡ (νx̃y)(x / {li : Pi}i∈I | y . {li : Q′i}i∈I | R′)
and (νx̃y)(x / lk.Pk | y . {li : Q′i}i∈I | R′) ≡ Pn+1 for some k ∈ I and
(νx̃y)(Pk | Q′k | R

′) ≡ Pn+2.

We are now ready to give the definition of lock freedom. Intuitively, a process
is lock-free if for any fair reduction sequence a process which is trying to perform
a communication will eventually succeed.

In order to define lock freedom, we assume, as in the original work, a strongly
fair scheduling [28, 43], which intuitively means that every process enabled to
participate in a communication infinitely many times, will eventually do so.

Definition 14.1.2 (Lock Freedom for Sessions). A process P0 is lock-free under
fair scheduling, if for any fair reduction sequence P0 → P1 → P2 → . . . we have
the following:

1. if Pi ≡ (νx̃y)(x!〈v〉.Q | R) (for i ≥ 0), implies that there exists n ≥ i such that
Pn ≡ (νx̃′y′)(x!〈v〉.Q | y?(z).R1 | R2) and Pn+1 ≡ (νx̃′y′)(Q | R1[v/z] | R2);

2. if Pi ≡ (νx̃y)(x?(z).Q | R) for some i ≥ 0, there exists n ≥ i such that
Pn ≡ (νx̃′y′)(x?(z).Q | y!〈v〉.R1 | R2) and Pn+1 ≡ (νx̃′y′)(Q[v/z] | R1 | R2);

3. if Pi ≡ (νx̃y)(x / {li : Pi}i∈I | R) for some i ≥ 0, there exists n ≥ i such that
Pn ≡ (νx̃′y′)(x / {li : Pi}i∈I | y . {li : Qi}i∈I | R′) and Pn+2 ≡ (νx̃′y′)(P j | Q j | R′)
for j ∈ I;

4. if Pi ≡ (νx̃y)(x . {li : Pi}i∈I | R) for some i ≥ 0, there exists n ≥ i such that
Pn ≡ (νx̃′y′)(x . {li : Pi}i∈I | y / {li : Qi}i∈I | R′) and Pn+2 ≡ (νx̃′y′)(P j | Q j | R′)
for j ∈ I.

Notice that in the definition of lock freedom for sessions the reduction se-
quence goes from Pn to Pn+2. This means that Pn+1 is obtained by a selection
normalisation.

14.2. PROGRESS FOR SESSIONS 199

14.2 Progress for Sessions
The progress property has been studied for the session π- calculus by adopting
cumbersome definitions and type systems. Progress is checked for closed and
open processes. Intuitively, it states that each session, once started, is guaranteed
to satisfy all the requested interactions. In particular this means that progress
property is a stronger property than deadlock freedom.

Before giving the formal definition of progress, we first need to introduce
some auxiliary definitions. We start with the definition of characteristic process.
Intuitively, a characteristic process is the simplest process that can inhabit a type.

Definition 14.2.1 (Characteristic Process). Given a session type T , its character-
istic process ~T�x

f is inductively defined on the structure of T as follows:

(inVal) ~q?Bool.U�x
f = x?(y).~U�x

f

(outVal) ~q!Bool.U�x
f = x!〈true〉.~U�x

f

(inSess) ~q′?(qp).U�x
f = x?(y).(~U�x

f | ~qp�y
f)

(outSess) ~q′!(qp).U�x
f = (νzw)(x!〈z〉.(~U�x

f | ~qp�w
f))

(inSum) ~q&{li : (qi pi)i}i∈I�
x
f = x . {li : ~qi pi�

x
f }i∈I

(outSum) ~q ⊕ {li : (qi pi)i}i∈I�
x
f = x / {li : ~qi pi�

x
f }i∈I

(end) ~end�x
f = 0

(recVar) ~t�x
f = f (t)

(rec) ~µt.T�x
f = recX.~T�x

f ,{t7→X}

Our definition of characteristic process is an extension of the original defini-
tion given in [20], with recursive types and variables. Moreover, (outSum) is more
general and accurate than in [20], since it uses the new selection process.

We now introduce the notion of evaluation context, which is an extension of
Definition 6.3.12.

Definition 14.2.2 (Evaluation Context). An evaluation context is a process with a
hole [·] and is produced by the following grammar:

E[·] ::= [·] | P | (νxy)E[·] | E[·] | E[·] | recX.E[·]

We now define the notion of catalyser, inspired by [27] and we illustrate it
with a simple example.

Definition 14.2.3 (Catalyser). A catalyser is a context produced by the following
grammar:

C[·] ::= [·] | (νxy) C[·] | C[·] | ~T�x
f

200 CHAPTER 14. PROGRESS AS COMPOSITIONAL LOCK FREEDOM

Example 14.2.4. The following context C[·] is a catalyser obtained by com-
posing the characteristic processes P1 and P2 respectively of the channel types
T1 = ?(!Bool.end).end and T2 = ⊕{l1 : end, l2 : !Bool.end}:

C[·] = (νwx)(νuy)([·] | P1 | P2)

P1 = x?(z).(z!〈true〉.0 | 0)

P2 = y / l2.y!〈true〉.0

To conclude, we define the duality or compatibility ./ relation over processes,
which relates processes that start with respective co-actions. This operator, differ-
ently from the original one in [10,27], is parametrised in a pair of variables {x, y},
which are co-variables.

Definition 14.2.5 (./). The duality ./{x,y} between input and output processes is
defined as follows:

x!〈v〉.P ./{x,y} y?(z).Q
x / {li : Pi}i∈I ./{x,y} y . {li : Qi}i∈I

We are now ready to give the formal definition of progress. This definition is
inspired by [10, 27], which is an improvement of the definition of progress used
in [20].

Definition 14.2.6 (Progress). A process P has progress if for all C[·] such that
C[P] is well typed, C[P] →∗ E[R] (where R is an input or an output) implies that
there exist C′[·], E′[·][·] and R′ such that C′[E[R]] →∗ E′[R][R′] and R ./{x,y} R′

for some x and y such that (νxy) is a restriction in C′[E[R]].

14.3 Lock Freedom meets Progress
In this section we put together lock freedom and progress for the π-calculus with
sessions in order to understand their relation. We split this section in two subsec-
tions, by analysing separately the closed processes and then the open ones.

14.3.1 Properties of Closed Terms

By analysing the definitions of lock freedom and progress, we notice that there
is some similarity. In particular, for closed terms, i.e., processes with no free
variables, the properties of lock freedom and progress are tightly related. We
formalise this relation in the following.

14.3. LOCK FREEDOM MEETS PROGRESS 201

Theorem 14.3.1 (Lock freedom ⇒ Progress). Let P be a well-typed closed ses-
sion process. Then, P is lock-free implies P has progress.

Proof. The proof proceeds by contradiction. Let us assume that P does not have
progress. Formally, it means that: there exists C[·] such that C[P] is well typed,
C[P]→∗ E[R] where R is an input or an output, and for all C′[·], E′[·][·] and R′ it
holds that C′[E[R]]9∗ E′[R][R′] such that R ./{x,y} R′ where x and y are such that
(νxy) is a restriction in C′[E[R]]. Instead, we show that there exists C′[·], E′[·][·]
and R′ such that C′[E[R]] →∗ E′[R][R′] such that R ./{x,y} R′. Since P is closed it
means that it does not communicate with any context C[·] it is inserted in. Hence,
C[P] →∗ E[R] means that reductions have occurred either in the catalyser C or
in P, separately. Let C′[·] = [·]. We show that E[R] →∗ E′[R][R′]. Since P is
lock-free, by definition P →∗ Pi and for some n ≥ i, Pi →

∗ Pn and Pn has both
action and co-action on some channels in (νx′y′). Notice that Pi is a subprocess of
E[R] and hence Pn is a subprocess of E′[R][R′] where R and R′ are the action and
co-action that have come up at the top level in the reduction under the restriction
(νx′y′) and let x = x′, y = y′. �

What we find interesting in the case of closed processes, is that the opposite
of the previous theorem is also true. We show it in the following.

Theorem 14.3.2 (Progress ⇒ Lock freedom). Let P be a well-typed closed ses-
sion process. Then, P has progress implies P is lock-free.

Proof. From the definition of progress, for all catalysers C[·], C[P] →∗ E[R]. In
particular, this holds also for the empty catalyser [·]. Hence, P →∗ E[R] ≡ Pi.
Here we can assume, without any loss of generality (the other cases are trivial) that
R is an input or an output process. Furthermore, we know that there exist C′[·],
E′[·][·] and R′ such that C′[E[R]] →∗ E′[R][R′] and R ./{x,y} R′ for some x and y
such that (νxy) is a restriction in C′[E[R]]. Since P is closed, Pi is also closed and
this means that it does not communicate with any catalyser it is inserted in. Hence,
C′[E[R]]→∗ E′[R][R′] means that reductions have occurred either in the catalyser
C′ or in E[R], separately. Notice that R is part of E[R] ≡ Pi, and since R occurs in
the redex E′[R][R′] together with its counterpart R′, it means that Pi →

∗ Pn where
Pn is a subprocess of E′[R][R′], and the communication occurs over (νxy). We
conclude by applying the definition of lock freedom. �

It follows as a corollary from Theorems 14.3.1 and 14.3.2 that the lock free-
dom and progress properties coincide for closed terms.

Corollary 14.3.3 (Progress⇔ Lock freedom). Let P be a well-typed closed ses-
sion process. Then P is lock-free if and only if P has progress.

202 CHAPTER 14. PROGRESS AS COMPOSITIONAL LOCK FREEDOM

14.3.2 Properties of Open Terms
We switch now to a more general setting, i.e., processes that can be open. As
expected, differently from the case of closed terms, the definitions of lock freedom
and progress do not coincide in the case of open terms. For example, consider the
following process:

P = x!〈true〉.x?(z).0

In process P, x is an open session with a missing participant. Process P has
progress, by following Definition 14.2.6 but it is not lock-free because it does not
respect Definition 14.1.2, since it is stuck and does not reduce.

In this section we try to reply to the question we posed in the introduction,
namely trying to understand the relationship between the notions of lock freedom
and progress for open-ended systems. Although the two properties do not coincide
in the case of open terms, we can still relate progress to lock freedom.

The idea is to use catalysers in order to reduce the problem of checking
progress for open terms to the problem of checking progress (and lock freedom)
for closed terms. The intuition for using catalysers is that when a process is open,
its type can provide us some information about how such a process can be put in a
context such that the final composition is closed. We formalise this idea with the
notion of closure given below.

Definition 14.3.4 (Closure). Let P be a session process such that Γ ` P. Then, the
closure of P, denoted as close(P), is the process C[P] where

C[·] = (νx̃y)
(

[·] |
∏

xi:Ti∈Γ

~Ti�
yi
f

)
Notice that in the definition above all xi in the sequence x̃y correspond exactly

to the domain of Γ. The yi in x̃y are all different from xi and are the variables
used to create the characteristic processes from every type Ti. Below, we give an
example of how the closure of a process works.

Example 14.3.5. Consider the open process previously shown

P = x!〈true〉.x?(z).0

We can type P in a typing context Γ = x : !Bool.?Bool.end. Then, the closure of
P is defined as:

close(P) = (νxy)([P] | y?(z).y!〈true〉.0)

The closure procedure close(P) can also be applied to processes that are al-
ready closed, as shown in the following.

14.3. LOCK FREEDOM MEETS PROGRESS 203

Example 14.3.6. Consider the closed process:

P = (νxy)(x!〈true〉.0 | y?(z).0)

Since P can only be typed with the empty typing context, i.e., ∅ ` P, in this case
we have that close(P) = P. This means that the catalyser that we can place P into,
in order to close it, is the empty catalyser [·].

As a first property of closure, we can immediately observe that the closure
operation preserves typability.

Proposition 14.3.7 (Closure preserves typability). If Γ ` P, then ∅ ` close(P).

Proof. It follows immediately by the definition of characteristic process and (re-
peated applications of) the typing rules (T-Par) and (T-Res). �

We present in the following one of the major properties of our technical de-
velopment, which will be crucial in establishing our main results. The closure
procedure defines a new way for checking progress: a process P has progress if
its closure can always reduce to terms where an action at the top level can be
matched with its co-action in a parallel subterm. We formalise this notion below.

Lemma 14.3.8 (From Closure to Progress). Let P be a session process and Γ

a session typing context such that Γ ` P. Then, P has progress if and only if
close(P) →∗ E[R] implies there are E′[·][·] and R′ such that E[R] →∗ E′[R][R′]
and R ./{x,y} R′ for some x and y such that (νxy) is a restriction in E[R].

Proof. We split the proof into the following two cases.
(=⇒) Follows immediately by the definitions of progress and close(P).
(⇐=) Let C[·] be a catalyser such that C[P] is well typed. Intuitively, any cataly-
sers can be written by splitting the processes put in parallel with P in two: the ones
that implement and the ones that do not implement the counterparts of sessions in
P; formally:

C[·] ≡ (νx̃y)
(
[·] | Q1 | Q2

)
Q1 =

∏
x j:T j<Γ~T j�

y j

f

Q2 =
∏

xi:Ti∈Γ′
~Ti�

yi
f where Γ′ ⊆ Γ

Moreover, from the definition of close(P) we know that:

close(P) = (νx̃y′)
(
P | Q2 | Q3

)
Q3 =

∏
xi:Ti∈Γ\Γ′

~Ti�
yi
f

Since C[P] is well typed, from the typing rules we know that Q1 cannot in-
teract neither with P nor with Q2; therefore we have only three possible cases
for C[P] →∗ E′′[R]: (i) P →∗ P′; (ii) (νx̃y)Q1 →

∗ (νx̃y)Q′1; and finally (iii)
(νx̃y)(P | Q2)→∗ (νx̃y)(P′ | Q′2).

204 CHAPTER 14. PROGRESS AS COMPOSITIONAL LOCK FREEDOM

(i) For this case, we know that close(P) →∗ close(P′) ≡ E[R] and
C[P] →∗ C[P′]. We now choose close as catalyser for C[P′]; there-
fore: close(C[P′]) ≡ C[close(P′)] ≡ (νx̃y′′)(νx̃y)

(
P′ | Q1 | Q2 | Q3

)
where x̃y′′ are the free names in the typing of C[P′]. Since, by hypothesis,
close(P′) →∗ E′[R][R′] we also know that: close(C[P′]) →∗ C[E′[R][R′]]
and the thesis follows trivially.

(ii) (νx̃y)Q1 →
∗ (νx̃y)Q′1. This means that C[P] →∗ C′[P], since only the

catalyser reduces. We now choose close as catalyser for C′[P]; therefore:
close(C′[P]) ≡ C′[close(P)] →∗ C′[E[R]] and the thesis follows by apply-
ing the hypothesis for close(P).

(iii) (νx̃y)(P | Q2) →∗ (νx̃y)(P′ | Q′2). This means that C[P] →∗ C′[P′]
and C′[P′] ≡ (νx̃y)

(
P′ | Q1 | Q′2

)
, since both the catalyser and the pro-

cess reduce. By hypothesis, close(P) →∗ E[R] and since the closure
gives to P its missing counterpart, it means that P and Q2 communicate,
hence E[R] ≡ (νx̃y′)

(
P′ | Q′2 | Q3

)
We know that E[R] →∗ E′[R][R′] and

R ./{x,y} R′ for some x and y such that (νxy) is a restriction in E[R]. Let
C′′[·] be the catalyser for C′[P′] defined as: C′′[·] ≡ (νx̃y′)

(
[·] | Q3

)
. Then

C′′[C′[P′]] ≡ (νx̃y′)(νx̃y)
(
P′ | Q1 | Q′2 | Q3

)
and the thesis follows by apply-

ing the hypothesis for close(P).
�

By Lemma 14.3.8, we establish that checking the progress property for a ses-
sion process P is equivalent to checking the progress property for its closure.

Theorem 14.3.9 (Closure Progress⇔ Progress). Let P be a session process and
Γ a session typing context such that Γ ` P. Then, close(P) has progress if and
only if P has progress.

Proof. We split the proof into the following two cases.
(⇐=) Since P has progress, then for all catalysers we must prove that for ev-
ery reachable process we can find another catalyser such that every input/output
action will eventually be consumed. But then this also holds for close(P) by Def-
inition 14.3.4 and Lemma 14.3.8.
(=⇒) Follows immediately by Lemma 14.3.8. �

We are finally able to link progress and lock freedom and give our main con-
tribution in the following theorem.

Theorem 14.3.10. (Progress ⇔ Closed Lock Freedom) Let P be a session pro-
cess and Γ a session typing context such that Γ ` P. Then, P has progress if and
only if close(P) is lock-free.

14.4. A TYPE SYSTEM FOR PROGRESS 205

Proof. It follows immediately from Theorem 14.3.9 and Corollary 14.3.3. �

We summarise the main results as follows. We have proved that, for closed
terms, i.e., terms with no free variables, lock freedom and progress coincide. For
open terms, i.e., terms containing free variables, we have shown that these notions
do not coincide. However, we define a procedure for closing a process by using
the notions of catalyser and characteristic process. Then, we prove that progress
and lock freedom coincide for close(P), which implies progress for P.

14.4 A Type System for Progress
In this section we show some important theoretical results that permit us to use
the type system for lock freedom in the standard π-calculus to check progress in
the π-calculus with sessions.

We first recall the encoding of session types presented in Section 10.4. In order
to encode qualifiers lin and un, and also adopt usages, we perform the following
translation from mα given in Section 10.4, to mU given in Section 12.3.

~`i� = `ioc .∅ ~`o� = `oo
c .∅

~i� = ioc .∅ ~o� = oo
c .∅

We are ready now to give the main result of this part of the thesis.

Theorem 14.4.1 (Progress in Sessions by Encoding). Let P be a session process
and Γ a session typing context such that Γ ` P. If ∅ `LF ~close(P)� f for some
renaming function f for P, then process P has progress.

Proof. Let Γ ` P and ∅ `LF ~close(P)� f for some renaming function f for P.
By Corollary 12.4.10 it means that ~close(P)� f is lock-free. By lock freedom for
the standard π- calculus, given by Definition 12.4.4, operational correspondence,
given by Theorem 6.3.15 and by Definition 14.1.2 on lock freedom for the session
π-calculus, it is the case that also close(P) is lock-free. By Theorem 14.3.10 we
have that process P has progress. �

Kobayashi’s type system comes with a reference implementation, the tool
TyPiCal [106], which tests deadlock freedom and lock freedom for processes in
the standard π- calculus. In the light of Theorem 14.4.1, we could use TyPiCal
to test the progress property for a session process by checking the lock freedom
property for its encoding. Thus, we present in Fig. 14.1 a (pseudo-)algorithm for
checking the progress property for a session process.

206 CHAPTER 14. PROGRESS AS COMPOSITIONAL LOCK FREEDOM

procedure Progress(Γ, P)
Check Γ ` P
Build close(P) from Γ

Encode ~close(P)� f = P′

return TyPiCal(P′)
end procedure

Figure 14.1: Checking progress with TyPiCal

Conclusions, Related and Future
Work for Part IV

In Part IV of the thesis we presented the notion of lock freedom for the π-calculus
with sessions and studied the relationship between the notions of progress and
lock freedom. We proved that they are strongly connected and progress can be
thought of as a compositional form of lock freedom. In particular, for closed
terms, i.e., terms with no free variables, lock freedom and progress coincide. For
open terms, i.e., terms containing free variables, lock freedom and progress do
not coincide. However, we defined a procedure to close a process P, by using
catalysers and characteristic processes and obtain close(P). Then, we proved that
progress and lock freedom coincide for close(P). Guided by this discovery, we
used an existing static analysis for lock freedom, i.e., Kobayashi’s type system
from [68, 69, 71], for analysing the progress property. We show in the following
that, reusing Kobayashi’s technique captures new interesting processes that have
progress but could not be typed by previous type systems for progress studied for
the π-calculus with sessions.

Comparison with Related Work Progress for session π-calculus has been stud-
ied by several works [10,19,20,26,27,39,93]. In [93] the author defines a session
type system for the progress property by using Kobayashi’s obligation and ca-
pability levels. In [10, 26, 39] progress is studied for multiparty session types.
Padovani studies deadlock and lock freedom in the linear π- calculus, and by us-
ing our encoding of session types into linear π- calculus types, he transfers these
properties from the linear π- calculus to the session π- calculus [94]. A very
recent work [34] studies the formal relationship between the class of deadlock
free session processes induced by the correspondence of session types with linear
logic [16] and the class of deadlock free session processes induced by the encod-
ing and Kobayashi’s type system for deadlock freedom [70].

In the following we recall some examples taken from [10,20,27,39,93], show
how the encoding works and compare them with our analysis. For the sake of
readability, we simplify the encoding by omitting the creation of fresh channels

207

208 CHAPTER 14. PROGRESS AS COMPOSITIONAL LOCK FREEDOM

when the latter are not used in the continuation of a process.

Example 14.4.2. Consider the session process

P , (νab)(νcd)
(
a?(z).d!〈z〉 | c?(w).b!〈w〉

)
which is deadlocked, and therefore does not have progress. This process is not
typable in the type systems for progress presented in [10,27,93]. By the encoding
we obtain the following process:

~P� f = (νx)(νy)
(
x?(z).y!〈z〉 | y?(w).x!〈w〉

)
where in the encoding of session process P, there are the following associations
a, b 7→ x and c, d 7→ y. As expected, our technique discards ~P� f above since the
process is untypable in Kobayashi’s type system. In particular, this process results
untypable since the rel predicate does not hold.

Example 14.4.3. Consider the session process

Q , (νab)(νcd)

a?(x). c!〈x〉. c?(y). a!〈y〉
|

b!〈true〉. d?(z). d!〈false〉. b?(z)

This process satisfies the progress property, but it is rejected by the type systems
in [10, 20]. This is because in the two processes in parallel there is a circular de-
pendency between channels. However, this circularity does not lead to deadlock.
Let us now consider its encoding in the π-calculus, given by the following process:

~Q� f = (νk)(νl)

k?(x, c1). (νc2)

(
l!〈x, c2〉. c2?(y). c1!〈y〉

)
|

(νc1)
(
k!〈true, c1〉. l?(z, c2). c2!〈false〉. c1?(z)

)

This process is correctly recognised as having progress by using our technique,
since it is well typed in Kobayashi’s type system. The types assigned to the chan-
nels are as follows:

k : [Bool,T1] i00 | o
0
0 l : [Bool,T2] o1

1 | i
1
1

such that
T1 = [Bool] o1

3 | i
3
1 T2 = [Bool] i20 | o

0
2

14.4. A TYPE SYSTEM FOR PROGRESS 209

Future Work. As future work, we plan to extend our approach to multiparty
sessions [27, 59]. For the multiparty setting, we need to investigate an extension
of the encoding to a setting where sessions are established between more than
two peers and messaging is asynchronous, which is future work related to Part II
and III. It is not clear yet whether Kobayashi’s usage types are expressive enough
to handle such situations, because, as long as the encoding is concerned, usage
types have the same expressive power as linear types.

The works in [16, 113] use linear logic to type processes in the π-calculus
with sessions. While these works guarantee lock freedom, we conjecture that
their techniques can be reused for progress, similarly to what we have done with
Kobayashi’s type system. We leave such an investigation as future work.

210 CHAPTER 14. PROGRESS AS COMPOSITIONAL LOCK FREEDOM

Bibliography

[1] Gul A. Agha. ACTORS - a model of concurrent computation in distributed
systems. MIT Press series in artificial intelligence. MIT Press, 1990.

[2] Wolfgang Ahrendt and Maximilian Dylla. A system for compositional ver-
ification of asynchronous objects. Sci. Comput. Program., 77(12):1289–
1309, 2012.

[3] Elvira Albert, Antonio Flores-Montoya, and Samir Genaim. Analysis of
may-happen-in-parallel in concurrent objects. In FMOODS/FORTE, vol-
ume 7273 of LNCS, pages 35–51. Springer, 2012.

[4] OSGi Alliance. Osgi Service Platform, Release 3. IOS Press, Inc., 2003.

[5] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Dis-
tributed Programming. Addison-Wesley, 2000.

[6] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics. North
Holland, 2nd edition, 1984.

[7] Thaı́s Vasconcelos Batista, Ackbar Joolia, and Geoff Coulson. Managing
dynamic reconfiguration in component-based systems. In EWSA, volume
3527 of LNCS, pages 1–17. Springer, 2005.

[8] Giovanni Bernardi, Ornela Dardha, Simon J. Gay, and Dimitrios Kouzapas.
On duality relations for session types. In TGC, volume 8902 of LNCS,
pages 51–66. Springer, 2014.

[9] Giovanni Bernardi and Matthew Hennessy. Using higher-order contracts
to model session types (extended abstract). In CONCUR, volume 8704 of
LNCS, pages 387–401. Springer, 2014.

[10] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangi-
ola Dezani-Ciancaglini, and Nobuko Yoshida. Global progress in dynami-
cally interleaved multiparty sessions. In CONCUR, volume 5201 of LNCS,
pages 418–433. Springer, 2008.

211

212 BIBLIOGRAPHY

[11] Nina T. Bhatti, Matti A. Hiltunen, Richard D. Schlichting, and Wanda Chiu.
Coyote: A system for constructing fine-grain configurable communication
services. ACM Trans. Comput. Syst., 16(4), 1998.

[12] Paolo Di Blasio and Kathleen Fisher. A calculus for concurrent objects. In
CONCUR, volume 1119 of LNCS, pages 655–670. Springer, 1996.

[13] Frank S. De Boer, Dave Clarke, and Einar Broch Johnsen. A complete
guide to the future. In ESOP, volume 4421 of LNCS, pages 316–330.
Springer, 2007.

[14] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quema, and
Jean-Bernard Stefani. The fractal component model and its support in java.
Software - Practice and Experience, 36(11-12), 2006.

[15] Luı́s Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Be-
havioral polymorphism and parametricity in session-based communication.
In ESOP, volume 7792 of LNCS, pages 330–349. Springer, 2013.

[16] Luı́s Caires and Frank Pfenning. Session types as intuitionistic lin-
ear propositions. In CONCUR, volume 6269 of LNCS, pages 222–236.
Springer, 2010.

[17] Luı́s Caires and Hugo Torres Vieira. Conversation types. In ESOP, volume
5502 of LNCS, pages 285–300. Springer, 2009.

[18] Sara Capecchi, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia
Drossopoulou, and Elena Giachino. Amalgamating sessions and methods
in object-oriented languages with generics. Theor. Comput. Sci., 410(2-
3):142–167, 2009.

[19] Marco Carbone, Ornela Dardha, and Fabrizio Montesi. Progress as compo-
sitional lock-freedom. In COORDINATION, volume 8459 of LNCS, pages
49–64. Springer, 2014.

[20] Marco Carbone and Søren Debois. A graphical approach to progress for
structured communication in web services. In ICE, volume 38 of EPTCS,
pages 13–27, 2010.

[21] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured
communication-centred programming for web services. In ESOP, volume
4421 of LNCS, pages 2–17. Springer, 2007.

[22] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Types for the am-
bient calculus. Information and Computation, 177(2):160 – 194, 2002.

BIBLIOGRAPHY 213

[23] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theor. Comput.
Sci., 240(1):177–213, 2000.

[24] Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette. Asynchronous
and deterministic objects. SIGPLAN Not., 39(1):123–134, 2004.

[25] David G. Clarke, John Potter, and James Noble. Ownership types for flex-
ible alias protection. In OOPSLA, pages 48–64. ACM, 1998.

[26] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and
Nobuko Yoshida. Inference of global progress properties for dynamically
interleaved multiparty sessions. In COORDINATION, volume 7890 of
LNCS, pages 45–59. Springer, 2013.

[27] Mario Coppo, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida.
Global progress for dynamically interleaved multiparty sessions (long
version), 2008. http://www.di.unito.it/˜dezani/papers/cdy12.
pdf.

[28] Gerardo Costa and Colin Stirling. Weak and strong fairness in ccs. Infor-
mation and Computation, 73(3):207 – 244, 1987.

[29] Geoff Coulson, Gordon S. Blair, Paul Grace, François Taı̈ani, Ackbar Joo-
lia, Kevin Lee, Jo Ueyama, and Thirunavukkarasu Sivaharan. A generic
component model for building systems software. ACM Trans. Comput.
Syst., 26(1), 2008.

[30] Ornela Dardha. Recursive session types revisited. In BEAT, volume 162 of
EPTCS, pages 27–34, 2014.

[31] Ornela Dardha, Elena Giachino, and Michael Lienhardt. A type system for
components. In SEFM, volume 8137 of LNCS, pages 167–181. Springer,
2013.

[32] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types re-
visited. In PPDP, pages 139–150, New York, NY, USA, 2012. ACM.

[33] Ornela Dardha, Daniele Gorla, and Daniele Varacca. Semantic subtyping
for objects and classes. In FMOODS/FORTE, volume 7892 of LNCS, pages
66–82. Springer, 2013.

[34] Ornela Dardha and Jorge A. Pérez. Comparing deadlock-free session typed
processes. In EXPRESS/SOS, volume 190 of EPTCS, pages 1–15, 2015.

214 BIBLIOGRAPHY

[35] Romain Demangeon and Kohei Honda. Full abstraction in a subtyped pi-
calculus with linear types. In CONCUR, volume 6901 of LNCS, pages
280–296. Springer, 2011.

[36] Yuxin Deng and Davide Sangiorgi. Ensuring termination by typability. Inf.
Comput., 204(7):1045–1082, 2006.

[37] Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session
types. In POPL, pages 435–446. ACM, 2011.

[38] Mariangiola Dezani-Ciancaglini and Ugo de’ Liguoro. Sessions and ses-
sion types: an overview. In WS-FM, volume 6194 of LNCS. Springer, 2010.

[39] Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Nobuko Yoshida.
On progress for structured communications. In TGC, volume 4912 of
LNCS, pages 257–275. Springer, 2008.

[40] Mariangiola Dezani-Ciancaglini, Elena Giachino, Sophia Drossopoulou,
and Nobuko Yoshida. Bounded session types for object oriented languages.
In FMCO, volume 4709 of LNCS, pages 207–245. Springer, 2007.

[41] Mariangiola Dezani-Ciancaglini, Dimitris Mostrous, Nobuko Yoshida, and
Sophia Drossopoulou. Session types for object-oriented languages. In
ECOOP, volume 4067 of LNCS, pages 328–352. Springer, 2006.

[42] Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, Alexander Ahern, and
Sophia Drossopoulou. A distributed object-oriented language with session
types. In TGC, volume 3705 of LNCS, pages 299–318. Springer, 2005.

[43] E. Allen Emerson. Handbook of theoretical computer science (vol. b).
chapter Temporal and modal logic, pages 995–1072. MIT Press, Cam-
bridge, MA, USA, 1990.

[44] Robert Bruce Findler, Matthew Flatt, and Matthias Felleisen. Semantic
casts: Contracts and structural subtyping in a nominal world. In ECOOP,
volume 3086 of LNCS, pages 364–388. Springer, 2004.

[45] Simon J. Gay. Bounded polymorphism in session types. Mathematical
Structures in Computer Science, 18(5):895–930, 2008.

[46] Simon J. Gay, Nils Gesbert, and António Ravara. Session types as generic
process types. In EXPRESS/SOS, volume 160 of EPTCS, pages 94–110,
2014.

BIBLIOGRAPHY 215

[47] Simon J. Gay, Nils Gesbert, António Ravara, and Vasco Thudichum Vas-
concelos. Modular session types for objects. Logical Methods in Computer
Science, 11(4), 2015.

[48] Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi
calculus. Acta Informatica, 42(2-3):191–225, 2005.

[49] Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for
asynchronous session types. J. Funct. Program., 20(1):19–50, 2010.

[50] Elena Giachino, Carlo A. Grazia, Cosimo Laneve, Michael Lienhardt, and
Peter Y. H. Wong. Deadlock analysis of concurrent objects: Theory and
practice. In IFM, volume 7940 of LNCS, pages 394–411. Springer, 2013.

[51] Elena Giachino and Tudor A. Lascu. Lock Analysis for an Asynchronous
Object Calculus. Presented at ICTCS. Available at http://www.cs.
unibo.it/˜giachino/, 2012.

[52] Joseph Gil and Itay Maman. Whiteoak: introducing structural typing into
java. SIGPLAN Not., 43(10):73–90, 2008.

[53] Daniele Gorla. Towards a unified approach to encodability and separation
results for process calculi. Inf. Comput., 208(9):1031–1053, 2010.

[54] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based
and event-based programming. Theoretical Computer Science, 2008.

[55] C. A. R. Hoare. Monitors: an operating system structuring concept. Com-
mun. ACM, 17(10):549–557, 1974.

[56] John Hogg, Doug Lea, Alan Wills, Dennis de Champeaux, and Richard
Holt. The geneva convention – on the treatment of object aliasing. OOPS
Messenger, 1992.

[57] Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of
LNCS, pages 509–523. Springer, 1993.

[58] Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives
and type disciplines for structured communication-based programming. In
ESOP, volume 1381 of LNCS, pages 22–138. Springer, 1998.

[59] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In POPL, volume 43(1), pages 273–284. ACM,
2008.

216 BIBLIOGRAPHY

[60] Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-
calculus. Theo. Comput. Sci., 311(1-3):121–163, 2004.

[61] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight
java: a minimal core calculus for java and gj. ACM Trans. Program. Lang.
Syst., 23(3):396–450, 2001.

[62] Focus Inria. Overall objectives. http://raweb.inria.fr/

rapportsactivite/RA2012/focus/uid3.html.

[63] Einar Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin
Steffen. Abs: A core language for abstract behavioral specification. In
FMCO, volume 6957 of LNCS, pages 142–164. Springer, 2012.

[64] Einar Broch Johnsen and Olaf Owe. An asynchronous communication
model for distributed concurrent objects. Software and System Modeling,
6(1):39–58, 2007.

[65] Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: A type-safe
object-oriented model for distributed concurrent systems. Theor. Comput.
Sci., 365(1-2):23–66, 2006.

[66] Naoki Kobayashi. A partially deadlock-free typed process calculus. ACM
Trans. Program. Lang. Syst., 20(2):436–482, 1998.

[67] Naoki Kobayashi. Type systems for concurrent processes: From deadlock-
freedom to livelock-freedom, time-boundedness. In IFIP TCS, volume
1872 of LNCS, pages 365–389. Springer, 2000.

[68] Naoki Kobayashi. A type system for lock-free processes. Inf. Comput.,
177(2):122–159, 2002.

[69] Naoki Kobayashi. Type systems for concurrent programs. In 10th Anniver-
sary Colloquium of UNU/IIST, pages 439–453, 2002.

[70] Naoki Kobayashi. A new type system for deadlock-free processes. In
CONCUR, volume 4137 of LNCS, pages 233–247. Springer, 2006.

[71] Naoki Kobayashi. Type systems for concurrent programs. Extended ver-
sion of [69], Tohoku University, 2007.

[72] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and
the pi-calculus. In POPL, pages 358–371. ACM, 1996.

BIBLIOGRAPHY 217

[73] Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An implicitly-typed
deadlock-free process calculus. In CONCUR, volume 1877 of LNCS, pages
489–503. Springer, 2000.

[74] Naoki Kobayashi and Davide Sangiorgi. A hybrid type system for lock-
freedom of mobile processes. ACM Trans. Program. Lang. Syst., 32(5),
2010.

[75] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The click modular router. ACM Trans. Comput. Syst.,
18(3):263–297, 2000.

[76] Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad Arbab.
Modeling dynamic reconfigurations in reo using high-level replacement
systems. Sci. Comput. Program., 76(1):23–36, 2011.

[77] Michael Lienhardt, Mario Bravetti, and Davide Sangiorgi. An object group-
based component model. In ISoLA (1), volume 7609 of LNCS, pages 64–78.
Springer, 2012.

[78] Michael Lienhardt, Ivan Lanese, Mario Bravetti, Davide Sangiorgi, Gian-
luigi Zavattaro, Yannick Welsch, Jan Schäfer, and Arnd Poetzsch-Heffter.
A component model for the ABS language. In FMCO, volume 6957 of
LNCS, pages 165–183. Springer, 2012.

[79] Michael Lienhardt, Alan Schmitt, and Jean-Bernard Stefani. Oz/k: a kernel
language for component-based open programming. In GPCE, pages 43–52.
ACM, 2007.

[80] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In POPL,
pages 47–57, New York, NY, USA, 1988. ACM.

[81] Donna Malayeri and Jonathan Aldrich. Integrating nominal and structural
subtyping. In ECOOP, volume 5142 of LNCS, pages 260–284. Springer,
2008.

[82] Sun Microsystems. JSR 220: Enterprise javabeans, version 3.0 – ejb core
contracts and requirements, 2006.

[83] Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cam-
bridge University Press, may 1999.

[84] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, I. Inf. Comput., 100(1):1–40, 1992.

218 BIBLIOGRAPHY

[85] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, II. Inf. Comput., 100(1):41–77, 1992.

[86] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented
programming with jolie. In Web Services Foundations, pages 81–107.
Springer, 2014.

[87] Fabrizio Montesi and Davide Sangiorgi. A model of evolvable components.
In TGC, volume 6084 of LNCS, pages 153–171. Springer, 2010.

[88] Fabrizio Montesi and Nobuko Yoshida. Compositional choreographies. In
CONCUR, volume 8052 of LNCS, pages 425–439. Springer, 2013.

[89] Dimitris Mostrous and Nobuko Yoshida. Two session typing systems for
higher-order mobile processes. In TLCA, volume 4583 of LNCS, pages
321–335. Springer, 2007.

[90] Wired News. History’s worst software bugs, 2005. http://www.wired.
com/software/coolapps/news/2005/11/69355.

[91] OASIS. Web Services Business Process Execution Language. http://
docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

[92] Klaus Ostermann. Nominal and structural subtyping in component-based
programming. Journal of Object Technology, 7(1):121–145, 2008.

[93] Luca Padovani. From lock freedom to progress using session types. In
PLACES, volume 137 of EPTCS, pages 3–19, 2013.

[94] Luca Padovani. Deadlock and Lock Freedom in the Linear π-Calculus. In
CSL-LICS, pages 72:1–72:10. ACM, 2014.

[95] Catuscia Palamidessi and D. Valencia, Frank. Recursion vs replication in
process calculi: Expressiveness. Bulletin of the European Association for
Theoretical Computer Science, 87:105–125, 2005.

[96] Jorge A. Pérez, Luı́s Caires, Frank Pfenning, and Bernardo Toninho. Linear
logical relations and observational equivalences for session-based concur-
rency. Inf. Comput., 239:254–302, 2014.

[97] Benjamin C. Pierce. Types and programming languages. MIT Press, MA,
USA, 2002.

[98] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile
processes. In LICS, pages 376–385. IEEE Computer Society, 1993.

BIBLIOGRAPHY 219

[99] Davide Sangiorgi. An interpretation of typed objects into typed pi-calculus.
Inf. Comput., 143(1):34–73, 1998.

[100] Davide Sangiorgi. Termination of processes. Mathematical. Structures in
Comp. Sci., 16(1):1–39, 2006.

[101] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

[102] Jan Schäfer and Arnd Poetzsch-Heffter. Jcobox: generalizing active objects
to concurrent components. In ECOOP, volume 6183 of LNCS, pages 275–
299. Springer, 2010.

[103] Clemens Szyperski. Component Software, 2nd edition. Addison-Wesley,
2002.

[104] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based
language and its typing system. In PARLE, volume 817 of LNCS, pages
398–413. Springer, 1994.

[105] Bernardo Toninho, Luı́s Caires, and Frank Pfenning. Functions as session-
typed processes. In FoSSaCS, volume 7213 of LNCS, pages 346–360.
Springer, 2012.

[106] TYPICAL. Type-based static analyzer for the pi-calculus. http://

www-kb.is.s.u-tokyo.ac.jp/˜koba/typical/.

[107] Antonio Vallecillo, Vasco Thudichum Vasconcelos, and António Ravara.
Typing the behavior of software components using session types. Fundam.
Inform., 73(4):583–598, 2006.

[108] Vasco Vasconcelos, António Ravara, and Simon J. Gay. Session types for
functional multithreading. In CONCUR, volume 3170 of LNCS, pages 497–
511. Springer, 2004.

[109] Vasco T. Vasconcelos. Fundamentals of session types. Information Com-
putation, 217:52–70, 2012.

[110] Vasco Thudichum Vasconcelos. Fundamentals of session types. In SFM,
pages 158–186, 2009.

[111] Vasco Thudichum Vasconcelos, Simon J. Gay, and António Ravara. Type
checking a multithreaded functional language with session types. Theor.
Comput. Sci., 368(1-2):64–87, 2006.

220 BIBLIOGRAPHY

[112] Hugo Torres Vieira, Luı́s Caires, and João Costa Seco. The conversation
calculus: A model of service-oriented computation. In ESOP, volume
4960, pages 269–283. Springer, 2008.

[113] Philip Wadler. Propositions as sessions. In ICFP, pages 273–286. ACM,
2012.

[114] Adam Welc, Suresh Jagannathan, and Antony L. Hosking. Safe futures for
java. In OOPSLA, pages 439–453. ACM, 2005.

[115] Yannick Welsch and Jan Schäfer. Location types for safe distributed object-
oriented programming. In TOOLS, volume 6705 of LNCS, pages 194–210.
Springer, 2011.

[116] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Inf. Comput., 115(1):38–94, 1994.

[117] Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong normalisation
in the π-calculus. Inf. Comput., 191(2):145–202, 2004.

[118] Nobuko Yoshida and Vasco Thudichum Vasconcelos. Language primi-
tives and type discipline for structured communication-based programming
revisited: Two systems for higher-order session communication. Electr.
Notes Theor. Comput. Sci., 171(4):73–93, 2007.

