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Abstract. Teaching formal methods is as important as it is challenging.
On one hand, formal methods capture the foundations of computing
science, needed by any computer scientist; on the other hand teaching
formal methods is challenging, because students often lack the necessary
background to assimilate the course material or worse, they lack interest
for theory, or they do not see the need for it or its relevance.
In this paper, I will report on my experience of teaching the λ-calculus
and the π-calculus at the Theory of Computation (ToC) course at the
School of Computing Science, University of Glasgow. I will discuss what
went well and what went less well. Finally, I will discuss and reflect on
how much of the challenge in teaching formal methods is due to the topic
taught vs. the approaches to teaching adopted in class.

1 Introduction

Teaching formal methods is as important as it is challenging. On one hand, formal
methods capture the very foundations and mathematical concepts of computing
science, needed by any computer scientist; on the other hand teaching formal
methods is challenging, because often students lack the necessary background
to understand and assimilate the course material or worse, they lack interest for
theory, or they do not see the need for it or its relevance. Today, in the era of
big data, machine learning and robotics, this is more noticeable than ever!

As a new lecturer in formal methods, I was faced with this challenge when for
the first time in this academic year 2018-19 I taught the Theory of Computation
(ToC) course in Computing Science, at University of Glasgow. As stated by
Weller [29] “becoming a teacher happens over time” and by Kugel [19] “like the
learning abilities of their students, the teaching abilities of college professors seem
to develop in stages.” Kugel identifies five stages of teachers’ focus: stage 1 : self;
stage 2 : subject; stage 3 : students as receptive; stage 4 : students as active; stage
5 : students as independent. As a teacher moves up the stages, the emphasis
shifts from teaching to learning, which begins at stage 3 [19].

As a lecturer in computing science, who passionately researches and teaches
formal methods, this challenge brought me to the following questions:
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Q1: As university teachers, how can we teach formal methods in an effective
and interesting way to students?

Q2: How much of the challenge in teaching formal methods is due to the topic
itself vs. the approaches to teaching and learning adopted?

In this paper, I will try and address these questions; I will describe what went
well and what went less well in the Theory of Computation course, and I will try
to critically reflect [13] on my practice in learning and teaching in relation to the
four lenses [5]: my experience, students feedback, colleagues, and learning and
teaching literature. Finally, I will discuss future improvements to the course.

2 The Greek-letter Calculi

2.1 The λ-calculus

The λ-calculus is a formal model of computation, based on functions. As such,
it has a formal syntax for defining functions; a formal semantics for evaluating
functions; and a formal theory for equating functions. In this paper, we will
discuss all three ingredients of the model.

The λ-calculus in this paper is based on the Theory of Computation (ToC)
course 1, which in turn is based on Hankin [12].

Syntax We start this section by giving the formal syntax of the λ-calculus.

Definition 1 (λ-terms (Def. 2.1.2 in Hankin)). The set Λ of λ-terms is the
smallest set satisfying the following:

1. if x is a variable then x ∈ Λ (assuming an infinite set of variables)
2. if M ∈ Λ then (λx.M) ∈ Λ (called abstractions; right-associative)
3. if M,N ∈ Λ then (MN) ∈ Λ (called applications; left-associative)

An alternative, but equivalent definition of the λ-calculus syntax is given by the
following grammar:

M,N ::= x | (λx.M) | (MN)

Definition 2 (Bound Variables). The set of bound variables of a λ-term M
is BV (M), where the function BV : Λ→ P(Var) is defined by:

BV x = ∅
BV (λx.M) = (BV M) ∪ {x}
BV (MN) = (BV M) ∪ (BV N)

λ is a binder in λx.M ; it creates “local” variable x and binds it with scope M .

Definition 3 (Free Variables). The set of free variables of a λ-term M is
FV (M), where the function FV : Λ→ P(Var) is defined by:

FV x = {x}
FV (λx.M) = (FV M)− {x}
FV (MN) = (FV M) ∪ (FV N)

1 https://www.gla.ac.uk/coursecatalogue/course/?code=COMPSCI4072

https://www.gla.ac.uk/coursecatalogue/course/?code=COMPSCI4072
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Semantics The main reduction rule in the λ-calculus is the β-rule.

(λx.M)N →β M [x := N ] (β)

where M [x := N ] denotes substitution: every occurrence of variable x in term
M is replaced by term N .

The β-rule captures function application evaluation: a function λx.M when
applied to a term N reduces →β to the body of the function M , where the
“local” variable x is substituted by the term N .

Example 1. To illustrate the β-rule, let us consider the addition function, applied
to two arguments (we are assuming reduction rules for arithmetical operations):

((λx.λy.(x+ y))2)3→β (λy.(2 + y))3→β 2 + 3→β 5

Variable substitution is tricky and one can define it in different ways (see [12]
for details). Why is it tricky? Consider the most intuitive substitution after the
β-rule is applied to (λx.λy.yx)y (example taken from ToC):

(λx.λy.yx)y→β λy.yy

The problem here is that y is captured by λy after reduction. In order to avoid
the unwanted capture of the free variable y, we can simply rename the bound
variable y into a fresh z—called α-renaming [12], and then substitution becomes:

(λx.λz.zx)y→β λz.zy

In this paper we will assume that all bound variables have already been α-renamed
and they are different from each other and from any free variables—called the
Barendregt variable convention, which avoids unwanted variables capture.

Definition 4 (Substitution (Def. 2.3.3 in Hankin)). Assume the Baren-
dregt variable convention, achieved by α-renaming. We define substitution as:

1. x[x := N ] ≡ N
2. y[x := N ] ≡ y if y is not the same as x
3. (λy.M)[x := N ] ≡ λy.(M [x := N ])
4. (M1M2)[x := N ] ≡ (M1[x := N ])(M2[x := N ])

We are now ready to define the rest of the one-step β-reduction rules, which
allow reductions in bigger λ terms.

(λx.M)N →β M [x := N ]
M →β N

MZ →β NZ

M →β N

ZM →β ZN

M →β N

λx.M →β λx.N
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Example 2 (one-step β-reduction (taken from ToC)).

(λxyz.xzy)(λxz.x) ≡α (λxyz.xzy)(λuv.u) (Barendregt variable convention)
→β λyz.(λuv.u)zy
→β λyz.z

Finally, a β-reduction �β , is a sequence of zero or more one-step β-reductions,
meaning it is the reflexive and transitive closure of one-step β-reduction.

M →β N

M �β N
M �β M

M �β N N �β L

M �β L

We will now introduce compatibility, which states that the definitions of→β and
�β are well-founded and well-formed. Before that we need the notion of context.

Definition 5 (Context). A context C[] is defined by the following grammar:

C[] ::= x | [] | (λx.C[]) | (C[]C[])

Proposition 1 (Compatibility (Prop. 3.2.1 in Hankin)). Let C[] be a con-
text with one hole.

1. If M →β N then C[M ]→β C[N ].
2. If M �β N then C[M ] �β C[N ].

Theory of equality We will now talk about theory λ, which captures equal =
λ-terms. Applying→β (and �β) produces equal terms, for e.g., (λx. x+1)1 = 2.
But we also want to equate for e.g., (λx. x+ 1)2 = (λx. x+ 2)1. The theory λ,
λ `M = N , should thus satisfy the following requirements:

– an application term is equal to the result of applying the function part of the
term to the argument

– equality is an equivalence relation, i.e., reflexive, symmetric and transitive
– equal terms are equal in any context.

These requirements are captured by the following axioms and inference rules.

(λx.M)N = M [x := N ]

M = M
M = N

N = M

M = N N = L

M = L

M = N

MZ = NZ

M = N

ZM = ZN

M = N

λx.M = λx.N

The first line is the β-axiom, namely the β-rule without direction. The second
line states that equality is an equivalence relation. The last line states respec-
tively, applying equal functions to the same argument Z produces equal results;
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x : T ∈ Γ
TVar

Γ ` x : T

Γ, x : T `M : U
TAbs

Γ ` λx : T.M : T → U

Γ `M : T → U Γ ` N : T
TApp

Γ `MN : U

Fig. 1. Typing rules for the simply-typed λ-calculus

applying a function to equal arguments M = N , produces equal results; abstrac-
tions with equal bodies, are equal.

Finally, we show the referential transparency in Thm. 1, stating that if two
terms are equal, then they are equal in every context. This result implies that
only the value of an expression is important, not the computation.

Theorem 1. For every context C[] and all terms M,N ∈ Λ, if λ ` M = N
then λ ` C[M ] = C[N ].

Types and Type Systems We will now present the simply-typed λ-calculus,
being the most basic typed version of λ-calculus.

Definition 6 (Types, Context and Judgement). The syntax of types is
defined by the grammar:

T ::= A | T → T

where A is an atomic type and by convention, → is right-associative.
A typing context Γ is a set of variables associated to types, defined by:

Γ ::= ∅ | Γ, x : T

Let Γ be a typing context and M a λ-term. A typing judgement is

Γ `M : T

reading “term M has type T under the typing context Γ”.

To accommodate types, we adopt Church-style abstractions: λx : T.M i.e.,
x has type T . The type system for the simply-typed λ-calculus is defined by the
typing rules in Fig. 1. Note that for a more general-purpose λ-calculus, we could
add ground types, like Bool and Int, together with their values and typing rules.

Example 3 (Typing derivation (taken from ToC)). We will now construct the
typing derivation for the term λx : A.λy : A.λz : A → A → A.zxy, and let
Γ = x : A, y : A, z : A→ A→ A.

Γ ` z : A→ A→ A Γ ` x : A
TApp

Γ ` zx : A→ A Γ ` y : A
TApp

Γ ` zxy : A
TAbs

x : A, y : A ` λz : A→ A→ A.zxy : (A→ A→ A)→ A
TAbs

x : A ` λy : A.λz : A→ A→ A.zxy : A→ (A→ A→ A)→ A
TAbs

` λx : A.λy : A.λz : A→ A→ A.zxy : A→ A→ (A→ A→ A)→ A
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As it happens in mainstream programming languages, we introduce a type
system to statically (compile-time) guarantee absences of runtime type errors: in
the case of λ-calculus we want to eliminate mismatches between an abstraction
type and its argument, when the abstraction is applied. Type safety is a corollary
of two main results: Type Preservation (Subject Reduction) and Progress [24].

Theorem 2 (Type Preservation/Subject Reduction). If Γ ` M : T and
M →β N , then Γ ` N : T .

We call value an expression which cannot be reduced further. In λ-calculus
the only values are abstractions (and the possibly added ground values).

Theorem 3 (Progress). If Γ `M : T , then either M is a value or there exists
M ′ such that M →β M

′.

2.2 The π-calculus

The π-calculus is a formal model of computation, based on processes. The core
features of π-calculus are communication and concurrency and the key difference
with respect to its predecessor CCS [21] is mobility : a communication channel
is used to send and receive messages, and itself it can be sent and received over
other channels by other processes.

The π-calculus in this paper is based on the Theory of Computation (ToC)
course, which in turn is based on Milner [22], Sangiorgi and Walker [27].

Syntax We let x, y range over channel names or variables, and P,Q range over
processes. The syntax of π-calculus processes is defined by the grammar:

P,Q ::= 0 (inaction)
| x(y).P (input)
| x〈y〉.P (output)
| τ.P (silent action)
| P +Q (choice)
| P | Q (parallel composition)
| (νx)P (restriction)
| !P (replication)

0 is the inaction process. The input x(y).P (resp. output x〈y〉.P ) process receives
(resp. sends) on channel x a message y and proceeds as P . Process τ.P is a silent
action. P +Q is a choice and P | Q is a parallel composition between P and Q.
Process (νx)P is the channel restriction process; it creates a channel with name
x and binds it with scope P . Process !P is a replication of process P .

As for the λ-calculus, we adopt the Barendregt variable convention. We use
BV (P ) to denote the set of bound variables and FV (P ) the set of free variables
of P . Note that the only processes creating bound variables are the input x(y).P
and restriction (νx)P , where y (resp. x) is bound with scope P .
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Semantics The main reduction rule for π-calculus is the communication rule.

a(x).P | a〈y〉.Q→ P [x := y] | Q (com)

As with λ-calculus, we want to be able to apply com in bigger terms, i.e.,

a(x).P | R | a〈y〉.Q→ P [x := y] | R | Q

In order to virtually bring the parallel components of a processes closer together,
we use structural congruence ≡ on processes, which allows us to ignore the order
of parallel composition, and more thus allows reduction in bigger contexts.

Definition 7 (Structural congruence). Structural congruence is the smallest
congruence relation on processes that includes α-renaming and the axioms:

P | Q ≡ Q | P (parallel is commutative)
P | (Q | R) ≡ (P | Q) | R (parallel is associative)

P | 0 ≡ P (garbage collection)
P +Q ≡ Q+ P (choice is commutative)

P + (Q+R) ≡ (P +Q) +R (choice is associative)
P + 0 ≡ P (garbage collection)

(νx)(νy)P ≡ (νy)(νx)P (reordering ν)
(νx)0 ≡ 0 (garbage collection)

!P ≡ P |!P (behaviour of replication)
P | (νx)Q ≡ (νx)(P | Q) x 6∈ FV (P ) (scope expansion)

We can now complete the reduction relation for the π-calculus ([22, Def. 4.13]):

(a(x).P + P ′) | (a〈y〉.Q+Q′)→ P [x := y] | Q

τ.P + Q→ P

P → Q

(νx)P → (νx)Q

P → Q

P | R→ Q | R
P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

Example 4 (Reduction (taken from ToC)). Consider the following process:

a(x).a〈−x〉.0 | a〈2〉.a(z).P (z)

channel a is sending and receiving in parallel, triggering reduction steps:

a(x).a〈−x〉.0 | a〈2〉.a(z).P (z) → a〈−2〉.0 | a(z).P (z) → 0 | P (−2)

Mobile phones (taken from ToC and [22, §8.2]) This example illustrates
the π-calculus and its key concept: mobility. The system is composed by a car,
two transmitters, and a controller. At any time, the car communicates, i.e.,
talk , switch, with only one of the transmitters. The controller tells a transmitter
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to lose or gain connection to the car. Without loss of generality, we will work
with polyadic π-calculus, where sends and receives accept multiple parameters,
and parametrised recursive process definitions, rather than replication2.

Trans is parametrised by the channels it shares with Control , i.e., lose, gain
and Car , i.e., talk , switch. It can either talk or lose the connection. IdTrans,
the idle transmitter, is parametrised by the channels it shares with Control , i.e.,
lose, gain. It can gain a connection.

Trans(talk , switch, gain, lose) = talk().Trans(talk , switch, gain, lose)

+ lose(t, s).switch〈t, s〉.IdTrans(gain, lose)
IdTrans(gain, lose) = gain(t, s).Trans(t, s, gain, lose)

Control will either be Control1 or Control2. Control can tell one transmitter
to lose a connection and tell the other transmitter to gain a connection.

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

The talk i, switchi, gaini, losei channels are treated as global variables, mean-
ing they are in scope of the whole system (see System1 below). The Car can
either talk , or switch to a new pair of channels.

Car(talk , switch) = talk〈〉.Car(talk , switch) + switch(t, s).Car(t, s)

We now define the whole communicating system, and assume that Car is
connected to Trans1.

System1 = (νtalk1, switch1, gain1, lose1, talk2, switch2, gain2, lose2)
(Car(talk1, switch1) | Trans1 | IdTrans2 | Control1)

where, for i ∈ {1, 2},

Transi = Trans(talk i, switchi, gaini, losei)
IdTransi = IdTrans(gaini, losei)

Applying the reduction rules for π-calculus, previously introduced, we can
easily verify that System1 →∗ System2, where System2 is just System1 with
indices 1 and 2 exchanged.

System2 = (νtalk1, switch1, gain1, lose1, talk2, switch2, gain2, lose2)
(Car(talk2, switch2) | IdTrans1 | Trans2 | Control2)

Types and Type Systems We will now present the simply-typed π-calculus
[27]. As for the simply-typed λ-calculus, we want to eliminate runtime type er-
rors, in particular mismatches in: (i) the number of messages, for e.g., a〈u, v〉.0 |
a(x).P ; (ii) the type of messages, for e.g., a〈true〉.a(y).0 | a(x).a〈−x〉.0.

As for λ-calculus, types trigger modifications in the syntax of processes. We
will annotate bound variables with types and consider the polyadic π-calculus:
a(x1 : T1, . . . , xn : Tn) and (νx : T ).

2 Following [22] it is easy to translate recursive definitions into replication
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TVar
Γ, x : T ` x : T

TNil
Γ ` 0

Γ ` x : ][T1, . . . , Tn]
Γ, y1 : T1, . . . , yn : Tn ` P

TIn
Γ ` x(y1 : T1, . . . , yn : Tn).P

Γ ` x : ][T1, . . . , Tn]
Γ ` yi : Ti ∀i ∈ [n] Γ ` P

TOut
Γ ` x〈y1, . . . , yn〉.P

Γ, x : ][T1, . . . , Tn] ` P
TNew

Γ ` (ν x : ][T1, . . . , Tn])P

Γ ` P Γ ` Q
TPar

Γ ` P | Q

Fig. 2. Typing rules for the simply-typed π-calculus

Definition 8 (Types, Context and Judgement). The syntax of types is
defined by the following grammar:

T ::= ][T, . . . , T ] | Bool

A typing context Γ is a set of variables associated to types, defined by:

Γ ::= ∅ | Γ, x : T

Let Γ be a typing context and P a process. A typing judgement for processes is

Γ ` P

reading “process P is well typed under typing context Γ”.
A typing judgement for channel names is Γ ` x : T reading “channel name x
has type T under typing context Γ”.

The type system for the simply-typed π-calculus is defined by the typing rules
in Fig. 2 and it guarantees that all channels are used according to their types.
This type safety property is a corollary of the following Thm. 4 and Thm. 5.

Theorem 4 (Type Preservation). If Γ ` P and P → Q then Γ ` Q.

Before stating the next theorem, note that by using scope expansion Def. 7,
any process can be written in the form (νx1 . . . xk)(P1 | . . . | Pm) where immedi-
ate communications among processes Pi for all i ∈ [m] are at the top level, and
not inside other ν constructors.

Theorem 5 (Absence of Immediate Communication Errors). If

Γ ` (νx1 :T1 . . . xk :Tk)(x(y1 :U1, . . . , yr :Ur).P | x〈v1, . . . , vn〉.Q | R)

then (i) n = r and (ii) for all i ∈ [n], vi has type Ui.

The combined Thm. 4 and Thm. 5 state that if a process is well typed—
there are no immediate communication errors—and it reduces, then the reduced
process is also well typed, thus guaranteeing items (i) and (ii) in Thm. 5 for all
reduced processes, meaning for all communications of a process. Thus, we have
captured the two items discussed at the beginning of this section.
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3 Theory of Computation: Course Overview

Theory of Computation (ToC) is an honours course at the School of Comput-
ing Science, University of Glasgow, aimed at level four undergraduate students.
However, it is also available to master students, visiting and Erasmus students.

The course description on the course catalogue states: “This course covers
the theory of sequential, concurrent and quantum computation. The main topics
are: formal language theory and the connection to automata; lambda calculus as a
foundation for functional computation; pi calculus as a foundation for concurrent
computation; the theory of operational semantics and type systems; principles of
quantum computation.” The aim of the course is to “show how several models of
computation can be formally defined in order to give a rigorous foundation for
sequential, concurrent and quantum programming paradigms.”

ToC is structured in four sections. The following are the reference textbooks:

– V. J. Rayward-Smith. A First Course in Formal Language Theory [25], cov-
ering §1 on Automata and Formal Language Theory.

– C. Hankin. An Introduction to Lambda Calculi for Computer Scientists [12],
covering §2 on the λ-calculus.

– R. Milner. Communicating and Mobile Systems: The Pi-Calculus [22], cov-
ering a short introduction to §3 on the π-calculus.

– D. Sangiorgi and D. Walker. The pi-calculus: A Theory of Mobile Processes
[27], full cover of §3 on the π-calculus.

– J. Gruska. Quantum Computing [11], covering §4 on Quantum Computing.

ToC was originally designed by Prof. Simon J. Gay at the School of Comput-
ing Science, University of Glasgow and it has been running since the academic
year 2017–18. I will comment on my experience of teaching this course in the
last two academic years, since I started my lecturing position at University of
Glasgow and became the responsible lecturer for this course.

The timetable for ToC is three hours per week : two hours face-to-face lectures,
and one hour tutorial or practical work in the lab. ToC runs for ten weeks during
the (first) semester. Student attendance is low compared to the other honours
courses, it ranges in 15–25 students per academic year.

Lectures There are two hours of face-to face lectures per week. The lectures
are delivered via a slide presentation prepared in Beamer/LATEX. The above
textbooks are for reference and can be found at the University’s library.

During lectures I use the whiteboard to solve exercises in class, as well as
invite students to come and solve exercises, in turn. These exercises include
for e.g., proofs by (structural) induction, showing reductions in λ-calculus or
π-calculus, or drawing type derivations in λ-calculus or π-calculus.

Labs There is one hour lab work per week, where the teacher is present in the
lab to help students. The lab work for each section is as follows:



Experience of Teaching Theory of Computation 11

– §1 Implement (pushdown) automata in Python3.
– §2 Explore programming with λ-calculus in Python: representation of booleans,

natural numbers, conditionals and recursive programming with fixed points.
– §3 Explore programming with π-calculus in Go4: representation of booleans,

natural numbers, conditionals. Finally, students implemented in Go the mo-
bile phones example given in § 2.2.

– §4 Use a simulation environment—developed by a final year student project—
to explore key concepts of quantum computing, such as quantum gates, en-
tanglement and teleportation. The web application can be found following
the link http://quantumplayground.azurewebsites.net.

The reason for using Python for automata theory and λ-calculus is that
students in Computing Science at University of Glasgow study Python during
their first year and they are familiar with the language.

The reason for using Go for π-calculus is twofold: first, it is a language based
on CCS/π-calculus [21,22,27]; second, it is a new language that students have
not used in other courses, so it adds to their knowledge and skills set.

Assessed Coursework and Exam The examination for the Theory of Com-
putation course is split between 80% for the end of year/summer exam, usually
in April/May and 20% for the assessed coursework, which happens roughly half-
way during the semester 5.

The exam paper covers all the four sections taught in ToC. For the assessed
coursework, the assignment covers the main parts of the course which are the
λ-calculus and the π-calculus. For e.g., for the academic year 2018–19, the as-
signment on λ-calculus was to define a λ-calculus representation of binary trees
in Python, and the assignment on π-calculus was to define a π-calculus repre-
sentation of lists of natural numbers in Go.

The coursework is submitted online and results are sent by email, which
facilitates the whole marking process [26]. The final exam is done in classroom,
and the completed exam paper is returned for marking to the lecturer.

3.1 Other topics covered but not discussed in § 2

On λ-calculus We covered the fixed point and fixed point theorem and detailed
its proof, showing how to construct a fixed point for every λ-term [12]. Students
used fixed points to explore recursive programming with λ-calculus in Python
during labs, and fixed points were also assessed in the final exam.

We covered normal forms, strong and weak normalisation, and the Church-
Rosser theorem; we covered the notions of consistency and completeness of λ
theory and the S, K and I combinators [12].

After simply-typed λ-calculus, I spoke about the λ-cube and the Curry-
Howard isomorphism [9], as advanced topics, not assessed in the final exam.

3 https://www.python.org
4 https://golang.org
5 https://www.gla.ac.uk/coursecatalogue/course/?code=COMPSCI4072

http://quantumplayground.azurewebsites.net
https://www.python.org
https://golang.org
https://www.gla.ac.uk/coursecatalogue/course/?code=COMPSCI4072
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On π-calculus Since types are a crucial part of the π-calculus, we explored a
plethora of types and type systems, classifying channels in more precise ways,
like input/output, linear, variant etc., surveyed in [18,27].

We thoroughly discussed session types [14,28,15]—a type formalism used to
model communication-based programming of concurrent and distributed sys-
tems. We discussed the expressiveness of session types and their encoding into
linear π-calculus types [18,7,6,8].

Finally we covered equivalence of processes and the notions of trace equiva-
lence and bisimulation and labelled transition systems (LTS) [27].

4 Discussion

In this section, I will discuss what went well and what went less well in teaching
Theory of Computation, and I will try and critically reflect [13] on my practice in
learning and teaching in relation to the four lenses [5]: my experience, students
feedback, colleagues, and learning and teaching literature.

4.1 What went well

Teaching a small class has been shown to be beneficial for students as learners
[3]. ToC is a small class, usually 15–25 students, hence interaction with students
is easy, natural and more relaxed, both on the teacher and students sides.

In my practice, I interleave lecturing with breaks, where I ask questions and
solve exercises on the whiteboard, for e.g., proofs by induction, reductions of λ-
or π-terms, or typing derivations, and I invite students to volunteer to come to
the whiteboard. This has been very successful, as due to the size of the class
students feel comfortable to ask and reply to questions and enjoy to come to the
whiteboard to solve exercises together. By adopting this approach of interactive
windows and aligning with active learning [16,23], students are more focused,
engaged and motivated, which is beneficial for their learning.

Another proved beneficial technique, which I adopted in class, was allowing
students to work in pairs/small groups or individually [10], for about 10 minutes.
This technique in particular triggered discussions and engagement in class and
a better connection among students, which promoted an even more relaxed and
comfortable classroom environment.

To further facilitate interaction with students by using technology [1], there
are two tools which I adopted/would like to adopt in class: Padlet6 and YACRS7.
Padlet provides a virtual post-it board and allows discussions on specific topics.
For e.g., in another course, Programming Languages (PL), I used Padlet to
discuss with students the differences between compilers and interpreters, and
their pros and cons. This enabled the shyer students to contribute, without
being put under the spotlight. Later on, I posted an exported .pdf file of the
Padlet responses on Moodle8, used at University of Glasgow for our courses. I

6 https://en-gb.padlet.com
7 http://classresponse.gla.ac.uk
8 https://moodle.gla.ac.uk

https://en-gb.padlet.com
http://classresponse.gla.ac.uk
https://moodle.gla.ac.uk
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found that using Padlet in this way breaks the monotony of teaching, engages
students and promotes deeper learning, as also evidenced by the literature [4,20].
The effectiveness of the tool was reflected later on in that in the PL final exam
almost every student got full marks on a question on compilers vs. interpreters.

YACRS (Yet Another Classroom Response System) allows teachers to ask
questions and students to (anonymously) answer by following a link and using
their phones/tablets/laptops. When I teach I often ask “are you following?” to
check that students are understanding. However, as discussed with colleagues at
University of Glasgow, it is possible for students not to be honest when they
nod/say yes, because they might be shy, or they do not want to show in class
that they did not understand—a phenomenon which is common not just among
students. Hence, YACRS can improve the effectiveness of teaching and check
students understanding and learning, as well as regularly assess them.

From the anonymous and official students feedback on the Theory of Compu-
tation course, the combination of lectures and labs worked well as “labs provide
a good practical understanding and are a good preparation for the coursework”,
which is assessed and part of the students final mark.

4.2 What went less well

Representation of natural numbers, conditionals, booleans and logical operators
in λ-calculus in Python and π-calculus in Go, did not capture students interest
in the same way as for e.g., implementing the mobile phones § 2.2 in π-calculus
in Go. Students felt that building such primitive constructs was just a theoreti-
cal exercise, whether the mobile phones example illustrated a real-world, albeit
simple, communicating and concurrent system.

Moreover, implementation of π-calculus in Go was challenging. It required
more setting up than λ-calculus in Python for two reasons: i) as previously
stated, students are taught Python from the first year, whether for most, if not
all, it was the first time they used Go, and ii) programming with λ-calculus in
Python is more natural than programming with π-calculus in Go, as Go hides
the pure concurrency features of π-calculus. For e.g., representing two processes
in parallel in Go is done in either of the following ways (as described in detail
by Gay in the lab worksheet): i) one process as the main function and the other
as goroutine, or ii) both goroutines, or iii) both as goroutines with anonymous
functions. All three ways are hacky for the π-calculus.

Even though learning a new language was a good experience, according to
the students feedback, it was difficult to focus on the π-calculus itself when using
Go. Programming with λ-calculus in Python was easier than Go, but it had its
drawbacks and it did not allow for a full understanding of the theory, which was
again hidden under the programming language features.

5 Conclusions

As university teachers, our goal is to teach in such a way for students to become
independent learners and critical thinkers—moving to stage 5 of Kugel [19], as
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discussed in §1—and in particular in computing science, to become independent
computational thinkers. A student-centred approach to teaching [23,2] is shown
to be beneficial to this aim. As such, I used interactive windows [16], where
teaching is interleaved with whiteboard work, use of technology such as Padlet,
or pair, small group or individual work. For small classes, like often is the case
for formal methods, this approach to teaching is easy to achieve, and finally we
can use the class size to our advantage.

About the course structure, I believe that a combination of lectures and labs,
as in ToC, is the best way to deliver a formal methods course, because it allows
students to explore the practical side of the theory and understand its relevance,
as when implementing the mobile phones example § 2.2.

Using Python and Go in ToC, on one hand showed the practicality of the
Greek-letter calculi in mainstream programming languages; on the other, it ob-
scured their key features. To overcome this, I proposed final year student projects
to implement λ-calculus and π-calculus as standalone languages, together with
evaluation environments and type systems. In the academic year 2018-19, an
undergraduate student implemented the π-calculus with session types, and the
mobile phones example; another student implemented a web interface for the en-
coding of session types into linear types [7,8], together with processes and typing
algorithms; a master student implemented the λ-calculus, its simple types and
its evaluation environment. The goal of these tools is to capture the key features
of the Greek-letter calculi when programming with them; however, they are per-
haps to be introduced alongside programming in Python, or rather in Haskell in
the next year, and Go, which are mainstream languages.

To conclude, I believe success in teaching formal methods is a combination
of (i) showing the relevance and practicality of theory in modelling real-world
systems, for e.g., as in mobile phones, via programming and using tools; and (ii)
appropriate teaching approaches, tailored to the size of the class, which have
been demonstrated to be effective by learning and teaching literature.
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