Comparing Deadlock-Free

Session Typed Processes

Ornela Dardha (University of Glasgow)
Jorge A. Pérez (University of Groningen)

September 17, 2015

A formal comparison between two behavioural type systems that enforce
deadlock freedom for w-calculus processes

We consider two fundamentally different systems:
e Session types based on linear logic [Caires, Pfenning et al; Wadler]

e Usage types [Kobayashi et al]

We study £ and I, the deadlock-free languages they induce

@ Motivation and Contributions

Deadlock Freedom

Intuition: Processes do not “get stuck”
Examples (in CCS)
e A deadlocked process:

(va)(vb)(a.b.0 | b.a.0)

e Two deadlock-free processes:
(va)(vb)(b.a.0 | b.a.0) and (va)(vb)(a.b.0] a.b.0)

Deadlock Freedom

Intuition: Processes do not “get stuck”
Examples (in CCS)

e A deadlocked process:

(va)(vb)(a.b.0 | b.a.0)

Two deadlock-free processes:
(va)(vb)(b.a.0 | b.a.0) and (va)(vb)(a.b.0] a.b.0)

A liveness property: “A process is deadlock-free if it can always reduce
until it eventually terminates, unless it diverges”

Relevant in practice. Many type systems proposed [cf. Kobayashi et al;
Dezani, de’ Liguoro & Yoshida; Carbone & Debois]

Our motivation: clarifying how these different systems are related

The landscape of (un)typed processes

Untyped m-calculus processes

Session-typed processes [HVK98,Vas12] :

The landscape of (un)typed processes

Untyped m-calculus processes

Deadlock-free session processes

-

Session-typed processes [HVK98,Vas12] :

The landscape of (un)typed processes

Untyped m-calculus processes

Deadlock-free session processes
[CP10,Wad12]

-

Session-typed processes [HVK98,Vas12] :

The landscape of (un)typed processes

Untyped m-calculus processes

Deadlock-free session processes
[CP10,Wad12]

\—

Usage-typed processes [Kob02] Session-typed processes [HVK98,Vas12]

The landscape of (un)typed processes

Untyped m-calculus processes

Deadlock-free session processes
[CP10,Wad12]

Session usage processes [DGS12]

\—

Usage-typed processes [Kob02] Session-typed processes [HVK98,Vas12]

The landscape of (un)typed processes

Untyped m-calculus processes

Deadlock-free session processes
[CP10,Wad12]

Session usage processes [DGS12]

-
-

Q---——"'[CDMM]

Usage-typed processes [Kob02] Session-typed processes [HVK98,Vas12]

The typed languages £ and K

L: session processes obtained from the correspondence of linear logic
propositions as session types [CP10, Wad12, Caires14].

KC: session processes are deadlock-free by combining a usage-based type
system [Kob02] with the encodability result in [DGS12]

e [is canonic: due to its deep logical foundations, this is the most
principled yardstick for comparisons

e K is general: it strictly includes classes of processes induced by previous
type systems for deadlock-free sessions

The degree of sharing

K is a family of classes of deadlock-free processes: Ko, K1,...,K,

The family is defined by the degree of sharing between parallel
components:
e [Cp is the subclass with independent parallel composition:

for all P | Q € Ko, P and Q do not share sessions

e /Cy is the subclass which contains Ky but also processes with parallel
components that share at most one session

In general, IC,, (n > 0) contains deadlock-free session processes whose
parallel components share at most n sessions

Our contributions

Deadlock-free session processes

K, deadlock-free processes by encodability [DGS12]

Our contributions

Deadlock-free session processes

K, deadlock-free processes by encodability [DGS12]

Our contributions

Deadlock-free session processes

K, deadlock-free processes by encodability [DGS12]
L deadlock-free processes based on linear logic [CP10, Caires14]

Our contributions

Deadlock-free session processes

Kn deadlock-free processes by encodability [DGS12]
L deadlock-free processes based on linear logic [CP10, Caires14]

— type-preserving rewriting procedure

© Technical Ingredients

Technical Ingredients

Type systems:

gt P Simple session types
Ptcy A Linear logic propositions as session types [CP10]
IHgg P Usage type system [Kob02] w/ degree of sharing n >0

Encodings/transformations:

[-]; Session m-processes into standard m-processes
[-] Session types into usage types (defined in [DGS12])
[-]c Session types into linear logic propositions

{-} Handling syntactic differences in processes (e.g. restriction)

The two deadlock-free session languages, formally

L = {P|3r (TFs P A {PY Fen [Te)}
Ko = {P|3Mf. (Trsx P A [y [PIF)Y (n>0)

Session m-calculus

Syntax
P,Q = Xx(v).P (output)
x(y)-P (input)
x<l.P (selection)
x{li: Pi}ie; (branching)
(vxy)P (session restriction)
PlQ (composition)
0 (inaction)

Write n to denote a channel that cannot be used.

Reduction semantics

(vxy)(x(v).P | y(2).Q) = (vxy)(P | Q[Y/2])
(vxy)(x<lj.P | y>{li: Pitici) = (vxy)(P | P;) jel

Session Types

Session Types

T,5:= end (terminated protocol)
?T.S (input value of type T, continue as S)
IT.S (output value of type T, continue as S)
&{li : Si}icr (external choice)
®{li : Sitier (internal choice)

The typing system gt

e Ensures communication safety and session fidelity, but it does not
exclude deadlocked processes.

e Example: process (vx1x2)(vy1y2)(X1(n).y1(n) | y2(t).x2(s)) is typable
in Fs7 but deadlocked. In contrast, the typable process

(vxix2)(vyry2)(X1(n).y1(n) | x2(s).y2(t)) is deadlock-free

Linear Logic Session Types [Caires14]

Syntax

e As before, but with standard restriction operator (vx)P and the
forwarding process [x <> y|, which “fuses’” names x and y

e We have the reduction rule: (vx)([x<>y] | P) = P[Y/x]
Types (= linear logic propositions)

AB:= 1|1 ‘A®B‘A’?B|@{/i3Ai}iel|§4{/i:Ai}iel

Terminated Output Input Int. Choice Ext. Choice

Linear Logic Session Types [Caires14]

Some Typing Rules for F¢y

(T-cut) (T-mix)
Pleg A, x:A Qle A, x:A Pte A Q Fey A
(vx)(P| Q) Fex A, A P|Qbte AN

Notable points:
e Composition plus hiding thanks to rule (T-cut)
e Rule (T-mix) types independent parallel composition

e Properties: Type preservation (subject reduction) and progress

Usage Types [Kob02]

Syntax
e Polyadic communication and standard restriction

e Case construct case v of {l;_x; > P;}c; with variant value [;_v

Usage Types

U:=z= 72U (used in input) 0 (not usable)
.U (used in output) (Ur | U2) (used in parallel)
T == U[T] (channel types) (I - Ti)ier (variant type)

Obligations o and capabilities « describe channel dependencies.

e An obligation of level n must be fulfilled by using only capabilities of
level less than n

e For an action with capability of level n, there must exist a co-action
with obligation of level less than or equal to n

A usage U that satisfies these conditions is reliable, noted rel(U)

Usage Types [Kob02]

Some Typing Rules for -7

(T7-PAR,) (Tﬂ'—RES)~
Mibgg P Tobgg @ [MiNTf <n Mox:U[T]Fg P orel(U)
M|k Pl Q Mo (vx)P

Notable points:

e Separate typing rules for restriction and parallel

e Novelty wrt [Kob02]: rule (T7-Par,) defines degree of sharing
e Rule (T7-Res) checks usage reliability

e Properties: Type preservation and deadlock-freedom

© Main Results

Main results

1. The inclusion between the constituent classes
of IC is strict

We have: Ko C K1 C--- CKp1 CKp.

Deadlock-free session processes

K, 2. L and K; coincide

Logical foundations of session types induce the
most basic form of concurrent cooperation:
sharing exactly one session.

L J
@ 3. Rewriting of processes in I into £

Sequential prefixes replaced with representative
parallel components.

It enjoys type-preservation, operational
correspondence, compositionality.

Inclusion: IC, C K11

KCo contains (deadlock-free) session processes not captured in K.
A representative example is:

P> = (vaib)(vazb2)(a1(x). 32(x) | bi(n). ba(2))

P; is typable in g (with n > 2) but not in Fg, because it involves the
composition of two processes which share two sessions

Inclusion: IC, C K11

KCo contains (deadlock-free) session processes not captured in K.

A representative example is:

P> = (vaib)(vazb2)(a1(x). 32(x) | bi(n). ba(2))

P; is typable in g (with n > 2) but not in Fg, because it involves the
composition of two processes which share two sessions

The idea generalises to show K,, C K41, for all n > 0.

Coincidence: K1 = L

Key aspects in the proof:
e Session types always result in “sequential’ usages.

e Usages induced by LL session types are always reliable:
they respect obligations/capabilities

e Preservation of duality through encodings of types

e Presence of both rules (T-mix) and (T-cut) for composition in ¢y

Rewriting KC,, into L

o If P € Kpy1 but P & K, (with n > 1) then there is a subprocess of P
that needs to be “adjusted” in order to “fit in" KCp

e Such a subprocess of P must become more “parallel” in order to be
typable under the smaller degree of sharing n

Rewriting KC,, into L: Intuition

e We propose a rewriting procedure that converts processes in K, into
processes in KC; (that is, £)

e ldea: given a parallel process as input, return as output a process in
which one component is kept unchanged, but the other is replaced by
parallel representatives of the sessions in it.

e Using types, such representatives are defined as characteristic
processes and catalyzers

e The procedure is type preserving and satisfies compositionality and
operational correspondence

Rewriting K, into £: Example

Consider the Iy process
P> = (vai1az)(vbibr)(a1(x). bi(x) | 3@(n). ba(2))

Omitting some details, the procedure rewrites P into either:

L (va)(wb)(a(x). b(w)-([w+x] 0) | 3(n)-0 | b().0)
2. (va)(wb)(a(x).0 | b(x).0 | 3(v).([vrn] | b(2).0))

@ Concluding Remarks

Concluding Remarks

e The first formal comparison between two behavioural type systems
that enforce deadlock freedom for w-calculus processes

e We study £ and X, the deadlock-free languages induced by
e Session types based on linear logic [Caires, Pfenning et al; Wadler|
o Usage types [Kobayashi et al]

o We identify the degree of sharing as a subtle issue that determines
new hierarchies in deadlock-free, session processes

Concluding Remarks

e The first formal comparison between two behavioural type systems
that enforce deadlock freedom for w-calculus processes
e We study £ and X, the deadlock-free languages induced by

e Session types based on linear logic [Caires, Pfenning et al; Wadler|
o Usage types [Kobayashi et al]

o We identify the degree of sharing as a subtle issue that determines
new hierarchies in deadlock-free, session processes

Future Work

e Processes with infinite behaviour
e Semantic characterizations of degree of sharing (e.g., preorders)

e Comparisons/integration with very recent work on static deadlock
detection and resolution [Giunti, Francalanza & Ravara, WWV 2015]

Comparing Deadlock-Free

Session Typed Processes

Ornela Dardha (University of Glasgow)
Jorge A. Pérez (University of Groningen)

September 17, 2015

Encodings of Processes and Types [DGS12]

Processes. The structure of a session-typed process is mimicked by
sending its continuation as a payload over a channel. E.g.:

[x(v).PTy £ (ve)fulv, ©).[P]f xsc}
Ix()-Ply & fuly; ©)-IPly xsey
[(wxy)Pl; 2 @OIPlfixyose)

Types. o denotes 1 or L. Let [, x: T]; = [[, fx : [Tlsu and

[end]s, = 0] [end]. = e
TSl = 20T [Slel TSk = [TLw sl
['T.Slsw = 1R T]su, [S]sul ['T.S]c = [Tlc®[S]e

Lemma. Duality and encoding of session types
(i) T=Siff[T]lc=1[Sle; (i) T=Siff [T]su = [Slsu-

	Motivation and Contributions
	Technical Ingredients
	Main Results
	Concluding Remarks
	Appendix

