
Comparing Deadlock-Free
Session Typed Processes

Ornela Dardha (University of Glasgow)
Jorge A. Pérez (University of Groningen)

September 17, 2015

This work

A formal comparison between two behavioural type systems that enforce
deadlock freedom for π-calculus processes

We consider two fundamentally different systems:

• Session types based on linear logic [Caires, Pfenning et al; Wadler]

• Usage types [Kobayashi et al]

We study L and K, the deadlock-free languages they induce

Outline

1 Motivation and Contributions

2 Technical Ingredients

3 Main Results

4 Concluding Remarks

Deadlock Freedom

Intuition: Processes do not “get stuck”

Examples (in CCS)

• A deadlocked process:

(νa)(νb)(a.b.0 | b.a.0)

• Two deadlock-free processes:

(νa)(νb)(b.a.0 | b.a.0) and (νa)(νb)(a.b.0 | a.b.0)

• A liveness property: “A process is deadlock-free if it can always reduce
until it eventually terminates, unless it diverges”

• Relevant in practice. Many type systems proposed [cf. Kobayashi et al;

Dezani, de’ Liguoro & Yoshida; Carbone & Debois]

• Our motivation: clarifying how these different systems are related

Deadlock Freedom

Intuition: Processes do not “get stuck”

Examples (in CCS)

• A deadlocked process:

(νa)(νb)(a.b.0 | b.a.0)

• Two deadlock-free processes:

(νa)(νb)(b.a.0 | b.a.0) and (νa)(νb)(a.b.0 | a.b.0)

• A liveness property: “A process is deadlock-free if it can always reduce
until it eventually terminates, unless it diverges”

• Relevant in practice. Many type systems proposed [cf. Kobayashi et al;

Dezani, de’ Liguoro & Yoshida; Carbone & Debois]

• Our motivation: clarifying how these different systems are related

The landscape of (un)typed processes

Untyped π-calculus processes

Session-typed processes [HVK98,Vas12]

The landscape of (un)typed processes

Untyped π-calculus processes

Session-typed processes [HVK98,Vas12]

Deadlock-free session processes

The landscape of (un)typed processes

[CP10,Wad12]

Untyped π-calculus processes

Session-typed processes [HVK98,Vas12]

Deadlock-free session processes

L

The landscape of (un)typed processes

[CP10,Wad12]

Untyped π-calculus processes

Session-typed processes [HVK98,Vas12]Usage-typed processes [Kob02]

Deadlock-free session processes

L

The landscape of (un)typed processes

[CP10,Wad12]

Untyped π-calculus processes

Session-typed processes [HVK98,Vas12]Usage-typed processes [Kob02]

Deadlock-free session processes

L

Session usage processes [DGS12]

The landscape of (un)typed processes

[CP10,Wad12]

Untyped π-calculus processes

Session-typed processes [HVK98,Vas12]Usage-typed processes [Kob02]

Deadlock-free session processes

[CDM14]

L K

Session usage processes [DGS12]

The typed languages L and K

L: session processes obtained from the correspondence of linear logic
propositions as session types [CP10, Wad12, Caires14].

K: session processes are deadlock-free by combining a usage-based type
system [Kob02] with the encodability result in [DGS12]

Notice

• L is canonic: due to its deep logical foundations, this is the most
principled yardstick for comparisons

• K is general: it strictly includes classes of processes induced by previous
type systems for deadlock-free sessions

The degree of sharing

K is a family of classes of deadlock-free processes: K0,K1, . . . ,Kn

The family is defined by the degree of sharing between parallel
components:

• K0 is the subclass with independent parallel composition:
for all P | Q ∈ K0, P and Q do not share sessions

• K1 is the subclass which contains K0 but also processes with parallel
components that share at most one session

In general, Kn (n ≥ 0) contains deadlock-free session processes whose
parallel components share at most n sessions

Our contributions

K0

L
K2

Kn

Deadlock-free session processes

Kn deadlock-free processes by encodability [DGS12]

Our contributions

K0

K1

K2

Kn

Deadlock-free session processes

Kn deadlock-free processes by encodability [DGS12]

Our contributions

K0

L
K2

Kn

Deadlock-free session processes

Kn deadlock-free processes by encodability [DGS12]

L deadlock-free processes based on linear logic [CP10, Caires14]

Our contributions

K0

L
K2

Kn

Deadlock-free session processes

Kn deadlock-free processes by encodability [DGS12]

L deadlock-free processes based on linear logic [CP10, Caires14]

−→ type-preserving rewriting procedure

Outline

1 Motivation and Contributions

2 Technical Ingredients

3 Main Results

4 Concluding Remarks

Technical Ingredients

Type systems:

Γ `ST P Simple session types

P `CH ∆ Linear logic propositions as session types [CP10]

Γ `nKB P Usage type system [Kob02] w/ degree of sharing n ≥ 0

Encodings/transformations:

J·Kf Session π-processes into standard π-processes

J·K Session types into usage types (defined in [DGS12])

J·Kc Session types into linear logic propositions

{{·}} Handling syntactic differences in processes (e.g. restriction)

The two deadlock-free session languages, formally

L =
{
P | ∃Γ. (Γ `ST P ∧ {{P}} `CH JΓKc)

}
Kn =

{
P | ∃Γ, f . (Γ `ST P ∧ JΓKf `nKB JPKf)

}
(n ≥ 0)

Session π-calculus

Syntax

P,Q ::= x〈v〉.P (output)
x(y).P (input)
x / lj .P (selection)
x . {li : Pi}i∈I (branching)
(νxy)P (session restriction)
P | Q (composition)
0 (inaction)

Write n to denote a channel that cannot be used.

Reduction semantics

(νxy)(x〈v〉.P | y(z).Q)→ (νxy)(P | Q[v/z])

(νxy)(x / lj .P | y . {li : Pi}i∈I)→ (νxy)(P | Pj) j ∈ I

Session Types

Session Types

T ,S ::= end (terminated protocol)
?T .S (input value of type T , continue as S)
!T .S (output value of type T , continue as S)
&{li : Si}i∈I (external choice)
⊕{li : Si}i∈I (internal choice)

The typing system `ST
• Ensures communication safety and session fidelity, but it does not

exclude deadlocked processes.

• Example: process (νx1x2)(νy1y2)(x1〈n〉.y1〈n〉 | y2(t).x2(s)) is typable
in `ST but deadlocked. In contrast, the typable process

(νx1x2)(νy1y2)(x1〈n〉.y1〈n〉 | x2(s).y2(t)) is deadlock-free

Linear Logic Session Types [Caires14]

Syntax

• As before, but with standard restriction operator (νx)P and the
forwarding process [x↔y], which “fuses” names x and y

• We have the reduction rule: (νx)([x↔y] | P)→ P[y/x]

Types (= linear logic propositions)

A,B ::= ⊥ | 1︸ ︷︷ ︸
Terminated

| A⊗ B︸ ︷︷ ︸
Output

| A O B︸ ︷︷ ︸
Input

|⊕{li : Ai}i∈I︸ ︷︷ ︸
Int. Choice

|&{li : Ai}i∈I︸ ︷︷ ︸
Ext. Choice

Linear Logic Session Types [Caires14]

Some Typing Rules for `CH
(T-cut)

P `CH ∆, x :A Q `CH ∆′, x :A

(νx)(P | Q) `CH ∆,∆′

(T-mix)

P `CH ∆ Q `CH ∆′

P | Q `CH ∆,∆′

Notable points:

• Composition plus hiding thanks to rule (T-cut)

• Rule (T-mix) types independent parallel composition

• Properties: Type preservation (subject reduction) and progress

Usage Types [Kob02]

Syntax

• Polyadic communication and standard restriction

• Case construct case v of {li xi . Pi}i∈I with variant value lj v

Usage Types

U ::= ?oκ.U (used in input) ∅ (not usable)
!oκ.U (used in output) (U1 | U2) (used in parallel)

T ::= U[T̃] (channel types) 〈li : Ti 〉i∈I (variant type)

Obligations o and capabilities κ describe channel dependencies.

• An obligation of level n must be fulfilled by using only capabilities of
level less than n

• For an action with capability of level n, there must exist a co-action
with obligation of level less than or equal to n

A usage U that satisfies these conditions is reliable, noted rel(U)

Usage Types [Kob02]

Some Typing Rules for `nKB
(Tπ-Parn)

Γ1 `nKB P Γ2 `nKB Q |Γ1 ∩ Γ1| ≤ n

Γ1 | Γ2 `nKB P | Q

(Tπ-Res)

Γ, x : U[T̃] `nKB P rel(U)

Γ `nKB (νx)P

Notable points:

• Separate typing rules for restriction and parallel

• Novelty wrt [Kob02]: rule (Tπ-Parn) defines degree of sharing

• Rule (Tπ-Res) checks usage reliability

• Properties: Type preservation and deadlock-freedom

Outline

1 Motivation and Contributions

2 Technical Ingredients

3 Main Results

4 Concluding Remarks

Main results

K0

L
K2

Kn

Deadlock-free session processes

1. The inclusion between the constituent classes
of K is strict

We have: K0 ⊂ K1 ⊂ · · · ⊂ Kn−1 ⊂ Kn.

2.L and K1 coincide

Logical foundations of session types induce the
most basic form of concurrent cooperation:
sharing exactly one session.

3.Rewriting of processes in K into L
Sequential prefixes replaced with representative
parallel components.
It enjoys type-preservation, operational
correspondence, compositionality.

Inclusion: Kn ⊂ Kn+1

K2 contains (deadlock-free) session processes not captured in K1.

A representative example is:

P2 = (νa1b1)(νa2b2)(a1(x). a2〈x〉 | b1〈n〉. b2(z))

P2 is typable in `nKB (with n ≥ 2) but not in `1KB, because it involves the
composition of two processes which share two sessions

The idea generalises to show Kn ⊂ Kn+1, for all n ≥ 0.

Inclusion: Kn ⊂ Kn+1

K2 contains (deadlock-free) session processes not captured in K1.

A representative example is:

P2 = (νa1b1)(νa2b2)(a1(x). a2〈x〉 | b1〈n〉. b2(z))

P2 is typable in `nKB (with n ≥ 2) but not in `1KB, because it involves the
composition of two processes which share two sessions

The idea generalises to show Kn ⊂ Kn+1, for all n ≥ 0.

Coincidence: K1 = L

Key aspects in the proof:

• Session types always result in “sequential” usages.

• Usages induced by LL session types are always reliable:
they respect obligations/capabilities

• Preservation of duality through encodings of types

• Presence of both rules (T-mix) and (T-cut) for composition in `CH

Rewriting Kn into L

• If P ∈ Kn+1 but P 6∈ Kn (with n ≥ 1) then there is a subprocess of P
that needs to be “adjusted” in order to “fit in” Kn

• Such a subprocess of P must become more “parallel” in order to be
typable under the smaller degree of sharing n

Rewriting Kn into L: Intuition

• We propose a rewriting procedure that converts processes in Kn into
processes in K1 (that is, L)

• Idea: given a parallel process as input, return as output a process in
which one component is kept unchanged, but the other is replaced by
parallel representatives of the sessions in it.

• Using types, such representatives are defined as characteristic
processes and catalyzers

• The procedure is type preserving and satisfies compositionality and
operational correspondence

Rewriting Kn into L: Example

Consider the K2 process

P2 = (νa1a2)(νb1b2)(a1(x). b1〈x〉 | a2〈n〉. b2(z))

Omitting some details, the procedure rewrites P into either:

1. (νa)(νb)(a(x). b(w).([w↔x] | 0) | a〈n〉.0 | b(z).0)

2. (νa)(νb)(a(x).0 | b〈x〉.0 | a〈v〉.([v↔n] | b(z).0))

Outline

1 Motivation and Contributions

2 Technical Ingredients

3 Main Results

4 Concluding Remarks

Concluding Remarks

• The first formal comparison between two behavioural type systems
that enforce deadlock freedom for π-calculus processes

• We study L and K, the deadlock-free languages induced by

• Session types based on linear logic [Caires, Pfenning et al; Wadler]

• Usage types [Kobayashi et al]

• We identify the degree of sharing as a subtle issue that determines
new hierarchies in deadlock-free, session processes

Future Work

• Processes with infinite behaviour

• Semantic characterizations of degree of sharing (e.g., preorders)

• Comparisons/integration with very recent work on static deadlock
detection and resolution [Giunti, Francalanza & Ravara, WWV 2015]

Concluding Remarks

• The first formal comparison between two behavioural type systems
that enforce deadlock freedom for π-calculus processes

• We study L and K, the deadlock-free languages induced by

• Session types based on linear logic [Caires, Pfenning et al; Wadler]

• Usage types [Kobayashi et al]

• We identify the degree of sharing as a subtle issue that determines
new hierarchies in deadlock-free, session processes

Future Work

• Processes with infinite behaviour

• Semantic characterizations of degree of sharing (e.g., preorders)

• Comparisons/integration with very recent work on static deadlock
detection and resolution [Giunti, Francalanza & Ravara, WWV 2015]

Comparing Deadlock-Free
Session Typed Processes

Ornela Dardha (University of Glasgow)
Jorge A. Pérez (University of Groningen)

September 17, 2015

Encodings of Processes and Types [DGS12]

Processes. The structure of a session-typed process is mimicked by
sending its continuation as a payload over a channel. E.g.:

Jx〈v〉.PKf , (νc)fx〈v , c〉.JPKf,{x 7→c}

Jx(y).PKf , fx(y , c).JPKf,{x 7→c}

J(νxy)PKf , (νc)JPKf,{x ,y 7→c}

Types. • denotes 1 or ⊥. Let JΓ, x : T Kf , JΓKf , fx : JT Ksu and

JendKsu = ∅[]
J?T .SKsu = ?oκ[JT Ksu, JSKsu]

J!T .SKsu = !oκ[JT Ksu, JSKsu]

JendKc = •
J?T .SKc = JT Kc O JSKc
J!T .SKc = JT Kc ⊗ JSKc

Lemma. Duality and encoding of session types

(i) T = S iff JT Kc = JSKc; (ii) T = S iff JT Ksu = JSKsu.

	Motivation and Contributions
	Technical Ingredients
	Main Results
	Concluding Remarks
	Appendix

