Comparing Deadlock-Free Session Typed Processes

Ornela Dardha (University of Glasgow) Jorge A. Pérez (University of Groningen)

September 17, 2015

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

A formal comparison between two behavioural type systems that enforce deadlock freedom for π -calculus processes

(日)

We consider two fundamentally different systems:

- Session types based on linear logic [Caires, Pfenning et al; Wadler]
- Usage types [Kobayashi et al]

We study ${\mathcal L}$ and ${\mathcal K},$ the deadlock-free languages they induce

1 Motivation and Contributions

2 Technical Ingredients

3 Main Results

4 Concluding Remarks

うせん 正正 (山下)(山下)(山下)(山下)

Intuition: Processes do not "get stuck"

Examples (in CCS)

• A deadlocked process:

 $(\nu a)(\nu b)(\overline{a}.b.\mathbf{0} \mid \overline{b}.a.\mathbf{0})$

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

• Two deadlock-free processes: $(\nu a)(\nu b)(\underline{b}.\overline{a}.\mathbf{0} \mid \overline{b}.a.\mathbf{0})$ and $(\nu a)(\nu b)(\overline{a}.b.\mathbf{0} \mid \underline{a}.\overline{b}.\mathbf{0})$

Intuition: Processes do not "get stuck"

Examples (in CCS)

• A deadlocked process:

 $(\nu a)(\nu b)(\overline{a}.b.\mathbf{0} \mid \overline{b}.a.\mathbf{0})$

Two deadlock-free processes:

 $(\nu a)(\nu b)(\overline{b}.\overline{a}.\mathbf{0} | \overline{b}.a.\mathbf{0})$ and $(\nu a)(\nu b)(\overline{a}.b.\mathbf{0} | \underline{a}.\overline{b}.\mathbf{0})$

- A liveness property: "A process is deadlock-free if it can always reduce until it eventually terminates, unless it diverges"
- Relevant in practice. Many type systems proposed [cf. Kobayashi et al; Dezani, de' Liguoro & Yoshida; Carbone & Debois]
- Our motivation: clarifying how these different systems are related

Untyped π -calculus processes

Untyped π -calculus processes

▲ロト ▲冊 ▶ ▲ヨト ▲ヨト 三回 のへの

Untyped π -calculus processes

もうてい 正則 スポッスポット 御マスロッ

 \mathcal{L} : session processes obtained from the correspondence of linear logic propositions as session types [CP10, Wad12, Caires14].

 \mathcal{K} : session processes are deadlock-free by combining a usage-based type system [Kob02] with the encodability result in [DGS12]

Notice

- *L* is **canonic**: due to its deep logical foundations, this is the most principled yardstick for comparisons
- \mathcal{K} is general: it strictly includes classes of processes induced by previous type systems for deadlock-free sessions

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $\mathcal K$ is a **family** of classes of deadlock-free processes: $\mathcal K_0, \mathcal K_1, \ldots, \mathcal K_n$

The family is defined by the **degree of sharing** between parallel components:

- K₀ is the subclass with independent parallel composition: for all P | Q ∈ K₀, P and Q do not share sessions
- \mathcal{K}_1 is the subclass which contains \mathcal{K}_0 but also processes with parallel components that share **at most** one session

In general, \mathcal{K}_n ($n \ge 0$) contains deadlock-free session processes whose parallel components share at most n sessions

 \mathcal{K}_n deadlock-free processes by encodability [DGS12]

 \mathcal{K}_n deadlock-free processes by encodability [DGS12]

- \mathcal{K}_n deadlock-free processes by encodability [DGS12]
 - \mathcal{L} deadlock-free processes based on linear logic [CP10, Caires14]

- \mathcal{K}_n deadlock-free processes by encodability [DGS12]
 - \mathcal{L} deadlock-free processes based on linear logic [CP10, Caires14]
- \rightarrow type-preserving rewriting procedure

Motivation and Contributions

2 Technical Ingredients

4 Concluding Remarks

Technical Ingredients

Type systems:

- $\Gamma \vdash_{ST} P$ Simple session types
- $P \vdash_{CH} \Delta$ Linear logic propositions as session types [CP10]
- $\Gamma \vdash_{KB}^{n} P$ Usage type system [Kob02] w/ degree of sharing $n \ge 0$

Encodings/transformations:

- $\llbracket \cdot \rrbracket_f$ Session π -processes into standard π -processes
- $\llbracket \cdot \rrbracket$ Session types into usage types (defined in [DGS12])
- $[\![\cdot]\!]_c$. Session types into linear logic propositions
- $\{\!\{\cdot\}\!\}$ Handling syntactic differences in processes (e.g. restriction)

The two deadlock-free session languages, formally

$$\mathcal{L} = \left\{ P \mid \exists \Gamma. \ (\Gamma \vdash_{\mathtt{ST}} P \land \{\!\!\{ P \}\!\!\} \vdash_{\mathtt{CH}} [\![\Gamma]\!]_{\mathtt{c}}) \right\}$$

 $\mathcal{K}_n = \{ P \mid \exists \Gamma, f. \ (\Gamma \vdash_{\mathtt{ST}} P \land \llbracket \Gamma \rrbracket_f \vdash_{\mathtt{KB}} \llbracket P \rrbracket_f) \} \quad (n \ge 0)$

Session π -calculus

Syntax

$$P, Q ::= \overline{x} \langle v \rangle . P \qquad (output) \\ x(y) . P \qquad (input) \\ x \triangleleft l_j . P \qquad (selection) \\ x \triangleright \{l_i : P_i\}_{i \in I} \qquad (branching) \\ (\nu xy) P \qquad (session restriction) \\ P \mid Q \qquad (composition) \\ \mathbf{0} \qquad (inaction) \end{cases}$$

Write \mathbf{n} to denote a channel that cannot be used.

Reduction semantics

$$(\boldsymbol{\nu} x y)(\overline{x} \langle v \rangle . P \mid y(z) . Q) \rightarrow (\boldsymbol{\nu} x y)(P \mid Q[v/z])$$

 $(\boldsymbol{\nu} x y)(x \triangleleft l_j . P \mid y \triangleright \{l_i : P_i\}_{i \in I}) \rightarrow (\boldsymbol{\nu} x y)(P \mid P_j) \quad j \in I$

・ロト < 団ト < 三ト < 三ト < 三日 < つへの

Session Types

The typing system \vdash_{ST}

- Ensures communication safety and session fidelity, but it does not exclude deadlocked processes.
- Example: process (*vx*₁*x*₂)(*vy*₁*y*₂)(*x*₁⟨**n**⟩.*y*₁⟨**n**⟩ | *y*₂(*t*).*x*₂(*s*)) is typable in ⊢_{ST} but deadlocked. In contrast, the typable process

 $(\nu x_1 x_2)(\nu y_1 y_2)(\overline{x}_1 \langle \mathbf{n} \rangle. \overline{y}_1 \langle \mathbf{n} \rangle \mid \underline{x_2(s)}. \underline{y_2(t)})$ is deadlock-free

Syntax

- As before, but with standard restriction operator (*vx*)*P* and the forwarding process [*x*↔*y*], which "fuses" names *x* and *y*
- We have the reduction rule: $(\nu x)([x\leftrightarrow y] \mid P) \rightarrow P[y/x]$

Types (= linear logic propositions)

$$A, B ::= \underbrace{\perp \left| 1 \atop \text{Terminated}} \left| \underbrace{A \otimes B}_{\text{Output}} \right| \underbrace{A \otimes B}_{\text{Input}} \right| \underbrace{\oplus \{I_i : A_i\}_{i \in I}}_{\text{Int. Choice}} \left| \underbrace{\& \{I_i : A_i\}_{i \in I}}_{\text{Ext. Choice}} \right|$$

Linear Logic Session Types [Caires14]

Some Typing Rules for \vdash_{CH}

$$\frac{(\text{T-cut})}{P \vdash_{\text{CH}} \Delta, x: A} \qquad Q \vdash_{\text{CH}} \Delta', x: \overline{A} \qquad \qquad \begin{array}{c} (\text{T-mix}) \\ P \vdash_{\text{CH}} \Delta & Q \vdash_{\text{CH}} \Delta' \\ \hline (\nu x)(P \mid Q) \vdash_{\text{CH}} \Delta, \Delta' & P \mid Q \vdash_{\text{CH}} \Delta, \Delta' \end{array}$$

Notable points:

- Composition plus hiding thanks to rule (T-cut)
- Rule (T-mix) types independent parallel composition
- Properties: Type preservation (subject reduction) and progress

Usage Types [Kob02]

Syntax

- Polyadic communication and standard restriction
- Case construct case v of $\{l_i x_i \triangleright P_i\}_{i \in I}$ with variant value $l_j v$

Usage Types

U ::=	$?^o_\kappa.U$	(used in input)	Ø	(not usable)
	$!^o_\kappa.U$	(used in output)	$(U_1 \mid U_2)$	(used in parallel)
T ::=	$U[\widetilde{T}]$	(channel types)	$\langle I_i : T_i \rangle_{i \in I}$	(variant type)

Obligations o and **capabilities** κ describe channel dependencies.

- An obligation of level *n* must be fulfilled by using only capabilities of level **less than** *n*
- For an action with capability of level *n*, there must exist a co-action with obligation of level **less than or equal to** *n*

(日)

A usage U that satisfies these conditions is reliable, noted rel(U)

Some Typing Rules for \vdash_{KB}^n

$$\frac{(\mathrm{T}\pi\operatorname{-PAR}_n)}{\Gamma_1 \vdash_{\mathrm{KB}}^n P \Gamma_2 \vdash_{\mathrm{KB}}^n Q |\Gamma_1 \cap \Gamma_1| \leq n}{\Gamma_1 \mid \Gamma_2 \vdash_{\mathrm{KB}}^n P \mid Q} \qquad \frac{(\mathrm{T}\pi\operatorname{-Res})}{\Gamma \mid \Gamma_2 \vdash_{\mathrm{KB}}^n P \mid Q}$$

(日)

Notable points:

- Separate typing rules for restriction and parallel
- Novelty wrt [Kob02]: rule (T*π*-PAR_n) defines degree of sharing
- Rule $(T\pi$ -Res) checks usage reliability
- Properties: Type preservation and deadlock-freedom

Motivation and Contributions

2 Technical Ingredients

4 Concluding Remarks

1. The inclusion between the constituent classes of ${\cal K}$ is ${\rm strict}$

We have: $\mathcal{K}_0 \subset \mathcal{K}_1 \subset \cdots \subset \mathcal{K}_{n-1} \subset \mathcal{K}_n$.

2. ${\mathcal L}$ and ${\mathcal K}_1$ coincide

Logical foundations of session types induce the most basic form of concurrent cooperation: sharing exactly one session.

3. Rewriting of processes in ${\cal K}$ into ${\cal L}$

Sequential prefixes replaced with representative parallel components.

It enjoys type-preservation, operational correspondence, compositionality.

 \mathcal{K}_2 contains (deadlock-free) session processes not captured in \mathcal{K}_1 . A representative example is:

$$P_2 = (\boldsymbol{\nu} a_1 b_1)(\boldsymbol{\nu} a_2 b_2)(a_1(x). \ \overline{a_2} \langle x \rangle \ | \ \overline{b_1} \langle \mathbf{n} \rangle. \ b_2(z))$$

 P_2 is typable in \vdash_{KB}^n (with $n \ge 2$) but not in \vdash_{KB}^1 , because it involves the composition of two processes which share two sessions

 \mathcal{K}_2 contains (deadlock-free) session processes not captured in \mathcal{K}_1 . A representative example is:

$$P_2 = (\boldsymbol{\nu} a_1 b_1)(\boldsymbol{\nu} a_2 b_2)(a_1(x). \ \overline{a_2} \langle x \rangle \ | \ \overline{b_1} \langle \mathbf{n} \rangle. \ b_2(z))$$

 P_2 is typable in \vdash_{KB}^n (with $n \ge 2$) but not in \vdash_{KB}^1 , because it involves the composition of two processes which share two sessions

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The idea generalises to show $\mathcal{K}_n \subset \mathcal{K}_{n+1}$, for all $n \geq 0$.

Key aspects in the proof:

- Session types always result in "sequential" usages.
- Usages induced by LL session types are always reliable: they respect obligations/capabilities
- Preservation of duality through encodings of types
- Presence of both rules (T-mix) and (T-cut) for composition in $\vdash_{\texttt{CH}}$

- If P ∈ K_{n+1} but P ∉ K_n (with n ≥ 1) then there is a subprocess of P that needs to be "adjusted" in order to "fit in" K_n
- Such a subprocess of *P* must become more "parallel" in order to be typable under the smaller degree of sharing *n*

- We propose a rewriting procedure that converts processes in K_n into processes in K₁ (that is, L)
- Idea: given a parallel process as input, return as output a process in which one component is kept unchanged, but the other is **replaced** by **parallel representatives** of the sessions in it.
- Using types, such representatives are defined as characteristic processes and catalyzers
- The procedure is type preserving and satisfies compositionality and operational correspondence

Consider the \mathcal{K}_2 process

$$P_2 = (\boldsymbol{\nu} a_1 a_2) (\boldsymbol{\nu} b_1 b_2) (a_1(x). \ \overline{b_1} \langle x \rangle \ | \ \overline{a_2} \langle \mathbf{n} \rangle. \ b_2(z))$$

(日)

Omitting some details, the procedure rewrites P into either:

- 1. $(\nu a)(\nu b)(a(x), \overline{b}(w).([w \leftrightarrow x] \mid \mathbf{0}) \mid \overline{a}(\mathbf{n}).\mathbf{0} \mid b(z).\mathbf{0})$
- 2. $(\nu a)(\nu b)(a(x).0 \mid \overline{b}\langle x \rangle.0 \mid \overline{a}\langle v \rangle.([v \leftrightarrow n] \mid b(z).0))$

1 Motivation and Contributions

2 Technical Ingredients

3 Main Results

4 Concluding Remarks

- The first formal comparison between two behavioural type systems that enforce deadlock freedom for π -calculus processes
- $\bullet\,$ We study ${\cal L}$ and ${\cal K},$ the deadlock-free languages induced by
 - Session types based on linear logic [Caires, Pfenning et al; Wadler]
 - Usage types [Kobayashi et al]
- We identify the **degree of sharing** as a subtle issue that determines new hierarchies in deadlock-free, session processes

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- The first formal comparison between two behavioural type systems that enforce deadlock freedom for π -calculus processes
- $\bullet\,$ We study ${\cal L}$ and ${\cal K},$ the deadlock-free languages induced by
 - Session types based on linear logic [Caires, Pfenning et al; Wadler]
 - Usage types [Kobayashi et al]
- We identify the **degree of sharing** as a subtle issue that determines new hierarchies in deadlock-free, session processes

Future Work

- Processes with infinite behaviour
- Semantic characterizations of degree of sharing (e.g., preorders)
- Comparisons/integration with very recent work on static deadlock detection and resolution [Giunti, Francalanza & Ravara, WWV 2015]

Comparing Deadlock-Free Session Typed Processes

Ornela Dardha (University of Glasgow) Jorge A. Pérez (University of Groningen)

September 17, 2015

(日) (四) (王) (王) (王)

Encodings of Processes and Types [DGS12]

Processes. The structure of a session-typed process is mimicked by sending its continuation as a payload over a channel. E.g.:

$$\begin{split} & [\![\overline{x}\langle v \rangle . P]\!]_f & \triangleq (\nu c) \overline{f_x} \langle v, c \rangle . [\![P]\!]_{f, \{x \mapsto c\}} \\ & [\![x(y) . P]\!]_f & \triangleq f_x(y, c) . [\![P]\!]_{f, \{x \mapsto c\}} \\ & [\![(\nu x y) P]\!]_f & \triangleq (\nu c) [\![P]\!]_{f, \{x, y \mapsto c\}} \end{split}$$

Types. • denotes 1 or \bot . Let $\llbracket \Gamma, x : T \rrbracket_f \triangleq \llbracket \Gamma \rrbracket_f, f_x : \llbracket T \rrbracket_{su}$ and

Lemma. Duality and encoding of session types

(i)
$$\overline{T} = S$$
 iff $\overline{\llbracket T \rrbracket_{c}} = \llbracket S \rrbracket_{c}$; (ii) $\overline{T} = S$ iff $\overline{\llbracket T \rrbracket_{su}} = \llbracket S \rrbracket_{su}$.