Umversn:y School of EPSRC

Qf’G angW Computlng SClence Eg ||||||| ing and Physical Sciences

A New Linear Logic for Deadlock-Free
Session-Typed Processes

Ornela Dardha

(joint work with Simon Gay)

University of Leicester
23 November 2018

The Curry-Howard Correspondence

The deep correspondence between types and logic:
foundation of functional programming.

] University
J of Glasgow

types = propositions
programs = proofs

evaluation = proof normalisation

e (cut elimination)
Haskell Curry

William Howard

Example:
a function of type A =»B corresponds to a proof of A implies B;

computationally, it constructs a proof of B (the result)
from a proof of A (the parameter).

M University
J of Glasgow

Curry-Howard for Concurrency?

In 1987, Girard speculated that linear logic could form the basis
of a Curry-Howard correspondence for concurrent computation.

Connections between linear logic and the pi-calculus were
developed [Abramsky 1990, 1994; Bellin & Scott 1994],
but did not become foundation of concurrent programming.

:
i
§
i
!
) o
L=

Jean-Yves Girard Samson Abramsky Gianluigi Bellin Phil Scott

' Un1ver51ty
of Glasgow

Session Types

Session types were introduced by Honda et al. [1993, 1994, 1998]
as type-theoretic specifications of communication protocols.

vvvvvvvvvvvvvv

?A .B receive a message of type A, then continue protocol B.
I'A.B send a message of type A, then continue protocol B.

Duality: A and A + are complementary views of a protocol.

During the subsequent 20+ years, session types
developed into a large and active research area.

Kohei Honda

') nuversity Curry-Howard for Session Types
of Glasgow

vvvvvvvvvvvvvv

Caires and Pfenning [2010] discovered a correspondence between
session types for pi-calculus and dual intuitionistic linear logic.

The logical approach to session types has been extended:
dependent types, failures, sharing and races,...

Proof normalisation (cut elimination) corresponds to communication.

| Caires et al. [2010 -[;
'\ @ Wadler [2012 -] ...

Luis Caires Frank Pfenning Phil Wadler

University

o of Glasgow

vvvvvvvvvvvvvv

Session Types and Linear Logic

session types = propositions

pi-calculus processes = proofs

communication = proof normalisation
(cut elimination)

- ?A.B correspondsto A B

- IA.B correspondsto A® B

e Branch &{/i:Ai}lie/ and

« Select @®{li: Ai}ics arethe same...

7 University
J of Glasgow

Session Types and Linear Logic

Input corresponds to par
RO, y:A x: B
r(y). RO, z: A9 B

S

Output corresponds to tensor

PFI,y:A QFA,x:B
zlyl(P| Q) FI,A,z: A® B

&

Notice the threading of the continuation channel through the rules.

Cut Elimination as Communication

R P Q
A B A B

A?Br A® B

M Universit
of Glasgovsz

vvvvvvvvvvvvvv

A B A B

7 University
7 of Glasgow

Pi-Calculus: Syntax of Processes

P,Q = =x|y|.P output)
z(y).P input)
r<l;. P selection)

inaction)
composition)
session restriction)

(
E
x>{l;: Piticr gbranching)
(
(

' Umvel‘slty Deadlock in Communicating Systems
of Glasgow

vvvvvvvvvvvvvv

Deadlock arises from cyclic dependency between communication
operations when two processes share at least two channels.

(vz1y1) (Wrays2) |21 (2).22(w).0 | y1[42].y2[true].0] OK

(va1y1)(vaays) [33‘1(3)-332(10)-0 | y2|true].y; [42]-0} STUCK

M University
J of Glasgow

Deadlock-Freedom and Linear Logic

Deadlock arises from cyclic dependency between communication
operations when two processes share at least two channels.

(vz1y1) (Wrays2) |21 (2).22(w).0 | y1[42].y2[true].0] OK
(va1y1)(vaays) [33‘1(2)-332(10)-0 | y2|true].y; [42]-0} STUCK

The linear logic type system guarantees deadlock-freedom because
two processes can only be connected by a single channel.

(cut)
X y PFHI,z:A QFA, y: At

(valy)(P | Q) F T, A

Deadlock-Freedom and Linear Logic

Deadlock arises from cyclic dependency between communication
operations when two processes share at least two channels.

i Universit
of Glasgovg

vvvvvvvvvvvvvv

(vz1y1)(VX2y2) [3?1(2)-932(70)-0 | y1142].y2 [true].O] OK
(va1y1)(vaays) [33‘1(2)-332(10)-0 | y2|true].y; [42]-0} STUCK

The linear logic type system rejects both the processes above because
they are connected by two channels.

X1 Y1

X2 b2)

' UmVCl’SltY Priority-based Typing for Deadlock-Freedom

of Glasgow

vvvvvvvvvvvvvv

Kobayashi [1997 -]; Padovani [2013, 2014] developed
type systems for deadlock-free pi-calculus processes
based on priorities.

Priorities o0, 0’... are natural numbers and annotate types.

Priorities must obey the following laws:

(i) an action (input/output) of priority 0 must be prefixed only by
actions of priorities than o.

(i) communication requires priorities of dual actions.

Priority-based type systems type more processes than linear logic,
as they allow processes to share more than a single channel.

] University
J of Glasgow

Priority-based Typing for Deadlock-Freedom

Exercise: are the following processes typabable?

(vz1y1) (Wzays) [1(2).22(w).0 | y1[42].y2[true].0] OK
typable
(i) pr(xq) <pr(xz) pr(ys) <pr(y2)
(i) pr(xq) =pr(yy) pr(xz) = pryz)

(vz1y1) (VE2ys2) |21(2).22(w).0 | yo[true].y; [42].0) STUCK
untypable
(i) pr(xq) <pr(xz) pry2) <pr(ys)
(i) pr(xq) = prlys) pr(xz) = pr(y2)

})J%f(l}iﬁ%mity Our Goal: Priority-based Linear Logic Typing

gOW

vvvvvvvvvvvvvv

We combine classical linear logic with priorities for a more
expressive session type system for deadlock-free processes.

Replace the cut rule with mix and cycle.

(mix) (cycle)
P+HT QFA PFT, z:A, y: A+
PlQFT,A (vzty)P+T r)

With these rules, multicut is derivable.
(multicut)
PFT, x1:Aq,..., x,: A, QI—A,ylelL,...,yn:A#
(vaty, ...z,) (P | Q) FT,A

([)J%f(l}lﬁ%fg%g Our Goal: Priority-based Linear Logic Typing

vvvvvvvvvvvvvv

Propositions are annotated with priorities.

A B = 1° | 1O|A®OB|A?OB| D° {li:Ai}iefl&o{li:Ai}iefl ?OA| °A

Proofs must obey laws (i) and (ii) on priorities.
o < pr(I') satisfies law (i) on

PrFTuy:Ax:B o<pr(l - PET, y:A z:B o <pr(lN (%)
x(y).P-T, 2: Ae° B zly|PFT, 2 AR° B
PE?M y:A o<pr(l) ' PFET,y:A o<pr(lN

! ? - |0 () ? . 90 (?)
lz(y).P =7 x: 1°A lr|lylPFT,xz: 7 A

Ef%ﬁi?é% Our Goal: Priority-based Linear Logic Typing

cycle
When forming a cycle, the priorities of the (]ij % v A,y A
connected types must be , to satisfy (ii); (V;Ay) ij -

Meaning: eventually x and y will be ready to communicate
at the same time/step, allowing a reduction step and a proof rewrite.

of priorities is captured by the duality definition:

(A’?OB)J_ZAJ‘ ®OBL (J_O)J—:]_O

(A ®o B)J- — AJ_ ?o BJ_ (10)J— — |©°
(&O{li . Ai}ieI)J_ — @O{li . AiJ_}iej 79 AJ_ =5 14L
(@°{li : AiYier)” = &°{li + At hier 10 A+ = 70 4L

gfgﬁ?g%g Beta-Reduction using Mix and Cycle

vvvvvvvvvvvvvv

Beta-reduction for tensor/output and par/input: derivation

o< pr(I) o < pr(4)

PHITwv:Ax:B QF Aw:A" y:B* PrTuv:Az:B QF A w:A*, y:B* .
z[v].P+FT,2:AR°B (®) y(w).QF A, y: A e° B+ (?) P|QFT,Av:Azx:Bw:AT,y: B+ (ml)i)
z[v].P | y(w).QF I A z:AR° B,y: At 9° B+ (cyc(lr:)IX) (vzPy) (P | Q) F I A v A w: A" (C;jec)e)
(vt @ By) (z[v].P | y(w).Q) - I, A = (votw)(wzPy)(P| Q) F I, A

Beta-reduction for other connectives: summary
(vytz)(x—y? | P)F [o: ALY — P[t/2]F Iz: AL

(vziy)(z[].0 | y).P)F T = P+T

(wa®UaBikicry) (z al;. P | yo {l; : Qitier) F A= (waPiy)(P | Q;) F I, A

vz Ay)(lz(v).P | y[w].Q) F 1A = (vviw)(P| Q)+ A

' Umver51ty

of Glasgow

Priority-based Classical Linear Logic: Results

Theorem (cycle elimination). Given a proof of a sequent, we can
construct a cycle-free proof for it.

vvvvvvvvvvvvvv

Proof: (following cut elimination proof) a cycle is eliminated by either:
1) replacing it with another cycle on smaller propositions;
ii) pushing it further up the proof tree.

Since we are allowing cyclic structures,
how do we make sure we capture only the good ones?

'UHIVCI’SIW Kobayashi’s Reasoning of Deadlock-Freedom
of Glasgow

vvvvvvvvvvvvvv

A concurrent system is a collection of parallel processes, each
with a top-level input or output action (prefix).

Pick a top-level prefix with priority o: x(z), say.
Somewhere there is the co-action y[42] with priority o.

y[42] must be in a different parallel component, otherwise
it would be guarded by x(z), requiring o < o.

y[42] must be a top-level prefix, otherwise it is guarded by a prefix
with priority 0’ < 0, contradicting the dominance of o.

Communication on endpoints x and y is possible immediately.

] University
J of Glasgow

Priority-based CP: Results

Cycle elimination corresponds to communication.

Theorem (subject reduction). Well-typed processes reduce to
well-typed processes.

Proof: beta-reductions and commuting conversions.

Theorem (top-level deadlock freedom). If process P is well typed
and it is a cycle, then there is some Q, such that P reduces to Q
and Q is not a cycle.

Proof: follows from cycle elimination.

a1 University Conclusion and Future Work
J of Glasgow

* Presented a new priority-based linear logic combining mix and
cycle rules with Kobayashi’s priorities.

« Used it as a basis for a Curry-Howard isomorphism with session
typed pi-calculus, allowing “good” cyclic processes.

 We prove the cycle elimination theorem, obtaining as a result
deadlock freedom for session typed processes.

 Future work:

i) develop a type system for a functional language, GV with cycle
and translate it to our system.

ii) extend our priority-based logic to allow recursion and sharing.

™ University
&7 of Glasgow

S

Thank you!

Questions?

