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The Curry-Howard Correspondence

The deep correspondence between types and logic: 
foundation of functional programming.

types ≈ propositions
programs ≈ proofs

evaluation ≈ proof normalisation
(cut elimination)

Example:
a function of type A èB corresponds to a proof of A implies B;
computationally, it constructs a proof of B (the result)
from a proof of A (the parameter).

Haskell Curry William Howard



Curry-Howard for Concurrency?

In 1987, Girard speculated that linear logic could form the basis
of a Curry-Howard correspondence for concurrent computation.

Connections between linear logic and the pi-calculus were 
developed [Abramsky 1990, 1994; Bellin & Scott 1994], 
but did not become foundation of concurrent programming. 

Jean-Yves Girard Samson Abramsky Gianluigi Bellin Phil Scott



Session Types

Session types were introduced by Honda et al. [1993, 1994, 1998]
as type-theoretic specifications of communication protocols.

?A . B receive a message of type A, then continue protocol B.
! A . B send a message of type A, then continue protocol B.

Duality: A and A ⟂ are complementary views of a protocol.

During the subsequent 20+ years, session types
developed into a large and active research area.

Kohei Honda



Curry-Howard for Session Types 

Caires and Pfenning [2010] discovered a correspondence between 
session types for pi-calculus and dual intuitionistic linear logic.

The logical approach to session types has been extended:
dependent types, failures, sharing and races,…

Proof normalisation (cut elimination) corresponds to communication.

Frank PfenningLuís Caires

Further work by
Caires et al. [2010 -];
Wadler [2012 -] …

Phil Wadler



Session Types and Linear Logic

• ?A . B  corresponds to
• !A . B   corresponds to
• Branch and
• Select are the same…

Session Types and Classical Linear Logic
(2)

Wadler 2012; Caires 2014 (@Luca Cardelli Fest)

(T-O)

P ` �, y :A, x :B

x?(y).P ` �, x :A O B

(T-⌦)

P ` �, y :A Q ` �0, x :B

x!(y).(P | Q) ` �,�0, x :A⌦ B

(T-cut)

P ` �, x :A Q ` �0, x :A

(⌫x)(P | Q) ` �,�0

(T-&)

Pi ` �, x :Ai 8i 2 I

x . {li : Pi}i2I ` �, x :&{li : Ai}i2I

(T-�)

P ` �, x :Aj j 2 I

x / lj .P ` �, x :�{li : Ai}i2I
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session types ≈ propositions
pi-calculus processes ≈ proofs

communication ≈ proof normalisation
(cut elimination)



Session Types and Linear Logic

Input corresponds to par

Output corresponds to tensor

Notice the threading of the continuation channel through the rules.

(Swap) P ` �, x : A Q ` �, x : A?

⌫x : A.(P | Q) ` �, �
Cut ⌘

Q ` �, x : A? P ` �, x : A

⌫x : A?.(Q | P ) ` �, �
Cut

(Assoc) P ` �, x : A Q ` �, x : A?, y : B

⌫x.(P | Q) ` �, �, y : B
Cut

R ` ⇥, y : B?

⌫y.(⌫x.(P | Q) | R) ` �, �, ⇥
Cut

⌘

P ` �, x : A

Q ` �, x : A?, y : B R ` ⇥, y : B?

⌫y.(Q | R) ` �, ⇥, x : A?
Cut

⌫x.(P | ⌫y.(Q | R)) ` �, �, ⇥
Cut

(AxCut) w$x ` w : A?, x : A
Ax

P ` �, x : A?

⌫x.(w$x | P ) ` �, w : A?
Cut =) P{w/x} ` �, w : A?

Figure 2. Structural cut equivalences and reduction for CP

2.2 Output and input

The multiplicative connectives A ⌦ B and A O B are dual. We
interpret A ⌦ B as the session type of a process which outputs an
A and then behaves as a B, and A O B as the session type of a
process which inputs an A and then behaves as a B.

The rule for output is:

P ` �, y : A Q ` �, x : B

x[y].(P | Q) ` �, �, x : A⌦B
⌦

Processes P and Q act on disjoint sets of channels. Process P com-
municates along channel y obeying protocol A, while process Q
communicates along channel x obeying protocol B. The compos-
ite process x[y].(P | Q) communicates along channel x obeying
protocol A ⌦ B; it allocates a fresh channel y, transmits y along
x, and then concurrently executes P and Q. Disjointness of P and
Q ensures there is no further entangling between x and y, which
guarantees freedom from deadlock.

The rule for input is:

R ` ⇥, y : A, x : B

x(y).R ` ⇥, x : A O B
O

Process R communicates along channel y obeying protocol A
and along channel x obeying protocol B. The composite process
x(y).R communicates along channel x obeying protocol A O B; it
receives name y along x, and then executes R. Unlike with output,
the single process R that communicates with both x and y. It is
safe to permit the same process to communicate with x and y on
the input side, because there is no further entangling of x with y on
the output side, explaining the claim that disentangling x from y on
output guarantees freedom from deadlock.

For output, channel x has type B in the component process Q
but type A ⌦ B in the composite process x[y].(P | Q). For input,
channel x has type B in the component process R but type A O B
in the composite process x(y).R. One may regard the type of the
channel evolving as communication proceeds, corresponding to the
notion of session type. Assigning the same channel name different
types in the hypothesis and conclusion of a rule is the telling twist
added by Caires and Pfenning (2010), in contrast to the use of
different variables in the hypothesis and conclusion followed by
Abramsky (1994) and Bellin and Scott (1994).

The computational content of the logic is most clearly revealed
in the principal cuts of each connective against its dual. Principal
cut reductions are shown in Figure 3.

Cut of output⌦ against input O corresponds to communication,
as shown in rule (�⌦O):

⌫x.(x[y].(P | Q) | x(y).R) =) ⌫y.(P | ⌫x.(Q | R))

In stating this rule, we take advantage of the fact that y is bound
in both x[y].P and x(y).Q to assume the same bound name y
has been chosen in each; Pitts (2011) refers to this as the ‘anti-
Barendregt’ convention.

Recall that x[y].P in our notation corresponds to ⌫y.xhyi.P
in ⇡-calculus. Thus, the rule above corresponds to the ⇡-calculus
reduction:

⌫x.(⌫y.xhyi.(P | Q) | x(z).R) =) ⌫y.P | ⌫x.(Q | R{z/y})
This follows from from xhyi.P | x(z).R =) P | R{z/y}, and
the structural equivalences for scope extrusion, since x /2 fn(P ).

The right-hand side of the above reduction can be written in two
ways, which are equivalent by use of the the structural rules (Swap)
and (Assoc).

⌫x : A.(P | ⌫y : B.(Q | R))
⌘ ⌫x : A.(P | ⌫y : B?.(R | Q)) (Swap)
⌘ ⌫y : B?.(⌫x : A.(P | R) | Q) (Assoc)
⌘ ⌫y : B.(Q | ⌫x : A.(P | R)) (Swap)

The apparent lack of symmetry between A⌦B and B⌦A may
appear unsettling: the first means output A and then behave as B,
the second means output B and then behave as A. The situation
is similar to Cartesian product, where B ⇥ A and A ⇥ B differ
but satisfy an isomorphism. Similarly, A ⌦ B and B ⌦ A are
interconvertible.

w$z ` w : B?, z : B
Ax

y$x ` y : A?, x : A
Ax

x[z].(w$z | y$x) ` w : B?, y : A?, x : B ⌦A
⌦

w(y).x[z].(w$z | y$x) ` w : A? O B?, x : B ⌦A
O

Let Q ` � be the conclusion of the above derivation. Given an
arbitrary derivation ending in P ` �, w : A⌦B, one may replace
A⌦B with B ⌦A as follows:

P ` �, w : A⌦B Q ` �

⌫w.(P | Q) ` �, x : B ⌦A
Cut

Here process P communicates along w obeying the protocol A⌦B,
outputting A and then behaving as B. Composing P with Q yields
the process that communicates along x obeying the protocol B⌦A,
outputting B and then behaving as A.

The multiplicative units are 1 for⌦ and? for O. We interpret 1
as the session type of a process that performs an empty ouput, and
? as the session type of a process that performs an empty input.
These are related by duality: 1? = ?. Their rules are shown in
Figure 1. Cut of empty output 1 against empty input? corresponds
to an empty communication, as shown in rule (�1?):

⌫x.(x[ ].0 | x().P ) =) P

(Swap) P ` �, x : A Q ` �, x : A?
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Cut Elimination as Communication

B

A

AA, B B

A, B A B
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Pi-Calculus: Syntax of Processes

4 O. DARDHA AND S. J. GAY

following technical results for PCP: subject reduction (Theorem 4.14), top-level deadlock
freedom (Theorem 4.16), and full deadlock freedom for closed processes (Theorem 4.17).

(5) We prove termination for PCP (??). This result, which is developed through a series of
definitions and auxiliary lemmas is completely a new contribution with respect to [18].

In Section 5 we discuss related work and conclude the paper.

2. PCP: Classical Processes with Mix and Cycle

Priority-based CP (PCP) follows the style of Wadler’s Classical Processes (CP) [42], with
details inspired by Carbone et al. [14] and Caires and Pérez [11].

2.1. Types. We start with types, which are based on CLL propositions. Let A,B range
over types, given in Definition 2.1. Let o, 2 N [ {!} range over priorities, which are used
to annotate types. Let ! be a special element such that o < ! for all o 2 N. Often, we will
omit !. We will explain priorities later in this section.

Definition 2.1 (Types). Types (A,B) are given by:

A,B ::= ?o | 1o | A⌦oB | AO
oB | �o {li : Ai}i2I | &o{li : Ai}i2I | ?oA | !oA

?o and 1
o are associated with channel endpoints that are ready to be closed. A⌦oB

(respectively, AO
oB) is associated with a channel endpoint that first outputs (respectively,

inputs) a channel of type A and then proceeds as B. �o{li : Ai}i2I is associated with a
channel endpoint over which we can select a label from {li}i2I , and proceed as Ai. Dually,
&o{li : Ai}i2I is associated with a channel endpoint that can o↵er a set of labelled types.
?oA types a collection of clients requesting A. Dually, !oA types a server repeatedly
accepting A.

Duality on types is total and is given in Definition 2.2. It preserves priorities of types.

Definition 2.2 (Duality). The duality function (·)? on types is given by:

(AO
oB)? = A?⌦oB? (?o)? = 1

o

(A⌦oB)? = A?
O

oB? (1o)? = ?o

(&o{li : Ai}i2I)? = �o{li : Ai
?}i2I ?oA? = !oA?

(�o{li : Ai}i2I)? = &o{li : Ai
?}i2I !oA? = ?oA?

2.2. Processes. Let P,Q range over processes, given in Definition 2.3. Let x, y range over
channel endpoints, and m,n over channel endpoints of type either ?o or 1o.

Definition 2.3 (Processes). Processes (P,Q) are given by:

P,Q ::= x[y].P (output)
x(y).P (input)
x / lj .P (selection)
x . {li : Pi}i2I (branching)
0 (inaction)
P | Q (composition)
(⌫xAy)P (session restriction)



Deadlock in Communicating Systems

Deadlock arises from cyclic dependency between communication
operations when two processes share at least two channels.

OK

STUCK

In the presence of Mix and Cycle, there is an isomorphism between A⌦B and
A O B. Both A⌦B ( A O B and A O B ( A⌦B are derivable. Equivalently,
both (A?

O B?) O (A O B) and (A? ⌦B?) O (A⌦B) are derivable.

` A?, A ` B?, B

` A?, B?, A,B
Mix

` A?
O B?, A,B

O

` A?
O B?, A O B

O

` (A?
O B?) O (A O B)

O

` A?, A ` B?, B

` A? ⌦B?, A,B
⌦ ` A?, A ` B?, B

` A?, B?, A⌦B
⌦

` A? ⌦B?, A⌦B,A?, A,B?, B
Mix

` A? ⌦B?, A⌦B
Cycle2

` (A? ⌦B?) O (A⌦B)
O

We preserve the distinction between A ⌦ B and A O B, rather than replacing
them both with a single multiplicative connective, to distinguish between output
and input in the term assignment. However, to simplify derivations, both typing
rules have the same form. The usual tensor rule is derivable by using Mix.

Our type system performs priority-checking. Priorities can be inferred, as
in Kobayashi’s type system [30] and its implementation TyPiCal [26]. We have
opted for priority-checking, as the presentation is more elegant.

The following two examples illustrate the use of priorities. We first establish
the structure of the typing derivation, then calculate the priorities. We conclude
the section by showing the typing for the cyclic scheduler from § 1.

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y1[42].y2[true].0

⇤

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y2[true].y1[42].0

⇤

Example 2 (Cyclic process: deadlock-free). Consider the following process

P , (⌫x1y1)(⌫x2y2)
⇥
x1(v).x2(w).R | y1[n].y2[n0].Q

⇤

where R , x1().v().x2().w().0 and Q , y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0. First,
we show the typing derivation for x1(v).x2(w).R:

0 ` ; ;

R ` w :•, x2 :•, v :•, x1 :• ?4

x2(w).R ` v :•, x1 :•, x2 :•O
o1 •

O
o2 < o1

x1(v).x2(w).R ` x2 :•O
o1 •, x1 :•O

o2 •
O

(1)

Now the typing derivation for y1[n].y2[n0].Q:

y1[ ].0 ` y1 :•
1

n[ ].0 ` n :• 1
y2[ ].0 ` y1 :•

1
n0[ ].0 ` n0 :• 1

y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0 ` n0 :•, y2 :•,n :•, y1 :• Mix3

y2[n0].Q ` n :•, y1 :•, y2 :•⌦o3 •
⌦

o4 < o3
y1[n].y2[n0].Q ` y2 :•⌦o3 •, y1 :•⌦o4 •

⌦

(2)
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and input in the term assignment. However, to simplify derivations, both typing
rules have the same form. The usual tensor rule is derivable by using Mix.

Our type system performs priority-checking. Priorities can be inferred, as
in Kobayashi’s type system [30] and its implementation TyPiCal [26]. We have
opted for priority-checking, as the presentation is more elegant.

The following two examples illustrate the use of priorities. We first establish
the structure of the typing derivation, then calculate the priorities. We conclude
the section by showing the typing for the cyclic scheduler from § 1.

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y1[42].y2[true].0

⇤

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y2[true].y1[42].0

⇤

Example 2 (Cyclic process: deadlock-free). Consider the following process

P , (⌫x1y1)(⌫x2y2)
⇥
x1(v).x2(w).R | y1[n].y2[n0].Q

⇤

where R , x1().v().x2().w().0 and Q , y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0. First,
we show the typing derivation for x1(v).x2(w).R:

0 ` ; ;

R ` w :•, x2 :•, v :•, x1 :• ?4

x2(w).R ` v :•, x1 :•, x2 :•O
o1 •

O
o2 < o1

x1(v).x2(w).R ` x2 :•O
o1 •, x1 :•O

o2 •
O

(1)

Now the typing derivation for y1[n].y2[n0].Q:

y1[ ].0 ` y1 :•
1

n[ ].0 ` n :• 1
y2[ ].0 ` y1 :•

1
n0[ ].0 ` n0 :• 1

y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0 ` n0 :•, y2 :•,n :•, y1 :• Mix3

y2[n0].Q ` n :•, y1 :•, y2 :•⌦o3 •
⌦

o4 < o3
y1[n].y2[n0].Q ` y2 :•⌦o3 •, y1 :•⌦o4 •

⌦

(2)
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Γ Δ

x

(1)
0 ` ;

(?)
P ` �

P ` x :•,�
(ax)

pr(A?) < pr(A)

x!yA ` x :A?, y :A

(O)

P ` �, y :A, x :B o < pr(�)

x(y).P ` �, x :AO
o B

(⌦)
P ` �, y :A, x :B o < pr(�)

x[y].P ` �, x :A⌦o B

(�)
P ` �, x :Aj j 2 I

x / lj .P ` x :�o{li : Ai}i2I ; �

(&)

Pi ` �, x :Ai 8i 2 I

x . {li : Pi}i2I ` x :&o{li : Ai}i2I ; �

(mix)

P ` � Q ` �

P | Q ` �,�

(cycle)

P ` �, x :A, y :A?

(⌫xAy)P ` �

(?)

Q ` �, ~y : ~A
8A 2 ~A,  < pr(A)

8z 2 dom(�),  < pr(�(z))

?x[~y].Q ` �, x : ?o ~A

(cycle)

P ` �, x :A, y :A? pr(A) = pr(A?)

(⌫xAy)P ` �

(multicut)

P ` �, x1 :A1, . . . , xn :An Q ` �, y1 :A
?
1 , . . . , yn :A

?
n

(⌫xA1
1 y1 . . . x

An
n yn)(P | Q) ` �,�

(cut)

P ` �, x :A Q ` �, y :A?

(⌫xAy)(P | Q) ` �,�

(!)

P ` ?�, ~y : ~A
8z 2 dom(�),  < pr(?�(z))

!x(~y).P ` ?�, x : !o ~A

(W )

Q ` �

Q ` �, x : ?o ~A

(C)

Q ` �, x : ?o ~A, x
0 : ?o ~A

Q{x/x0} ` �, x : ?o ~A

Figure 1: Typing rules for the ⇡- calculus with C-types.
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The linear logic type system guarantees deadlock-freedom because
two processes can only be connected by a single channel.

Deadlock arises from cyclic dependency between communication
operations when two processes share at least two channels.

OK

STUCK

In the presence of Mix and Cycle, there is an isomorphism between A⌦B and
A O B. Both A⌦B ( A O B and A O B ( A⌦B are derivable. Equivalently,
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` (A? ⌦B?) O (A⌦B)
O

We preserve the distinction between A ⌦ B and A O B, rather than replacing
them both with a single multiplicative connective, to distinguish between output
and input in the term assignment. However, to simplify derivations, both typing
rules have the same form. The usual tensor rule is derivable by using Mix.

Our type system performs priority-checking. Priorities can be inferred, as
in Kobayashi’s type system [30] and its implementation TyPiCal [26]. We have
opted for priority-checking, as the presentation is more elegant.

The following two examples illustrate the use of priorities. We first establish
the structure of the typing derivation, then calculate the priorities. We conclude
the section by showing the typing for the cyclic scheduler from § 1.

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y1[42].y2[true].0

⇤

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y2[true].y1[42].0

⇤

Example 2 (Cyclic process: deadlock-free). Consider the following process

P , (⌫x1y1)(⌫x2y2)
⇥
x1(v).x2(w).R | y1[n].y2[n0].Q

⇤

where R , x1().v().x2().w().0 and Q , y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0. First,
we show the typing derivation for x1(v).x2(w).R:

0 ` ; ;

R ` w :•, x2 :•, v :•, x1 :• ?4

x2(w).R ` v :•, x1 :•, x2 :•O
o1 •

O
o2 < o1

x1(v).x2(w).R ` x2 :•O
o1 •, x1 :•O

o2 •
O

(1)

Now the typing derivation for y1[n].y2[n0].Q:

y1[ ].0 ` y1 :•
1

n[ ].0 ` n :• 1
y2[ ].0 ` y1 :•

1
n0[ ].0 ` n0 :• 1

y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0 ` n0 :•, y2 :•,n :•, y1 :• Mix3

y2[n0].Q ` n :•, y1 :•, y2 :•⌦o3 •
⌦

o4 < o3
y1[n].y2[n0].Q ` y2 :•⌦o3 •, y1 :•⌦o4 •

⌦

(2)

7

In the presence of Mix and Cycle, there is an isomorphism between A⌦B and
A O B. Both A⌦B ( A O B and A O B ( A⌦B are derivable. Equivalently,
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` A? ⌦B?, A⌦B
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` (A? ⌦B?) O (A⌦B)
O

We preserve the distinction between A ⌦ B and A O B, rather than replacing
them both with a single multiplicative connective, to distinguish between output
and input in the term assignment. However, to simplify derivations, both typing
rules have the same form. The usual tensor rule is derivable by using Mix.

Our type system performs priority-checking. Priorities can be inferred, as
in Kobayashi’s type system [30] and its implementation TyPiCal [26]. We have
opted for priority-checking, as the presentation is more elegant.

The following two examples illustrate the use of priorities. We first establish
the structure of the typing derivation, then calculate the priorities. We conclude
the section by showing the typing for the cyclic scheduler from § 1.

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y1[42].y2[true].0

⇤

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y2[true].y1[42].0

⇤

Example 2 (Cyclic process: deadlock-free). Consider the following process

P , (⌫x1y1)(⌫x2y2)
⇥
x1(v).x2(w).R | y1[n].y2[n0].Q

⇤

where R , x1().v().x2().w().0 and Q , y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0. First,
we show the typing derivation for x1(v).x2(w).R:

0 ` ; ;

R ` w :•, x2 :•, v :•, x1 :• ?4

x2(w).R ` v :•, x1 :•, x2 :•O
o1 •

O
o2 < o1

x1(v).x2(w).R ` x2 :•O
o1 •, x1 :•O

o2 •
O

(1)

Now the typing derivation for y1[n].y2[n0].Q:

y1[ ].0 ` y1 :•
1

n[ ].0 ` n :• 1
y2[ ].0 ` y1 :•

1
n0[ ].0 ` n0 :• 1

y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0 ` n0 :•, y2 :•,n :•, y1 :• Mix3

y2[n0].Q ` n :•, y1 :•, y2 :•⌦o3 •
⌦

o4 < o3
y1[n].y2[n0].Q ` y2 :•⌦o3 •, y1 :•⌦o4 •

⌦
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Deadlock-Freedom and Linear Logic

x1

The linear logic type system rejects both the processes above because 
they are connected by two channels.

y1
x2 y2

Deadlock arises from cyclic dependency between communication
operations when two processes share at least two channels.

OK

STUCK

In the presence of Mix and Cycle, there is an isomorphism between A⌦B and
A O B. Both A⌦B ( A O B and A O B ( A⌦B are derivable. Equivalently,
both (A?

O B?) O (A O B) and (A? ⌦B?) O (A⌦B) are derivable.
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` A?, B?, A,B
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` (A?
O B?) O (A O B)

O
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` A? ⌦B?, A,B
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` A?, B?, A⌦B
⌦

` A? ⌦B?, A⌦B,A?, A,B?, B
Mix

` A? ⌦B?, A⌦B
Cycle2

` (A? ⌦B?) O (A⌦B)
O

We preserve the distinction between A ⌦ B and A O B, rather than replacing
them both with a single multiplicative connective, to distinguish between output
and input in the term assignment. However, to simplify derivations, both typing
rules have the same form. The usual tensor rule is derivable by using Mix.

Our type system performs priority-checking. Priorities can be inferred, as
in Kobayashi’s type system [30] and its implementation TyPiCal [26]. We have
opted for priority-checking, as the presentation is more elegant.

The following two examples illustrate the use of priorities. We first establish
the structure of the typing derivation, then calculate the priorities. We conclude
the section by showing the typing for the cyclic scheduler from § 1.

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y1[42].y2[true].0

⇤

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y2[true].y1[42].0

⇤

Example 2 (Cyclic process: deadlock-free). Consider the following process

P , (⌫x1y1)(⌫x2y2)
⇥
x1(v).x2(w).R | y1[n].y2[n0].Q

⇤

where R , x1().v().x2().w().0 and Q , y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0. First,
we show the typing derivation for x1(v).x2(w).R:

0 ` ; ;

R ` w :•, x2 :•, v :•, x1 :• ?4

x2(w).R ` v :•, x1 :•, x2 :•O
o1 •

O
o2 < o1

x1(v).x2(w).R ` x2 :•O
o1 •, x1 :•O

o2 •
O

(1)

Now the typing derivation for y1[n].y2[n0].Q:

y1[ ].0 ` y1 :•
1

n[ ].0 ` n :• 1
y2[ ].0 ` y1 :•

1
n0[ ].0 ` n0 :• 1

y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0 ` n0 :•, y2 :•,n :•, y1 :• Mix3

y2[n0].Q ` n :•, y1 :•, y2 :•⌦o3 •
⌦

o4 < o3
y1[n].y2[n0].Q ` y2 :•⌦o3 •, y1 :•⌦o4 •

⌦

(2)
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In the presence of Mix and Cycle, there is an isomorphism between A⌦B and
A O B. Both A⌦B ( A O B and A O B ( A⌦B are derivable. Equivalently,
both (A?

O B?) O (A O B) and (A? ⌦B?) O (A⌦B) are derivable.

` A?, A ` B?, B

` A?, B?, A,B
Mix

` A?
O B?, A,B

O

` A?
O B?, A O B

O

` (A?
O B?) O (A O B)

O

` A?, A ` B?, B

` A? ⌦B?, A,B
⌦ ` A?, A ` B?, B

` A?, B?, A⌦B
⌦

` A? ⌦B?, A⌦B,A?, A,B?, B
Mix

` A? ⌦B?, A⌦B
Cycle2

` (A? ⌦B?) O (A⌦B)
O

We preserve the distinction between A ⌦ B and A O B, rather than replacing
them both with a single multiplicative connective, to distinguish between output
and input in the term assignment. However, to simplify derivations, both typing
rules have the same form. The usual tensor rule is derivable by using Mix.

Our type system performs priority-checking. Priorities can be inferred, as
in Kobayashi’s type system [30] and its implementation TyPiCal [26]. We have
opted for priority-checking, as the presentation is more elegant.

The following two examples illustrate the use of priorities. We first establish
the structure of the typing derivation, then calculate the priorities. We conclude
the section by showing the typing for the cyclic scheduler from § 1.

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y1[42].y2[true].0

⇤

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y2[true].y1[42].0

⇤

Example 2 (Cyclic process: deadlock-free). Consider the following process

P , (⌫x1y1)(⌫x2y2)
⇥
x1(v).x2(w).R | y1[n].y2[n0].Q

⇤

where R , x1().v().x2().w().0 and Q , y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0. First,
we show the typing derivation for x1(v).x2(w).R:

0 ` ; ;

R ` w :•, x2 :•, v :•, x1 :• ?4

x2(w).R ` v :•, x1 :•, x2 :•O
o1 •

O
o2 < o1

x1(v).x2(w).R ` x2 :•O
o1 •, x1 :•O

o2 •
O

(1)

Now the typing derivation for y1[n].y2[n0].Q:

y1[ ].0 ` y1 :•
1

n[ ].0 ` n :• 1
y2[ ].0 ` y1 :•

1
n0[ ].0 ` n0 :• 1

y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0 ` n0 :•, y2 :•,n :•, y1 :• Mix3

y2[n0].Q ` n :•, y1 :•, y2 :•⌦o3 •
⌦

o4 < o3
y1[n].y2[n0].Q ` y2 :•⌦o3 •, y1 :•⌦o4 •

⌦
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Priority-based Typing for Deadlock-Freedom 

Kobayashi [1997 -]; Padovani [2013, 2014] developed

type systems for deadlock-free pi-calculus processes

based on priorities.

Priorities o, o’… are natural numbers and annotate types.

Priorities must obey the following laws:

(i) an action (input/output) of priority o must be prefixed only by 

actions of priorities strictly smaller than o.

(ii) communication requires equal priorities of dual actions.

Priority-based type systems type more processes than linear logic, 

as they allow processes to share more than a single channel.



Priority-based Typing for Deadlock-Freedom 

Exercise: are the following processes typabable?

(i) pr(x1) < pr(x2)    pr(y1) < pr(y2)
(ii)  pr(x1) = pr(y1)    pr(x2) = pr(y2)

(i) pr(x1) < pr(x2)    pr(y2) < pr(y1)
(ii)  pr(x1) = pr(y1)    pr(x2) = pr(y2)

In the presence of Mix and Cycle, there is an isomorphism between A⌦B and
A O B. Both A⌦B ( A O B and A O B ( A⌦B are derivable. Equivalently,
both (A?

O B?) O (A O B) and (A? ⌦B?) O (A⌦B) are derivable.

` A?, A ` B?, B

` A?, B?, A,B
Mix

` A?
O B?, A,B

O

` A?
O B?, A O B

O

` (A?
O B?) O (A O B)

O

` A?, A ` B?, B

` A? ⌦B?, A,B
⌦ ` A?, A ` B?, B

` A?, B?, A⌦B
⌦

` A? ⌦B?, A⌦B,A?, A,B?, B
Mix

` A? ⌦B?, A⌦B
Cycle2

` (A? ⌦B?) O (A⌦B)
O

We preserve the distinction between A ⌦ B and A O B, rather than replacing
them both with a single multiplicative connective, to distinguish between output
and input in the term assignment. However, to simplify derivations, both typing
rules have the same form. The usual tensor rule is derivable by using Mix.

Our type system performs priority-checking. Priorities can be inferred, as
in Kobayashi’s type system [30] and its implementation TyPiCal [26]. We have
opted for priority-checking, as the presentation is more elegant.

The following two examples illustrate the use of priorities. We first establish
the structure of the typing derivation, then calculate the priorities. We conclude
the section by showing the typing for the cyclic scheduler from § 1.

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y1[42].y2[true].0

⇤

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y2[true].y1[42].0

⇤

Example 2 (Cyclic process: deadlock-free). Consider the following process

P , (⌫x1y1)(⌫x2y2)
⇥
x1(v).x2(w).R | y1[n].y2[n0].Q

⇤

where R , x1().v().x2().w().0 and Q , y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0. First,
we show the typing derivation for x1(v).x2(w).R:

0 ` ; ;

R ` w :•, x2 :•, v :•, x1 :• ?4

x2(w).R ` v :•, x1 :•, x2 :•O
o1 •

O
o2 < o1

x1(v).x2(w).R ` x2 :•O
o1 •, x1 :•O

o2 •
O

(1)

Now the typing derivation for y1[n].y2[n0].Q:

y1[ ].0 ` y1 :•
1

n[ ].0 ` n :• 1
y2[ ].0 ` y1 :•

1
n0[ ].0 ` n0 :• 1

y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0 ` n0 :•, y2 :•,n :•, y1 :• Mix3

y2[n0].Q ` n :•, y1 :•, y2 :•⌦o3 •
⌦

o4 < o3
y1[n].y2[n0].Q ` y2 :•⌦o3 •, y1 :•⌦o4 •

⌦

(2)

7

In the presence of Mix and Cycle, there is an isomorphism between A⌦B and
A O B. Both A⌦B ( A O B and A O B ( A⌦B are derivable. Equivalently,
both (A?

O B?) O (A O B) and (A? ⌦B?) O (A⌦B) are derivable.
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` (A? ⌦B?) O (A⌦B)
O

We preserve the distinction between A ⌦ B and A O B, rather than replacing
them both with a single multiplicative connective, to distinguish between output
and input in the term assignment. However, to simplify derivations, both typing
rules have the same form. The usual tensor rule is derivable by using Mix.

Our type system performs priority-checking. Priorities can be inferred, as
in Kobayashi’s type system [30] and its implementation TyPiCal [26]. We have
opted for priority-checking, as the presentation is more elegant.

The following two examples illustrate the use of priorities. We first establish
the structure of the typing derivation, then calculate the priorities. We conclude
the section by showing the typing for the cyclic scheduler from § 1.

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y1[42].y2[true].0

⇤

(⌫x1y1)(⌫x2y2)
⇥
x1(z).x2(w).0 | y2[true].y1[42].0

⇤

Example 2 (Cyclic process: deadlock-free). Consider the following process

P , (⌫x1y1)(⌫x2y2)
⇥
x1(v).x2(w).R | y1[n].y2[n0].Q

⇤

where R , x1().v().x2().w().0 and Q , y1[ ].0 | n[ ].0 | y2[ ].0 | n0[ ].0. First,
we show the typing derivation for x1(v).x2(w).R:

0 ` ; ;

R ` w :•, x2 :•, v :•, x1 :• ?4

x2(w).R ` v :•, x1 :•, x2 :•O
o1 •

O
o2 < o1

x1(v).x2(w).R ` x2 :•O
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Now the typing derivation for y1[n].y2[n0].Q:

y1[ ].0 ` y1 :•
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Our Goal: Priority-based Linear Logic Typing   

We combine classical linear logic with priorities for a more 
expressive session type system for deadlock-free processes.

Replace the cut rule with mix and cycle. 

(1)
0 ` ;

(?)
P ` �

P ` x :•,�
(ax)

[x$yA] ` x :A? ; y :A

(O)

P ` �, y :A, x :B

x(y).P ` x :AO
o B ; �

(⌦)
P ` �, y :A, x :B

x[y].P ` x :A⌦o B ; �

(�)
P ` �, x :Aj j 2 I

x / lj .P ` x :�o{li : Ai}i2I ; �

(&)

Pi ` �, x :Ai 8i 2 I

x . {li : Pi}i2I ` x :&o{li : Ai}i2I ; �

(mix)

P ` � Q ` �

P | Q ` �,�

(cycle)

P ` �, x :A, y :A?

(⌫xAy)P ` �

(?)

Q ` �, ~y : ~A
8A 2 ~A,  < pr(A)
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?x[~y].Q ` �, x : ?o ~A

(!)
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(W )

Q ` �
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(C)
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Q{x/x0} ` �, x : ?o ~A

Figure 1: Typing rules for the ⇡- calculus with C-types.
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With these rules, multicut is derivable. 
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Our Goal: Priority-based Linear Logic Typing   

Propositions are annotated with priorities.

Proofs must obey laws (i) and (ii) on priorities.
satisfies law (i) on strictly smaller.

x!yA ` x :A?, y :A
Ax

P ` � Q ` �

P | Q ` �,�
Mix

P ` �, x :A, y :A?

(⌫xAy)P ` �
Cycle

0 ` ; ;
x[ ].0 ` x :1o 1

P ` � o < pr(� )

x().P ` x :?o,�
?

P ` � ,y :A, x :B o < pr(�)

x(y).P` � , x :AO
o B

(O)
P ` � , y :A, x :B o < pr(�)

x[y].P ` � , x :A⌦o B
(⌦)

8i 2 I.(Pi ` �, x :Ai) o < pr(� )

x . {li : Pi}i2I ` �, x :&o{li : Ai}i2I
&

P ` �, x :Aj j 2 I o < pr(� )

x / lj .P ` �, x :�o{li : Ai}i2I
�

P ` ?� , y :A o < pr(�)

!x(y).P ` ?� , x : !o A
(!)

P ` � , y :A o < pr(�)

?x[y].P ` � , x : ?o A
(?)

P ` �
P ` �, x : ?o A

W
P ` �, y : ? A, z : ?

0
A o   o  0 o < pr(� )

P{x/y, x/z} ` �, x : ?o A
C

Fig. 2. Typing rules for PCP.

o is strictly smaller than any priorities in the continuation process P , enforcing
law (i) above. This is captured by o < pr(� ) in the premises of both rules,
abbreviating “for all z 2 dom(� ), o < pr(� (z))”. Rules & and � type external
and internal choice, respectively, and follow the previous two rules. Rule ! types
a server and states that if P communicates along y following protocol A, then
!x(y).P communicates along x following protocol !o A. The three remaining rules
type different numbers of clients. Rule ? is for a single client: if P communicates
along y following A, then ?x[y].P communicates along x following ?o A. Rule W
is for no client: if P does not communicate along any channel following A, then
it may be regarded as communicating along x following ?o A, for some priority
o. Rule C is for multiple clients: if P communicates along y following ? A, and z
following protocol ?

0
A, then P{x/y, x/z} communicates along a single channel

x following ?o A, where o 6  and o 6 0. The last two conditions are necessary
to deal with some cases in the proof of Cycle-elimination (Thm. 1).

Lifting preserves typability, by an easy induction on typing derivations.

Lemma 1. If P ` � then P ` "t � .

We will use this result in the form of an admissible rule:
P ` �

P ` "t �
"t

The Design of PCP We have included Mix and Cycle, which allow derivation
of both the standard Cut and the Multicut by Abramsky et al. [2].

` �, A1, . . . , An ` �, A?
1 , . . . , A

?
n

` �,�, A1, . . . , An, A?
1 , . . . , A

?
n

Mix

` �,�
Cyclen

)
Multicut
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o. Rule C is for multiple clients: if P communicates along y following ? A, and z
following protocol ?
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A, then P{x/y, x/z} communicates along a single channel

x following ?o A, where o 6  and o 6 0. The last two conditions are necessary
to deal with some cases in the proof of Cycle-elimination (Thm. 1).

Lifting preserves typability, by an easy induction on typing derivations.

Lemma 1. If P ` � then P ` "t � .

We will use this result in the form of an admissible rule:
P ` �

P ` "t �
"t

The Design of PCP We have included Mix and Cycle, which allow derivation
of both the standard Cut and the Multicut by Abramsky et al. [2].

` �, A1, . . . , An ` �, A?
1 , . . . , A
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?
n
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rem for CLL. Consequently, the results for PCP are subject reduction (Thm. 2),
top-level deadlock-freedom (Thm. 3), and full deadlock-freedom for closed pro-
cesses (Thm. 4). In § 5 we discuss related work and conclude the paper.

2 PCP: Classical Processes with Mix and Cycle

Priority-based CP (PCP) follows the style of Wadler’s Classical Processes (CP)
[41], with details inspired by Carbone et al. [14] and Caires and Pérez [11].

Types We start with types, which are based on CLL propositions. Let A,B
range over types, given in Def. 1. Let o, 2 N[ {!} range over priorities, which
are used to annotate types. Let ! be a special element such that o < ! for all
o 2 N. Often, we will omit !. We will explain priorities later in this section.

Definition 1 (Types). Types (A,B) are given by:

A,B ::= ?o | 1o | A⌦o B | AO
o B | �o {li : Ai}i2I | &o{li : Ai}i2I | ?o A | !o A

?o and 1o are associated with channel endpoints that are ready to be closed.
A⌦o B (respectively, AO

o B) is associated with a channel endpoint that first
outputs (respectively, inputs) a channel of type A and then proceeds as B.
�o{li : Ai}i2I is associated with a channel endpoint over which we can select a
label from {li}i2I , and proceed as Ai. Dually, &o{li : Ai}i2I is associated with
a channel endpoint that can offer a set of labelled types. ?o A types a collection
of clients requesting A. Dually, !o A types a server repeatedly accepting A.

Duality on types is total and is given in Def. 2. It preserves priorities of types.

Definition 2 (Duality). The duality function (·)? on types is given by:

(AO
o B)? = A? ⌦o B? (?o)? = 1o

(A⌦o B)? = A?
O

o B? (1o)? = ?o

(&o{li : Ai}i2I)
? = �o{li : Ai

?}i2I ?o A? = !o A?

(�o{li : Ai}i2I)
? = &o{li : Ai

?}i2I !o A? = ?o A?

Processes Let P,Q range over processes, given in Def. 3. Let x, y range over
channel endpoints, and m,n over channel endpoints of type either ?o or 1o.

Definition 3 (Processes). Processes (P,Q) are given by:

P,Q ::= x[y].P (output) 0 (inaction)
x(y).P (input) P | Q (composition)
x / lj .P (selection) (⌫xAy)P (session restriction)
x . {li : Pi}i2I (branching) x[ ].0 (empty output)
x!yA (forwarding) x().P (empty input)

Process x[y].P (respectively, x(y).P ) outputs (respectively, inputs) y on channel
endpoint x, and proceeds as P . Process x/ lj .P uses x to select lj from a labelled
choice process, typically being x . {li : Pi}i2I , and triggers Pj ; labels indexed by
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law (i) above. This is captured by o < pr(� ) in the premises of both rules,
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Our Goal: Priority-based Linear Logic Typing   

When forming a cycle, the priorities of the 
connected types must be equal, to satisfy (ii):

Meaning: eventually x and y will be ready to communicate
at the same time/step, allowing a reduction step and a proof rewrite.

(1)
0 ` ;

(?)
P ` �

P ` x :•,�
(ax)

[x$yA] ` x :A? ; y :A

(O)

P ` �, y :A, x :B

x(y).P ` x :AO
o B ; �

(⌦)
P ` �, y :A, x :B

x[y].P ` x :A⌦o B ; �

(�)
P ` �, x :Aj j 2 I

x / lj .P ` x :�o{li : Ai}i2I ; �

(&)

Pi ` �, x :Ai 8i 2 I

x . {li : Pi}i2I ` x :&o{li : Ai}i2I ; �

(mix)

P ` � Q ` �

P | Q ` �,�

(cycle)

P ` �, x :A, y :A?

(⌫xAy)P ` �

(?)

Q ` �, ~y : ~A
8A 2 ~A,  < pr(A)

8z 2 dom(�),  < pr(�(z))

?x[~y].Q ` �, x : ?o ~A

(multicut)

P ` �, A1, . . . , An Q ` �, A?
1 , . . . , A

?
n

P | Q ` �,�

(!)

P ` ?�, ~y : ~A
8z 2 dom(�),  < pr(?�(z))

!x(~y).P ` ?�, x : !o ~A

(W )

Q ` �

Q ` �, x : ?o ~A

(C)

Q ` �, x : ?o ~A, x
0 : ?o ~A

Q{x/x0} ` �, x : ?o ~A

Figure 1: Typing rules for the ⇡- calculus with C-types.
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Equality of priorities is captured by the duality definition:
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Beta-Reduction using Mix and Cycle

�AxCycle (⌫yAz)(x!yA | P ) ` �, x :A? =) P [x/z] ` �, x :A?

�1? (⌫xAy)(x[ ].0 | y().P ) ` � =) P ` �

��& (⌫x�o{li:Bi}i2Iy)
�
x / lj .P | y . {li : Qi}i2I

�
` �,� =) (⌫xBjy)

�
P | Qj

�
` �,�

�!? (⌫x !o Ay)
�
!x(v).P | ?y[w].Q

�
` ?�,� =) (⌫vAw)

�
P | Q

�
` ?�,�

�!W (⌫x !o Ay)
�
!x(v).P | Q

�
` ?�,� =) Q ` ?�,�

�!C (⌫x !o Ay)
�
!x(v).P | Q[x/x0]

�
` ?�,� =)

(⌫x !o Ay)(⌫x0 !o Ay0)
�
!x(v).P | !x0(v0).Pv0 | Q

�
` ?�,�

Rule �AxCycle simplifies a cycle involving an axiom and a process P ` �, z :A?,
resulting in a judgement for P [x/z]. Rule �1? closes channels and eliminates
them. Rule ��& is similar to �⌦O, corresponding to communication between
a selection and a branching process. Rule �!? simplifies a cycle between one
server of type !o A and one client of type ?o A. The last two rules di↵er in
the number of clients involved: rule �!W considers no clients, and �!C considers
multiple clients. All �-reductions are e↵ectively Cut reductions, because cycle is
applied to channels from separate parts of the derivation.

We also have commuting conversions, following [13,39], which allow com-
munication prefixes to be moved towards the conclusion of a typing derivation,
corresponding to pulling them out of the scope of cycle rules. Consequently, if
a prefix on a channel endpoint x with priority o is pulled out at top level, then
to preserve priority conditions in the typing rules in Fig. 2, it is necessary to
increase priorities of all actions after the prefix on x. This is achieved by using
"o+1(·) in the typing contexts. The detailed typing derivations are in §C.

? (⌫ex eAey)
�
x().P | Q

�
` �,�, x :• =) x().[(⌫ex eAey)

�
P | Q

�
] ` �,�, x :•

⌦ (⌫ex eAey)
�
x[v].P | Q

�
` �,�, x :A⌦o B =)

x[v].
⇥
(⌫ex eAey)

�
P | Q

�⇤
` ("o+1 � ), ("o+1 �), x : ("o+1 A)⌦o ("o+1 B)

O (⌫ex eAey)
�
x(w).P | Q

�
` �,�, x :AO

o B =)
x(w).

⇥
(⌫ex eAey)

�
P | Q

�⇤
` ("o+1 � ), ("o+1 �), x : ("o+1 A)O

o ("o+1 B)

� (⌫ex eAey)(x / lj .P | Q) ` �,�, x :�o{li : Bi}i2I =)
x / lj .

⇥
(⌫ex eAey)

�
P | Q

�⇤
` ("o+1 � ), ("o+1 �), x :�o{li : "o+1 Bi}i2I

& (⌫ex eAey)(x . {li : Pi}i2I | Q) ` �,�, x :&o{li : Bi}i2I =)
x . {li : (⌫ex

eAey)
�
Pi | Q

�
}i2I ` ("o+1 � ), ("o+1 �), x :&o{li : "o+1 Bi}i2I

? (⌫ex eAey)
�
?x[w].P | Q

�
` �, �, x : ?o A =)

?x[w].
⇥
(⌫ex eAey)

�
P | Q

�⇤
` ("o+1 � ), ("o+1 �), x : ?o ("o+1 A)

! (⌫ex g?o Aey)
�
!x(v).P | Q

�
` ?�, �, x : !o A =)

!x(v).
⇥
(⌫ex g?o Aey)

�
P | Q

�⇤
` ("o+1 � ), ("o+1 �), x : !o ("o+1 A)
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Beta-reduction for tensor/output and par/input: derivation

Beta-reduction for other connectives: summary

o < pr(� )
P ` �, v :A, x :B

x[v].P ` �, x :A⌦o B
(⌦)

o < pr(�)
Q ` �, w :A?, y :B?

y(w).Q ` �, y :A?
O

o B? (O)

x[v].P | y(w).Q ` �,�, x :A⌦o B, y :A?
O

o B? (mix)

(⌫xA⌦o By)
�
x[v].P | y(w).Q

�
` �,�

(cycle)
=)

P ` �, v :A, x :B Q ` �, w :A?, y :B?

P | Q ` �,�, v :A, x : B,w :A?, y : B? (mix)

(⌫xBy)
�
P | Q

�
` �,�, v :A,w :A? (cycle)

(⌫vAw)(⌫xBy)
�
P | Q

�
` �,�

(cycle)

Fig. 3. �-reduction for ⌦ and O.

3 Operational Semantics of Cyclic CP

We define structural equivalence to be the smallest congruence relation satisfying
the following rules. The detailed derivations showing that structural equivalence
preserves typing are in §A.

AxSwp y!xA? ` y :A, x :A? ⌘ x!yA ` x :A?, y :A

NilMix 0 | P ` � ⌘ P ` �

ScopeExt (⌫xAy)(P | Q) ` �,� ⌘ (⌫xAy)P | Q ` �,� x, y /2 fn(Q)

AxCycle (⌫xA?
y)x!yA ` ; ⌘ 0 ` ;

CycleSwp (⌫ey eA?ex)
�
Q | P

�
` �,� ⌘ (⌫ex eAey)

�
P | Q

�
` �,�

CycleAsc (⌫ez eB ew)
⇥
(⌫ex eAey)

�
P | Q

�
| R

⇤
` �,�,⇥ ⌘

(⌫ex eAey)
⇥
P | (⌫ez eB ew)

�
Q | R

�⇤
` �,�,⇥

AxSwp allows swapping channels in the forwarding process. NilMix states that
inaction is the neutral element for parallel composition. ScopeExt is the standard
scope extrusion rule. AxCycle states that cycle applied to a forwarding process is
equivalent to inaction. This allows elimination of unnecessary cycles. CycleSwp
and CycleAsc state, respectively, the commutativity and associativity of cycles.

The core of the operational semantics consists of �-reductions. In ⇡-calculus
terms these are communication steps; in logical terms they are cycle-elimination
steps. Rule �⌦O is given in Fig. 3 to illustrate priorities. It simplifies a cycle
connecting x of type A⌦o B and y of type AO

o B, which corresponds to com-
munication between an output and an input, respectively. Both actions have
priority o, which is strictly smaller than any priorities in their typing contexts,
respecting the fact that they are top-level prefixes. The rest of the �-reductions
are summarised below, and full derivations are in §B.
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Priority-based Classical Linear Logic: Results

Theorem (cycle elimination). Given a proof of a sequent, we can 
construct a cycle-free proof for it.

Proof: (following cut elimination proof) a cycle is eliminated by either:
i) replacing it with another cycle on smaller propositions;
ii) pushing it further up the proof tree.

Since we are allowing cyclic structures,
how do we make sure we capture only the good ones?



Kobayashi’s Reasoning of Deadlock-Freedom   

A concurrent system is a collection of parallel processes, each 
with a top-level input or output action (prefix).

Pick a top-level prefix with smallest priority o: x(z), say.

Somewhere there is the co-action y[42] with equal priority o.

y[42] must be in a different parallel component, otherwise
it would be guarded by x(z), requiring o < o.

y[42] must be a top-level prefix, otherwise it is guarded by a prefix
with priority o’ < o, contradicting the dominance of o.

Communication on endpoints x and y is possible immediately.



Priority-based CP: Results

Cycle elimination corresponds to communication.

Theorem (subject reduction). Well-typed processes reduce to 
well-typed processes.

Proof: beta-reductions and commuting conversions.

Theorem (top-level deadlock freedom). If process P is well typed 
and it is a cycle, then there is some Q, such that P reduces to Q
and Q is not a cycle.

Proof: follows from cycle elimination.



Conclusion and Future Work

• Presented a new priority-based linear logic combining mix and 
cycle rules with Kobayashi’s priorities.

• Used it as a basis for a Curry-Howard isomorphism with session 
typed pi-calculus, allowing “good” cyclic processes.

• We prove the cycle elimination theorem, obtaining as a result 
deadlock freedom for session typed processes.

• Future work:
i) develop a type system for a functional language, GV with cycle 

and translate it to our system.
ii) extend our priority-based logic to allow recursion and sharing.



Thank you!

Questions?


