
A Linear Decomposition
of Multiparty Sessions

for Safe Distributed Programming

Alceste Scalas1 Ornela Dardha2 Raymond Hu1 Nobuko Yoshida1

(1) (2)

Open Problems in Concurrency Theory — Vien, 27 June 2017

Supported by the UK EPSRC grant EP/K034413/1, From Data Types to Session
Types: A Basis for Concurrency and Distribution (ABCD)

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

Intro Background Approach Encoding Properties Implementation Conclusion

A Motivating Example: Peer-to-Peer Game

Srv Pa Pb Pc

–

– – –

Unordered

Alt

Alt

Alt
Loop

PlayA(s[a])

PlayB(s[b])

PlayC(s[c])

InfoBC(String)

InfoCA(String)

InfoAB(String)

Mov1AB(Int)

Mov1BC(Int)

Mov1CA(Int)

Mov2CA(Bool)

Mov2AB(Bool)

Mov2BC(Bool)

Mov1CA(Int)

Mov2CA(Bool)

—

G
am

e

Clients Pa, Pb, Pc want to play a game as
roles a, b, c via a matchmaking server Srv

The server Srv sends some networking data
to the clients, so they “know each other”

The clients can now interact directly in a
multiparty session: they first exchange
some information. . .

. . . and then begin the main Game loop

Intro Background Approach Encoding Properties Implementation Conclusion

A Motivating Example: Peer-to-Peer Game

Srv Pa Pb Pc

–

– – –

Unordered

Alt

Alt

Alt
Loop

PlayA(s[a])

PlayB(s[b])

PlayC(s[c])

InfoBC(String)

InfoCA(String)

InfoAB(String)

Mov1AB(Int)

Mov1BC(Int)

Mov1CA(Int)

Mov2CA(Bool)

Mov2AB(Bool)

Mov2BC(Bool)

Mov1CA(Int)

Mov2CA(Bool)

—

G
am

e

Clients Pa, Pb, Pc want to play a game as
roles a, b, c via a matchmaking server Srv

The server Srv sends some networking data
to the clients, so they “know each other”

The clients can now interact directly in a
multiparty session: they first exchange
some information. . .

. . . and then begin the main Game loop

Intro Background Approach Encoding Properties Implementation Conclusion

A Motivating Example: Peer-to-Peer Game

Srv Pa Pb Pc

–

– – –

Unordered

Alt

Alt

Alt
Loop

PlayA(s[a])

PlayB(s[b])

PlayC(s[c])

InfoBC(String)

InfoCA(String)

InfoAB(String)

Mov1AB(Int)

Mov1BC(Int)

Mov1CA(Int)

Mov2CA(Bool)

Mov2AB(Bool)

Mov2BC(Bool)

Mov1CA(Int)

Mov2CA(Bool)

—

G
am

e

Clients Pa, Pb, Pc want to play a game as
roles a, b, c via a matchmaking server Srv

The server Srv sends some networking data
to the clients, so they “know each other”

The clients can now interact directly in a
multiparty session: they first exchange
some information. . .

. . . and then begin the main Game loop

Intro Background Approach Encoding Properties Implementation Conclusion

A Motivating Example: Peer-to-Peer Game

Srv Pa Pb Pc

–

– – –

Unordered

Alt

Alt

Alt
Loop

PlayA(s[a])

PlayB(s[b])

PlayC(s[c])

InfoBC(String)

InfoCA(String)

InfoAB(String)

Mov1AB(Int)

Mov1BC(Int)

Mov1CA(Int)

Mov2CA(Bool)

Mov2AB(Bool)

Mov2BC(Bool)

Mov1CA(Int)

Mov2CA(Bool)

—

G
am

e

Clients Pa, Pb, Pc want to play a game as
roles a, b, c via a matchmaking server Srv

The server Srv sends some networking data
to the clients, so they “know each other”

The clients can now interact directly in a
multiparty session: they first exchange
some information. . .

. . . and then begin the main Game loop

Intro Background Approach Encoding Properties Implementation Conclusion

A Motivating Example: Peer-to-Peer Game

Srv Pa Pb Pc

–

– – –

Unordered

Alt

Alt

Alt
Loop

PlayA(s[a])

PlayB(s[b])

PlayC(s[c])

InfoBC(String)

InfoCA(String)

InfoAB(String)

Mov1AB(Int)

Mov1BC(Int)

Mov1CA(Int)

Mov2CA(Bool)

Mov2AB(Bool)

Mov2BC(Bool)

Mov1CA(Int)

Mov2CA(Bool)

—

G
am

e

Implementing this specification is
challenging:

▸ structured protocol
▸ choices
▸ inter-role message dependencies
▸ recursion

▸ non-fixed communication topology
▸ initially client-to-server
▸ later becoming peer-to-peer

▸ risks: protocol violations, deadlocks

Can we provide a formally grounded way
to address these challenges?

Intro Background Approach Encoding Properties Implementation Conclusion

A Motivating Example: Peer-to-Peer Game

Srv Pa Pb Pc

–

– – –

Unordered

Alt

Alt

Alt
Loop

PlayA(s[a])

PlayB(s[b])

PlayC(s[c])

InfoBC(String)

InfoCA(String)

InfoAB(String)

Mov1AB(Int)

Mov1BC(Int)

Mov1CA(Int)

Mov2CA(Bool)

Mov2AB(Bool)

Mov2BC(Bool)

Mov1CA(Int)

Mov2CA(Bool)

—

G
am

e

Implementing this specification is
challenging:

▸ structured protocol
▸ choices
▸ inter-role message dependencies
▸ recursion

▸ non-fixed communication topology
▸ initially client-to-server
▸ later becoming peer-to-peer

▸ risks: protocol violations, deadlocks

Can we provide a formally grounded way
to address these challenges?

Intro Background Approach Encoding Properties Implementation Conclusion

Our Contribution

We leverage the multiparty session types (MPST) theory to
turn multiparty protocol specifications into Scala APIs

1. we encode the full MPST calculus into linear π-calculus

2. we develop an encoding-based multiparty API generation

With this approach, the resulting Scala APIs:

▸ are formally grounded (exploit formal correctness properties)

▸ are type-safe (many protocol errors detected at compile time)

▸ are choreographic (no centralised orchestration middleware)

▸ reuse existing libraries for type-safe binary channels

▸ support distributed multiparty session delegation (first time!)

Intro Background Approach Encoding Properties Implementation Conclusion

Our Contribution

We leverage the multiparty session types (MPST) theory to
turn multiparty protocol specifications into Scala APIs

1. we encode the full MPST calculus into linear π-calculus

2. we develop an encoding-based multiparty API generation

With this approach, the resulting Scala APIs:

▸ are formally grounded (exploit formal correctness properties)

▸ are type-safe (many protocol errors detected at compile time)

▸ are choreographic (no centralised orchestration middleware)

▸ reuse existing libraries for type-safe binary channels

▸ support distributed multiparty session delegation (first time!)

Intro Background Approach Encoding Properties Implementation Conclusion

Our Contribution

We leverage the multiparty session types (MPST) theory to
turn multiparty protocol specifications into Scala APIs

1. we encode the full MPST calculus into linear π-calculus

2. we develop an encoding-based multiparty API generation

With this approach, the resulting Scala APIs:

▸ are formally grounded (exploit formal correctness properties)

▸ are type-safe (many protocol errors detected at compile time)

▸ are choreographic (no centralised orchestration middleware)

▸ reuse existing libraries for type-safe binary channels

▸ support distributed multiparty session delegation (first time!)

Intro Background Approach Encoding Properties Implementation Conclusion

MPST Theory: Overview

Global Type

Projection

Type checking

Local
Type

Process

Local
Type

Process

Local
Type

Process

(Honda et al., POPL’08/JACM’16; Bettini et al., CONCUR’08; Coppo et al., MSCS’16)

Intro Background Approach Encoding Properties Implementation Conclusion

MPST Theory: Protocols as Types

The global type G is the game protocol with 3 players a,b,c:

G = b→c ∶InfoBC(String) . c→a ∶InfoCA(String) . a→b ∶InfoAB(String) .

µt.a→b ∶

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Mov1AB(Int).b→c ∶Mov1BC(Int).c→a ∶{ Mov1CA(Int).t ,
Mov2CA(Bool).t

} ,

Mov2AB(Bool).b→c ∶Mov2BC(Bool).c→a ∶{ Mov1CA(Int).t ,
Mov2CA(Bool).t

}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

The projection G ↾b yields the (local) session type describing
how a communication channel should be used to play as b:

Tb = c!InfoBC(String).a?InfoAB(String).µt.a & {?Mov1AB(Int).c!Mov1BC(Int).t ,
?Mov2AB(Bool).c!Mov2BC(Bool).t

}

This client-server session type allows delegation for player b
(“send or receive a channel over a channel”):

srv?PlayB(Tb).end

Intro Background Approach Encoding Properties Implementation Conclusion

MPST Theory: Protocols as Types

The global type G is the game protocol with 3 players a,b,c:

G = b→c ∶InfoBC(String) . c→a ∶InfoCA(String) . a→b ∶InfoAB(String) .

µt.a→b ∶

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Mov1AB(Int).b→c ∶Mov1BC(Int).c→a ∶{ Mov1CA(Int).t ,
Mov2CA(Bool).t

} ,

Mov2AB(Bool).b→c ∶Mov2BC(Bool).c→a ∶{ Mov1CA(Int).t ,
Mov2CA(Bool).t

}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

The projection G ↾b yields the (local) session type describing
how a communication channel should be used to play as b:

Tb = c!InfoBC(String).a?InfoAB(String).µt.a & {?Mov1AB(Int).c!Mov1BC(Int).t ,
?Mov2AB(Bool).c!Mov2BC(Bool).t

}

This client-server session type allows delegation for player b
(“send or receive a channel over a channel”):

srv?PlayB(Tb).end

Intro Background Approach Encoding Properties Implementation Conclusion

MPST Theory: Protocols as Types

The global type G is the game protocol with 3 players a,b,c:

G = b→c ∶InfoBC(String) . c→a ∶InfoCA(String) . a→b ∶InfoAB(String) .

µt.a→b ∶

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Mov1AB(Int).b→c ∶Mov1BC(Int).c→a ∶{ Mov1CA(Int).t ,
Mov2CA(Bool).t

} ,

Mov2AB(Bool).b→c ∶Mov2BC(Bool).c→a ∶{ Mov1CA(Int).t ,
Mov2CA(Bool).t

}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

The projection G ↾b yields the (local) session type describing
how a communication channel should be used to play as b:

Tb = c!InfoBC(String).a?InfoAB(String).µt.a & {?Mov1AB(Int).c!Mov1BC(Int).t ,
?Mov2AB(Bool).c!Mov2BC(Bool).t

}

This client-server session type allows delegation for player b
(“send or receive a channel over a channel”):

srv?PlayB(Tb).end

Intro Background Approach Encoding Properties Implementation Conclusion

MPST Theory: Delegation

and Typing

val msg = sb[srv].receive()

val y = msg.payload

y[c].send(InfoBC("..."))

val info = y[a].receive()

loop(y)

def loop(y) = y[a].receive() {

case Mov1AB(p) => {

y[c].send(Mov1BC(p))

loop(y) }

case Mov2AB(y) => {

y[c].send(Mov2BC(p))

loop(y) } }

A process for player b, in pseudo-Scala
Note the multiparty session delegation

The MPST typing system can check that:

▸ sb is used as srv?PlayB(Tb).end 3
▸ y is used as Tb = G ↾b 3

It can also check if a set of processes fol-
lows a global type G, without deadlocks

Srv

b
a

c

Pa

Pb

Pc

sb s

→

Srv ′

a
c

Pa

Pb
′ b

Pc

s ⋯→

Pa
′

a

Pb
′

b

Pc
′

cs

Intro Background Approach Encoding Properties Implementation Conclusion

MPST Theory: Delegation

and Typing

val msg = sb[srv].receive()

val y = msg.payload

y[c].send(InfoBC("..."))

val info = y[a].receive()

loop(y)

def loop(y) = y[a].receive() {

case Mov1AB(p) => {

y[c].send(Mov1BC(p))

loop(y) }

case Mov2AB(y) => {

y[c].send(Mov2BC(p))

loop(y) } }

A process for player b, in pseudo-Scala
Note the multiparty session delegation

The MPST typing system can check that:

▸ sb is used as srv?PlayB(Tb).end 3
▸ y is used as Tb = G ↾b 3

It can also check if a set of processes fol-
lows a global type G, without deadlocks

Srv

b
a

c

Pa

Pb

Pc

sb s

→

Srv ′

a
c

Pa

Pb
′ b

Pc

s ⋯→

Pa
′

a

Pb
′

b

Pc
′

cs

Intro Background Approach Encoding Properties Implementation Conclusion

MPST Theory: Delegation

and Typing

val msg = sb[srv].receive()

val y = msg.payload

y[c].send(InfoBC("..."))

val info = y[a].receive()

loop(y)

def loop(y) = y[a].receive() {

case Mov1AB(p) => {

y[c].send(Mov1BC(p))

loop(y) }

case Mov2AB(y) => {

y[c].send(Mov2BC(p))

loop(y) } }

A process for player b, in pseudo-Scala
Note the multiparty session delegation

The MPST typing system can check that:

▸ sb is used as srv?PlayB(Tb).end 3
▸ y is used as Tb = G ↾b 3

It can also check if a set of processes fol-
lows a global type G, without deadlocks

Srv

b
a

c

Pa

Pb

Pc

sb s →

Srv ′

a
c

Pa

Pb
′ b

Pc

s

⋯→

Pa
′

a

Pb
′

b

Pc
′

cs

Intro Background Approach Encoding Properties Implementation Conclusion

MPST Theory: Delegation

and Typing

val msg = sb[srv].receive()

val y = msg.payload

y[c].send(InfoBC("..."))

val info = y[a].receive()

loop(y)

def loop(y) = y[a].receive() {

case Mov1AB(p) => {

y[c].send(Mov1BC(p))

loop(y) }

case Mov2AB(y) => {

y[c].send(Mov2BC(p))

loop(y) } }

A process for player b, in pseudo-Scala
Note the multiparty session delegation

The MPST typing system can check that:

▸ sb is used as srv?PlayB(Tb).end 3
▸ y is used as Tb = G ↾b 3

It can also check if a set of processes fol-
lows a global type G, without deadlocks

Srv

b
a

c

Pa

Pb

Pc

sb s →

Srv ′

a
c

Pa

Pb
′ b

Pc

s ⋯→

Pa
′

a

Pb
′

b

Pc
′

cs

Intro Background Approach Encoding Properties Implementation Conclusion

MPST Theory: Delegation and Typing
val msg = sb[srv].receive()

val y = msg.payload

y[c].send(InfoBC("..."))

val info = y[a].receive()

loop(y)

def loop(y) = y[a].receive() {

case Mov1AB(p) => {

y[c].send(Mov1BC(p))

loop(y) }

case Mov2AB(y) => {

y[c].send(Mov2BC(p))

loop(y) } }

A process for player b, in pseudo-Scala
Note the multiparty session delegation

The MPST typing system can check that:

▸ sb is used as srv?PlayB(Tb).end 3
▸ y is used as Tb = G ↾b 3

It can also check if a set of processes fol-
lows a global type G, without deadlocks

Srv

b
a

c

Pa

Pb

Pc

sb s →

Srv ′

a
c

Pa

Pb
′ b

Pc

s ⋯→

Pa
′

a

Pb
′

b

Pc
′

cs

Intro Background Approach Encoding Properties Implementation Conclusion

MPST Theory: Delegation and Typing
val msg = sb[srv].receive()

val y = msg.payload

y[c].send(InfoBC("..."))

val info = y[a].receive()

loop(y)

def loop(y) = y[a].receive() {

case Mov1AB(p) => {

y[c].send(Mov1BC(p))

loop(y) }

case Mov2AB(y) => {

y[c].send(Mov2BC(p))

loop(y) } }

A process for player b, in pseudo-Scala
Note the multiparty session delegation

The MPST typing system can check that:

▸ sb is used as srv?PlayB(Tb).end 3
▸ y is used as Tb = G ↾b 3

It can also check if a set of processes fol-
lows a global type G, without deadlocks

Srv

b
a

c

Pa

Pb

Pc

sb s →

Srv ′

a
c

Pa

Pb
′ b

Pc

s ⋯→

Pa
′

a

Pb
′

b

Pc
′

cs

Intro Background Approach Encoding Properties Implementation Conclusion

From MPST Theory to Practice: Challenges

MPST offer useful modelling and verification features. But:

▸ multiparty channels are a very high-level concept

▸ the theory is rich and sometimes intricate

▸ calculus/types are far from “mainstream” programming

To “close the gap” between theory and practice, we need to:

1. decompose MPST channels into binary channels (e.g., TCP sockets)

▸ without adding centralised orchestration, unlike existing theories
(Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

2. figure out how to implement multiparty delegation

▸ unsupported in existing works (Hu & Yoshida, FASE’16/FASE’17)

3. provide types and APIs in a “mainstream” prog. lang.

Intro Background Approach Encoding Properties Implementation Conclusion

From MPST Theory to Practice: Challenges

MPST offer useful modelling and verification features. But:

▸ multiparty channels are a very high-level concept

▸ the theory is rich and sometimes intricate

▸ calculus/types are far from “mainstream” programming

To “close the gap” between theory and practice, we need to:

1. decompose MPST channels into binary channels (e.g., TCP sockets)

▸ without adding centralised orchestration, unlike existing theories
(Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

2. figure out how to implement multiparty delegation

▸ unsupported in existing works (Hu & Yoshida, FASE’16/FASE’17)

3. provide types and APIs in a “mainstream” prog. lang.

Intro Background Approach Encoding Properties Implementation Conclusion

From MPST Theory to Practice: Challenges

MPST offer useful modelling and verification features. But:

▸ multiparty channels are a very high-level concept

▸ the theory is rich and sometimes intricate

▸ calculus/types are far from “mainstream” programming

To “close the gap” between theory and practice, we need to:

1. decompose MPST channels into binary channels (e.g., TCP sockets)

▸ without adding centralised orchestration, unlike existing theories
(Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

2. figure out how to implement multiparty delegation

▸ unsupported in existing works (Hu & Yoshida, FASE’16/FASE’17)

3. provide types and APIs in a “mainstream” prog. lang.

Intro Background Approach Encoding Properties Implementation Conclusion

From MPST Theory to Practice: Challenges

MPST offer useful modelling and verification features. But:

▸ multiparty channels are a very high-level concept

▸ the theory is rich and sometimes intricate

▸ calculus/types are far from “mainstream” programming

To “close the gap” between theory and practice, we need to:

1. decompose MPST channels into binary channels (e.g., TCP sockets)

▸ without adding centralised orchestration, unlike existing theories
(Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

2. figure out how to implement multiparty delegation
▸ unsupported in existing works (Hu & Yoshida, FASE’16/FASE’17)

3. provide types and APIs in a “mainstream” prog. lang.

Intro Background Approach Encoding Properties Implementation Conclusion

A New Approach to “Practical” Multiparty Sessions

Linear
π-Calculus

Binary
Sessions

Encoding

Specs

lchannels
Scala Types +C

o
ns

ist

en
t * Complete *

W
ell D

o
cum

ented*Easyto
Re

us
e

* *
Evaluated*

E
C
O
O
P
*

Artifact

*
A
E
C

ECOOP
2016

1. encode the full multiparty session calculus into linear π-calculus
▸ π-calculus only has binary channels, and no session primitives

2. use the encoding to guide multiparty session API generation
▸ “inherit” correctness, reuse code, better APIs, delegation for free!

Intro Background Approach Encoding Properties Implementation Conclusion

A New Approach to “Practical” Multiparty Sessions

Linear
π-Calculus

Binary
Sessions

Encoding

Specs

lchannels
Scala Types +C

o
ns

ist

en
t * Complete *

W
ell D

o
cum

ented*Easyto
Re

us
e

* *
Evaluated*

E
C
O
O
P
*

Artifact

*
A
E
C

ECOOP
2016

Sessions
Multiparty

ECOOP
2017

Encoding

1. encode the full multiparty session calculus into linear π-calculus
▸ π-calculus only has binary channels, and no session primitives

2. use the encoding to guide multiparty session API generation
▸ “inherit” correctness, reuse code, better APIs, delegation for free!

Intro Background Approach Encoding Properties Implementation Conclusion

A New Approach to “Practical” Multiparty Sessions

Linear
π-Calculus

Binary
Sessions

Encoding

Specs

lchannels
Scala Types +C

o
ns

ist

en
t * Complete *

W
ell D

o
cum

ented*Easyto
Re

us
e

* *
Evaluated*

E
C
O
O
P
*

Artifact

*
A
E
C

ECOOP
2016

Sessions
Multiparty

C
o
ns

ist

en
t * Complete *

W
ell D

o
cum

ented*Easyto
Re

us
e

* *
Evaluated*

E
C
O
O
P
*

Artifact

*
A
E
C

ECOOP
2017

Encoding

Scala
Session

APIsImpl

Code gen

1. encode the full multiparty session calculus into linear π-calculus
▸ π-calculus only has binary channels, and no session primitives

2. use the encoding to guide multiparty session API generation
▸ “inherit” correctness, reuse code, better APIs, delegation for free!

Intro Background Approach Encoding Properties Implementation Conclusion

A Linear Decomposition of Multiparty Sessions

Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ z1 ∶ J Tb ↾a K

= In⟨InfoAB (String,

In⟨. . .⟩

)⟩

z2 ∶ J Tb ↾c K

= Out⟨InfoBC (String,

In⟨. . .⟩

)⟩
Js[b]K = [a∶ z1 ,

c∶ z2
]

∶ [a∶ JTb ↾aK ,
c∶ JTb ↾cK]

We decompose s into binary linear channels, and encode Pb
′

and Srv ′ so that they use the decomposed channels “correctly”:

▸ no out-of protocol messages must be sent/received

3

▸ channel usage ordering must be preserved

7

Intro Background Approach Encoding Properties Implementation Conclusion

A Linear Decomposition of Multiparty Sessions

Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ z1 ∶ J Tb ↾a K

= In⟨InfoAB (String,

In⟨. . .⟩

)⟩

z2 ∶ J Tb ↾c K

= Out⟨InfoBC (String,

In⟨. . .⟩

)⟩
Js[b]K = [a∶ z1 ,

c∶ z2
]

∶ [a∶ JTb ↾aK ,
c∶ JTb ↾cK]

We decompose s into binary linear channels, and encode Pb
′

and Srv ′ so that they use the decomposed channels “correctly”:

▸ no out-of protocol messages must be sent/received

3

▸ channel usage ordering must be preserved

7

Intro Background Approach Encoding Properties Implementation Conclusion

A Linear Decomposition of Multiparty Sessions

Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ z1 ∶ J Tb ↾a K

= In⟨InfoAB (String,

In⟨. . .⟩

)⟩

z2 ∶ J Tb ↾c K

= Out⟨InfoBC (String,

In⟨. . .⟩

)⟩
Js[b]K = [a∶ z1 ,

c∶ z2
]

∶ [a∶ JTb ↾aK ,
c∶ JTb ↾cK]

We decompose s into binary linear channels, and encode Pb
′

and Srv ′ so that they use the decomposed channels “correctly”:

▸ no out-of protocol messages must be sent/received

3

▸ channel usage ordering must be preserved

7

Intro Background Approach Encoding Properties Implementation Conclusion

A Linear Decomposition of Multiparty Sessions

Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ z1 ∶ J Tb ↾a K = In⟨InfoAB (String,

In⟨. . .⟩

)⟩
z2 ∶ J Tb ↾c K = Out⟨InfoBC (String,

In⟨. . .⟩

)⟩

Js[b]K = [a∶ z1 ,
c∶ z2

]

∶ [a∶ JTb ↾aK ,
c∶ JTb ↾cK]

We decompose s into binary linear channels, and encode Pb
′

and Srv ′ so that they use the decomposed channels “correctly”:

▸ no out-of protocol messages must be sent/received

3

▸ channel usage ordering must be preserved

7

Intro Background Approach Encoding Properties Implementation Conclusion

A Linear Decomposition of Multiparty Sessions

Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ z1 ∶ J Tb ↾a K = In⟨InfoAB (String, In⟨. . .⟩)⟩

z2 ∶ J Tb ↾c K = Out⟨InfoBC (String, In⟨. . .⟩)⟩

Js[b]K = [a∶ z1 ,
c∶ z2

]

∶ [a∶ JTb ↾aK ,
c∶ JTb ↾cK]

We decompose s into binary linear channels, and encode Pb
′

and Srv ′ so that they use the decomposed channels “correctly”:

▸ no out-of protocol messages must be sent/received

3

▸ channel usage ordering must be preserved

7

Intro Background Approach Encoding Properties Implementation Conclusion

A Linear Decomposition of Multiparty Sessions

Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ z1 ∶ J Tb ↾a K = In⟨InfoAB (String, In⟨. . .⟩)⟩

z2 ∶ J Tb ↾c K = Out⟨InfoBC (String, In⟨. . .⟩)⟩
Js[b]K = [a∶ z1 ,

c∶ z2
]

∶ [a∶ JTb ↾aK ,
c∶ JTb ↾cK]

We decompose s into binary linear channels, and encode Pb
′

and Srv ′ so that they use the decomposed channels “correctly”:

▸ no out-of protocol messages must be sent/received

3

▸ channel usage ordering must be preserved

7

Intro Background Approach Encoding Properties Implementation Conclusion

A Linear Decomposition of Multiparty Sessions

Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ z1 ∶ J Tb ↾a K = In⟨InfoAB (String, In⟨. . .⟩)⟩

z2 ∶ J Tb ↾c K = Out⟨InfoBC (String, In⟨. . .⟩)⟩
Js[b]K = [a∶ z1 ,

c∶ z2
] ∶ [a∶ JTb ↾aK ,

c∶ JTb ↾cK]

We decompose s into binary linear channels, and encode Pb
′

and Srv ′ so that they use the decomposed channels “correctly”:

▸ no out-of protocol messages must be sent/received

3

▸ channel usage ordering must be preserved

7

Intro Background Approach Encoding Properties Implementation Conclusion

A Linear Decomposition of Multiparty Sessions

Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ z1 ∶ J Tb ↾a K = In⟨InfoAB (String, In⟨. . .⟩)⟩

z2 ∶ J Tb ↾c K = Out⟨InfoBC (String, In⟨. . .⟩)⟩
Js[b]K = [a∶ z1 ,

c∶ z2
] ∶ [a∶ JTb ↾aK ,

c∶ JTb ↾cK]

We decompose s into binary linear channels, and encode Pb
′

and Srv ′ so that they use the decomposed channels “correctly”:

▸ no out-of protocol messages must be sent/received 3
▸ channel usage ordering must be preserved 7

Intro Background Approach Encoding Properties Implementation Conclusion

Encoding of Typed Processes

Our process encoding:

▸ is “low-level”, close to an imperative prog. lang.

▸ uses binary channels once with continuation-passing style

▸ keeps the communication order of the original process 3

r
s[b] ∶Tb ⊢ s[b][c]⊕ ⟨InfoBC(”...”)⟩.P ′

z
=

Js[b] ∶TbK ⊢π with [a ∶ za , c ∶ zc] = Js[b]K do

(z ′I, z ′O) = new lin channel();

zc.send(InfoBC(”...”

, z ′I

));

let Js[b]K = [a ∶ za , c ∶ z ′O] in JP ′K

Moreover, our encoding is choreographic: JP ∣QK = JPK ∣ JQK

▸ unlike previous works (Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

Intro Background Approach Encoding Properties Implementation Conclusion

Encoding of Typed Processes

Our process encoding:

▸ is “low-level”, close to an imperative prog. lang.

▸ uses binary channels once with continuation-passing style

▸ keeps the communication order of the original process 3

r

s[b] ∶Tb ⊢ s[b][c]⊕ ⟨InfoBC(”...”)⟩.P ′

z
=

Js[b] ∶TbK ⊢π with [a ∶ za , c ∶ zc] = Js[b]K do

(z ′I, z ′O) = new lin channel();

zc.send(InfoBC(”...”

, z ′I

));

let Js[b]K = [a ∶ za , c ∶ z ′O] in JP ′K

Moreover, our encoding is choreographic: JP ∣QK = JPK ∣ JQK

▸ unlike previous works (Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

Intro Background Approach Encoding Properties Implementation Conclusion

Encoding of Typed Processes

Our process encoding:

▸ is “low-level”, close to an imperative prog. lang.

▸ uses binary channels once with continuation-passing style

▸ keeps the communication order of the original process 3
r
s[b] ∶Tb ⊢ s[b][c]⊕ ⟨InfoBC(”...”)⟩.P ′

z
=

Js[b] ∶TbK ⊢π with [a ∶ za , c ∶ zc] = Js[b]K do

(z ′I, z ′O) = new lin channel();

zc.send(InfoBC(”...”

, z ′I

));

let Js[b]K = [a ∶ za , c ∶ z ′O] in JP ′K

Moreover, our encoding is choreographic: JP ∣QK = JPK ∣ JQK

▸ unlike previous works (Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

Intro Background Approach Encoding Properties Implementation Conclusion

Encoding of Typed Processes

Our process encoding:

▸ is “low-level”, close to an imperative prog. lang.

▸ uses binary channels once with continuation-passing style

▸ keeps the communication order of the original process 3
r
s[b] ∶Tb ⊢ s[b][c]⊕ ⟨InfoBC(”...”)⟩.P ′

z
=

Js[b] ∶TbK ⊢π

with [a ∶ za , c ∶ zc] = Js[b]K do

(z ′I, z ′O) = new lin channel();

zc.send(InfoBC(”...”

, z ′I

));

let Js[b]K = [a ∶ za , c ∶ z ′O] in JP ′K

Moreover, our encoding is choreographic: JP ∣QK = JPK ∣ JQK

▸ unlike previous works (Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

Intro Background Approach Encoding Properties Implementation Conclusion

Encoding of Typed Processes

Our process encoding:

▸ is “low-level”, close to an imperative prog. lang.

▸ uses binary channels once with continuation-passing style

▸ keeps the communication order of the original process 3
r
s[b] ∶Tb ⊢ s[b][c]⊕ ⟨InfoBC(”...”)⟩.P ′

z
=

Js[b] ∶TbK ⊢π with [a ∶ za , c ∶ zc] = Js[b]K do

(z ′I, z ′O) = new lin channel();

zc.send(InfoBC(”...”

, z ′I

));

let Js[b]K = [a ∶ za , c ∶ z ′O] in JP ′K

Moreover, our encoding is choreographic: JP ∣QK = JPK ∣ JQK

▸ unlike previous works (Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

Intro Background Approach Encoding Properties Implementation Conclusion

Encoding of Typed Processes

Our process encoding:

▸ is “low-level”, close to an imperative prog. lang.

▸ uses binary channels once with continuation-passing style

▸ keeps the communication order of the original process 3
r
s[b] ∶Tb ⊢ s[b][c]⊕ ⟨InfoBC(”...”)⟩.P ′

z
=

Js[b] ∶TbK ⊢π with [a ∶ za , c ∶ zc] = Js[b]K do
(z ′I, z ′O) = new lin channel();

zc.send(InfoBC(”...”

, z ′I

));
let Js[b]K = [a ∶ za , c ∶ z ′O] in JP ′K

Moreover, our encoding is choreographic: JP ∣QK = JPK ∣ JQK

▸ unlike previous works (Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

Intro Background Approach Encoding Properties Implementation Conclusion

Encoding of Typed Processes

Our process encoding:

▸ is “low-level”, close to an imperative prog. lang.

▸ uses binary channels once with continuation-passing style

▸ keeps the communication order of the original process 3
r
s[b] ∶Tb ⊢ s[b][c]⊕ ⟨InfoBC(”...”)⟩.P ′

z
=

Js[b] ∶TbK ⊢π with [a ∶ za , c ∶ zc] = Js[b]K do
(z ′I, z ′O) = new lin channel();

zc.send(InfoBC(”...”

, z ′I

));

let Js[b]K = [a ∶ za , c ∶ z ′O] in JP ′K

Moreover, our encoding is choreographic: JP ∣QK = JPK ∣ JQK

▸ unlike previous works (Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

Intro Background Approach Encoding Properties Implementation Conclusion

Encoding of Typed Processes

Our process encoding:

▸ is “low-level”, close to an imperative prog. lang.

▸ uses binary channels once with continuation-passing style

▸ keeps the communication order of the original process 3
r
s[b] ∶Tb ⊢ s[b][c]⊕ ⟨InfoBC(”...”)⟩.P ′

z
=

Js[b] ∶TbK ⊢π with [a ∶ za , c ∶ zc] = Js[b]K do
(z ′I, z ′O) = new lin channel();

zc.send(InfoBC(”...” , z ′I));

let Js[b]K = [a ∶ za , c ∶ z ′O] in JP ′K

Moreover, our encoding is choreographic: JP ∣QK = JPK ∣ JQK

▸ unlike previous works (Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

Intro Background Approach Encoding Properties Implementation Conclusion

Encoding of Typed Processes

Our process encoding:

▸ is “low-level”, close to an imperative prog. lang.

▸ uses binary channels once with continuation-passing style

▸ keeps the communication order of the original process 3
r
s[b] ∶Tb ⊢ s[b][c]⊕ ⟨InfoBC(”...”)⟩.P ′

z
=

Js[b] ∶TbK ⊢π with [a ∶ za , c ∶ zc] = Js[b]K do
(z ′I, z ′O) = new lin channel();

zc.send(InfoBC(”...” , z ′I));
let Js[b]K = [a ∶ za , c ∶ z ′O] in JP ′K

Moreover, our encoding is choreographic: JP ∣QK = JPK ∣ JQK

▸ unlike previous works (Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

Intro Background Approach Encoding Properties Implementation Conclusion

Encoding of Typed Processes

Our process encoding:

▸ is “low-level”, close to an imperative prog. lang.

▸ uses binary channels once with continuation-passing style

▸ keeps the communication order of the original process 3
r
s[b] ∶Tb ⊢ s[b][c]⊕ ⟨InfoBC(”...”)⟩.P ′

z
=

Js[b] ∶TbK ⊢π with [a ∶ za , c ∶ zc] = Js[b]K do
(z ′I, z ′O) = new lin channel();

zc.send(InfoBC(”...” , z ′I));
let Js[b]K = [a ∶ za , c ∶ z ′O] in JP ′K

Moreover, our encoding is choreographic: JP ∣QK = JPK ∣ JQK

▸ unlike previous works (Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

Intro Background Approach Encoding Properties Implementation Conclusion

Formal Correctness Properties

Encoding is type-preserving. Γ ⊢ P implies JΓK ⊢π JPK.

Operational correspondence. (Gorla, Inf. & Comput., 2010)

If ∅ ⊢ P, then:

1. (Completeness) P →∗ P ′ implies ∃x̃,P ′′ such that
JPK→∗ (νx̃)P ′′ and P ′′ = JP ′K;

2. (Soundness) JPK→∗ P∗ implies ∃x̃,P ′′,P ′ such that

P∗ →∗ (νx̃)P ′′ and P →∗ P ′ and JP ′K
with−−→∗ P ′′.

Our linear decomposition is precise!
JΓK is defined if and only if Γ is well-formed (“consistent”).

▸ ⇐Ô : we support the full MPST theory

▸ Ô⇒ : we uncover a deep connection between MPST and π-calculus

Intro Background Approach Encoding Properties Implementation Conclusion

Formal Correctness Properties

Encoding is type-preserving. Γ ⊢ P implies JΓK ⊢π JPK.

Operational correspondence. (Gorla, Inf. & Comput., 2010)

If ∅ ⊢ P, then:

1. (Completeness) P →∗ P ′ implies ∃x̃,P ′′ such that
JPK→∗ (νx̃)P ′′ and P ′′ = JP ′K;

2. (Soundness) JPK→∗ P∗ implies ∃x̃,P ′′,P ′ such that

P∗ →∗ (νx̃)P ′′ and P →∗ P ′ and JP ′K
with−−→∗ P ′′.

Our linear decomposition is precise!
JΓK is defined if and only if Γ is well-formed (“consistent”).

▸ ⇐Ô : we support the full MPST theory

▸ Ô⇒ : we uncover a deep connection between MPST and π-calculus

Intro Background Approach Encoding Properties Implementation Conclusion

Formal Correctness Properties

Encoding is type-preserving. Γ ⊢ P implies JΓK ⊢π JPK.

Operational correspondence. (Gorla, Inf. & Comput., 2010)

If ∅ ⊢ P, then:

1. (Completeness) P →∗ P ′ implies ∃x̃,P ′′ such that
JPK→∗ (νx̃)P ′′ and P ′′ = JP ′K;

2. (Soundness) JPK→∗ P∗ implies ∃x̃,P ′′,P ′ such that

P∗ →∗ (νx̃)P ′′ and P →∗ P ′ and JP ′K
with−−→∗ P ′′.

Our linear decomposition is precise!
JΓK is defined if and only if Γ is well-formed (“consistent”).

▸ ⇐Ô : we support the full MPST theory

▸ Ô⇒ : we uncover a deep connection between MPST and π-calculus

Intro Background Approach Encoding Properties Implementation Conclusion

Multiparty Channels, in Scala
Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ Js[b]K ∶ JTbK = [a ∶ In⟨InfoAB (String, In⟨. . .⟩)⟩ ,

c ∶Out⟨InfoBC (String, In⟨. . .⟩)⟩]

A multiparty channel typed by JTbK is a Scala object of type:

case class Tb(a:

In[InfoAB]

, c:

Out[InfoBC]

)

case class InfoAB(p: String, cont:In[...])

case class InfoBC(p: String, cont:In[...])

In[⋅]/Out[⋅] are provided by lchannels (Scalas & Yoshida, ECOOP’16)

Tuples of channels (like Sb) can be delegated (remotely) for free!

Intro Background Approach Encoding Properties Implementation Conclusion

Multiparty Channels, in Scala
Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ Js[b]K ∶ JTbK = [a ∶ In⟨InfoAB (String, In⟨. . .⟩)⟩ ,

c ∶Out⟨InfoBC (String, In⟨. . .⟩)⟩]

A multiparty channel typed by JTbK is a Scala object of type:

case class Tb(a:

In[InfoAB]

, c:

Out[InfoBC]

)

case class InfoAB(p: String, cont:In[...])

case class InfoBC(p: String, cont:In[...])

In[⋅]/Out[⋅] are provided by lchannels (Scalas & Yoshida, ECOOP’16)

Tuples of channels (like Sb) can be delegated (remotely) for free!

Intro Background Approach Encoding Properties Implementation Conclusion

Multiparty Channels, in Scala
Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ Js[b]K ∶ JTbK = [a ∶ In⟨InfoAB (String, In⟨. . .⟩)⟩ ,

c ∶Out⟨InfoBC (String, In⟨. . .⟩)⟩]

A multiparty channel typed by JTbK is a Scala object of type:

case class Tb(a: In[InfoAB], c: Out[InfoBC])

case class InfoAB(p: String, cont:In[...])

case class InfoBC(p: String, cont:In[...])

In[⋅]/Out[⋅] are provided by lchannels (Scalas & Yoshida, ECOOP’16)

Tuples of channels (like Sb) can be delegated (remotely) for free!

Intro Background Approach Encoding Properties Implementation Conclusion

Multiparty Channels, in Scala
Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ Js[b]K ∶ JTbK = [a ∶ In⟨InfoAB (String, In⟨. . .⟩)⟩ ,

c ∶Out⟨InfoBC (String, In⟨. . .⟩)⟩]

A multiparty channel typed by JTbK is a Scala object of type:

case class Tb(a: In[InfoAB], c: Out[InfoBC])
case class InfoAB(p: String, cont:In[...])

case class InfoBC(p: String, cont:In[...])

In[⋅]/Out[⋅] are provided by lchannels (Scalas & Yoshida, ECOOP’16)

Tuples of channels (like Sb) can be delegated (remotely) for free!

Intro Background Approach Encoding Properties Implementation Conclusion

Multiparty Channels, in Scala
Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ Js[b]K ∶ JTbK = [a ∶ In⟨InfoAB (String, In⟨. . .⟩)⟩ ,

c ∶Out⟨InfoBC (String, In⟨. . .⟩)⟩]

A multiparty channel typed by JTbK is a Scala object of type:

case class Tb(a: In[InfoAB], c: Out[InfoBC])
case class InfoAB(p: String, cont:In[...])

case class InfoBC(p: String, cont:In[...])

In[⋅]/Out[⋅] are provided by lchannels (Scalas & Yoshida, ECOOP’16)

Tuples of channels (like Sb) can be delegated (remotely) for free!

Intro Background Approach Encoding Properties Implementation Conclusion

Multiparty Channel Endpoints, in Scala (cont’d)

To guide channel usage order and avoid deadlocks, we enrich
channel tuples with typed send/receive methods

Their implementation is based on our process encoding

Tb = c!InfoBC(String) . a?InfoAB(String)

case class Tb(a: In[InfoAB], c: Out[InfoBC])

{
def send(v: String) = { // v: payload of InfoBC msg

val c ′ = c !! InfoBC(v)_ // send v, return continuation
T ′b(a, c ′) // return "continuation object"

}
}

The resulting API includes dynamic linearity checks, and is:
▸ fully type safe (no type casts)

▸ complete (full MPSTs, incl. type projection/merge and delegation)

▸ simple (most functionality comes from lchannels)

▸ mechanical (so we can generate it automatically!)

Intro Background Approach Encoding Properties Implementation Conclusion

Multiparty Channel Endpoints, in Scala (cont’d)

To guide channel usage order and avoid deadlocks, we enrich
channel tuples with typed send/receive methods

Their implementation is based on our process encoding

Tb = c!InfoBC(String) . a?InfoAB(String)

case class Tb(a: In[InfoAB], c: Out[InfoBC])
{

def send(v: String) = { // v: payload of InfoBC msg
val c ′ = c !! InfoBC(v)_ // send v, return continuation
T ′b(a, c ′) // return "continuation object"

}
}

The resulting API includes dynamic linearity checks, and is:
▸ fully type safe (no type casts)

▸ complete (full MPSTs, incl. type projection/merge and delegation)

▸ simple (most functionality comes from lchannels)

▸ mechanical (so we can generate it automatically!)

Intro Background Approach Encoding Properties Implementation Conclusion

Multiparty Channel Endpoints, in Scala (cont’d)

To guide channel usage order and avoid deadlocks, we enrich
channel tuples with typed send/receive methods

Their implementation is based on our process encoding

Tb = c!InfoBC(String) . a?InfoAB(String)

case class Tb(a: In[InfoAB], c: Out[InfoBC])
{

def send(v: String) = { // v: payload of InfoBC msg
val c ′ = c !! InfoBC(v)_ // send v, return continuation
T ′b(a, c ′) // return "continuation object"

}
}

The resulting API includes dynamic linearity checks, and is:
▸ fully type safe (no type casts)

▸ complete (full MPSTs, incl. type projection/merge and delegation)

▸ simple (most functionality comes from lchannels)

▸ mechanical (so we can generate it automatically!)

Intro Background Approach Encoding Properties Implementation Conclusion

Artifact: Scala API Generation in Scribble
We extended the Scribble protocol verification tool to
autogenerate Scala APIs, following our formal encoding

Global Type
Scribble tool

Type checking

Program Program

Local
Type

Local
Type

Local
Type

Program

Scala
API

Scala
API

Scala
API

Linear
π-Types

Linear
π-Types

Linear
π-Types

Projection

Encoding

API generation

Tutorial and examples: peer-to-peer game, HTTP server. . .

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

Intro Background Approach Encoding Properties Implementation Conclusion

Artifact: Scala API Generation in Scribble
We extended the Scribble protocol verification tool to
autogenerate Scala APIs, following our formal encoding

Global Type
Scribble tool

Type checking

Program Program

Local
Type

Local
Type

Local
Type

Program

Scala
API

Scala
API

Scala
API

Linear
π-Types

Linear
π-Types

Linear
π-Types

Projection

Encoding

API generation

Tutorial and examples: peer-to-peer game, HTTP server. . .

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

Intro Background Approach Encoding Properties Implementation Conclusion

Artifact: Scala API Generation Usage

A working implementation of a client playing the game as b,
based on our Scribble-generated APIs

with static protocol checks

def client(c: MPPlayB) = { // "c" is the channel to the game server

val g = c.receive().p // Receive multiparty game channel

val i = g.send(InfoBC("...")).receive() // Send info to C, recv from A

loop(i.cont) // Game loop

}

def loop(g: MPMov1ABOrMov2AB): Unit = {

g.receive() match { // Check A’s move

case Mov1AB(p, cont) => {

val g2 = cont.send(Mov1BC(p)) // cont only allows to send Mov1BC

loop(g2) // Keep playing

}

case Mov2AB(p, cont) => {

val g2 = cont.send(Mov2BC(p)) // cont only allows to send Mov2BC

loop(g2) // Keep playing

} } }

Intro Background Approach Encoding Properties Implementation Conclusion

Artifact: Scala API Generation Usage

A working implementation of a client playing the game as b,
based on our Scribble-generated APIs with static protocol checks

def client(c: MPPlayB) = { // "c" is the channel to the game server

val g = c.receive().p // Receive multiparty game channel

val i = g.send(InfoBC("...")).receive() // Send info to C, recv from A

loop(i.cont) // Game loop

}

def loop(g: MPMov1ABOrMov2AB): Unit = {

g.receive() match { // Check A’s move

case Mov1AB(p, cont) => {

val g2 = cont.send(Mov2BC(true)) // cont only allows to send Mov1BC

loop(g2) // Keep playing

}

case Mov2AB(p, cont) => {

val g2 = cont.send(Mov2BC(p)) // cont only allows to send Mov2BC

loop(g2) // Keep playing

} } }

7
Type mismatch
found: Mov2BC

required: Mov1BC

Intro Background Approach Encoding Properties Implementation Conclusion

Artifact: Scala API Generation Usage

A working implementation of a client playing the game as b,
based on our Scribble-generated APIs with static protocol checks

def client(c: MPPlayB) = { // "c" is the channel to the game server

val g = c.receive().p // Receive multiparty game channel

val i = g.send(InfoBC("...")).receive() // Send info to C, recv from A

loop(i.cont) // Game loop

}

def loop(g: MPMov1ABOrMov2AB): Unit = {

g.receive() match { // Check A’s move

case Mov1AB(p, cont) => {

val g2 = cont.send(Mov1BC(p)) // cont only allows to send Mov1BC

loop(g2) // Keep playing

}

} }

7 Match may not be exhaustive
It would fail on the input: Mov2AB(,)

Intro Background Approach Encoding Properties Implementation Conclusion

Conclusions
We presented the first choreographic encoding of the “full”
MPST calculus into linear π-calculus

▸ key: type-preserving decomposition into linear π-types

▸ important achievement since Session Types Revisited
(Dardha, Giachino, Sangiorgi. PPDP’12)

Our encoding gives the formal basis for a complete
implementation of multiparty sessions, in Scala + lchannels

▸ the first including (distributed) multiparty delegation

Future work:
▸ adapt to other languages and binary session implementations

▸ Haskell, OCaml, Rust, . . . (might not support distribution)

▸ reuse and compare theoretical results and tools
▸ e.g., deadlock freedom (with interleaved sessions)

▸ MPSTs (Bettini, Coppo et al., CONCUR’08 . . .)
▸ π-calculus, with TyPiCal tool (Kobayashi et al., CONCUR’06 . . .)

Intro Background Approach Encoding Properties Implementation Conclusion

Conclusions
We presented the first choreographic encoding of the “full”
MPST calculus into linear π-calculus

▸ key: type-preserving decomposition into linear π-types

▸ important achievement since Session Types Revisited
(Dardha, Giachino, Sangiorgi. PPDP’12)

Our encoding gives the formal basis for a complete
implementation of multiparty sessions, in Scala + lchannels

▸ the first including (distributed) multiparty delegation

Future work:
▸ adapt to other languages and binary session implementations

▸ Haskell, OCaml, Rust, . . . (might not support distribution)

▸ reuse and compare theoretical results and tools
▸ e.g., deadlock freedom (with interleaved sessions)

▸ MPSTs (Bettini, Coppo et al., CONCUR’08 . . .)
▸ π-calculus, with TyPiCal tool (Kobayashi et al., CONCUR’06 . . .)

Intro Background Approach Encoding Properties Implementation Conclusion

Conclusions
We presented the first choreographic encoding of the “full”
MPST calculus into linear π-calculus

▸ key: type-preserving decomposition into linear π-types

▸ important achievement since Session Types Revisited
(Dardha, Giachino, Sangiorgi. PPDP’12)

Our encoding gives the formal basis for a complete
implementation of multiparty sessions, in Scala + lchannels

▸ the first including (distributed) multiparty delegation

Future work:
▸ adapt to other languages and binary session implementations

▸ Haskell, OCaml, Rust, . . . (might not support distribution)

▸ reuse and compare theoretical results and tools
▸ e.g., deadlock freedom (with interleaved sessions)

▸ MPSTs (Bettini, Coppo et al., CONCUR’08 . . .)
▸ π-calculus, with TyPiCal tool (Kobayashi et al., CONCUR’06 . . .)

Thank you!

Try Scribble and lchannels!

http://scribble.org

http://alcestes.github.io/lchannels

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

ECOOP 2016

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

ECOOP 2017

http://scribble.org
http://alcestes.github.io/lchannels

	Intro
	Intro

	Background
	Background
	From MPST Theory to Practice: Challenges

	Approach
	Approach
	A New Approach to ``Practical'' Multiparty Sessions

	Encoding
	Encoding

	Properties
	Properties

	Implementation
	Implementation

	Conclusion
	Conclusion
	Thanks!

