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Intro Background Approach Encoding Properties Implementation Conclusion

A Motivating Example: Peer-to-Peer Game

Srv Pa Pb Pc

–

– – –

Unordered
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Loop

PlayA(s[a])

PlayB(s[b])

PlayC(s[c])

InfoBC(String)

InfoCA(String)

InfoAB(String)

Mov1AB(Int)

Mov1BC(Int)

Mov1CA(Int)

Mov2CA(Bool)

Mov2AB(Bool)

Mov2BC(Bool)

Mov1CA(Int)

Mov2CA(Bool)

—

G
am

e

Clients Pa, Pb, Pc want to play a game as
roles a, b, c via a matchmaking server Srv

The server Srv sends some networking data
to the clients, so they “know each other”

The clients can now interact directly in a
multiparty session: they first exchange
some information. . .

. . . and then begin the main Game loop
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Implementing this specification is
challenging:

▸ structured protocol
▸ choices
▸ inter-role message dependencies
▸ recursion

▸ non-fixed communication topology
▸ initially client-to-server
▸ later becoming peer-to-peer

▸ risks: protocol violations, deadlocks

Can we provide a formally grounded way
to address these challenges?
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Our Contribution

We leverage the multiparty session types (MPST) theory to
turn multiparty protocol specifications into Scala APIs

1. we encode the full MPST calculus into linear π-calculus

2. we develop an encoding-based multiparty API generation

With this approach, the resulting Scala APIs:

▸ are formally grounded (exploit formal correctness properties)

▸ are type-safe (many protocol errors detected at compile time)

▸ are choreographic (no centralised orchestration middleware)

▸ reuse existing libraries for type-safe binary channels

▸ support distributed multiparty session delegation (first time!)
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MPST Theory: Overview

Global Type

Projection

Type checking

Local
Type

Process

Local
Type

Process

Local
Type

Process

(Honda et al., POPL’08/JACM’16; Bettini et al., CONCUR’08; Coppo et al., MSCS’16)
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MPST Theory: Protocols as Types

The global type G is the game protocol with 3 players a,b,c:

G = b→c ∶InfoBC(String) . c→a ∶InfoCA(String) . a→b ∶InfoAB(String) .

µt.a→b ∶

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Mov1AB(Int).b→c ∶Mov1BC(Int).c→a ∶{ Mov1CA(Int).t ,
Mov2CA(Bool).t

} ,

Mov2AB(Bool).b→c ∶Mov2BC(Bool).c→a ∶{ Mov1CA(Int).t ,
Mov2CA(Bool).t

}

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

The projection G ↾b yields the (local) session type describing
how a communication channel should be used to play as b:

Tb = c!InfoBC(String).a?InfoAB(String).µt.a & {?Mov1AB(Int).c!Mov1BC(Int).t ,
?Mov2AB(Bool).c!Mov2BC(Bool).t

}

This client-server session type allows delegation for player b
(“send or receive a channel over a channel”):

srv?PlayB(Tb).end
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MPST Theory: Delegation

and Typing

val msg = sb[srv].receive()

val y = msg.payload

y[c].send(InfoBC("..."))

val info = y[a].receive()

loop(y)

def loop(y) = y[a].receive() {

case Mov1AB(p) => {

y[c].send(Mov1BC(p))

loop(y) }

case Mov2AB(y) => {

y[c].send(Mov2BC(p))

loop(y) } }

A process for player b, in pseudo-Scala
Note the multiparty session delegation

The MPST typing system can check that:

▸ sb is used as srv?PlayB(Tb).end 3
▸ y is used as Tb = G ↾b 3

It can also check if a set of processes fol-
lows a global type G, without deadlocks

Srv

b
a

c

Pa

Pb

Pc

sb s

→

Srv ′

a
c

Pa

Pb
′ b

Pc

s ⋯→

Pa
′

a

Pb
′

b

Pc
′

cs
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From MPST Theory to Practice: Challenges

MPST offer useful modelling and verification features. But:

▸ multiparty channels are a very high-level concept

▸ the theory is rich and sometimes intricate

▸ calculus/types are far from “mainstream” programming

To “close the gap” between theory and practice, we need to:

1. decompose MPST channels into binary channels (e.g., TCP sockets)

▸ without adding centralised orchestration, unlike existing theories
(Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)

2. figure out how to implement multiparty delegation

▸ unsupported in existing works (Hu & Yoshida, FASE’16/FASE’17)

3. provide types and APIs in a “mainstream” prog. lang.
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A New Approach to “Practical” Multiparty Sessions

Linear 
π-Calculus

Binary
Sessions

Encoding

Specs

lchannels
Scala Types +C

o
ns

ist

en
t * Complete *

W
ell D

o
cum

ented*Easyto
Re

us
e

* *
Evaluated*

E
C
O
O
P
*

Artifact

*
A
E
C

ECOOP
2016

1. encode the full multiparty session calculus into linear π-calculus
▸ π-calculus only has binary channels, and no session primitives

2. use the encoding to guide multiparty session API generation
▸ “inherit” correctness, reuse code, better APIs, delegation for free!
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A Linear Decomposition of Multiparty Sessions

Srv ′

a
c

Pb
′ b s

encode
===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ z1 ∶ J Tb ↾a K

= In⟨InfoAB (String,

In⟨. . .⟩

)⟩

z2 ∶ J Tb ↾c K

= Out⟨InfoBC (String,

In⟨. . .⟩

)⟩
Js[b]K = [ a∶ z1 ,

c∶ z2
]

∶ [ a∶ JTb ↾aK ,
c∶ JTb ↾cK ]

We decompose s into binary linear channels, and encode Pb
′

and Srv ′ so that they use the decomposed channels “correctly”:

▸ no out-of protocol messages must be sent/received

3

▸ channel usage ordering must be preserved

7
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Encoding of Typed Processes

Our process encoding:

▸ is “low-level”, close to an imperative prog. lang.

▸ uses binary channels once with continuation-passing style

▸ keeps the communication order of the original process 3

r
s[b] ∶Tb ⊢ s[b][c]⊕ ⟨InfoBC(”...”)⟩.P ′

z
=

Js[b] ∶TbK ⊢π with [a ∶ za , c ∶ zc] = Js[b]K do

(z ′I, z ′O) = new lin channel();

zc.send(InfoBC(”...”

, z ′I

));

let Js[b]K = [a ∶ za , c ∶ z ′O] in JP ′K

Moreover, our encoding is choreographic: JP ∣QK = JPK ∣ JQK

▸ unlike previous works (Caires & Pérez, FORTE’16; Carbone et al., CONCUR’16)
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Formal Correctness Properties

Encoding is type-preserving. Γ ⊢ P implies JΓK ⊢π JPK.

Operational correspondence. (Gorla, Inf. & Comput., 2010)

If ∅ ⊢ P, then:

1. (Completeness) P →∗ P ′ implies ∃x̃,P ′′ such that
JPK→∗ (νx̃)P ′′ and P ′′ = JP ′K;

2. (Soundness) JPK→∗ P∗ implies ∃x̃,P ′′,P ′ such that

P∗ →∗ (νx̃)P ′′ and P →∗ P ′ and JP ′K
with−−→∗ P ′′.

Our linear decomposition is precise!
JΓK is defined if and only if Γ is well-formed (“consistent”).

▸ ⇐Ô : we support the full MPST theory

▸ Ô⇒ : we uncover a deep connection between MPST and π-calculus
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Multiparty Channels, in Scala
Srv ′

a
c

Pb
′ b s
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===⇒

JSrv ′K
a

c

JPb′K b JsK z3

z1

z2

s[b] ∶ Tb = c!InfoBC(String).a?InfoAB(String).. . .

encode
===⇒ Js[b]K ∶ JTbK = [ a ∶ In⟨InfoAB (String, In⟨. . .⟩)⟩ ,

c ∶Out⟨InfoBC (String, In⟨. . .⟩)⟩ ]

A multiparty channel typed by JTbK is a Scala object of type:

case class Tb( a:

In[InfoAB]

, c:

Out[InfoBC]

)

case class InfoAB( p: String, cont:In[...] )

case class InfoBC( p: String, cont:In[...] )

In[⋅]/Out[⋅] are provided by lchannels (Scalas & Yoshida, ECOOP’16)

Tuples of channels (like Sb) can be delegated (remotely) for free!
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Multiparty Channel Endpoints, in Scala (cont’d)

To guide channel usage order and avoid deadlocks, we enrich
channel tuples with typed send/receive methods

Their implementation is based on our process encoding

Tb = c!InfoBC(String) . a?InfoAB(String) . . . .

case class Tb( a: In[InfoAB], c: Out[InfoBC] )

{
def send(v: String) = { // v: payload of InfoBC msg

val c ′ = c !! InfoBC(v)_ // send v, return continuation
T ′b(a, c ′) // return "continuation object"

}
}

The resulting API includes dynamic linearity checks, and is:
▸ fully type safe (no type casts)

▸ complete (full MPSTs, incl. type projection/merge and delegation)

▸ simple (most functionality comes from lchannels)

▸ mechanical (so we can generate it automatically!)
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Artifact: Scala API Generation in Scribble
We extended the Scribble protocol verification tool to
autogenerate Scala APIs, following our formal encoding
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Artifact: Scala API Generation Usage

A working implementation of a client playing the game as b,
based on our Scribble-generated APIs

with static protocol checks

def client(c: MPPlayB) = { // "c" is the channel to the game server

val g = c.receive().p // Receive multiparty game channel

val i = g.send(InfoBC("...")).receive() // Send info to C, recv from A

loop(i.cont) // Game loop

}

def loop(g: MPMov1ABOrMov2AB): Unit = {

g.receive() match { // Check A’s move

case Mov1AB(p, cont) => {

val g2 = cont.send(Mov1BC(p)) // cont only allows to send Mov1BC

loop(g2) // Keep playing

}

case Mov2AB(p, cont) => {

val g2 = cont.send(Mov2BC(p)) // cont only allows to send Mov2BC

loop(g2) // Keep playing

} } }
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Artifact: Scala API Generation Usage

A working implementation of a client playing the game as b,
based on our Scribble-generated APIs with static protocol checks

def client(c: MPPlayB) = { // "c" is the channel to the game server

val g = c.receive().p // Receive multiparty game channel

val i = g.send(InfoBC("...")).receive() // Send info to C, recv from A

loop(i.cont) // Game loop

}

def loop(g: MPMov1ABOrMov2AB): Unit = {

g.receive() match { // Check A’s move

case Mov1AB(p, cont) => {

val g2 = cont.send(Mov2BC(true)) // cont only allows to send Mov1BC

loop(g2) // Keep playing

}

case Mov2AB(p, cont) => {

val g2 = cont.send(Mov2BC(p)) // cont only allows to send Mov2BC

loop(g2) // Keep playing

} } }

7
Type mismatch
found: Mov2BC

required: Mov1BC
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Artifact: Scala API Generation Usage

A working implementation of a client playing the game as b,
based on our Scribble-generated APIs with static protocol checks

def client(c: MPPlayB) = { // "c" is the channel to the game server

val g = c.receive().p // Receive multiparty game channel

val i = g.send(InfoBC("...")).receive() // Send info to C, recv from A

loop(i.cont) // Game loop

}

def loop(g: MPMov1ABOrMov2AB): Unit = {

g.receive() match { // Check A’s move

case Mov1AB(p, cont) => {

val g2 = cont.send(Mov1BC(p)) // cont only allows to send Mov1BC

loop(g2) // Keep playing

}

} }

7 Match may not be exhaustive
It would fail on the input: Mov2AB( , )
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Conclusions
We presented the first choreographic encoding of the “full”
MPST calculus into linear π-calculus

▸ key: type-preserving decomposition into linear π-types

▸ important achievement since Session Types Revisited
(Dardha, Giachino, Sangiorgi. PPDP’12)

Our encoding gives the formal basis for a complete
implementation of multiparty sessions, in Scala + lchannels

▸ the first including (distributed) multiparty delegation

Future work:
▸ adapt to other languages and binary session implementations

▸ Haskell, OCaml, Rust, . . . (might not support distribution)

▸ reuse and compare theoretical results and tools
▸ e.g., deadlock freedom (with interleaved sessions)

▸ MPSTs (Bettini, Coppo et al., CONCUR’08 . . . )
▸ π-calculus, with TyPiCal tool (Kobayashi et al., CONCUR’06 . . . )
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Our encoding gives the formal basis for a complete
implementation of multiparty sessions, in Scala + lchannels

▸ the first including (distributed) multiparty delegation

Future work:
▸ adapt to other languages and binary session implementations

▸ Haskell, OCaml, Rust, . . . (might not support distribution)

▸ reuse and compare theoretical results and tools
▸ e.g., deadlock freedom (with interleaved sessions)

▸ MPSTs (Bettini, Coppo et al., CONCUR’08 . . . )
▸ π-calculus, with TyPiCal tool (Kobayashi et al., CONCUR’06 . . . )



Thank you!



Try Scribble and lchannels!

http://scribble.org

http://alcestes.github.io/lchannels
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