A Linear Decomposition
of Multiparty Sessions
for Safe Distributed Programming

Alceste Scalas’ Ornela Dardha® Raymond Hu' Nobuko Yoshida®

Imperial College A University
London of Glasgow
(1) (2

Open Problems in Concurrency Theory — Vien, 27 June 2017

Supported by the UK EPSRC grant EP/K034413/1, From Data Types to Session
Types: A Basis for Concurrency and Distribution (ABCD)

Intro
[Jele}

A Motivating Example: Peer-to-Peer Game

Srv P, Py p. Clients P,, Py, P. want to play a game as
] i roles a, b, c via a matchmaking server Srv
. Lo :
: PlayB;(s[b])
7 S PO O [
— EInfoBC(String)g
InfoCA(String)
‘InfoAB(String):
£o%P! T i Mov1AB(Int) ! :
: Mov1BC(Int)
Alt] Mov1CA(Int)
L E -
E [’E’ T ’MSviCA;(B’oo’l)’ T ’
" DMov2aB(Bool) i G
: i Mov2BC(Bool)
ALt] Mov1CA(Int)
777777 Mavicé(Biooil)i T

Intro
[Jele}

A Motivating Example: Peer-to-Peer Game

Srv

Pa Py Pe

nordered

PlayA(s[a])

PlayB{s[b])

Game

InfoBC(String):
InfoCA(String)

‘InfoAB(String):

Loop!

Alt

i MoviAB(Int) : :
: : MoviBC(Int) !

MoviCA(Int)

: Mov2AB(Bool) : :
: i Mov2BC(Bool) !

MoviCA(Int)

Mov2CE(Bool)

Clients P,, Py, P. want to play a game as
roles a, b, ¢ via a matchmaking server Srv

The server Stv sends some networking data
to the clients, so they “know each other”

Intro
[Jele}

A Motivating Example: Peer-to-Peer Game

Srv

Pa Py Pe

Unordered

i PlayA(s[a])

PlayB{s[b])

Game

InfoBC(String):
InfoCA(String)

‘InfoAB(String):
H S

Loop!

ALt]: MoviAB(Int) :

: MoviBC(Int) !

Alt] Mov1CA(Int)

: Mov2AB(Bool) : :
: i Mov2BC(Bool) !

ALt] Mov1CA(Int)

Mov2CE(Bool)

Clients P,, Py, P. want to play a game as
roles a, b, ¢ via a matchmaking server Srv

The server Stv sends some networking data
to the clients, so they “know each other”

The clients can now interact directly in a
multiparty session: they first exchange
some information. . .

Intro
[Jele}

A Motivating Example: Peer-to-Peer Game

Srv P. Py Pc
Unordered : :
i PlayA(s[a])
77T Tpays(spp]) i
N PlayC(s[c]) :
—_ InfoBC(String):

InfoCA(String)
‘InfoAB(String):
h S
Loop! o o
ALt]: MoviAB(Int) : :
: : MoviBC(Int) !
Alt] Mov1CA(Int)

L E -

g L S ————_ T - -
S : Mov2CE(Bool) :
O R : :

: Mov2AB(Bool) : :

: i Mov2BC(Bool) !

: —_—>
ALt] Mov1CA(Int)
777777 MSViCﬂ:(Biooil)i T

Clients P,, Py, P. want to play a game as
roles a, b, ¢ via a matchmaking server Srv

The server Stv sends some networking data
to the clients, so they “know each other”

The clients can now interact directly in a
multiparty session: they first exchange
some information. . .

...and then begin the main Game loop

Intro
(o] le}

A Motivating Example: Peer-to-Peer Game

Srv P. Py P.
ordezedr ™ ; | Implementing this specification is
: Y a : : : .
e oo ;| challenging:
PlayB:(s[b]) :
L iEayeele) » structured protocol
;—— ;InfoBC(String)g > ChOiceS
: InfoCA(String) » inter-role message dependencies
‘InfoAB(String): : > 1
: (Serine) recursion
LooP! e Mov1AB(Int . . .
i iR g » non-fixed communication topology
! MoviBC(Int) :
Ve Hovich(tnt) > > initially client-to-server
) P " : > 1 —-to-
E . later becoming peer-to-peer
T hevamsoor) | o » risks: protocol violations, deadlocks
: i Mov2BC(Bool)
ALt] Mov1CA(Int)
777777 MSViCA‘?(Biooil)i -7

Intro
(o] le}

A Motivating Example: Peer-to-Peer Game

Srv P. Py P.
Vergersd i ; Implementing this specification is
: PlayA(s[a]) : : : .
e SR . i challenging:
PlayB:(s[b]) :
[O » structured protocol
;—— EInfoBC(String)g s ChOices
: InfoCA(String) » inter-role message dependencies
‘InfoAB(String): : > 1
: (Serine) recursion
Eo%F! BIET v iap(nt) | . ..
; toviAh(or) B » non-fixed communication topology
T MovlC;(Int) > > initially client-to-server
g ; ; : » later becoming peer-to-peer
E T T T TMoviGk(Bool) T T i gp p
" Ddovab(root) | i7| > risks: protocol violations, deadlocks
: i Mov2BC(Bool)
Alt Mov1CA(Int) : .
; ; . || Can we provide a formally grounded wa
””” Mov2CK(Bool) ~ i P
: to address these challenges?

Intro
[e]e]]

Our Contribution

We leverage the multiparty session types (MPST) theory to
turn multiparty protocol specifications into Scala APls

Our Contribution
We leverage the multiparty session types (MPST) theory to
turn multiparty protocol specifications into Scala APls

1. we encode the full MPST calculus into linear 7t-calculus

2. we develop an encoding-based multiparty API generation

Intro
[e]e]]

Our Contribution

We leverage the multiparty session types (MPST) theory to
turn multiparty protocol specifications into Scala APls

1. we encode the full MPST calculus into linear 7t-calculus

2. we develop an encoding-based multiparty API generation

With this approach, the resulting Scala APlIs:
» are formally grounded (exploit formal correctness properties)
» are type-safe (many protocol errors detected at compile time)
» are choreographic (no centralised orchestration middleware)
» reuse existing libraries for type-safe binary channels

» support distributed multiparty session delegation (first time!)

MPST Theory: Overview

Global Type

/ * \ Projection

Local Local Local
Type Type Type

* * * Type checking

Process Process Process

(Honda et al., POPL'08/JACM’16; Bettini et al., CONCUR'08; Coppo et al., MSCS'16)

MPST Theory: Protocols as Types

The global type G is the game protocol with 3 players a, b, c:
G = b—c:InfoBC(String).c—a:InfoCA(String).a—b:InfoAB(String).

movicA(Int).t, }

Mov2CA(Bool) .t

MovicA(Int).t, }

Mov2CA(Bool) .t

Mov1AB(Int).b— C:MoviBC(Int).C —>a:{
ut.a—b:
Mov24B(Bool) . b — C :Mov2BC(Bool) . C — a:{

MPST Theory: Protocols as Types

The global type G is the game protocol with 3 players a, b, c:
G = b—c:InfoBC(String).c—a:InfoCA(String).a—b:InfoAB(String).

movicA(Int).t, }

Mov2CA(Bool) .t

MovicA(Int).t, }

Mov2CA(Bool) .t

Mov1AB(Int).b— C:MoviBC(Int).C —>a:{
ut.a—b:
Mov24B(Bool) . b — C :Mov2BC(Bool) . C — a:{

The projection G b yields the (local) session type describing
how a communication channel should be used to play as b:
Mov1aB(1Int).cC MoviBC(Int).t , }

=cl i ? i
Ty, = c!InfoBC(String).a?InfoAB(String).ut.a & {?MovaB(Bool) < Iovanc(Bost)

MPST Theory: Protocols as Types

The global type G is the game protocol with 3 players a, b, c:
G = b—c:InfoBC(String).c—a:InfoCA(String).a—b:InfoAB(String).

movicA(Int).t, }

Mov2CA(Bool) .t

MovicA(Int).t, }

Mov2CA(Bool) .t

Mov1AB(Int).b— C:MoviBC(Int).C —>a:{
ut.a—b:
Mov24B(Bool) . b — C :Mov2BC(Bool) . C — a:{

The projection G b yields the (local) session type describing
how a communication channel should be used to play as b:

Mov1AB(1Int).cC MoviBC(Int).t
=cl i ? i '
Ty, = c!InfoBC(String).a?InfoAB(String).ut.a & {?MovaB(Bool) ¢ Iiovano(Bon1) ¢

This client-server session type allows delegation for player b
(“send or receive a channel over a channel”):

srv?PlayB(T,).end

Background
[ele]]

MPST Theory: Delegation

val msg = sblsrv].receive()

val y = msg.payload A process for player b, in pseudo-Scala

Note the multiparty session delegation

ylcl.send(InfoBC("..."))
val info = y[a].receive()
loop(y)

def loop(y) = ylal.receive() {
case MoviAB(p) => {
y[c] .send (MoviBC(p))
loop(y) }
case Mov2AB(y) => {
y[c].send(Mov2BC(p))
loop(y) } }

Background
[ele]]

MPST Theory: Delegation

val msg = sblsrv].receive()

val y = msg.payload A process for player b, in pseudo-Scala

Note the multiparty session delegation

ylcl.send(InfoBC("..."))
val info = y[a].receive()
loop(y)

def loop(y) = ylal.receive() {
case MoviAB(p) => {
y[c] .send (MoviBC(p))
loop(y) }
case Mov2AB(y) => {
y[c].send(Mov2BC(p))
loop(y) } }

Background
[ele]]

MPST Theory: Delegation

val msg = sblsrv].receive()

val y = msg.payload A process for player b, in pseudo-Scala

Note the multiparty session delegation

ylcl.send(InfoBC("..."))
val info = y[a].receive()
loop(y)

def loop(y) = ylal.receive() {
case MoviAB(p) => {
y[c] .send (MoviBC(p))
loop(y) }
case Mov2AB(y) => {
y[c].send(Mov2BC(p))
loop(y) } }

Background
[ele]]

MPST Theory: Delegation

val msg = sblsrv].receive()

val y = msg.payload A process for player b, in pseudo-Scala

Note the multiparty session delegation

ylcl.send(InfoBC("..."))
val info = y[a].receive()
loop(y)

def loop(y) = ylal.receive() {
case MoviAB(p) => {
y[c] .send (MoviBC(p))
loop(y) }
case Mov2AB(y) => {
y[c].send(Mov2BC(p))
loop(y) } }

Background
[ele]]

MPST Theory: Delegation and Typing

val msg = sblsrv].receive()

val y = msg.payload A process for player b, in pseudo-Scala

Note the multiparty session delegation

ylcl.send(InfoBC("..."))
1 info = . i .
‘{zopt;l)o LI HCCRIO0 The MPST typing system can check that:
def loop(y) = ylal.receive() { » sb is used as srv?PlayB(Ty).end \/
case MoviAB(p) => { .
y[c].send(MoviBC(p)) »y isusedas T, =G [b
loop(y) }

case Mov2AB(y) => {
y[c].send(Mov2BC(p))
loop(y) } }

MPST Theory: Delegation and Typing

val msg = sblsrv].receive()

val y = msg.payload A process for player b, in pseudo-Scala

Note the multiparty session delegation

ylcl.send(InfoBC("..."))
1 info = o i .
‘{zopt;l)o LI HCCRIO0 The MPST typing system can check that:
def loop(y) = ylal.receive() { » sb is used as srv?PlayB(Ty).end \/
case MoviAB(p) => { .
y[c].send(MoviBC(p)) »y isusedas T, =G [b
loop(y) }
case E’IolﬁAB(y() =>{ o It can also check if a set of processes fol-
ylc].send(Mov2BC(p .
loop(y) } } lows a global type G, without deadlocks

Pl

Background
(J

From MPST Theory to Practice: Challenges

MPST offer useful modelling and verification features. But:
» multiparty channels are a very high-level concept
» the theory is rich and sometimes intricate

» calculus/types are far from “mainstream” programming

From MPST Theory to Practice: Challenges

MPST offer useful modelling and verification features. But:
» multiparty channels are a very high-level concept
» the theory is rich and sometimes intricate

» calculus/types are far from “mainstream” programming

To “close the gap” between theory and practice, we need to:

1. decompose MPST channels into binary channels (e.g., TCP sockets)

2. figure out how to implement multiparty delegation

3. provide types and APlIs in a “mainstream” prog. lang.

Background
(J

From MPST Theory to Practice: Challenges

MPST offer useful modelling and verification features. But:
» multiparty channels are a very high-level concept
» the theory is rich and sometimes intricate

» calculus/types are far from “mainstream” programming

To “close the gap” between theory and practice, we need to:

1. decompose MPST channels into binary channels (e.g., TCP sockets)

» without adding centralised orchestration, unlike existing theories
(Caires & Pérez, FORTE'16; Carbone et al., CONCUR'16)

2. figure out how to implement multiparty delegation

3. provide types and APls in a “mainstream” prog. lang.

Background
(J

From MPST Theory to Practice: Challenges

MPST offer useful modelling and verification features. But:
» multiparty channels are a very high-level concept
» the theory is rich and sometimes intricate

» calculus/types are far from “mainstream” programming

To “close the gap” between theory and practice, we need to:

1. decompose MPST channels into binary channels (e.g., TCP sockets)

» without adding centralised orchestration, unlike existing theories
(Caires & Pérez, FORTE'16; Carbone et al., CONCUR'16)

2. figure out how to implement multiparty delegation
» unsupported in existing works (Hu & Yoshida, FASE'16/FASE'17)

3. provide types and APlIs in a “mainstream” prog. lang.

Approach
[J

A New Approach to “Practical” Multiparty Sessions

Binary
Sessions
Encoding *
Linear
n-Calculus
ECOOP
2016 Specs *

Q Scala Types +
% Lchannels

Approach
[J

A New Approach to “Practical” Multiparty Sessions

Binary Multiparty
Sessions Sessions

Encoding * Encoding

Linear
n-Calculus
ECOOP ECOOP
2016 Specs * 2017

cala Types +
Lchannels

1. encode the full multiparty session calculus into linear 7t-calculus
» m-calculus only has binary channels, and no session primitives

Approach
[J

A New Approach to “Practical” Multiparty Sessions

Binary Multiparty
Sessmns Sessions
Encoding * /Encodmg
Linear
n-Calculus Code gen

ECZ%?‘; Specs* \
AYScala Types +-—3 Session
lchannels |impi APIs

1. encode the full multiparty session calculus into linear 7t-calculus
» m-calculus only has binary channels, and no session primitives

2. use the encoding to guide multiparty session APl generation
» “inherit” correctness, reuse code, better APls, delegation for free!

Encoding
[1]

A Linear Decomposition of Multiparty Sessions

Srv/

s[b] : Ty = c!InfoBC(String).a?InfoAB(string).. ..

We decompose s into binary linear channels, and encode P}
and Stv’ so that they use the decomposed channels “correctly”:

» no out-of protocol messages must be sent/received
» channel usage ordering must be preserved

Encoding
[1]

A Linear Decomposition of Multiparty Sessions

s[b] : Ty = c!InfoBC(String).a?InfoAB(string).. ..

We decompose s into binary linear channels, and encode P}
and Stv’ so that they use the decomposed channels “correctly”:

» no out-of protocol messages must be sent/received
» channel usage ordering must be preserved

Encoding
[1]

A Linear Decomposition of Multiparty Sessions

encode
n@LIE) = wCr

Tb =cl! IIlfOBC(Strlng a?InfOAB(Strlng)
encode z1 : H1% raﬂ
Zy [[Tb r C H

We decompose s into binary linear channels, and encode P}
and Stv’ so that they use the decomposed channels “correctly”:

» no out-of protocol messages must be sent/received
» channel usage ordering must be preserved

Encoding
[1]

A Linear Decomposition of Multiparty Sessions

encode
n@LIE) = wCr

Tb = CllnfOBC(Strlng a?InfOAB(Strlng)
encode z1 : [Tota] = In(InfoAB,(String,)
zp ¢ [Ty I ¢] = Out (InfoBC_(string,)

We decompose s into binary linear channels, and encode P}
and Stv’ so that they use the decomposed channels “correctly”:

» no out-of protocol messages must be sent/received
» channel usage ordering must be preserved

Encoding
[1]

A Linear Decomposition of Multiparty Sessions

encode
n@LIE) = wCr

Tb = CllnfOBC(Strlng a?InfOAB(Strlng)

~encode z1: [Thla] = In(InfoAB,(String, In(...)))
z3 ¢ [Ty I c] = Out (InfoBC_(string, In(...)))

We decompose s into binary linear channels, and encode P}
and Stv’ so that they use the decomposed channels “correctly”:

» no out-of protocol messages must be sent/received
» channel usage ordering must be preserved

Encoding
[1]

A Linear Decomposition of Multiparty Sessions

encode
n@LIE) = wCr

Tb = CllnfOBC(Strlng a?InfOAB(Strlng)

~encode z1: [Thla] = In(InfoAB,(String, In(...)))
z3 ¢ [Ty I c] = Out (InfoBC_(string, In(...)))

stell=| 52 |

CiZo

We decompose s into binary linear channels, and encode P}
and Stv’ so that they use the decomposed channels “correctly”:

» no out-of protocol messages must be sent/received
» channel usage ordering must be preserved

Encoding
[1]

A Linear Decomposition of Multiparty Sessions

[sv]
ro() ‘ =2 a0

Tb = CllnfOBC(Strlng a?InfOAB(Strlng)

~encode z1: [Thla] = In(InfoAB,(String, In(...)))
z3 ¢ [Ty I c] = Out (InfoBC_(string, In(...)))

s =] 22| 2

We decompose s into binary linear channels, and encode P}
and Stv’ so that they use the decomposed channels “correctly”:

» no out-of protocol messages must be sent/received
» channel usage ordering must be preserved

Encoding
[1]

A Linear Decomposition of Multiparty Sessions

[sv]
ro() ‘ =2 a0

Tb = CllnfOBC(Strlng a?InfOAB(Strlng)

~encode z1: [Thla] = In(InfoAB,(String, In(...)))
z3 ¢ [Ty I c] = Out (InfoBC_(string, In(...)))

s =] 22| 2

We decompose s into binary linear channels, and encode P}
and Stv’ so that they use the decomposed channels “correctly”:

» no out-of protocol messages must be sent/received \/
» channel usage ordering must be preserved

Encoding
o] J

Encoding of Typed Processes

Our process encoding:
> is “low-level”, close to an imperative prog. lang.
» uses binary channels once with continuation-passing style

» keeps the communication order of the original process \/

Encoding of Typed Processes
Our process encoding:
> is “low-level”, close to an imperative prog. lang.

» uses binary channels once with continuation-passing style

» keeps the communication order of the original process \/

s[b]: Ty + s[b][c] ® (InfoBC("...")).P’

Encoding
o] J

Encoding of Typed Processes

Our process encoding:
> is “low-level”, close to an imperative prog. lang.
» uses binary channels once with continuation-passing style

» keeps the communication order of the original process \/

Hs[b] Ty - s[b][c] ® (InfoBC("...")>.P'ﬂ -

Encoding
o] J

Encoding of Typed Processes

Our process encoding:
> is “low-level”, close to an imperative prog. lang.
» uses binary channels once with continuation-passing style

» keeps the communication order of the original process \/

Hs[b] Ty - s[b][c] ® (InfoBC("...")>.P'ﬂ -
[s[v]:To] Fr

Encoding
o] J

Encoding of Typed Processes

Our process encoding:
> is “low-level”, close to an imperative prog. lang.
» uses binary channels once with continuation-passing style

» keeps the communication order of the original process \/

Hs[b] Ty - s[b][c] ® (InfoBC("...")>.P'ﬂ -
[s[b]:To] Fr with[a:z,, c:z.] = [s[b]] do

Encoding
o] J

Encoding of Typed Processes

Our process encoding:
> is “low-level”, close to an imperative prog. lang.
» uses binary channels once with continuation-passing style

» keeps the communication order of the original process \/

Hs[b] Ty - s[b][c] ® (InfoBC("...")>.P'ﬂ -

[s[b]: To] Fr With[a:za, ¢ ze] = [s[b]] do
(z1,2() = new_lin_channel();

Encoding
o] J

Encoding of Typed Processes

Our process encoding:
> is “low-level”, close to an imperative prog. lang.
» uses binary channels once with continuation-passing style

» keeps the communication order of the original process \/

Hs[b] Ty - s[b][c] ® (InfoBC("...")>.P'ﬂ -

[s[b]:To] Fr with[a:z,, c:z.] = [s[b]] do
(z1,2z5) = new_lin_channel();
zc.send(InfoBC("..."));

Encoding
o] J

Encoding of Typed Processes

Our process encoding:
> is “low-level”, close to an imperative prog. lang.
» uses binary channels once with continuation-passing style

» keeps the communication order of the original process \/

Hs[b] Ty - s[b][c] ® (InfoBC("...")>.P'ﬂ -

[s[b]:To] Fr with[a:z,, c:z.] = [s[b]] do
(z1,2z5) = new_lin_channel();
zc.send(InfoBC(” 2 z{));

Encoding
o] J

Encoding of Typed Processes

Our process encoding:
> is “low-level”, close to an imperative prog. lang.
» uses binary channels once with continuation-passing style

» keeps the communication order of the original process \/

Hs[b] Ty - s[b][c] ® (InfoBC("...")>.P'ﬂ -

[s[b]:To] Fr with[a:z,, c:z.] = [s[b]] do
(z{,2() = new_lin_channel();
zc.send(InfoBC("..." , z{));
let [s[b]] =[a:za, c:zg] in [P]

Encoding
o] J

Encoding of Typed Processes

Our process encoding:
> is “low-level”, close to an imperative prog. lang.
» uses binary channels once with continuation-passing style

» keeps the communication order of the original process \/

Hs[b] Ty - s[b][c] ® (InfoBC(" ...”)).P'ﬂ -

[s[b]:To] Fr with[a:z,, c:z.] = [s[b]] do
(z{,2() = new_lin_channel();
zc.send(InfoBC("..." , z{));
let [s[b]] =[a:za, c:zg] in [P]

Moreover, our encoding is choreographic: [P|Q] = [P] | [Q]

» unlike previous works (Caires & Pérez, FORTE'16; Carbone et al., CONCUR'16)

Formal Correctness Properties

Encoding is type-preserving. I' - P implies [I'] - [P].

Formal Correctness Properties

Encoding is type-preserving. I' - P implies [I'] - [P].

Operational correspondence. (Gorla, Inf. & Comput., 2010)
If @+ P, then:

1. (Completeness) P —* P’ implies 3X,P” such that
[P] =* (vX)P” and P" =[P'[;
2. (Soundness) [P] -* P. implies 3%, P”,P’ such that

P. >* (VO)P” and P—*P’ and [P/] S5 pr

Formal Correctness Properties

Encoding is type-preserving. I' - P implies [I'] - [P].

Operational correspondence. (Gorla, Inf. & Comput., 2010)
If @+ P, then:

1. (Completeness) P —* P’ implies 3X,P” such that
[P] =* (vX)P” and P" =[P'[;
2. (Soundness) [P] -* P. implies 3%, P”,P’ such that

P. >* (VO)P” and P—*P’ and [P/] S5 pr

Our linear decomposition is precise!
[T'] is defined if and only if T is well-formed (“consistent”).

» <= we support the full MPST theory

» ——=: we uncover a deep connection between MPST and 7-calculus

Implementation

[Je]ele)

Multiparty Channels, in Scala

encode
@LEE) = wOn

Tb = CIInfOBC(Strlng) a?InfOAB(Strlng)

encode) B a.In(InfOAB,(Strln , In(. . >)>)
[s(e]] = [To] = [c:Out(InfoBC,(Strfng, In(...)))

Implementation
[Je]ele]

Multiparty Channels, in Scala

encode
G =

Tb = CIInfOBC(Strlng) a?InfOAB(Strlng)

) B a.In(InfoAB,(Strm ,In(...))),
[stell + [Te] = [c:Out(InfoBC,(Strfng, In(...)))

encode

A multiparty channel typed by [T,] is a Scala object of type:

case class Tp(a: , C:)

Implementation

[Je]ele)

Multiparty Channels, in Scala

encode
W@ == @

Tb = CIInfOBC(Strlng) a?InfOAB(Strlng)

encode) B a.In(InfOAB,(Strin , In(. . >)>)
[s(e]] = [To] = [c:Out(InfoBC,(Strfng, In(...)))

A multiparty channel typed by [T,] is a Scala object of type:

case class Tp(@: In[InfoAB], C: Out[InfoBC])

Implementation

[Je]ele)

Multiparty Channels, in Scala

encode
G =

Tb = CIInfOBC(Strlng) a?InfOAB(Strlng)

encode) B a.In(InfOAB,(Strin , In(. . >)>)
[s(e]] = [To] = [c:Out(InfoBC,(Strfng, In(...)))

A multiparty channel typed by [T,] is a Scala object of type:

case class Tp(@: In[InfoAB], C: Out[InfoBC])

case class InfoAB(p: String, cont:In[...])
case class InfoBC(p: String, cont:In[...])

Implementation

[Je]ele)

Multiparty Channels, in Scala

encode
G =

Tb = CIInfOBC(Strlng) a?InfOAB(Strlng)

encode) B a.In(InfOAB,(Strin , In(. . >)>)
[s(e]] = [To] = [c:Out(InfoBC,(Strfng, In(...)))

A multiparty channel typed by [T,] is a Scala object of type:

case class Tp(@: In[InfoAB], C: Out[InfoBC])
case class InfoAB(p: String, cont:In[...])
case class InfoBC(p: String, cont:In[...])

In[-]/0ut[-] are provided by lchannels (Scalas & Yoshida, ECOOP'16)
Tuples of channels (like S,) can be delegated (remotely) for free!

Multiparty Channel Endpoints, in Scala (cont'd)

To guide channel usage order and avoid deadlocks, we enrich
channel tuples with typed send/receive methods

Their implementation is based on our process encoding

T, = clinfoBc(String) . a?InfosB(String)

case class Tp(a: In[InfoAB], c:Out[InfoBC])

Multiparty Channel Endpoints, in Scala (cont'd)
To guide channel usage order and avoid deadlocks, we enrich

channel tuples with typed send/receive methods
Their implementation is based on our process encoding

T, = clinfoBc(String) . a?InfosB(String)

case class Tp(a: In[InfoAB], c:Out[InfoBC])
{
def send(v: String) = {
val ¢’ = ¢ !'! InfoBC(v)_
Th(a, c’)

Multiparty Channel Endpoints, in Scala (cont'd)

To guide channel usage order and avoid deadlocks, we enrich
channel tuples with typed send/receive methods

Their implementation is based on our process encoding

T, = clinfoBc(String) . a?InfosB(String)

case class Tp(a: In[InfoAB], c:Out[InfoBC])

{
def send(v: String) = {
val ¢/ = c !! InfoBC(v)_
T'b(a, C,)
}
}

The resulting API includes dynamic linearity checks, and is:
» fully type safe (no type casts)
» complete (full MPSTs, incl. type projection/merge and delegation)
» simple (most functionality comes from 1channels)

» mechanical (so we can generate it automatically!)

Artifact: Scala APl Generation in Scribble
We extended the Scribble protocol verification tool to

autogenerate Scala APls, following our formal encoding

Global Type

/ * \ Scribble tool

Local Local Local
Type Type Type

Linear Linear Linear
n-lypes mn-Types Tt-lypes

Scala Scala Scala API generation
API API API

* * + Type checking

Program Program Program

Projection

Encoding

Artifact: Scala APl Generation in Scribble
We extended the Scribble protocol verification tool to

autogenerate Scala APls, following our formal encoding

Global Type

/ * \ Scribble tool

Local Local Local
Type Type Type

Linear Linear Linear
n-lypes mn-Types Tt-lypes

Scala Scala Scala API generation
API API API

* * + Type checking

Program Program Program

Projection

Encoding

Tutorial and examples: peer-to-peer game, HTTP server. ..

Artifact: Scala APl Generation Usage

A working implementation of a client playing the game as b,
based on our Scribble-generated APls

def client(c: MPPlayB) = {
val g = c.receive().p

val i = g.send(InfoBC("...")).receive()
loop(i.cont)
}

def loop(g: MPMov1ABOrMov2AB): Unit = {
g.receive() match {
case Mov1AB(p, cont) => {
val g2 = cont.send(MoviBC(p))
loop(g2)
}
case Mov2AB(p, cont) => {
val g2 = cont.send(Mov2BC(p))
loop(g2)
}r}

Artifact: Scala APl Generation Usage

A working implementation of a client playing the game as b,
based on our Scribble-generated APls with static protocol checks

def client(c: MPPlayB) = {
val g = c.receive().p

val i = g.send(InfoBC("...")).receive()
loop(i.cont)
}

def loop(g: MPMov1ABOrMov2AB): Unit = {
g.receive() match {

case Mov1AB(p, cont) => { Type mismatch
val g2 = cont.send(MonBC(true))x found: Mov2BC

loop(g2)
3 required: Mov1BC
case Mov2AB(p, cont) => { s,
val g2 = cont.send(Mov2BC(p))
loop(g2)
}r}

Artifact: Scala APl Generation Usage

A working implementation of a client playing the game as b,
based on our Scribble-generated APls with static protocol checks

def client(c: MPPlayB) = {
val g = c.receive().p

val i = g.send(InfoBC("...")).receive()
loop(i.cont)
}

def loop(g: MPMov1ABOrMov2AB): Unit = {
g.receive() match {
case Mov1AB(p, cont) => {
val g2 = cont.send(MoviBC(p))
loop(g2)
}

X Match may not be exhaustive

It would fail on the input: Mov2AB(_,_)

+}

Conclusion
[J

Conclusions
We presented the first choreographic encoding of the “full”
MPST calculus into linear mt-calculus

> key: type-preserving decomposition into linear 7-types
» important achievement since Session Types Revisited
(Dardha, Giachino, Sangiorgi. PPDP’'12)

Conclusion
[J

Conclusions
We presented the first choreographic encoding of the “full”
MPST calculus into linear mt-calculus

> key: type-preserving decomposition into linear 7-types
» important achievement since Session Types Revisited
(Dardha, Giachino, Sangiorgi. PPDP’'12)

Our encoding gives the formal basis for a complete
implementation of multiparty sessions, in Scala + 1channels

» the first including (distributed) multiparty delegation

Conclusion
[J

Conclusions
We presented the first choreographic encoding of the “full”
MPST calculus into linear 7-calculus
> key: type-preserving decomposition into linear 7-types
» important achievement since Session Types Revisited
(Dardha, Giachino, Sangiorgi. PPDP'12)

Our encoding gives the formal basis for a complete
implementation of multiparty sessions, in Scala + 1channels

» the first including (distributed) multiparty delegation

Future work:
» adapt to other languages and binary session implementations
» Haskell, OCaml, Rust, ... (might not support distribution)
» reuse and compare theoretical results and tools
» e.g., deadlock freedom (with interleaved sessions)

» MPSTs (Bettini, Coppo et al., CONCUR'08 ...)
» m-calculus, with TyPiCal tool (Kobayashi et al., CONCUR'06 . ..)

Thank youl!

Try Scribble and 1channels!

http://scribble.org
http://alcestes.github.io/lchannels

ECOOP 2016 ECOOP 2017

http://scribble.org
http://alcestes.github.io/lchannels

	Intro
	Intro

	Background
	Background
	From MPST Theory to Practice: Challenges

	Approach
	Approach
	A New Approach to ``Practical'' Multiparty Sessions

	Encoding
	Encoding

	Properties
	Properties

	Implementation
	Implementation

	Conclusion
	Conclusion
	Thanks!

