
Co-Contextual Typing Inference
for the Linear π -Calculus in Agda

(Extended Abstract)

Uma Zalakain
University of Glasgow

u.zalakain.1@research.gla.ac.uk

Ornela Dardha
University of Glasgow

ornela.dardha@glasgow.ac.uk

Abstract
A π -calculus with linear types ensures the privacy and safety
of concurrent communication. Allowing shared (unlimited)
communication however is key to model real-world services.
To implement a decision procedure that type checks a π -
calculus process with both linear and shared types one can
either rely on user-provided type annotations, or infer the
types of the channels created within the process. We choose
to reduce the burden on the user by following the latter
approach. If we limit ourselves to the shared π -calculus, we
can traverse a process bottom-up and eagerly solve typing
constraints into substitutions and apply them to the typing
context. However, in a setting with both linear and shared
types, typing constraints do not always come with a most
general solution, and thus cannot always be eagerly solved.

We provide a co-contextual typing inference [5] algorithm
that traverses processes bottom-up and, in addition to the
typing context, collects a set of typing constraints. We then
solve those constraints that have a most general solution (by
using well-known unification algorithms [7]) while defer-
ring the rest until more information becomes available. We
state clear soundness and completeness theorems separating
both these phases, and a progress theorem that ensures that
only those constraints without a most general solution are
deferred. This work is being mechanised in Agda.

1 Introduction
The π -calculus [8, 9] models concurrent processing, boiling
it down to the transmission of data over communication
channels — where channels too are sent as payload. Type
systems for the π -calculus that support linearity [6] ensure
that linear channels are used exactly once, which guarantees
communication safety and the absence of race conditions.
We follow this line of work with a π -calculus with linear
and shared types, where the input and output capabilities
of a channel are either usage 0 (cannot be used to transmit),
usage 1 (must be used exactly once), or usage ω (unlimited
use). 1

1Why support a usage 0 instead of removing the variable from context
altogether? it allows the syntax to be independent from the type system,
and moreover for a polarised treatment of channels, where the same channel
variable is used for both input and output.

To type check a π -calculus process with shared and linear
types we must assign a type to every communication chan-
nel created within the process. To do so we can either ask
the user for type annotations [12], or we can infer types by
looking at how channels are used. To reduce the burden on
the user, we follow the latter approach: we traverse processes
bottom-up while keeping a typing context with metavari-
ables (holes) and collecting typing constraints on metavari-
ables, in line with co-contextual typing [5]. Keeping a strictly
bottom-up information flow has the additional advantage
of making typing inference parallelisable. Constraints with
a most general solution are solved into substitutions and
applied to the typing context, constraints without must be
kept around for later: applying them as substitutions risks
over-constraining the problem down the line. Armed with
a typing inference algorithm that for a process P infers the
most general typing context Γ and some typing constraints,
type checking that ∆ ⊢ P for some ∆ amounts to emitting
the extra constraint Γ = ∆, assuming the metavariables in Γ
and ∆ are disjoint.
Decidable (and certified) type checking procedures have

been provided for a range of linear type systems [1–3, 10].
These type systems however do not deal with types contain-
ing usage annotations nested within: in our case, a channel
with payload type “channel with input usage 0” differs in
type from a channel with payload type “channel with in-
put usage 1”. As a result, we must roll typing inference and
linearity inference into one, and deal with the type poly-
morphism that arises as a result of usage polymorphism. To
the best of our knowledge, this problem has not yet been
mechanised, and has only been treated in Padovani’s work
on type reconstruction for composite types [11]. With this
work, we aim to:

• State and prove clear soundness and completeness
theorems for both constraint collection and constraint
resolution (§3).

• Mechanise in Agda the totality of this work.
We start defining an untyped but well scoped π -calculus

using type-level de Bruijn indices [4] and embed a small
expression language that handles composite sum and product
types. On top, we define a standard type system with linear
and shared types using context-splits (§2). We then provide
an overview of how typing inferenceworks, define constraint

Uma Zalakain and Ornela Dardha

collection and constraint resolution (§3), and state that both
phases are sound and complete with regards to the type
system defined in §2. (Notation: variables are black, types
are blue, constructors are green, and functions are gray.)

2 Type System
We define a standard syntax and type system for the linear
π -calculus. The only non-standard feature is that types allow
for metavariables within them.

Syntax We define a standard syntax for the π -calculus
using type-level de Bruijn indices. Variable references i1+n
are of type Fin (1 + n) with constructors zero and suc in ,
expressions en and fn are of type Expr n, processes pn and
qn are of type Proc n.
en fn := unit

| var in

| pair en fn

| fst en | snd en

| inl en | inr en

pn qn := end | rec pn | new p1+n

| recv en p1+n

| send en fn pn

| comp pn qn

| case en p1+n q1+n

Types Both types and usage annotations contain metavari-
ables. To make their handling uniform we use a common
set of metavariables for both. A context of kinds γ keeps
track of whether a metavariable is of type kind ty or usage
annotation kind us. Variable referencesm are of type γ ∋t k :
the set of variables of kind k in a kinding context γ . Usage
annotations i and o are of type γ ⊢t us, and types s and t of
type γ ⊢t ty. We henceforth abbreviate γ ⊢t ty as Type γ
and γ ⊢t us as Usage γ .

i o := mvarus m | 0· | 1· | ω·

s t := mvarty m | unit | chan[i ,o] t | prod s t | sum s t

Context Splits A context Γ of type Ctxn γ is a list of Typeγ
of size n. We define context splits Γ = ∆ ⊎ Θ pointwise
on types. Splits on types are defined pointwise on usage
annotations (but are not applied to a channel’s payload) and
splits on usage annotations are defined as follows:

x = x ⊎ 0· x = 0· ⊎ x ω· = x ⊎ y

ix = iy ⊎ iz ox = oy ⊎ oz

chan[ix ,ox] t = chan[iy ,oy] t ⊎ chan[iz ,oz] t

Note that e.g., both 0· = 0· ⊎ 0· and ω· = 0· ⊎ 0· are possible:
we use context splits to allow the type system to lose granu-
larity. Following [11], a context Γ is unrestricted (non-linear)
un Γ if it can be split into itself: Γ = Γ ⊎ Γ (respectively un x
and un t for usage annotations x and types t).

Typing Judgments We can now define our typing judg-
ment for variables (Γ ∋ i : t , where variable i under context Γ
is of type t), expressions (Γ ⊢ e : t , where expression e under
context Γ is well typed with type t) and processes (Γ ⊢ p,

where process p is well typed under context Γ). Note that, al-
though fully linear tensor products (prod s t) cannot directly
be eliminated through their projections (fst rule), context
splits enable their usage annotations to be distributed be-
forehand. Similarly, while it may appear that recv and send
only work on channels with usages (1·, 0·) and vice versa, the
context splits in these rules allow usages to lose granularity
(and thus accept e.g., (ω·, ω·)).

Γ : Ctxn γ un Γ t : Type γ
Γ, t ∋ zero : t

Γ ∋ i : t s : Type γ un s

Γ, s ∋ suc i : t

Γ ⊢ e : prod t s un s

Γ ⊢ fst e : t
Γ = ∆ ⊎ Θ ∆ ⊢ e : s Θ ⊢ f : t

Γ ⊢ pair e f : prod s t

un Γ

Γ ⊢ end

t : Type γ Γ, t ⊢ p

Γ ⊢ new p

Γ = ∆ ⊎ Θ ∆ ⊢ e : chan[1·,0·] t Θ, t ⊢ p

Γ ⊢ recv e p

Γ = ∆ ⊎ Θ
Θ = Ψ ⊎ Ξ ∆ ⊢ f : chan[0·,1·] t Ψ ⊢ e : t Ξ ⊢ p

Γ ⊢ send f e p

3 Inference
Constraints Constraints of type Constr γ are defined on
arguments of type γ ⊢t k for some k — that is, on both usage
annotations and types. They take two forms: the binary
[S

c
= T], where S and T must be unified, and the ternary

[S
c
= T + R], where S is split into T and R. Constraints are

pointwise lifted to typing contexts, and we abbreviate with
[Γ

c
∋i t] a constraint that states that i must be of type t in

Γ, and all other variables in Γ must be unrestricted. We use
[Constr γ] to refer to lists of constraints of type Constr γ .

Substitution A kind-preserving substitution Subst γ δ
maps usage annotations and type metavariables inγ to usage
annotations and types in δ , that is, ∀{k} → γ ∋t k → δ ⊢t k
for an implicit k . The function σ ◁ t of type Subst γ δ →

(∀{k} → γ ⊢t k → δ ⊢t k) performs the substitution by
replacing all the metavariables in t with their corresponding
terms inσ . Substitutions on constraints are defined pointwise
on their arguments.

Constraint Satisfaction We use a ⟦_⟧ function to inter-
pret constraints [S c

= T] and [S
c
= T + R] into claims of

their satisfiability S ≡ T and S = T ⊎ R, respectively.

Inference Typing inference takes a process with n free
variables and returns a metavariable context γ , a typing
context with n free variables containing metavariables in
γ , and a list of constraints on metavariables γ . We define

Co-Contextual Typing Inference for the Linear π -Calculus in Agda

a similar function for typing inference on expressions, this
time also returning a type in Type γ . These functions are
total: if a process or expression is untypable its constraints
are unsolvable.
inferProc : Proc n → ∃γ . Ctxn γ × [Constr γ]

inferExpr : Expr n → ∃γ . Ctxn γ × [Constr γ] × Type γ

Unlike in the shared π -calculus, where constraints have
always a most general unifier, in the shared and linear π -
calculus metavariables can be under-constrained. Consider
the open process send a unit (send x a end) where x and
a are free: we partly use a to send, then send whatever is
left of a away over x and terminate. Let us step through a
working example of how inference runs:

1. on end, inference creates a fresh typing context Γ0 with
metavariables for x and a, and constraints demanding
that these should be unrestricted.

2. on send x a, inference creates fresh typing contexts Γ4,
Γ3, Γ2 and Γ1, a fresh metavariable ?t , and constraints
[Γ4

c
= Γ3 + Γ2], [Γ3

c
∋x chan[0·,1·] ?t], [Γ2

c
= Γ1 + Γ0],

and [Γ1
c
∋a ?t], following the typing rules.

3. on send a unit, inference creates fresh typing con-
texts Γ6 and Γ5, and constraints [Γ6

c
= Γ5 + Γ4], and

[Γ5
c
∋a chan[0·,1·] unit].

Here usage polymorphism on ?t makes inference under-
constrained and prevents us from finding a most general
solution: the constraints on a’s type demand that it must
be split into chan[0·,1·] unit, into ?t , and into some unre-
stricted leftovers, and while ?t can eagerly be substituted by
a channel type chan[?i ,?o] unit for some ?i and ?o, it is poly-
morphic in its usage annotations ?i and ?o. In other words,
we must keep track of the partial usage of a while allowing x
to be polymorphic in the type of a. As a result, these partial
usage constraints must be kept around (potentially until the
process is closed and they can be solved by instantiation)
and meta-theoretical properties must therefore be abstracted
over constraint satisfaction.

Theorem 3.1 (Inference Soundness). Given infer p returns
(γ , Γ, cs), every substitution σ satisfying ⟦σ ◁ cs⟧ makes
(σ ◁ Γ) ⊢ p hold.

Theorem 3.2 (Inference Completeness). Given infer p re-
turns (γ , Γ, cs), for every context ∆ such that ∆ ⊢ p, there
exists a substitution σ satisfying ⟦σ ◁ cs⟧ such that ∆ is a
specialisation of (σ ◁ Γ) — a specialisation ∆ ⊆ (σ ◁ Γ) is
defined as ∃σf . ∆ ≡ (σf ◁ (σ ◁ Γ)).

3.1 Constraint Resolution
Solving a set of constraints results in a set of substitutions
and an unsolved set of simplified constraints where those
substitutions have already been applied. The constraints that
have been left unsolved do not have a most general solution.
Constraints of the form [x

c
= y] are solved by unification

using a kinded version of McBride’s unification by structural
recursion [7], and have either no solution, or a most general
solution that results in a substitution. Constraints of the
form [x

c
= y + z] are solved recursively until a base case

is reached, at which point they either have a most general
solution or they do not.

solve : [Constr γ] → Subst γ δ × [Constr δ]

Theorem 3.3 (Resolution Soundness). Given solve cs1 re-
turns (σ , cs2), every substitution σf that satisfies the simpli-
fied constraints (⟦σf ◁ cs2⟧) satisfies the original constraints
after substitutions are applied (⟦σf ◁ (σ ◁ cs1)⟧).
Theorem 3.4 (Resolution Completeness). Given solve cs1
returns (σ , cs2), any substitution σf that makes the original
constraints cs1 hold (⟦σf ◁ cs1⟧) can be decomposed into σ
followed by a certain σд (σf � σд ·σ) that makes the returned
constraints cs2 hold (⟦σд ◁ cs2⟧).
Theorem 3.5 (Resolution Progress). Given solve cs1 re-
turns (σ , cs2), to keep us from returning the original con-
straints as output (which is both sound and complete), we
postulate that none of the constraints c ∈ cs2 have amost gen-
eral solution, where a most general solution for a constraint c
is defined as ∃σ . ⟦σ ◁ c⟧×(∀σf . ⟦σf ◁ c⟧×(∃σд . σf � σд ·σ)).

4 Conclusion
We have outlined a procedure for decidable type checking
and inference of a π -calculus with linear and shared types.
Constraint collection and constraint resolution are kept sep-
arate, and their metatheory allows for deferred constraints.
We have proved in Agda the soundness of constraint collec-
tion 3.1 and of equality constraint resolution 3.3, the remain-
ing proofs are still in progress.

References
[1] G. Allais. Typing with leftovers - A mechanization of intuitionistic

multiplicative-additive linear logic. In A. Abel, F. N. Forsberg, and
A. Kaposi, editors, 23rd International Conference on Types for Proofs and
Programs, TYPES 2017, May 29-June 1, 2017, Budapest, Hungary, volume
104 of LIPIcs, pages 1:1–1:22. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi: 10.4230/LIPIcs.TYPES.2017.1. URL https:
//doi.org/10.4230/LIPIcs.TYPES.2017.1.

[2] G. Allais and C. McBride. Certified proof search for intuitionistic linear
logic. 2015.

[3] E. C. Brady. Idris 2: Quantitative type theory in practice. In A. Møller
and M. Sridharan, editors, 35th European Conference on Object-Oriented
Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual
Conference), volume 194 of LIPIcs, pages 9:1–9:26. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2021. doi: 10.4230/LIPIcs.ECOOP.
2021.9. URL https://doi.org/10.4230/LIPIcs.ECOOP.2021.9.

[4] N. Bruijn, de. Lambda calculus notation with nameless dummies,
a tool for automatic formula manipulation, with application to the
church-rosser theorem. Indagationes Mathematicae (Proceedings), 75
(5):381–392, 1972. ISSN 1385-7258. doi: 10.1016/1385-7258(72)90034-0.

[5] S. Erdweg, O. Bracevac, E. Kuci, M. Krebs, and M. Mezini. A co-
contextual formulation of type rules and its application to incremental
type checking. In J. Aldrich and P. Eugster, editors, Proceedings of

https://doi.org/10.4230/LIPIcs.TYPES.2017.1
https://doi.org/10.4230/LIPIcs.TYPES.2017.1
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9

Uma Zalakain and Ornela Dardha

the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2015,
part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages
880–897. ACM, 2015. doi: 10.1145/2814270.2814277. URL https://doi.
org/10.1145/2814270.2814277.

[6] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-
calculus. In H. Boehm and G. L. S. Jr., editors, Conference Record of
POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Papers Presented at the Symposium, St.
Petersburg Beach, Florida, USA, January 21-24, 1996, pages 358–371.
ACM Press, 1996. doi: 10.1145/237721.237804. URL https://doi.org/10.
1145/237721.237804.

[7] C. McBride. First-order unification by structural recursion. J. Funct.
Program., 13(6):1061–1075, 2003. doi: 10.1017/S0956796803004957. URL
https://doi.org/10.1017/S0956796803004957.

[8] R. Milner. Communicating and mobile systems - the Pi-calculus. Cam-
bridge University Press, 1999. ISBN 978-0-521-65869-0.

[9] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
I. Inf. Comput., 100(1):1–40, 1992. doi: 10.1016/0890-5401(92)90008-4.
URL https://doi.org/10.1016/0890-5401(92)90008-4.

[10] D. Orchard, V. Liepelt, and H. E. III. Quantitative program reason-
ing with graded modal types. Proc. ACM Program. Lang., 3(ICFP):
110:1–110:30, 2019. doi: 10.1145/3341714. URL https://doi.org/10.1145/
3341714.

[11] L. Padovani. Type reconstruction for the linear π -calculus with com-
posite regular types. Log. Methods Comput. Sci., 11(4), 2015. doi:
10.2168/LMCS-11(4:13)2015. URL https://doi.org/10.2168/LMCS-11(4:
13)2015.

[12] U. Zalakain and O. Dardha. π with leftovers: A mechanisation in
agda. volume 12719 of Lecture Notes in Computer Science, pages 157–
174. Springer, 2021. doi: 10.1007/978-3-030-78089-0_9. URL https:
//doi.org/10.1007/978-3-030-78089-0_9.

https://doi.org/10.1145/2814270.2814277
https://doi.org/10.1145/2814270.2814277
https://doi.org/10.1145/237721.237804
https://doi.org/10.1145/237721.237804
https://doi.org/10.1017/S0956796803004957
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.2168/LMCS-11(4:13)2015
https://doi.org/10.2168/LMCS-11(4:13)2015
https://doi.org/10.1007/978-3-030-78089-0_9
https://doi.org/10.1007/978-3-030-78089-0_9

	Abstract
	1 Introduction
	2 Type System
	3 Inference
	3.1 Constraint Resolution

	4 Conclusion
	References

