
Conceptual Graphs and First Order
Logic

GIANNI AMATI 1,2 AND IADH OUNIS2

1Fondazione Ugo Bordoni, v. B. Castiglione, 59, 00142 Rome, Italy
2Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK

Email: gba@fub.itandounis@dcs.gla.ac.uk

We study Sowa’s conceptual graphs (CGs) with both existential and universal quantifiers. We
explore in detail the existential fragment. We extend and modify Sowa’s original graph derivation
system with new rules and prove the soundness and completeness theorem with respect to Sowa’s
standard interpretation of CGs into first order logic (FOL). The proof is obtained by reducing
the graph derivation to a question-answering problem. The graph derivation can be equivalently
obtained by querying a Definite Horn Clauses program by a conjunction of positive atoms.
Moreover, the proof provides an algorithm for graph derivation in a pure proof-theoretic fashion,
namely by means of a slight enhancement of the standard PROLOG interpreter. The graph
derivation can be rebuilt step-by-step and constructively from the resolution-based proof. We
provide a notion of CGs in normal form (the table of the conceptual graph) and show that the
PROLOG interpreter also gives a projection algorithm between normal CGs. The normal forms
are obtained by extending the FOL language by witnesses (new constants) and extending the graph
derivation system. By applying iteratively a set of rules the reduction process terminates with
the normal form of a conceptual graph. We also show that graph derivation can be reduced to a
question-answering problem in propositional datalog for a subclass of simple CGs. The embedding

into propositional datalog makes the complexity of the derivation polynomial.

Received August 7, 1998; revised November 4, 1999

1. INTRODUCTION
In 1984, Sowa [1] introduced a knowledge representation
model that can be considered as a compromise between a
formal language and a graphical language, theconceptual
graph formalism. Due to the graphical representation of
knowledge, this model allows for the construction of user
interfaces.

As mentioned by Gaines [2], conceptual graphs can
be considered as a basis for an operational knowledge
science and technology encompassing natural language,
formal language, visual language, and a range of reasoning
processes that may be based on them. As will be shown in
this paper, conceptual graphs consist in a convivial graphical
representation of logic.

In contrast to logic-based systems where semantics
and proof theory are important to understand and derive
knowledge, in conceptual graph theory two alternative
notions were introduced: graph derivation and projection.
It turns out that the basic rule for a graph derivation is the
so calledrestriction rule: a conceptC can be restricted to a
subconceptC′, in symbolsC′ ≤ C, together with a suitable
substitution of the existential quantifier for individuals. The
knowledge base is thus organized by a lattice of concepts,
which are in turn used to define relations. Relations can be
seen as the cartesian product of a certain number of concepts.
This knowledge base is called thecanonof the conceptual
graphs [1].

Since the main operation for deriving graphs is given
by restriction, the idea of Sowa was to obtain the graph
derivationh�g, to be read ash derives fromg, by projecting
all concept nodes of the starting graphg onto the nodes
of the final graphh, provided that restriction is soundly
preserved.

Thus, both graph derivation and projection proceed in the
same direction, but opposite to that of logical derivability.
This fact seems to us to be a major source of confusion
and makes the nature of derivation of conceptual graphs
counterintuitive. However, this paper shows that semantics
and proof theory can fully take their place when using
conceptual graphs. The graph derivation interpretation of
CGs seems to have just a pure theoretical interest.

In particular, we will show how to use the FOL semantics
for translating the graphs and FOL theorem provers for
obtaining:

(i) graph derivations, and
(ii) a projection algorithm.

Notwithstanding the logical nature of CGs, most of the
research work on conceptual graphs has focused on graph
theory and graph algorithms [3, 4, 5, 6], which have been
considered as the core of conceptual graph theory [7]. Nev-
ertheless, there have been some attempts to provide a sound
and complete graph derivation algorithm with respect to the
FOL semantics and graph derivation [8, 9, 10, 11]. As for the

THE COMPUTER JOURNAL, Vol. 43, No. 1, 2000

2 G. AMATI AND I. OUNIS

existential fragment, our characterization is different from
the previous proposals. First, we give a proper extension of
graph rules. Second, we give a new definition of anormal
conceptual graph. In contrast to all previous syntactical
definitions [12], our notion is based on the notion of graph
derivation, that is a normal graph is obtained as a fixpoint
of the application of a suitable set of graph derivation rules.
Our normal form gives different results from the standard
notion of normal form [9, 12]. Indeed, our normal form
is a database, while their normal form is a graph. Third,
this notion of normal form can be given just by introducing
new graph derivation rules and, accordingly, by extending
the FOL language and semantics withwitnesses. Indeed, it is
not possible to reduce a conceptual graph in our normal form
by Sowa’s set of derivation rules [1]. Finally, we directly
embed the result of the completeness theorem for Definite
Horn Clauses in our proof, which becomes easy to follow.

Up to now, the lack of a unique characterization of
CGs in their general form has led to the belief that a CG
is a formalism somehow different from the logical one,
or possessing some complex logical characterization. For
instance, many conceptual graph operators or extra notions,
such as the maximal join [7], have been introduced without
background semantics or explanation.

Our completeness results bring about other consequences.
The logical deduction of the theorem prover automatically
finds out which graph rules are needed and even theirright
application orderin the graph derivation. Up to now there
was no clear strategy on the application of graph rules and
even those which make the system complete. For example,
our rules of Split and Join∃ are sound with respect to FOL
semantics (whatever the chosen translation of graphs into
FOL) but they are no use in [8, 13] (though the authors
claim completeness). We show a one-to-one mapping
between graph rules and a resolution-based proof, but graph
derivation rules are large in number, non-deterministic and
cumbersome to use.

The second problem raised with conceptual graphs is the
notion of normalized forms. Our proposal of the normal
form of a graph is a graph in which some subset (to be
specified) of the set of graph derivation rules cannot be
further applied. By varying such a subset we may obtain
different notions of the normal form. We will show that if
we restrict the expressiveness of CGs, the logical derivation
is polynomial. This result shows that if an underlying logic
exists for such forms of conceptual graphs, it will then be
much easier to build efficient algorithms for the conceptual
graph interface. Hence, one can construct usable systems
based on CGs. In other words, the purpose of our work is
to provide a logic-based proof theory for conceptual graphs.
As far as we know there is no pure logic-based conceptual
graph derivation.

We hereby summarize the most important results of the
paper.

(i) Using Sowa’s original interpretation of CGs, we extend
the interpretation of CGs to treat both existential and
universal markers (see Section 4).

(ii) We then study the existential fragment. We introduce
a technique (the witness technique) which allows us to
define our notion of thenormal form of a conceptual
graph. The normal form of a graph consists of
a table where existential markers (a marker denotes
a quantifier) are replaced by suitable new constants
(which are calledwitnessesin logic) [14]. The
witnesses are substituted to all existential quantifiers in
the translation of the conceptual graph which must be
derived; more precisely, a witness for each occurrence
of an existential quantified concept in the graph. The
graph to be derived (according to the graph derivation
direction) becomes a set of propositional facts of the
form {Ci(e

i
j)} ∪ {rk(t1, . . . , tm)}, wheret1, . . . , tm are

constants in{ei
j }. The projection algorithm as well as

the graph derivation is then obtained as a variant of the
PROLOG interpreter (i.e. a SLD resolution algorithm
driven by relation names). The query is an existential
quantified conjunction of concepts and relations. The
projection algorithm just uses the table as a lookup table
and tries to unify variables of the query with witnesses
and individual constants of the starting graph. In the
case of no existential markers in the derived graph (the
query), the algorithm is polynomial. The general case is
obviously NP-complete. We must warn the reader that
we do not assert that the witnessed graph translation
is logically equivalent to its original translation. On
the contrary, we assert that the implication between a
witnessed graph translation and a query not containing
such witnesses is equivalent to the implication between
its original graph translation and the query. If we
used skolemization, we would get only one direction
of the above equivalence (see [15, Proposition 2.28]).
Therefore, we need to plug special rules for witnesses
in the graph derivation system. Also, we need extra
logical axioms in the semantics in order to prove
both directions of the equivalence. As a consequence,
witnesses cannot be treated as ordinary constants when
using graph derivation systems.

(iii) We then show that our deduction algorithm is sound
and complete with respect to FOL semantics, graph
derivation rules and projection (up to our normal
forms).

(iv) Since we show that deduction provides a neat and
clear algorithm for deriving graphs for the existential
fragment, for the sake of completeness we give a
semantics and a set of graph derivation rules for the
CGs with universal quantifiers case. However, it is
beyond the scope of our paper to provide completeness
of our conceptual graph derivation rules for the
CGs’ extension with the universal marker (a different
approach is given in [16]). It would be a long exercise
to show how to rename variables under the scope of the
quantifiers when deriving the formulas graphically.

(v) For the sake of clarity we present here a summary of
how we prove the completeness theorem. LetA be
a projection up to the normal form,B be the graph
derivation, andC be the logical derivation.

THE COMPUTER JOURNAL, Vol. 43, No. 1, 2000

CONCEPTUAL GRAPHS AND FIRST ORDER LOGIC 3

We will proveA ⇒ B ⇒ C ⇒ A to show thatA, B

andC are equivalent.B ⇒ C is the soundness.C ⇒ A

is given for free by the completeness of resolution.
A ⇒ B is easily obtained. Going back and forth from
the original graph to its normal form is obtained by two
terminating algorithms which preserve soundness.

(vi) There is another case when the derivation algorithm
is polynomial, that is when each existential quantified
concept may occur at most once. So if we restrict the
expressiveness of conceptual graphs to this form we
get a tractable model of conceptual graphs. Therefore,
we add a new rule (Split∃ rule) to the pure existential
fragment with the original Sowa’s graph operations
and modify the semantics. We provide a new logical
reading of CGs which shows that projection can be
reduced to a propositional question-answering problem
relatively to a set of ground facts together with a set
of simple ground implications (one atom as antecedent
and one as consequent). This can be seen as a restricted
form of a propositional Definite Horn Program, where
queries are ground conjunctions of atoms. This proves
that the derivation between CGs is polynomial in
time [17, 18, 19, 20].

2. CONCEPTUAL GRAPHS

We chose to change some terminology of CGs. The reason is
that some notions like generic, universal, existential markers
have been in conflict in the CGs literature. We decided to
use the logical symbol∀ to denote both the generic (? as
in [1]) and the standard universal quantifier, and∃ to denote
the existential quantifier.3

Let us introduce conceptual graphs. A conceptual graph
is a bipartite, finite and directed graph ofconcept nodesand
conceptual relation nodes. In the graphs, concept nodes
represent classes of individuals, and conceptual relation
nodes show how the concept nodes are related [1]. Atype
is associated to each (concept or relation) node. We do not
require CGs to be connected.

We may use the term ‘concept’ or ‘concept type’ for
‘the type of a concept node’ unless confusion arises. All
concepts are related by a partial ordering relation≤, a
specialization/generalization relation. If C1 ≤ C2, then we
say thatC1 is a restriction of C2; also[C : a] ≤ [C] ([C]
is calledexistential(i.e. [C] = [C : ∃]) and [C : a] is an
individual concept). g′�g denotes the derivation ofg′ from
g by using the following standard operators:

• Copy: the copy g′ of a conceptual graphg is a
conceptual graph.

• Restriction: a concept type is replaced by a subtype,
in particular an existential concept is instantiated to a
‘conforming referent’ (an individual in the denotation
concept type).

• Simplification: if concept nodes are linked by two
identical relation nodes, then one occurrence can be
deleted.

3The marker? is no longer considered in Sowa’s new book [21].

• Join: Two graphs having a ‘common’ concept node
(either existential or individual) can be joined to form
one graph by sharing this common concept.

DEFINITION 1. (Canon)A canonis a4-tuple〈Tc,M,6r ,

Conf〉 made up by:(i) a lattice≤ on a setTc of concept
types; (ii) a setM = ζ ∪ W ∪ {∀, ∃} of quantifier
markersfor individuals. The marker∀ stands for a universal
individual in the domain, the marker∃ stands for a selected
individual in the domain, while the extra setsW , called
the set ofwitnesses, and ζ , called the set ofindividual
markers, are both used to denote individuals in a concept
type domain. The operational interpretations of the set
W will be explained in Sections4 and 5; (iii) a signature
6r = (r, n, C1, . . . , Cn) for eachr with arity n. We denote
by6i(r) theith concept typeCi in the signature ofr; (iv) a
conformity relationConf onM andTc: it tells us whether
C(d) or C(w) can be interpreted as true. We use the unique
name assumption for the markers ofζ ; and (v) a lattice
w = ∃ > a > ∀ on the set of markers, wherea ∈ ζ and
w ∈ W .

We usew = ∃ > a > ∀ instead ofw = ∃ < a < ∀
in order to follow the graph direction instead of the logical
derivation. We will use the marker lattice for substitutions
of markers in the graph derivation. Ifw is a witness not
occurring in a graphg then we may substitute a marker∃
by the markersa,∀, w, which are less than or equal to∃ in
the lattice. Similarly, all occurrences of a witnessw may be
simultaneously substituted by the markersa,∀, but we can
substitute∃ for w in a node only ifw occurs exclusively in
that node. An individual marker can be substituted by∀.
Note that if∀ appears in a concept we cannot perform the
marker substitution anymore. We should obviously verify
that the conformity relation still holds after the substitution.
All details will be explained in Section 4.

DEFINITION 2. (Conceptual graph)A conceptual graph
g = (R, C, E, ord, label) is a bipartite (we recall that they
are not necessarily connected) and finite graph withC 6= ∅.
R and C denote its relation and concept nodes.E is the
set of edges, and the edges adjacent to each relation noder

are totally ordered by the function ord. Theith neighbour
node ofr in g is denoted bygi(r). Every concept node in
the conceptual graph has a label defined by the mapping
label. A label of a concept typeC ∈ C is a pair label(C) =
(c,m(c)), with c ∈ Tc andm(c) ∈M.

Concepts and relations nodes of the conceptual graph
must be well formed according to the canon in the obvious
way. Single concepts nodes are considered well formed.
Given a canon and a set of well formed concepts and
relations, one can build an infinite set of well formed graphs.

3. INTERPRETING GRAPHS IN FOL

Sowa’s interpretation of a graph into first order logic [1] is
given as follows:

DEFINITION 3. (Existential fragment)Let g = (R, C, E,
ord, label) be a graph not containing the universal quantifier

THE COMPUTER JOURNAL, Vol. 43, No. 1, 2000

4 G. AMATI AND I. OUNIS

marker ∀. We associate to each concept type a unary
predicate, which we denote by the same name. Similarly,
we associate with each n-relation type an n-ary predicate,
which we denote by the same name. Finally, all individual
markers are treated as constants of FOL.

C. For each node[C] ∈ C the translation is:

– C(x), with x a new variable if the label of[C] is an
existential quantifier;

– C(a), if the node is[C : a] with a an individual
marker.

We denote byC(t) the translation of[C] in FOL, where
t can be either a variable or a constant.

R. If C1, . . . , Cn are all the adjacent concept nodes to a
relation noder we associate a formulaτ (r) as follows:
with the ordering given by ord, thenτ (r) = C1(t1) ∧
. . . ∧ Cn(tn) ∧ r(t1, . . . , tn). We putr(t1) = true if r is
empty (C1 is an isolated node).

G. The translation of the graph in FOL is8(g) =
∃x1 . . . ∃xk

∧
r∈R τ (r), wherex1 . . . xk are all the free

variables in
∧

r∈R τ (r).

EXAMPLE 1. Let h be a graph made up of a binary
relation r on the same concept node[C : ∃] and of
an isolated node[C : a]. Then the translation ofh is
∃x.C(x) ∧ r(x, x) ∧ C(a). Let g be the graphh without
the isolated node[C : a]. There is a logical derivation from
the translation ofh to that ofg and we see in the next section
that there is a projection fromg to h.

We now consider the translation of conceptual graphs with
the universal quantifier∀. Let us consider[C1 : ∀] −→
(r) −→ [C2 : ∀] as an example. We propose the translation
∀x1x2.C1(x1) ∧ C2(x2)→ r(x1, x2). If we have in a graph
both quantifiers (universal and existential) then we give the
following interpretation:

DEFINITION 4. (Arbitrary graphs)Let g = (R, C, E,
ord, label) be a graph. Let us distinguish for convenience
two sets of variablesX andY . We use the convention that if
there is one or more isolated nodes, then their translation is
either∀xC(x) or ∃xC(x) or C(a) according to the relative
marker.

C. For each node[C] ∈ C the translation is:

– C(x), with x ∈ X a new variable if the label of[C]
is ∀;

– C(y), with y ∈ Y a new variable if the label of[C]
is ∃;

– C(a), if the node is[C : a] with a an individual
marker.

We denote byC(t) the translation of[C] in FOL, where
t can be either a variable or a constant.

R. To each relation noder we associate a formulaτ (r)

as follows: if C1, . . . , Cn are all the concept nodes
adjacent to the relation noder with the ordering
given by ord, thenτ (r) = ∧

ti∈Y∪ζ∪W Ci(ti) ∧
[∧tj∈X Cj (tj)→ r(t1, . . . , tn)] provided thatX is not
empty (otherwise use true as antecedent).

G. The translation of the graph in FOL is
8(g) = ∃y1 . . . ∃yk∀x1 . . .∀xh

∧
r∈R τ (r), where

y1 . . . yk, x1 . . . xh are all the free variables in∧
r∈R τ (r).

Note that all isolated nodes always have a simple
translation that is either the logical sentenceC(a), ∀C(x)

or ∃C(x).

3.1. A new interpretation of the existential fragment of
CGs

We introduce a modification of the interpretation of the
graph derivation with respect to the logical derivation. We
give an example of this new interpretation before giving the
formal definition, which is somewhat difficult to read. We
allow for each concept type to have at most one existential
node in a graph.

EXAMPLE 2. Let8(g) be the formula

∃x1∃x ′1∃x2∃x ′2.C(x1) ∧ C(x ′1) ∧ C(x2) ∧ C(x ′2)
∧r(x1, x

′
1, x2, x

′
2).

We impose that the interpretation of8(g) is equivalent to
the formula

∃x1∃x2.C(x1) ∧ C(x1) ∧ C(x2) ∧ C(x2) ∧ r(x1, x1, x2, x2)

and thus to the formula

∃x1∃x2.C(x1) ∧ C(x2) ∧ r(x1, x1, x2, x2).

The interpretation is that each concept type has at most
one node with the existential marker.

DEFINITION 5. (Restricted existential fragment)For all
formulas

∃x1 . . . ∃xk . . . ∃xn
1 . . . ∃xn

mC(x1) ∧
. . . ∧ C(xk) ∧ . . . ∧ Cn(x

n
1) ∧ . . . ∧ Cn(x

n
m) ∧

φ(x1, . . . , xk, . . . , x
n
1 , . . . , xn

m)

which are a translation8(g) of some graphg, the formulas

8′(g) = ∃x1 . . . ∃xn
1C(x) ∧ . . . ∧ Cn(x

n
1) ∧

∧ φ(x1, . . . , x1, . . . , x
n
1, . . . , xn

1).

Then we add the set of equivalences8(g)↔ 8′(g).

This definition amounts to the statement that in the
translation of a conceptual graph each concept may use at
most one variable for a concept.

We gave above a semantics for reducing a simple
conceptual graph to a conceptual graph which has the
property of having its FOL translation with at most one
variable for each concept type. Alternatively, we may be
already satisfied with the standard FOL translation of simple
CGs, but we constrain the expressiveness to CGs having as
translations those formulas which use at most one variable
for each concept.

THE COMPUTER JOURNAL, Vol. 43, No. 1, 2000

CONCEPTUAL GRAPHS AND FIRST ORDER LOGIC 5

 Initial Graph

C4

C5

C1 C2

C3 : m C4

C5

Derived Subgraphs

C3 : m C3 : m

C1 C2
r1 r1

r2

r3

r2

r3

FIGURE 1. Application of the Split or Split∃ operator on the concept [C3].

We will show in Section 5.2 that Definition 5 captures
a graph derivation system whose question-answering
complexity is polynomial in time.

Notice that such a theory extension does not always
preserve consistency. For example, if a binary relation
r is irreflexive, i.e. ∀x¬r(x, x) and from the CG
∃x1∃x2r(x1, x2) ∧ C(x), then we get inconsistency because
we deduce that there is an element such thatr(x, x).
However, if we do use Definite Horn Clauses, then we
always obtain a consistent theory. In the above example,
irreflexivity cannot be expressed in Definite Horn Clauses,
so we cannot end up with inconsistency.

Though we have in general an infinitary theory, this set
of equivalences8(g) ↔ 8′(g) can be easily handled by
witnesses. We just need to use at most one witness for each
conceptC, since each concept type could have at most one
existential marker. Hence, this set of equivalences amounts
to saying that the witness of a concept isunique, i.e. it is an
existentialconcept node.

4. OPERATIONS ON GRAPHS

The following rules will be used in the paper. We
divide the graph operation rules into three classes: rules
which introduce nodes, rules which eliminate nodes and
rules which restrict nodes (substitute a concept node with
a subconcept node). These operators will be used in
different combinations and will produce different systems of
conceptual graphs.

These rules have been set up in order to have the easiest
proof for the completeness theorem. For example, even the
standard Join operator has been divided into the main rules:
Join1, Join∃. Duplication, Split are new and, obviously,
witness restriction rules are new. Some readers can find
similarities with other existing rules [8] sound or not with
respect to FOL. However, this is not the main issue of
this paper, because we actually want to show once and for
all that a sound and complete graph derivation is possible,
but standard theorem provers can make the derivation more
efficiently and neatly.

4.1. Node introduction rules

The new introduction rules are the Split rules (see Figure 1)
and Duplication.

Split: let [C] be a concept node whose marker in the label
is not the existential quantifier marker∃ andr is a relation
which has an adjacent edge in[C]. Introduce a new node
[C′]. Replace[C] → (r) → [C1] (or [C1] → (r) → [C])
with [C′] → (r) → [C1] (or [C1] → (r) → [C′]), where
C1 is an arbitrary concept. Replace[C′] by [C].

Split∃: let [C] be a concept node whose marker in the
label is the existential quantifier marker∃ andr is a relation
which has an adjacent edge in[C]. Split the node[C] as
above.

Copy: add a copy of any well formed graph to the graph.
Duplication: a node relation(r) can be duplicated

together with the corresponding arrows.

4.2. Node elimination rules

The node elimination rules are:

Join1. If two concept nodes have the same label with the
same marker inζ ∪W ∪ {∀} we can join them and obtain a
single concept node.

Join∃. Let [C : ∃] belong to two different graphsg andh,
then these two nodes can be joined.

Simplification. As in Sowa’s book.

Note that Join1 and Split are inverse operations. Also
Join∃, Split∃, Copy and Cut, Simplification and Duplication
are inverse operations. Join1 and Join∃ (Split and Split∃) do
not have different conditions on their application and they
could be unified in one single rule, but we need to keep them
separate for the completeness theorem.

Notice that Split does not increase the number of relation
nodes(r). Hence if a concept node has only one adjacent
relation, then Split does not produce any modification in the
graph. There is the ambiguity left in the formalism of CGs in
the case a relationr is defined on two concept occurrences of
the sameC. In FOL this meansC(a)∧C(a)∧R(a, a), which
is equivalent toC(a) ∧ R(a, a) when treating individuals.

THE COMPUTER JOURNAL, Vol. 43, No. 1, 2000

6 G. AMATI AND I. OUNIS

For universal quantifiers it is easy to see that ifx, Ey and
x ′, Ey ′ do not share variables, then[∀x(C(x) ∧ φ(Ey) →
ψ(x, Ey))]∧[∀x ′(C(x ′)∧φ′(Ey ′)→ ψ ′(x ′, Ey ′))] is equivalent
to ∀x[C(x) ∧ φ(Ey) → ψ(x, Ey)] ∧ [C(x) ∧ φ′(Ey ′) →
ψ ′(x, Ey ′)]. In such a case we may split and join indifferently.
So Join1 and Split are sound in both directions of logical
consequences. In CG this means that they belong to different
arcs. There is a small problem for∀x∀x ′(C(x) ∧ C(x ′) →
r(x, x ′)). This happens becausex is not a free term forx ′
after substitution. It would be tedious now to give an ad hoc
rule for such a case. We just say that if the concept node
[C : ∗] has more than one adjacent arrow with the same
relation(r), then it is not a well formed graph.

4.3. Restriction on markers

The restriction rules on markers are:

Existential restriction. For existential concept nodes we
may substitute for the existential marker in the label either
an individual or a new witness marker (not already occurring
in the graph) or the∀marker, that is by a markerm such that
∃ > m.

Witness restriction. For concept nodes with a witnessw

we may substitutew uniformly in the graph by a markerm
for which w > m. We may substitute∃ for w only if w

occurs only in that node. (This constraint is to prevent us
first restricting the existential node to a witness node, then
splitting this node, and finally having for each new split node
a new existential node. This would be a sort of a maximal
join.)

Individual restriction. For concept nodes with an
individual a in the label we may substitutea uniformly in
the graph with a markerm for which a > m, that is only
by ∀.

4.4. Restriction on concept types

The restriction rules on concepts are:

Restriction for existential, witness and individual
concept nodes. We may substitute a concept subtype for
the concept type (i.e. provided that the conformity relation
allows for it).

Restriction for universal concept nodes. We may
substitute a concept supertype for the concept type (i.e.
provided that the conformity relation allows for it).

4.5. Conceptual graph systems

We use the notationh � g if h can be obtained fromg by a
finite number of graph operations.

DEFINITION 6. (The family ofS1) By S1 we denote the
system which has the following set of rules: Join, Split,
Join∃, Copy, Simplification, Duplication, and all restriction
rules. We denote the existential fragment byS1∃.

DEFINITION 7. (The family of S2) By S2 we denote
the system which has the same derivation rules ofS1 but
the well formed graphs are obtained by applying the node

elimination rules (that is Join, Join∃ and Simplification) until
they cannot be further performed. We denote the existential
fragment ofS2 byS2∃. We call the conceptual graph in this
form a conceptual graph in node elimination form, or shortly
in NE-normal form.

DEFINITION 8. (The systemS3) By S3 we denote the
system which has the same derivation rules ofS1 but with
Split∃ as an additional rule. We denote the existential
fragment ofS3 byS3∃.

4.5.1. Derived rules and remarks
Note that:

(i) Split cannot be derived by the standard graph operators
of S1, as the example in Figure 2 shows.

(ii) Split and Split∃ always preserve the number of edges
adjacent to a relation node(r), therefore when the
initial graph is well formed we get a new well formed
one.

(iii) In S3 all graphs are equivalent to a graph in NE-normal
form. In fact in the system all rules, except restrictions,
have their inverse. Hence a concept in a graph can be
split or joined indifferently, still obtaining an equivalent
graph. Thus the graphg = [C : ∃] → (r) →
[C1 : a] ← (r1) ← [C : ∃] is equivalent to the
graphg′ obtained by joining the two node occurrences
of [C : ∃]. Thenh = [C : b] → (r) → [C1 :
a] ← (r1) ← [C : ∃] must be obtained by bothg
and g′. The semantics of such a system is given by
Definition 5. The graphh instead cannot be derived
from g′ in the systemS2. However, the projection
from g to h by using their NE-normal formsg′ and
h′, requires one to reduce firstg andh into these NE-
normal formsg′ andh′. In such an operation Join∃ is
also applied, that isg′ � g andh′ � h: then from a
derivation between their NE-normal formh′ � g′ we
may infer thath � g only if we may reverseh′ � h.
This can be obtained in general only if Split∃ is applied.
However, if we accept the rule Split∃ we need to find
new semantics for the∧ operator, that is the semantics
given in Definition 5.

4.6. Witnesses

Existential quantifiers can be easily eliminated in closed
formulas when all existential quantifiers are prenex, that is
if the formula is of the form∃Exφ(Ex), where all variables
in φ(Ex) are free. We may introduce a set of new constants
wi

C for each concept. Notice that in conceptual graphs the
formula ∃xC(x) ∧ C′(x) ∧ φ cannot be expressed, that is
in CGs we cannot express that two different concepts are
satisfied by the same individual, unlessC = C′.

If h is a graph and8(h) is its translation in FOL then
we may consider the new axiom8(h) ↔ 8∗(h), where
8∗(h) is obtained by substituting each variable in the open
formula with a witnesswi

C not used before. It is a theorem
of FOL (see [14]) that8(h) and8(h) ∧ (8(h) ↔ 8∗(h))

have the same set of models. Hence if a formulaχ without

THE COMPUTER JOURNAL, Vol. 43, No. 1, 2000

CONCEPTUAL GRAPHS AND FIRST ORDER LOGIC 7

Graph g

C2 : m

Graph h

C2 : m C2 : mC1 : ∃ C1 : ∃

C1 : ∃

C2 : m

C2 : m

Copy of two subgraphs ofg

Graph h′

C2 : mC1 : ∃

C2 : mC1 : ∃

C2 : m

r1

r2

r1

r2

C2 : mC1 : ∃ r1

r2

r1

r2

r2

r1

r2

r1

FIGURE 2. The graphh cannot be obtained from the graphg with classical graph operators. Hence, Split is necessary in order to show
completeness.

witnesses is derivable from one theory it is also derivable
from the other. Indeed:

(i) if 8∗(h) ` χ then8∗(h),8(h) ` χ by monotonicity
(that is8∗(h),8(h) is equivalent to the theory8(h) ∧
(8(h)↔ 8∗(h))), hence8(h) ` χ ;

(ii) vice versa, since8∗(h)→ 8(h), by the logical axiom
φ(a)→ ∃xφ(x), then8(h) ` χ implies8∗(h) ` χ .

That is, 8∗(h) and8(h) have the same expressive power
when they derive formulas without witnesses. It is easy
to check that all graph derivation rules with witnesses are
sound with respect to this interpretation of substituting new
witnesses for variables in concepts.

Thus if a graphh must be derived from a graphg, namely
h � g, then we translateh into propositional logic by means
of the function8∗(h). g, the query, will have the translation
8(g) as in Definition 3.

We get a set of propositional facts from8∗(h). Then
we add the Definite Horn ClausesC′(x) ← C(x) for each
C ≤ C′ in the lattice of concepts. We get a set of Definite
Horn ClausesP together with a set of propositional facts. If
we have to deriveh � g we ask the query8(g) according
to Definition 3 to the programP . The unification algorithm
will provide a projection in case the query8(g) succeeds.
Notice that the query8(g) does not contain any witnesses
but possibly contains existential quantifiers. The enhanced
PROLOG interpreter for CGs is given in Section 5. This
will show that projection is sound and complete with respect
to the semantics of Definition 3.

EXAMPLE 3. The graphh in Figure 2 with the marker
m = ∃ gives the Horn program (suppose thatC1 ≤ C2):

← C1(w1) (1)

← C2(w2) (2)

← C2(w3) (3)

← r1(w1, w2) (4)

← r2(w1, w3) (5)

C(x2)← C(x1). (6)

The queryg with the markerm = ∃ in Figure 2 becomes the
conjunction:

?−r1(x, y), C1(x), C2(y), r2(x, y).

4.7. Tables of graphs

Let us considerS1. We give now the notion of a normal
form of a graphg: we call it thetableof the graph.

DEFINITION 9. (Normal form) A table or normal
conceptual graphof a conceptual graph is obtained by the
following reduction algorithm.

(i) We apply existential restriction to all existential nodes
by replacing new witnesses for∃.

(ii) We iterate Split until each node has exactly one
adjacent edge.

Note that Split does not change the graph when all nodes
have exactly one adjacent edge. Also, all concept nodes

THE COMPUTER JOURNAL, Vol. 43, No. 1, 2000

8 G. AMATI AND I. OUNIS

may be split once existential markers were removed by
the existential restriction. Hence, this procedure terminates
since at each step the total number of edges remains
constant, but there is a concept whose number of adjacent
edges decreases.

Each connected subgraphu of h obtained by the reduction
algorithm is well formed and has only one(r) node
occurring in it. Let r be of arity n and let [C1 :
m1], . . . , [Cn : mn] be the concept nodes occurring in a
connected subgraphu of h in the order given byord. We
can represent in a compact way the connected subgraphu by
[C1 : m1], . . . , [Cn : mn].R(m1,m2, . . . ,mn), where each
mi is different from the existential marker.

The table ofh is the set of all connected subgraphs

[C1 : m1], . . . , [Cn : mn].R(m1,m2, . . . ,mn)

of h obtained as above. We may go back to the initial graph
by applying the inverse of the reduction algorithm, which
reverses each single step of the derivation in the reduction
algorithm.

(i) Reverse the step in which existential restriction was
applied by applying witness restriction (and thus restore
∃).

(ii) Reverse the step with Split by using Join1 on the split
nodes.

This proves that the graphh is equivalent to its normal
form h′, that ish′ � h andh � h′.

The representation of graphs by tables allows for a direct
way of deciding whether a graphh derives from another
graphg, i.e.h � g. We reduceh to its normal formh′ and
then apply an algorithm for defining a mapping fromg in
h′. If we succeed thenh � g. Note thatg does not contain
witnesses.

The projection mapping can be extended to consider
universal quantifier markers. In this definition we may use
restrictions on both concepts and relations.

We say that for two nodes[C1] and[C2] we have:

(i) label(C1) ≤ label(C2) iff

(a) c1 ≤ c2 andm1 ≤ m2 andm2 6= ∀ according to
the concept type latticeTc and the marker lattice
respectively;

(b) m1 ≤ m2 = ∀ and c2 ≤ c1 according to the
concept type latticeTc (notice that the restriction
on the universal reverses the ordering in the
lattice);

(ii) [C1] is a restrictionof [C2] iff label(C1) ≤ label(C2).

DEFINITION 10. (Projection)Let g1 to g2 be two graphs
without witnesses.4 A mappingπ from g2 to g1 is called a
projectionif π satisfies the following properties.

4We may define projection for graphs containing witnesses. However,
witnesses are not introduced at the knowledge representation level but by
the graph operators: graphs containing witnesses have to be considered as
intermediate forms of final graphs.

(i) For each concept node[C] in g2, π([C]) is a restriction
of [C] or is equal to[C] in g1.

(ii) For each conceptual relationr in g2, π(r) = r.
(iii) If the ith arc ofr is linked to a concept node[C] in g2,

theith arc ofπ(r) must be linked toπ([C]) in g1.

Soundness is tedious but easy, therefore we skip the proof.

THEOREM 1. (Soundness)Let A be the set of axioms
made up of all clauses∀xC1(x)→ C2(x), with C1 ≤ C2 in
the concept lattice of the canon. Leth � g thenA,8(h) `
8(g).

As for completeness we give a circular proof in the next
section.

THEOREM 2. (Completeness)Let g and h be two
conceptual graphs.

A. A projection exists from the table ofg to that ofh.
B. The graphh can be derived inS1∃ fromg.
C. 8(g) derives from8(h) up to the canon translation as

in the soundness theorem.

We have to showA ⇒ B ⇒ C ⇒ A, in order to prove
thatA, B andC are equivalent.B ⇒ C is Theorem 1, hence
we must showA⇒ B andC ⇒ A.

Below we give a projection algorithm, and then use it
to prove the graph derivation. By soundness we prove the
logical derivation, and finally we show that we again derive
a projection by the other direction of completeness obtained
by the PROLOG interpreter.

5. A PROJECTION ALGORITHM FOR S1∃
Let us considerg andh which do not have witnesses. Leth′
be the table ofh. We deriveh′ by the reduction algorithm.
We obtain the tableh′ = {ei}i∈I = {[Ci

1 : mi
1], . . . , [Ci

k(i)
:

mi
k(i)].ri(mi

1,m
i
2, . . . ,m

i
k(i))}i∈I .

First we define a projection algorithm fromg to h′. Then
we exploit the inverse reduction algorithm to prove the
completeness theorem. Finally we show that there is a
projection fromg to h if and only if h � g.

In the following algorithm we treatg as in the FOL
translation of Definition 3. Variables ofg will be unified
to constants and witnesses ofh. This will provide the
projection theorem. Notice that the witnesses ofh are treated
as constants, hence we allow substitutions only for variables
belonging tog. Let {ej }j∈J be the set of all subformulas of
8(g) made by a relation and all its connected nodes or by
isolated nodes. Let us denote the constant and the variables
of ej by m

j
s and the set of all variables in8(g) by Ez, that is

8(g) = ∃Ez
∧
j∈J

C
j

1(m
j

1) ∧ . . .

∧ C
j

k(j)(m
j

k(j)) ∧ rj (m
j

1,m
i
2, . . . ,m

j

k(j)).

The projection algorithm is given in Table 1.
This procedure terminates for all finite graphs. In the stack

there is the projection mapping of all nodes ofg to those of

THE COMPUTER JOURNAL, Vol. 43, No. 1, 2000

CONCEPTUAL GRAPHS AND FIRST ORDER LOGIC 9

TABLE 1. The projection algorithm ofg in h.

(i) Stack =: empty.
(ii) Choose a new elementej in g if anyelsestop.

(iii) Consider the setL of elementsei in h such thatri = rj .
(iv) Consider an element inL not yet examined.
(Then there is a one-to-one mapping between the concepts nodes
of ei andej in the order given byord.)
If there are no such elements leftthen BACKTRACK to step (ii).
elsefor such an elementei

FOR all s (1≤ s ≤ k(i))
E = Stack + new equationmj

s = mi
s

If [Ci
s : mi

s] is a restriction node of[Cj
s : mj

s] with respect to E

by substitutingmi
s for the variablesmj

s of g (and thus no multiple

association of a variablemj
s to different elements ofh may occur inE)

then continue the FOR
elseEXIT the FOR and Goto step (iv).

end FOR
Stack:= E

(v) Goto step (ii).

h. If it is not complete then it is a failure, and this is due
to the fact that the backtracking mechanism finished without
associating all elementsej of g to one ofh.

We need the following theorem:

THEOREM 3. (Soundness of projection w.r.t. graph
derivation)Let g in h be two arbitrary conceptual graphs
andh′ the table ofh. If a projection exists fromg to h′ then
h � g.

Proof. We have applied Split and existential restriction
in the reduction algorithm, only the restrictions rules in
the projection algorithm, and Join∃ in the case that two
witnesses ofh are associated with the same variable of
g, Join1 and witness restriction in the inverse reduction
algorithm.

Finally we copy the subgraphh − g up to Restriction,
we apply Join∃ on all possible existential nodes and then
Join1 (if any). This ends the proof and gives the implication
A⇒ B of Theorem 2.

In order to prove the last implicationC ⇒ A of
Theorem 2 we just need to prove that from8(h) ` 8(g)

we can define a projection of a graphg in h′.
This is given by observing that our projection algorithm

is an adaptation of the PROLOG interpreter. They differ in
the selection function for the atoms in the query: it is not the
leftmost but a different fair rule [22].

THEOREM 4. (The Embedding of CGs into PROLOG)
The projection algorithm is the PROLOG interpreter (up to
a fair goal selection rule).

Proof. Let 8(h) and 8(g) be the FOL translation of the
graphsh andg. Consider the theory with witnesses8∗(h)

of 8(h). 8∗(h) is a set of facts equivalent to8(h). Let
8(g) be the query. Then each step used in the projection
algorithm is a linear resolution of the query with either a fact

(a unit resolution in such a case) or the head of a clause of
the concept lattice. In both cases the unification algorithm is
applied, that is when a concept node in the query is projected
onto the graphg. The selection rule of the atomic literal
in the query is fair. In fact, the number of relations and
concepts strictly decreases when the elementei of the table
is processed, hence each atomic goal in the query must be
processed in a finite number of steps.

The selection rule is fair, hence the projection algorithm is
also complete with respect to FOL. This completes the proof
of completeness. �

We need to make a small digression about this point. The
termfair refers to the goal selection rule and not to the search
in logic programming. As it is well known, resolution is a
complete rule for FOL formulas in clausal form [23].

The simplest proof procedure based on resolution is, in
Robinson’s paper, a direct implementation of the proof of
completeness. However, this procedure is quite inefficient,
and Robinson concluded discussing several principles
(called search principles). These must be used to design
efficient proof procedures employing resolution as the basic
logical process.

We may find several search strategies, many of them still
complete (see for example [24]).

One of these rules is calledinput resolution, which adopts
one of the two clauses used in the resolution rule is provided
by a static set of clauses (program). A second search
procedure is thelinear resolutionwhich always uses the last
clause obtained by resolution instead. PROLOG strategy
(the SLD resolution) is the combination of the input and
linear resolution is complete for a fragment of FOL, the
Definite Horn Clauses.

Simple CG is a fragment of the Definite Horn Clauses
fragment of FOL, hence the PROLOG strategy is complete

THE COMPUTER JOURNAL, Vol. 43, No. 1, 2000

10 G. AMATI AND I. OUNIS

g
h

X3
g

C1
r1 C11

w2
hw1

h

r1
R1

w3
h

r2 r2

X1
g

C1

r2

r1

C1 r1 C11

C12

C12

C12

w4
h X2

g

FIGURE 3. A sample projection case.

for the translation of simple CGs into FOL. We now come
to the implementation problem: the way the linear and input
strategy is actually implemented in PROLOG for Definite
Horn Clauses. There are three separate issues: (i) the
unification algorithm, (ii) the choice of the positive literal
to be chosen in a query for the resolution rule, and (iii)
the search on the space of solutions. The second issue (ii)
is not a problem in CGs as we may use the so-called fair
rule, that is, any atom in the query must be processed in a
finite number of steps. For example, we can always use the
topmost atom in the query seen as a queue of atoms. The
first issue (i) may be time consuming with the occur check
and usually this control mechanism is not implemented in
most systems. But the occur check is an implementation
issue and also it is needed once the Herbrand universe is
infinite, namely when at least one functional symbol is in
the language. We do not run into this problem since simple
CGs do not have functional symbols. Finally the problem of
the search. This is linked to the second issue. If there are no
functional symbols and the initial program is finite then the
Herbrand universe is finite, and thus any question-answering
problem is decidable, independently from a breadth- or
depth-first search for example.

Therefore, in what sense is our system a variant of the
PROLOG interpreter? Instead of using a query as a queue
and the topmost element of the queue for resolution, we
split atoms into separate sets: relations (binary) and concepts
(unary). Then we mainly use the set of relations as a queue
and look up corresponding suitable concepts. We first pop
from the relation queue, we then look for concepts and this
is a fair rule.

5.1. An illustration of how the algorithm works

Consider the graphsg andh of Figure 3. We assume that
all the concepts in this figure are existentially quantified, i.e.
∀[C], [C] = [C : ∃]. By applying the reduction algorithm to
the graphh, we introduce the witnesseswi

h as mentioned in
Figure 3. We also apply the same reduction algorithm to the

graphg. The variables ofg are denoted byXj
g . On the other

hand, for the graphh, we obtain the following table:

[C1 : w1
h], [C11 : w2

h].r1(w
1
h,w

2
h)

[C11 : w2
h], [C12 : w3

h].r1(w
2
h,w3

h)

[C12 : w3
h], [C12 : w4

h].r2(w
3
h,w4

h)

[C1 : w1
h], [C12 : w3

h].r1(w
1
h,w

3
h)

[C12 : w4
h], [C12 : w3

h].r2(w
4
h,w3

h)

For convenience, we denote the graphg as follows:

[C1 : X1
g], [C12 : X2

g].r2(X
1
g,X2

g)

[C1 : X2
g], [C12 : X3

g].r1(X
2
q,X3

g)

[C1 : X3
g], [C11 : X4

g].r2(X
3
g,X4

g)

To state if there is a projection ofg in h, we apply our
projection algorithm on the previous graphs. The following
simplified trace is obtained:

Begin

1. X1
g = w3

h, X2
g = w4

h, remove by backtracking

2. X3
g = w2

h, X2
g = w3

h, remove by backtracking

3. X3
g = w1

h, X2
g = w3

h, remove by backtracking

4. X1
g = w4

h, X2
g = w3

h,

5. X3
g = w2

h, X2
g = w3

h, remove by backtracking

6. X3
g = w1

h, X4
g = w2

h, remove by backtracking

7. X3
g = w1

h, X2
g = w3

h,

8. X3
g = w1

h, X4
g = w2

h

End

During the execution of the algorithm, we always choose
the first occurrenceei in the table ofh such thatri = rj .
By ‘remove by backtracking’ we mean that according to our

THE COMPUTER JOURNAL, Vol. 43, No. 1, 2000

CONCEPTUAL GRAPHS AND FIRST ORDER LOGIC 11

algorithm, the corresponding substitutions (the equations)
are removed from the stack, and that anotherei in h must
be chosen.

In our example there is a projection ofg in h. The one-to-
one mapping from theg variables toh constants is given by
the following correspondences:

4. X1
g = w4

h, X2
g = w3

h,

7. X3
g = w1

h, X2
g = w3

h,

8. X3
g = w1

h, X4
g = w2

h

Going back to conceptual graph considerations, we note
that the previous equalities correspond to a mappingπ from
the nodes ofg associated to the variablesXj

g to those ofh
corresponding to the witnesseswi

h (see Definition 10).

5.2. The existential fragmentS3∃ with Split ∃

Let us consider the∃ fragmentS3∃ of Section 3. We use the
semantics given in Definition 5.

Even though the set of axioms in Definition 5 can be
expressed by infinitely many axioms, it turns out that in this
fragment the question-answering problem is polynomial.
The hypothesis is to keep both graphsg and h variables.
In the previous section, the projection problem was NP-
complete (the algorithm shows that it is in NP; the hard
part can be shown by considering the three colours problem
in a graph) even when the graphsh andg were kept fixed
(‘constant’ according to the terminology in [17]). Suppose
for the moment that we have just a single relation and a
single concept for defining both graphs, and that we want to
show thath � g and consider the full projection algorithm.
Let nc

e and mc
e denote the number of existential nodes

associated to the single conceptC in g andh respectively
andnc andmc the number of constant nodes occurring inC

in g andh respectively. Thennc
e grows arbitrarily and thus

the possible candidates for projections are(mc
e +mc)

nc
e plus

nc ×mc identity tests. To find a projection we need for each
node mapping a numbernr × mr (they are the number of
arcs in the graphs) of confrontations. This growth instead is
bounded in the fragment with Split∃ becausenc

e = mc
e = 1.

Moreover, the restriction does not increase the number of
nodes. It comes out that verifying whetherc ≤ c′ for two
arbitrary conceptsc andc′ is polynomial in time (no matter
if there are cycles or not [25, 26]).5 If we have different
relations the same considerations apply to each subgraph.
The set of arches related to the same relationr (it is not
important if it is connected or not). Sincemc

e+ 1 ≤ Ind+ 1,
whereInd is the cardinality of the set of individuals in the
conformity relation (which must be finite), then(Ind+ 1)k

is the complexity of the algorithm, wherek is the number
of concepts in the query. As forS3∃ we can see that the
projection ofS2∃ is not more suitable (see the example in the
remark of Section 4.5; indeed the node[C : ∃] can be split
and then projected). We exhibit here a set of propositional

5Actually the algorithm is linear in time by expanding polynomially the
clauses defining the lattice.

Definite Horn Clauses which represent the graphh and the
ontology on the graph. We reduce the question-answering
problem to the derivation of a conjunction of propositional
literals corresponding to the graphg (propositionaldatalog).
Hence the complexity is polynomial [17, 18, 19, 20].

LetCk+1(ak+1)∧ . . .∧Cn(an)∧∃x1 . . . ∃xkC1(x1)∧ . . .∧
Ck(xk) ∧ r(x1, x2, . . . , xk, ak+1, . . . , an) be the translation
of a single well formed part of a conceptual graph (up to a
permutation of the terms), wherer is of arityn. We suppose
that the translation conforms to the canon. Let us introduce
for each conceptCi auniquewitnesspi .

• We substitute the above translation with a conjunction
of literals, that isCk+1(ak+1)∧ . . .∧Cn(an)∧C(p1)∧
. . . ∧ Ck(pk) ∧ r(p1, p2, . . . , pk, ak+1, . . . , an).

• We add to the translation ofg the set of propositional
formulas Ci(a) → C(pi) for all conceptsC and
constantsa in the conformity relation w.r.t.C. This
encodes the valid formulaC(a)→ ∃xC(x).

• For all rules∀xC1(x) → C2(x) in the canon we add
C1(p1)→ C2(p2).

• We define a relationt ≤ t ′ on the set of witnesses and
constants as follows:pi ≤ pj iff Ci(pi) → Cj(pj)

anda ≤ p if C(a) → C(p). Let r be defined in the
canon with respect toC1, . . . , Cn and let it occur in the
graphh. Then we addr(t1, . . . , tn) → r(t ′1, . . . , t ′n),
for all ti ≤ t ′i ≤ pi , i = 1, . . . , n.

Obviously, the program grows polynomially. No-
tice the query corresponding tog is a conjunction
C′s+1(a

′
s+1) ∧ . . . ∧ C′m(a′m) ∧ C′1(p′1) ∧ . . . ∧ C′s (p′s) ∧

r(p′1, p
′
2, . . . , p

′
s , a
′
s+1, . . . , a

′
m). This is a reduction of the

original problem to this propositional form. This ends the
proof. �

6. CONCLUSIONS

We have proved that the simple CGs are a fragment of the
Definite Horn Clauses. We also showed that the standard
graph derivation rules were incomplete and we added the
missing rules. The enhanced graph derivation system is
shown to be sound and complete. We have given a new
notion of a table for CGs, for which projection is sound
and complete with respect to FOL semantics. We proved
that the projection algorithm is indeed an optimization of
the standard resolution proof provided by the PROLOG
procedural interpretation.

The proofs are all constructive and effective. Our
completeness proof shows how to pass step-by-step from the
graphical derivation, to projection to the resolution proof and
the reverse.

A FOL interpretation of conceptual graphs with both a
universal and existential quantifier was given.

We studied a polynomial fragment of CGs. This system
has been implemented in an image retrieval system [27].

ACKNOWLEDGEMENTS

The first version of this paper was done while Iadh
Ounis was affiliated to the CLIPS-IMAG Laboratory of

THE COMPUTER JOURNAL, Vol. 43, No. 1, 2000

12 G. AMATI AND I. OUNIS

the University of Grenoble, France. Gianni Amati’s work
was partially supported by a Research Fellowship from
the Department of Computing Science of Glasgow, and is
carried out in the framework of the agreement between
the Italian PT Administration and the FUB. We would
like to thank Georg Gottlob for important suggestions on
the complexity theory issues of this paper and Maurizio
Lenzerini for a profitable discussion. Particular thanks to
Yves Chiaramella who gave a significant contribution to this
research and funded this work at CLIPS-IMAG of Grenoble,
where most of this work was done. Also particular thanks to
Marie-France Bruandet for her interest and her comments on
the first version of this paper and Marcos Theophylactou for
having carefully read the last version of the paper.

REFERENCES

[1] Sowa, J. F. (1984)Conceptual Structures: Information Pro-
cessing in Mind and Machine. Addison-Wesley Publishing
Company, Reading, MA.

[2] Gaines, B. R. (1993) Representation, discourse, logic and
truth: situating knowledge technology. In Mineau, G.,
Moulin, W. and Sowa, J. F. (eds),Proc. 1st Int. Conf. on
Conceptual Structures, ICCS’93 (Lecture Notes in Artificial
Intelligence, vol. 699), Quebec, Canada, pp. 36–63. Springer-
Verlag.

[3] Mineau, G. W., Moulin, B. and Sowa, J. F. (eds) (1993)Proc.
1st Int. Conf. on Conceptual Structures, ICCS’93 (Lecture
Notes in Artificial Intelligence, vol. 699), Quebec, Canada.
Springer-Verlag.

[4] Tepfenhart, W. M., Dick, J. P. and Sowa, J. F. (eds) (1994)
Conceptual Structures: Current Practices. Proc. 2nd Int.
Conf. on Conceptual Structures, ICCS’94 (Lecture Notes
in Artificial Intelligence, vol. 835), College Park, USA.
Springer-Verlag.

[5] Ellis, G., Levinson, R., Rich, W. and Sowa, J. F. (eds) (1995)
3rd Int. Conf. on Conceptual Structures, ICCS’95 (Lecture
Notes in Artificial Intelligence, vol. 954), Santa Cruz, CA.
Springer-Verlag.

[6] Eklund, P. W., Ellis, G. and Mann, G. (eds) (1996)4th
Int. Conf. on Conceptual Structures, ICCS’96 (Lecture Notes
in Artificial Intelligence, vol. 1115), Sydney, Australia.
Springer-Verlag.

[7] Chein, M. and Mugnier, M. L. (1995)Conceptual Graphs are
also Graphs. Research report 95-004, LIRMM.

[8] Chein, M. and Mugnier, M. L. (1992) Conceptual graphs:
fundamental notions.Revue d’Intelligence Artificielle, 6,
365–406.

[9] Ghosh, B. C. and Wuwongse, V. (1995) A direct proof
procedure for definite conceptual graphs programs. In Ellis
et al. [5], pp. 158–172.

[10] Wermelinger, M. (1995) Conceptual graphs and first-order
logic. In Ellis et al. [5], pp. 323–337.

[11] Prediger, S. (1998) Simple concept graphs: a logic approach.
In Mugnier, M. L. and Chein, M. (eds),Proc. 6th Int.
Conf. on Conceptual Structures (Lecture Notes in Artificial
Intelligence), Montpellier, France, pp. 225–239. Springer-
Verlag.

[12] Salvat, E. and Mugnier, M. L. (1996) Sound and complete
forward and backward chainings of graph rules. In Eklund,
P. W., Ellis, G. and Mann, G. (eds),Proc. 4th Int. Conf.
Conceptual Structures, ICCS’96 (Lecture Notes in Artificial
Intelligence, vol. 1115), Sydney, Australia, pp. 248–262.
Springer-Verlag.

[13] Mugnier, M. L. (1995) On generalization-specialization for
conceptual graphs.J. Exp. Theor. Artif. Intell., 7, 325–344.

[14] Chang, C. C. and Keisler, H. J. (1990)Model Theory(3rd
edn). North-Holland Publishing Co., Amsterdam.

[15] Mendelson, E. (1987)Introduction to Mathematical Logic.
Wadsworth & Brooks, Monterey, California.

[16] Cao, T. H. and Creasy, P. N. (1997) Universal marker and
functional relation: semantics and operations. In Delugach,
H. S., Lukose, D., Keeler, M., Searle, M. L. and Sowa, J.
F. (eds),5th Int. Conf. on Conceptual Structures, ICCS’97
(Lecture Notes in Artificial Intelligence, Subseries of Lecture
Notes in Computer Science, vol. 1257), Seattle, WA, pp. 416–
430. Springer-Verlag.

[17] Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. (1997)
Complexity and expressive power of logic programming. In
Proc. 12th Ann. IEEE Conf. on Computational Complexity
(CCC’97), Ulm, Germany.

[18] Jones, N. and Laaser, W. (1977) Complete problems in
deterministic polynomial time.Theor. Comput. Sci., 3, 105–
1177.

[19] Vardi, M. (1982) Complexity of relational query languages.
In Proc. 14th STOC Conf., San Francisco, pp. 137–146.

[20] Immerman, N. (1986) Relational queries computable in
polynomial time.Inf. Control, 68, 86–104.

[21] Sowa, J. F. (1999)Knowledge Representation, Logical, Philo-
sophical, and Computational Foundations. Cole Publishers,
Pacific Grove, CA.

[22] Lloyd, J. W. (1987)Foundations of Logic Programming(2nd
edn). Springer-Verlag, Berlin.

[23] Robinson, J. A. (1965) A machine-oriented logic based on the
resolution principle.J. Assoc. Comput. Mach., 12, 23–41.

[24] Chang, C. L. and Lee, R. C. T. (1973)Symbolic Logic and
Mechanical Theorem Proving. Academic Press, New York.

[25] Lenzerini, M. (1990) Class hierarchies and their complexity.
In Banchilhon, F. and Boolemann, P. (eds),Advances in
Databases Programming Languages. ACM Press, New York.

[26] Lenzerini, M. (1991) Careful closure of inheritance networks.
In Lenzerini, M., Nardi, D. and Simi, M. (eds),Inheritance
Hierarchies in Knowledge Representation and Programming
Languages, pp. 97–112. John Wiley & Sons, Chichester, UK.

[27] Ounis, I. and Pasca, M. (1998) RELIEF: Combining
expressiveness and rapidity into a single system. InThe ACM
SIGIR’98 Conf., Melbourne, Australia, pp. 266–274.

THE COMPUTER JOURNAL, Vol. 43, No. 1, 2000

