
A lightweight protocol for constrained devices for use in the Internet of
Things paradigm

Fergus W. Leahy

School of Computing Science
Sir Alwyn Williams Building
University of Glasgow
G12 8QQ

Level 4 Project — March 22, 2013

Abstract

With the advent of cheap, low-power and small devices, it becomes possible to embed these devices within
our everyday surroundings, to create an always connected, sensing and reacting “Internet of Things”, with the
purpose of not only simplifying our lives but also saving energy at the same time.

But in order to achieve devices of such size, the resources available is restricted. Because of this, current
protocols for connecting traditional devices together simply don’t cater for the constraints of such devices, there-
fore a new protocol which understands the constraints of these devices and is designed around this “Internet of
Things” revolution is necessary.

To design the protocol, a wide variety of existing/developing protocols and systems were reviewed, noting
what worked well and what didn’t; from this a new protocol which could not only run on constrained devices
but also scale up to more powerful devices, whilst still taking into consideration reliability, fault tolerance and
network scalability/performance.

The new protocol was implemented on the TelosB motes, which provided a benchmark for constrained
devices, proving it’s possible to create an “Internet of Things” protocol which can suitably run on constrained
devices, whilst still providing the functionality, reliability and scalability required.

Acknowledgements

I would like thank to Prof. Joseph Sventek for seeing something in this project from when it was only an seedling
of an idea, and for his invaluable support, advice and guidance throughout.

I would also like to thank my family, girlfriend and all the friends I’ve come to know in Computing for helping
keep me sane and on track throughout the past 4 years.

Fergus W. Leahy, 2013

Education Use Consent

I hereby give my permission for this project to be shown to other University of Glasgow students and to be
distributed in an electronic format. Please note that you are under no obligation to sign this declaration, but
doing so would help future students.

Name: Signature:

i

Contents

1 Introduction 1

2 Background and Related Work 2

2.1 What is the “Internet of Things” . 2

2.1.1 Past, Present and Future . 2

2.1.2 Motivation . 4

2.2 Typical “Internet of Things” examples . 4

2.2.1 “Internet of Things” at Home . 4

2.2.2 “Internet of Things” at Work . 5

2.3 Open source constrained devices . 6

2.3.1 Arduino . 6

2.3.2 Raspberry Pi . 7

2.3.3 TelosB Motes . 7

2.3.4 Wireless Sensor Networks . 8

2.4 Existing systems/protocols . 9

2.4.1 Java JMS . 9

2.4.2 xAP . 9

2.4.3 Remote Procedure Call - RPC . 10

2.5 Developing systems/protocols . 10

2.5.1 OpenWSN . 10

2.5.2 CoAP . 11

2.5.3 SmartThings . 12

ii

2.5.4 Qualcomm . 12

3 Requirements gathering 13

3.1 Primary Requirements . 13

3.2 Typical Use Cases . 14

3.3 Functional Requirements . 15

3.4 Non-Functional Requirements . 16

3.4.1 System Requirements . 16

3.4.2 Development Constraints . 17

3.4.3 Development Assumption . 18

4 Design 19

4.1 The three device roles . 19

4.1.1 Sensor . 19

4.1.2 Actuator . 20

4.1.3 Controller . 20

4.2 Protocol Design . 20

4.2.1 Features . 20

4.2.2 Transport Layer . 21

4.2.3 Multiplexing devices, channels . 21

4.2.4 Selective Multicast/Unicast . 21

4.2.5 Selective Reliability . 22

4.2.6 Liveness response . 22

4.2.7 Data integrity . 23

4.2.8 Flow of messages . 23

4.2.9 Protocol state machines . 26

4.3 Protocol Data Unit . 27

4.3.1 Protocol Header . 27

4.4 Payload Message Types and Formats . 28

4.4.1 QUERY . 28

iii

4.4.2 QUERY Response . 29

4.4.3 CONNECT . 29

4.4.4 CONNECT ACK . 30

4.4.5 RESPONSE . 31

4.4.6 COMMAND . 31

4.4.7 COMMAND ACK . 32

4.4.8 PING . 32

4.4.9 PING ACK . 32

4.4.10 DISCONNECT . 33

4.4.11 DISCONNECT ACK . 33

4.5 Comparisons to other systems . 33

5 Implementation 37

5.1 Implementation break-down . 37

5.2 Initial challenges . 37

5.2.1 Arduino . 38

5.2.2 TelosB and operating system choice . 38

5.3 Telos B Mote and Contiki implementation . 38

5.3.1 Contiki & Protothreads, a hybrid multi-threaded and event driven system 38

5.3.2 Overall system architecture . 39

5.3.3 Choosing the transport layer: uIP vs Rime . 39

5.3.4 Problems Encountered . 40

5.3.5 Final implementation and API . 41

5.3.6 Testing and Simulation . 41

6 Evaluation 43

6.1 Testing . 43

6.1.1 Sensor logging . 43

6.1.2 Light/Presence detector . 43

6.2 Implementation size . 44

iv

6.3 Comparison to other systems . 45

6.3.1 xAP - Receiving packets . 45

6.3.2 JMS & xAP - Failure . 48

7 Conclusion 49

7.1 Summary of Project . 49

7.2 Future Work . 50

Appendices 51

v

Chapter 1

Introduction

The “Internet of Things” paradigm, along with the “Smart” prefix, has recently seen a significant rise in interest
and popularity with manufacturers, hobbyists and end-users. Everything from your set-top box to your washing
machine can now be “Smart” and connect to the Internet to tell you if your favourite TV show has downloaded
or that your wash cycle has complete[12, 13]. Some hobbyists have gone so far as to make a plant send a text or
tweet when it needs watering[5, 24].

This uptake in interest and development can be largely attributed to the advent of lower power, smaller
and cheaper devices. Large companies, such as the mobile phone chip-set manufacturer Qualcomm, recently
declared their support at CES 2013 with the announcement of a dedicated development platform for the “Internet
of Things”[14].

Similarly there has also been significant enthusiasm from small companies and start-ups trying to create the
next hit consumer device. The social funding platform, Kickstarter[21], has seen many attempts at creating the
perfect “Thing” for the Internet[20, 25].

Whilst all of these devices from manufacturers, start-ups and hobbyists may very well be great “Things”
by themselves, there exists a problem. How does one connect all of these heterogeneous platforms and devices
together to create a truely interconnected “Internet of Things”?

This project focuses on just that and endeavours to create a communication protocol that is not only plat-
form agnostic but also lightweight enough to be run on the most constrained devices, such as the TelosB Sky
Motes(8MHz CPU,10K ram)[23]. Another core design focus is that the protocol must be able to scale effec-
tively as the network dramatically increases size as can be expected with the rapidly increasing availability of
network-connected devices.

1

Chapter 2

Background and Related Work

2.1 What is the “Internet of Things”

This section describes the concept of the “Internet of Things”, its slow development up to the present, and the
motivations as to why one would want to create an “Internet of Things”.

2.1.1 Past, Present and Future

The standard model of how we use computers and the Internet today revolves around the idea of an interconnected
network of servers, routers and data centres around which users connect using their personal computers to access,
input, manipulate and retrieve data.

This model heavily relies upon the users to provide the data by which the Internet is powered. Without this
data the Internet would be a barren place, with nothing to search for, sell, buy, share, watch, listen to, play, analyse
or learn from. Users from all around the world have contributed to make the Internet the single biggest resource
in the world by snapping photos, capturing videos, writing blogs, creating websites, commenting, discussing,
reviewing, buying, selling and inputting data. So much data in fact that the estimated size of the Internet in 2009
was 500 exabytes (that’s 500 BILLION gigabytes), of which 70% was contributed to by users.[19]

Within this model there exists two significant problems posed by users; time and accuracy. In terms of time,
users only have so many hours in a day to input data; which can only be so accurate, as all users are prone to
error through one means or another. These two problems make it difficult to observe our world and represent it
in an accurate and reliable digital form.

The idea of taking this responsibility of inputting data away from the user and giving it to the machine is
where the “Internet of Things” term initially came from. The term itself was thought to have first been coined by
Kevin Ashton[11] in 1999, who at the time was interested in linking up a company’s supply chain to the Internet
using RFID technology to allow for autonomously monitoring its state. Sadly, at that time the idea progressed
little and didn’t garner much support.

Fast forward to 2013, the “Year of the Internet of Things” as declared by the MIT Technology Review[1] and
observed in the Consumer Electronics Show 2013 (CES) with manufacturers introducing everything from smart
fridges to smart weighing scales. Concurrently, low power devices have become increasingly affordable and
small enough to embed into other devices, making it much more possible to create a truly autonomous system,
either in the home, office or car, wherein the user doesn’t have to interact directly with any of the devices but

2

instead just go about daily life, which, in the background, is enhanced by these ubiquitous devices operating
together.

With all the possible “Things” that can exist, the core functionality in the “Internet of Things” can be simply
modelled as a closed loop system in which a “Thing” can sense, process and interact with the real world as well
as other devices and services. This system is represented at its simplest by an if statement, if event occurs then
do action, which provides developers and users alike an easy to understand yet powerful model to create rules
for autonomous interaction.i.e.,

if temp <20C then Turn ON heating

if washing machine done then Text John

There currently exists a variety of online services and devices which give the end-user this ability to do such
tasks, such as the Twine device [25] which is a small low power device with a variety of sensors and a WI-FI
radio. The goal of the device was to make it simple and easy to set up and use; the user just puts the device in the
desired environment, perhaps on a washing machine, sets up some rules (“When accelerometer is knocked Then
tweet”), and when the condition is true, the preset action, in this case tweeting, is performed. Whilst this gives
the user great flexibility to perform actions automatically, the limitations show when trying to interact with more
than one Twine or with other devices and not just Internet services.

Figure 2.1: Twine IoT device.
Figure 2.2: Twine rule, When x Then y

The Twine device isn’t the only device out there, Smart Things[20] goes one step further than Twine and
gives the user a network of devices connected to the Internet through a central hub which the user can then
interact with online.

The main problem that exists and will continue to do so is that the digital environment is filled with a huge
variety of heterogeneous devices; the key to the future of the “Internet of Things” is to find a way to abstract
away the differences between these devices and create a simple platform on which all types of devices can
communicate to build a more rich and powerful “Internet of Things”.

3

2.1.2 Motivation

Like any new paradigm of computing, there must be sufficient motivation and interest for it to be picked up, used
and developed further. In the case of the “Internet of Things”, there are many cases why such a paradigm is of
great interest, both to consumers and organisations.

• Workload

– As mentioned previously, the core principle of the “Internet of Things” is to stop the user from having
to consciously input data into systems, instead, replacing them with new devices(sensors, actuators).
By doing so, the user’s workload is reduced, giving them more time to do other activities, either of
more interest or importance.

• Cost and Eco-savings

– One of the key benefits from collecting data from these devices rather than users is that more accurate
and reliable data can be gathered, from which smarter decisions can be made for the user, often
resulting in energy savings i.e., turning off unnecessary lights or optimising heating schedules. These
energy savings not only benefit the user in terms of monetary cost but also benefit the planet, making
it valuable to both the individual and larger community as a whole.

• Security

– By utilising these devices, not only can data be collected reliably but actions can also be executed
reliably, unlike users. This can benefit the user in terms of security, ensuring that an important action
is always carried out i.e., automatic door and windows locking upon exiting the house.

• Remote

– Because of the connectivity of these devices, users can interact with them from anywhere with an
Internet connection, giving them access to change, update and ensure the system is working correctly
i.e., check oven is turned off and front door locked when out.

2.2 Typical “Internet of Things” examples

In order to better understand the possibilities and typical scenarios surrounding an “Internet of Things” equipped
home or office, this section will outline two ideal examples of an “Internet of Things” network embedded in the
home and office, discuss their respective benefits as well as the current state of “Internet of Things” networks.

2.2.1 “Internet of Things” at Home

The most common association with the “Internet of Things” is the “Home of the Future”, which gives the con-
sumer the impression that the static home they are used to will come alive with technology, to make life at home
far simpler and more enjoyable. Therefore, this initial example will focus on the “Internet of Things” around the
home and demonstrate several uses of it.

The primary goal of an “Internet of Things” network embedded in the home is to create an awareness of the
user. By making the home aware of the user, it can observe them in real-time and determine smart things to do
autonomously within the home. These could relate to security, such as locking and unlocking doors and windows
when the user enters or leaves, or relate to convenience, such as turning on and off appropriate lights as the user

4

moves between rooms, turning on the heating in anticipation of the user’s arrival. Over longer periods of time it
could keep track of the user’s habits and adapt heating schedules or open the blinds when the user usually goes to
sleep or wakes, it could even turn on the coffee pot so when the user awakes in the morning a fresh cup of coffee
awaits them.

Other examples are less concerned with the user but instead with the safety and upkeep of the home, by
embedding sensors within objects in the home autonomous maintenance can be carried out. Some examples of
this could be, automatic plant watering when low soil moisture is detected, or autonomous vacuuming at certain
periods of time when the user is away.[18] By creating these possibilities, it not only reduces the workload for
the user but it also allows the user to do things which matter most to them, and of course it stops plants from
being forgotten about.

2.2.2 “Internet of Things” at Work

Much of the benefits from deploying an “Internet of Things” at home also apply when deployed in a work
environment, such as energy savings, reducing workload and increasing security.

In the workplace, the concept of the “Internet of Things” being aware of the user could be taken advantage of
to a much greater extent to increase productivity, efficiency and independence. This could be possible by allowing
workers to be automatically checked in and out of their office and other key locations within the workplace, such
as the cafeteria or meeting rooms, with varying granularity based on privacy. By doing so, not only can a worker
forget about informing colleagues of their location through punch cards or switchboards, but it can also help keep
their colleagues to be more informed about each other, so that instead of finding an empty office after walking
from the other side of the building, time can be better spent.

5

2.3 Open source constrained devices

In the past 5-10 years, there have been many attempts at creating an affordable, low power and approachable
electronics platform such as Arduino, Netduino, BeagleBone, Teensy and MSP430 Launchpad. All of which
have taken very different approaches, some opting for absolute low cost (MSP430 Launchpad), whilst others
aimed to be fully featured and powerful devices (BeagleBone). Other devices such as the TelosB mote, whilst not
cheap, has fuelled academic research into new ways of designing and implementing Wireless Sensor Networks.
More recently, the Raspberry Pi has created a whole new market of super, low-cost, yet moderately-powerful
computers aimed at education and hobbyists.

In the rest of this section a variety of different devices and platforms will be discussed including the Arduino,
TelosB mote, Raspberry Pi and other “Internet of Things” related devices.

2.3.1 Arduino

The Arduino was born in 2005 at an Italian university, Interaction Design Institute Ivrea, out of the necessity of
creating a cheap and approachable electronics platform which could enable design students to create interaction
design projects without the need of an electronics background. The main device which was created and has
remained much the same since, is based on an Amtel ATmega328 8bit micro-controller running at 16MHz with
2KB of RAM and 32KB of storage for programmes written in a variation of C/C++. The board itself maps out the
micro-controller’s mix of 20 digital and analogue input/output pins and supports several standardised protocols
for communicating with other devices such as I2C1 and UART2.

But the key to the Arduino Platform is not the micro-controller itself but instead the design, software and
support provided by the creators and other developers. The other major factor to its success is that the device,
along with the documentation and support, are all open source, thus allowing anyone to learn from, replicate and
expand upon the platform in any way they wish.

An example of how these factors have had a hugely positive effect is something which Arduino calls “Shields”.
These shields plug in on top of the Arduino board and contain standard components which can add additional
features such as WI-FI, Ethernet, sound, motor control etc. Rather than users being required to find, purchase
and solder the required components to add such features, these pre-built shields provide it in simple and readily
available package, made by a variety of manufacturers.

Since its creation, the Arduino platform has created a range of Arduino named devices and shields resulting
in a following of over 300,000 users[4] and support from many manufacturers and distributors worldwide.

Due to Arduino’s open source licensing policy, many new start-ups have been able to quickly design pro-
totypes and products using the Arduino platform which have been taken to market in various refined forms.
Often the same micro-controller which powers the Arduino is kept and the board miniaturised to fit the product’s
needs. Products such as the Internet “Thing” Twine[25] and the Smart Things “Internet of Things” eco-system
have taken this approach[20].

However, whilst there is an abundance of Arduino devices in the wild with many being used as an Internet
“Thing”, there is yet to be created an open and compatible method to easily network a group of such devices
together to form a connected “Internet of Things” network.

1I2C - Inter-Integrated Circuit
2UART - Universal Asynchronous Reciever/Transmitter

6

2.3.2 Raspberry Pi

Launched in 2012 the Raspberry Pi, a $35 credit card sized computer, was eagerly anticipated to change the
computing landscape. The charity behind it, the Raspberry Pi foundation, had one main goal; to refresh and
promote the teaching of computer science in schools.

Similar to the Arduino Platform, most of the hardware and software for the device is open source with the aim
of letting adults and children alike get their hands dirty learning about computing without the worry of breaking
an expensive computer.

The Raspberry Pi itself is a moderately well powered, single-board computer capable of running a wide
variety of Linux-based operating systems. It’s host to a 700MHz ARM CPU, 512MB RAM and a variety of
inputs/outputs including an Ethernet port. These features, along with some additional GPIO3 pins, just like the
Arduino, allow it to sense and control the world around it, thus making it a perfect “Thing”.

Because of the extremely low price point for such hardware, the Raspberry Pi was a huge success selling,
over 500,000 units in the first 8 months, only limited by their production speed.[17]

Even before it’s release, the community support and ideas were non-stop, everything from home-media
centres[16] to Lego super computers4[15] were designed and created from Raspberry Pis.

Whilst the support for utilising the GPIO pins is not yet as well developed as the Arduino Platform, the power
of the device combined with its low price point and connectivity means that it can be very easily incorporated
into a “Internet of Things” network with little additional hardware or cost.

Another considerable point for developing on the Raspberry Pi is that because of its ability to run Linux, a
much larger variety of programming languages can be used, including high level languages like Python, C++ and
Java.

2.3.3 TelosB Motes

With a significant uptake of devices in academia, TelosB motes are one of the go to platforms for wireless sensor
networks research. Whilst they may fit under a different paradigm, the IoT can be seen as a specialisation of a
wireless sensor network. Although the are extremely constrained, they are a good, low-end benchmark for which
to test and develop software for use on constrained devices.

The device was developed at the University of California, Berkeley, and spun off into a separate company.
As a result, these devices have fuelled many academic studies and courses in relation to developing low power
wireless sensor networks and researching applications for them. With very limited resources, 8MHz CPU, 10KB
RAM, 48KB ROM, light/temperature sensors, battery powered and a low-power 802.15.4 (250 kbps)radio, these
devices require new ways of thinking in order to design, program and deploy them. Many scenarios must also
take into consideration the environment in which they will be deployed, which are often hostile and unpredictable
that can cause nodes to disappear from the network sporadically. Such environments have ranged from forests
for fire detection[36] to monitoring livestock [33].

A significant part of the development for these types of devices has surrounded the operating system and
programming style. Currently there exist many different operating systems in which TinyOS and Contiki are
most used and developed for. Both operating systems take quite different approaches to both operating system
design and programming API.

3General Purpose Input Output
4Even within the School of Computing Science, UoG

7

TinyOS is designed as a completely modular, event-driven and thread-less operating system which makes
for a difficult system to program and reason about; this is due to its unfamiliar execution style and the design
of its programming language, nesC, a significant variant of C. Due to its modular design, programs are written
in “components” which are comprised of their “configuration”(how they link/wire to other components) and
“module”(the implementation of the component).

In contrast, Contiki is designed to fit the middle ground between Event driven programming, like TinyOS,
and imperative programming, like C. It achieves this by having both lightweight threads, which can interleave
in execution, and events, which allow the program to react to stimuli, written in a slight variation of C [32].
This approach is much more familiar to the experienced programmer of larger systems whilst still providing an
efficient environment in which to program albeit with some compromises (stackless threads). Where TinyOS
breaks programs down into a complex array of components, modules and configurations, Contiki aligns with
standard C, using header and .c files.

In regards to the “Internet of Things”, Contiki provides a much more approachable platform to design for,
as a significant portion of code written for larger platforms can be ported without much transformations to the
code. Combining this with the hardware’s array of sensors and low-power radio, the two create an ideal low end
platform for developing at the bottom end of the “Internet of Things”.

2.3.4 Wireless Sensor Networks

With computers becoming smaller, cheaper and more powerful every year, wireless sensor networks have become
an area of rapid research. Wireless sensor networks allow the autonomous collection, aggregation and processing
of data from hundreds if not thousands of devices, which before would have only been feasible through simula-
tion. Use cases of such networks range from detecting forest fires[36], to monitoring the health of the Golden
Gate bridge[35].

Many of the situations and environments these networks are deployed in can be extremely harsh, often sub-
jected to adverse weather conditions and even animal wildlife. Because of this, reliability and fault tolerance are
significant areas of research, ensuring the network of devices can react and adapt to changes in the environment
to ensure correct operation, even in the case of device failures. Due to these often harsh and changing envi-
ronments, standard architectures of networking aren’t feasible, e.g., star topology, because of their reliance on
central points or base stations to communicate, which may become out of range or fail entirely; instead a more
ad-hoc approach is needed to ensure all devices can be connected to the network, even when devices move in
the physical environment. To solve this problem, devices are networked together in a mesh topology, where each
device connects to its neighbours and allows traffic to route through one another to reach the final destination.

In some ways the “Internet of Things” can be interpreted as an extension or specialisation of wireless sensor
networks, taking the autonomous network of hundreds of sensing devices and creating an autonomous closed-
loop system, which can make intelligent decisions based on the environment, and placing it within a home,
office or even city. Often the environments are a much less extreme and are more predictable than traditional
wireless sensor network deployments, such as the home or office, reducing the concern for reliability. However,
because of the pre-existing and often immutable nature of environments such as the home, installing traditional
networking topologies ranging from the front door, to the second floor bedroom and all the way down to the
bottom of the garden can pose problems; but like in wireless sensor networks, mesh topologies can help solve
this by routing traffic through other nearby nodes, rather than trying to connect directly to the base station or
router.

8

2.4 Existing systems/protocols

2.4.1 Java JMS

Although the Java Messaging Service itself isn’t directly targeted towards “Internet of Things” implementation,
it does provide a standard and well defined framework for communicating and coordinating between both local
and remote applications on a network.

It can operate in two modes, either in a publish - subscribe or point-to-point architecture. Using the publish
subscribe system, publishers publish to topics, to which subscribers subscribe. The topics bridge the two types
of clients together and allow for many to many relationships without either side knowing about the other. With
the “Internet of Things” in mind, this type of publish - subscribe systems fits in well with the if event occurs then
do action model. Topics map to events/conditions to which sensors can publish and to which other devices can
subscribe, performing some action as a result, as shown in figure 2.3 .

Figure 2.3: JMS Publish - Subscribe modelling IoT

Whilst JMS provides a well fitted framework, it does however come at a cost due to the runtime environment
of Java and the additional overhead of having to run a separate server to glue the publishers and subscribers
together. Whilst currently running the Java runtime on these constrained devices may not be possible, with the
current pace of innovation, especially in optimisation of the Java runtime, and Moore’s Law giving devices more
power for the same cost and form factor every 18 months, it won’t be long before it’s really possible to have
it running on the constrained devices of tomorrow. But until then, other alternatives and perhaps more suited
tools, libraries and frameworks should be engineered starting at the lowest common denominator rather than
shoe-horning large scale systems to fit constrained devices.

2.4.2 xAP

In the early 2000’s, as an attempt to bring together a variety of technologies developed and used for Home
Automation, an open source group decided to create a protocol to bridge the differences and create a unifying
platform.[26, 28]

xAP, eXtensible Automation Protocol is designed to be a minimalist, elegant and easy to implement protocol
with very basic requirements for the hardware, operating system, network and language on which it can run.
The primary implementation is based on UDP/IP with a distributed architecture where no central controller co-
ordinates the network. Instead, each device either transmits or listens for data on a broadcast channel. Their core
justification for this is that the network becomes fault tolerant and can withstand devices disappearing off the
network for one reason or another without having a detrimental effect on the whole network.

9

In this design there are two key classes of devices, senders and receivers, of which a device can be either
or both. The receiver simply attaches to the network and listens for any incoming packets, it then chooses
which ones are relevant to it and processes them. The sender attaches to the network and broadcasts packets
with payloads containing data relating to its service i.e., sensor data, incoming caller ID, etc. These packets
only contain enough information to uniquely identify the source and the payload it wishes to send. There is no
constraint on whether or not the packet must have a destination.

This design feature makes it very simple for new devices to attach to the network and start interacting with-
out having to go through the process of setting up connections to other devices. It also makes it very easy to
implement certain types of devices like loggers or informational displays which can collect data from all senders
with relative ease. However, this also creates a huge strain on the devices attached to the network which all have
to receive and process any broadcasted data, especially for those devices with limited power resources. This
becomes an increasing problem as more and more connected devices invade the home, from which the network
will very quickly deteriorate as the volume of traffic being broadcast increases. The efficient sending of data, by
either avoiding broadcast or limiting its use is an ongoing research topic within the Wireless Sensor Networks
domain, due to the costly nature of broadcast and the constrained power resources of the WSN devices.[29][34]

The protocol also defines a set schema for how packets should be formatted so that all devices can interoperate
correctly. The schema covers both the header and the payload format, which is almost entirely text-based,
resembling, albeit pre-dating, JSON, with the main intention of being human readable. Whilst so, this does come
at the cost of not only increasing the size of the packet considerably with redundant text, but also the complexity
in parsing the data with its varying delimiters.

After the protocol’s initial inception it has had limited success, even whilst it has been continuously developed
over the years, it has done so in the shadows and not in an explicitly open and collaborative way, with no central
repository for code collaboration/review and no single developer’s forum for discussion.

2.4.3 Remote Procedure Call - RPC

RPC whilst relatively old in comparison to the other systems described, it does provide an adequate abstraction
for communication between devices in an “Internet of Things”, via request/response style interactions.

The concept of creating a distributed system, whereby devices in the network request data and services from
each on demand, with the relevant response being returned. This fits in well with the idea of an autonomous
system sensing, processing and reacting to stimuli, with each device bringing its own services to the system.

However, because of the fixed concept of every request requires a response, the number of packets sent is
doubled, even when no response is necessary. In the environment of constrained devices, this increases the load
per device and if battery powered, reduces the life of the device significantly.

2.5 Developing systems/protocols

2.5.1 OpenWSN

Currently being developed at the University of California, Berkeley, the Open Wireless Sensor Network project
is collection of open-source implementations of protocol stacks implemented against to-be-finalised “Internet of
Things” standards, for a range of different software and hardware platforms.

10

The driving force behind such a project is to create an open source implementation protocols, which academia
and industry can use to conduct further research, develop standardised products and contribute to an eco-
system of “Internet of Things” devices, rather than researching and developing proprietary devices. In the long
run this can also benefit consumers, increasing their choice of devices across many different and compatible
brands/manufacturers.

Whilst the OpenWSN project doesn’t actually propose any new research or developments by itself, it does
pursue the same idea as this very project, trying to create an open source method in which heterogeneous devices
can communicate with one another to form and “Internet of Things”.

The OpenWSN “Internet of Things” stack consists of open source implementations of the proposed commu-
nications stack, ranging from the physical layer (IEEE802.15.4-2006), to the adaptation of IPv6 (IETF 6LoW-
PAN) all the way up to the application layer, of which is of most interest. The application layer implements not
only HTTP, but also a currently in progress standard called Constrained Application Protocol, with the purpose
of bringing RESTful communication to constrained devices.

2.5.2 CoAP

CoAP, Constrained Application Protocol is currently a proposed IETF standard to create a request-response style
web protocol, specifically designed to fit the limitations of constrained devices, such as micro-controllers, for use
in machine-to-machine communication and the“Internet of Things”. The protocol is designed as an asynchronous
RESTful protocol, to run on top of UDP, using a subset of the standard commands e.g., GET, PUT, DELETE.
The reason is that due to the common commands, it allows for an easy transition to standard HTTP if necessary,
whilst reducing the complexity of the protocol. Together with this, the protocol also provides support for service
discovery and basic subscribing to other CoAP nodes.

Because the protocol is designed to run on top of UDP, which is a connectionless, unreliable transport layer,
CoAP provides both un-reliable and reliable support for requests; which is provided by marking a message as
non-confirmable (unreliable) or confirmable (reliable). This allows nodes to send data which is essential, reliably,
and to send data un-reliable when data is ephemeral, such as sensor readings.

As mentioned previously, the protocol also supports service discovery, to allow nodes to find new sources to
request resources from, without necessarily using a centralised server. If a node’s IP address is known a priori,
then a unicast discovery can be used to locate the entry point of the resource of interest, otherwise a multicast
discovery must be used; this is done by making a GET request to a standardised location, from which receiving
nodes respond based on whether the request matches any of the resources it holds (by type or description).[37]

To combat one of the problems normally associated with constrained devices, power, CoAP supports the
ability for nodes to subscribe to one another. This means that instead of a node being repeatedly polled for any
changes, the node instead notifies all subscribed nodes when the resource of interest has changed. This reduces
the amount of packets received by the receiving node, in turn helping to reduce its power consumption.

Lastly, because CoAP is so similar to HTTP in the commands that it uses (GET, PUT, DELETE, etc.), it
makes it simple to translate messages between protocols, and therefore allow these constrained devices to send
and receive data to and from the WWW.[30]

At the time of writing, the protocol is still being developed and finalised, although there have been a variety of
implementations (of some degree) [8][6][7], it’s yet to see if the protocol will be fully adopted both commercially
and in the open source community.

11

2.5.3 SmartThings

Launched in 2012, the SmartThings platform aims to allow the user to turn any ordinary object in the home
into a “Smart” object by giving it the ability to connect to the Internet. The platform consists of a central hub
connected to the Internet, containing a low-power Zigbee radio, from which it connects to an array of Smart-
Things accessories as well as many pre-existing third party Zigbee devices. Some of these accessories include
motion detectors, moisture sensors, vibration detectors, power-plug switches as well as many others. The user
can then connect to the SmartThings service through an Internet-connected pc or a smartphone, allowing them
to either control the devices directly or set-up rules/schedules for devices, similar to the previously mentioned
Twine device(2.1.1).

Whilst providing easy to set-up pre-made SmartThings, the developer also provides the open-source Arduino
kits to let hobbyists create their own SmartThings utilising the already well supported Arduino platform.

Currently, there is no information on how the underlying protocol for connecting the SmartThings to the hub
works, but at the time of writing, the current implementation uses a “cloud first” approach. This means that rather
than the hub wiring all devices together based on the rules and schedules set up by the user, all the intelligence
of the network is being handled in the cloud. This brings about the problem of Internet connectivity, with two
points of failure, either the user or the cloud. From the user’s standpoint, an Internet connection might not be
available where the hub is located, or the user could have a faulty, slow or non-permanent connection, which
renders all the SmartThings devices into dumb devices. In contrast to this, because of the reliance on the cloud,
if the cloud service provider experiences downtime then all SmartThings users devices become dumb devices. In
cases where these devices are used for security and safety, dire consequences could result.

2.5.4 Qualcomm

As an example of a major hardware manufacturer acknowledging the “Internet of Things”, at CES 2013, Qual-
comm announced a new platform for developing “Things”, named the “Internet of Everything”, based on their
mobile chipsets, providing 3G network connectivity and utilising the Java Micro Edition runtime [14]. So far it
seems the concept of connectivity is not dissimilar to existing devices, such as the Twine, where the device is
essentially a single device connecting to the Internet, in contrast to a network of interconnected “Things”.

The platform has yet to be released at the time of writing, but will prove to be an interesting start to hopefully
more manufacturers creating purposely designed hardware, enabling developers to create “Internet of Things”
applications.

12

Chapter 3

Requirements gathering

As discussed in the previous chapter, many different platforms and protocols exist to create an “Internet of
Things” and most take very different approaches. This chapter will highlight several drawbacks of some the
previously mentioned systems, explain how such problems can be resolved with this new approach and discuss
the requirements for developing a new system, which is better suited for constrained devices and the environment
of the “Internet of Things”.

3.1 Primary Requirements

Due to the nature of the target hardware platforms, constrained devices such as Arduino and TelosB, heavyweight
approaches become infeasible i.e., Java & JMS. Therefore an extremely lightweight and scalable protocol, both
in terms of the protocol data unit (pdu) and the complexity in processing and managing the runtime, is a primary
requirement.

Secondary to this, because of the often unstructured and ad-hoc design of a typical “Internet of Things”
network, building a centralised system i.e., a name server for device search, is an unnatural fit with the network.
A single failure in the server could bring the entire network down, whilst all other devices are fully operational
and no way to communicate with each other. Instead, creating a distributed system which gives all the devices
in the network the power to discover and communicate with each other, relieves the network of a single point of
failure and can help spread the load.

Taking into consideration the typical types of devices connected to the “Internet of Things”, three general
roles of devices can be discerned; a sensor, an actuator and a controller. Sensors, anything from a temperature
sensor to an open door sensor, provide a continuous service to other devices in the form of real-time data, usually
from the outside world. Similarly, actuators also provide a service to other devices in the form of an interaction
with the outside world, such as a speaker, light switch or thermostat. Lastly, controllers are devices which
orchestrate the “Things” in the network, forming relationships between devices and creating useful interactions
between the digital and real world i.e., connecting to both a door sensor and a light switch, when the door opens
the light turns on. Whilst there are these distinct roles, it is often the case that one device could take on more
than more role i.e., a light switch can both sense its state, and provide an action, turn on or off.

13

3.2 Typical Use Cases

This section will demonstrate several typical use case scenarios of different combinations of devices that an
“Internet of Things” around the home may be composed of, with some necessary requirements in order to operate
correctly.

• Logging

– The logging application runs on a controller device interacting with one or more sensors. The con-
troller requests data from a temperature sensor and logs it to a file locally. The purpose of such an
application can be to help with understanding the state of an area, room or home over a larger period
of time, from which some assessment can be made e.g., one room is always warmer than the other
during the afternoon.

• Presence detection lighting

– The presence detection application runs on a controller device interacting with both a sensor and
actuator devices. Within certain areas of the environment motion detectors are placed to detect the
presence of a person in a particular space. This data is then communicated back to the controller and
used to determine which lights to command to turn on or off. The purpose of this application would
be to reduce the energy costs associated with lights unnecessarily left on.

• Wash cycle complete

– The wash cycle complete application runs on a controller interacting with a sensor and an actuator.
The actuator could be any form of communication medium that can alert the user i.e., sending a text
message or tweet. This application would enable a washing machine to act as a sensor, relaying
information back to the user(time left) and when a wash cycle has completed or requires further
attention the user could be alerted in some form so that they can attend to it.

• Direct control and observation

– A direct control application would allow a user to interact with the “Internet of Things” directly
through a web browser or smartphone application. Such an application would operate on a controller
device and allow a user to dynamically create new rules and relationships between existing devices
as well as directly command devices such as lights, thermostats etc. This would allow a user to easily
create and destroy relationships between devices without reconfiguring or restarting the network of
devices.

• Multi-decision heating

– A multi-decision application, such as a heating system, would take advantage of an arrangement of
multiple different types of sensors and existing services. These sensors could include: temperature
sensors to sense the current temperature of different spaces, presence sensors to detect where a person
in the environment, location sensors to detect if someone is actually home. The combination of these
sensors could allow the system to detect whether the environment should be heated, and if so when
and by how much. Building upon the initial use case of logging, a logger could be used to create a
basic schedule of when people are in the environment so that heating schedules can be created, this
would allow the environment to be heated upon the arrival of someone.

14

3.3 Functional Requirements

This section describes the functional requirements which were gathered and are based upon the needs of the use
cases discussed in the previous section.

1. Support 3 device roles; Sensor, Actuator, Controller

• These 3 roles of devices are needed to form the basic closed loop interaction model necessary for the
“Internet of Things”.

2. Configuration of device attributes both at compile time and run time i.e., name, type, frequency, etc.

• This is necessary in order make each device distinct from another, as well as customise it based
on its needs, either in terms of performance, power constraints or otherwise. By enabling run time
configuration it simplifies updating the devices on the network without the need to recompile.

3. Discovery/querying of devices

• Discovery of other devices on the network is a core feature of a distributed “Internet of Things”
network, without this the network can’t dynamically grow by finding new devices. Querying of
devices is to determine compatibility of devices before making a connection, by filtering out requests
which don’t match a devices attributes network congestion can be reduced.

4. Negotiation and connection to devices

• Negotiation is necessary to determine the characteristics of the relationship between two devices,
which is based on the demands of the device initiating the connection and whether or not the recipient
can or wants to meet that demand i.e., a device can request a certain frequency of readings from
another device which may or may not be able to match it.

5. Closing connections to devices

• Devices need to be able to gracefully close any formed connections, which could be due to limited
power constraints or no longer needing the resources that the connection offers. These connections
also must be closed gracefully, in contrast to just not responding/dissappearing off the network, in
order to ensure that a device’s resources are not wasted by keeping state for a terminated connection,
which could be confused for transient communication loss.

6. Sensors must be able to send data to controllers

• A sensor’s core functionality is collecting data through sensing the environment, this data may be
of interest to other devices on the network and therefore must able to to send it to them. These
data transmissions also need to be sent at a set frequency, either configured or negotiated, so that a
receiving device knows when to expect data.

7. Actuators must be able to receive commands from controllers

• An actuator’s core functionality is interacting with the environment, without informed control of the
device it has no use by itself. Therefore the device must be able to accept commands from other
devices, such as controllers, in order to interact with the environment with a purpose.

8. Controllers must be able to send commands to actuators and receive data from sensors

• A controller’s purpose in the network is to form connections to other devices to create the closed loop
system, which in order to do this, must be able to receive data from sensors and send commands to
actuators.

15

9. All device roles must support connections to multiple devices

• This is necessary in order to allow a device to form relationships to several other devices, which not
makes better use of the available resources within each device but also allows for devices to form
multiple, more complex relationships between different devices i.e., a temperature sensor connecting
to one controller which logs its data and to another controller which is connected to an actuator that
controls the thermostat.

10. Liveness checks through pings

• Due to the distributed and unreliable nature of the network environment, devices need to be able to
check the liveness of the connections to ensure devices are still active, and for those that aren’t, react
gracefully by cleaning up the expired connection and perhaps try to discover new devices.

11. Application Protocol Interface

• This is necessary for applications to be built on top of the device roles, which will utilise the capa-
bilities of the underlying network of “Things” to create rich and powerful systems in the “Internet of
Things”.

3.4 Non-Functional Requirements

This section describes the non-functional requirements based on the expectations of the system, its performance
characteristics and the constraints surrounding the development the project.

3.4.1 System Requirements

• Closed loop system

– The system must be able to sense, process and react within the network itself, to create a fully reactive
closed loop system.

• Lightweight

– Because of the target systems, constrained devices, the system must be lightweight enough, both in
terms of the protocol data unit and use of system resources, so that devices such as the TelosB mote
can run it.

• Scalable, from small to large networks of devices

– Because of the rapid adoption of technology within our environment, the system must be able to scale
from small to large networks in order to support the use of 10’s if not 100’s of devices with a single
network, without causing unnecessary congestion and still ensuring the same performance of smaller
networks.

• Cross platform compatibility

– Due to the heterogeneous nature of hardware and software platforms available today, the system
must be designed in such a way so that it is both hardware and software independent, enabling it to
be implemented on these platforms as well as across a variety of networks.

• Simple to extend

16

– Due to the constantly evolving nature of technology the system must be extensible in order to support
new types of devices, and also be able to support new payloads specific to these devices.

• Reliability of essential communications

– Because of the reliability concerns regarding the underlying network, building in some reliability is
necessary to ensure that critical communications are successful, such as forming connections between
devices.

• Basic assurance of correct data

– Due to the reliance upon data within the network in order to sense, process and react to the environ-
ment, all data transferred must be reliable, therefore the need for some checks to ensure it is correct
when it reaches the destination are needed.

• Network resilience to device failures

– Because of the unpredictable nature of the environment and the limited capabilities of some devices
(battery powered), the system must react gracefully to device failures, without the entire system being
rendered in-operational.

• Liveness monitoring

– The system must be able to monitor and react to the liveness of devices in the network i.e., if a device
becomes unreachable, close connection gracefully and clean up.

• System performance

– Because of the real-time nature of the “Internet of Things”, the system must perform suitably, so
that data is received and commands are carried out within acceptable real-time bounds i.e., receiving
temperature readings for an hour ago are of no use to a device which shows the user the current
temperature.

• Device resources

– The system must consume as little device resources as possible in order to support the development
of user applications on top.

3.4.2 Development Constraints

• The system must be researched, designed and developed within a limited time frame, about 20 weeks.

• The choice of platforms for implementing the design is based on the availability of constrained devices
between the School of Computing Science and the author.

• The choice of operating system for the constrained device is based on prior experience with similar systems
and platform languages available to the OS. The Contiki OS uses a minor variation of the C programming
language, making it quicker and simpler to get started based on the author’s experience with C, as well as
simpler to keep the system (mostly) platform independent.

17

3.4.3 Development Assumption

In order to design and implement the proposed system, the scope of the problem needs to the limited, therefore
it becomes necessary to define several assumptions.

• The number of possible devices types is limited, no more than 255.

• Sensor data is not critically important, so packet loss is acceptable.

• The system will be used in an environment where security is a non-issue (but MUST be considered as
future work before deployment).

18

Chapter 4

Design

This chapter describes and illustrates the design of the new protocol, independent of any hardware and software
platforms, as set out by the requirements gathered in the previous chapter. This chapter will discuss the different
roles of devices to be used, the fundamental features necessary to meet the requirements, the types and flow of
messages between the different roles, the protocol data unit and command formats defined and finally some of
the key design choices for this protocol will be compared to decisions made by other pre-existing protocols, to
highlight and discuss their differences and/or similarities.

4.1 The three device roles

In order to understand and design the system correctly, the three basic device roles in the “Internet of Things”
must be explicitly defined; these roles will ultimately dictate the core communication model between devices in
the network. However, whilst these roles are distinct in nature, a single device may take on one or more roles,
e.g., a light sensing its state, and offering a command to turn it on/off.

By separating out functionality into distinct roles, it enables each to device to offer individual, context-less
services which can be offered to many different devices and combined to create a powerful, rich and adaptable
“Internet of Things”.

4.1.1 Sensor

The sensor is the key component of any “Internet of Things” network; without the ability to sense, either on
demand, periodically or in real time, the user is forced to consciously interact with the system, in turn defeating
the purpose of the “Internet of Things”.

The sensor in the “Internet of Things”can be seen as a simple device which does little to no computation,
except that of formatting or preprocessing the data it senses, and simply forwards it to one or more devices in the
network that have expressed interest in its data, at set time intervals. These intervals can be decided either by the
sensor or the interested device, based upon the needs and resources available to both.

Because data from sensors is usually of an ephemeral nature, recovery/retransmission of damaged/lost pack-
ets is usually not of interest after the next one in the sequence has arrived, e.g., no need for previous temperature
readings when interested in the current temperature now. However, knowing that the data has arrived correctly
and undamaged is of importance, as data must be correct for the system to operate correctly and as expected.

19

4.1.2 Actuator

Actuators, like sensors, are a key component in the “Internet of things”, performing actions to interact with the
real world, e.g., turn on light or display the current temperature. Without the use of actuators, the system would
only be able to record and process the environment without having anyway of reacting to any events.

By themselves actuators are primitive devices and are only able to perform context-less actions by them-
selves, e.g., turn on and off a light. In order to create meaningful actions, such as turning on a light when
someone enters the room, actuators need to be able to offer their actions, or functions, as a service to other
devices in the network whom are interested in performing such actions.

Because of the on-demand semantics of performing an action, actuators need to be always available and
ready to respond to incoming commands at any time.

4.1.3 Controller

Controllers, unlike sensors and actuators, are the brains of the “Internet of Things”; by themselves, they can do
nothing, but by utilising other devices in tandem, they can create a powerful, sensing and reactive system.

By connecting to sensors, controllers can give the data sensed a purpose and meaning, and by connecting to
actuators it can give actions a reason to be performed, e.g., when the temperature sensor readings are >26C, the
room is too warm, therefore turn down the thermostat, in order to reduce the temperature to a more preferable
setting.

Within a single network it is possible to have several controllers all connected to the same or different devices
as well as connected to each other, and each could perform different functions in the network i.e., one controller
logs all devices in the network, one controller controls living room devices and another controls bedroom de-
vices. Extending this, allowing controllers to connect to one another enables the network to form more complex
relationships to perform actions that one controller alone could not, such as one controller having Internet con-
nectivity providing resources such as cloud connectivity to the other controllers.

4.2 Protocol Design

This section discusses the design of the protocol based on the formal requirements, from the basic sequence of
messages passed between the different roles, to deriving specific state machines for each role.

4.2.1 Features

The protocol is designed to fulfil several key requirements:

• Minimalistic protocol, reliability for critical data only, no fragmenting

• Minimal header overhead, reduce transmission and receiving cost of data

• Distributed device discovery, use of broadcast to discover devices

• Reliability, reliable set-up of connections and integrity of data

• Fault tolerant, liveness checks and no central point of failure

20

4.2.2 Transport Layer

Due to the requirements of the protocol, allowing it to run on a variety of networks, and reducing necessary
transmissions to save power, the design of the protocol is such that it only requires packets to be sent over a best
effort link with no reliability guarantees; instead the protocol itself handles any problems with corrupt data or
dropped packets, as discussed later in this section,4.2.5, 4.2.7.

The one significant requirement of the transport layer is that it must provide the capability to send both
broadcast and unicast packets, due to the device discovery requirement. Therefore, a simple datagram transport
layer can be used to provide the required functionality, such as the IPv4/6 User Datagram Protocol (UDP) or
Contiki Rime stack[31].

4.2.3 Multiplexing devices, channels

In order to enable devices to communicate with more than one other device, a method for multiplexing a device’s
resources must be created. Within this system, each connection between two devices is called a channel, and
each device can serve multiple channels, depending on its own resources, i.e., the more resources available, the
more channels a device can serve, the more devices a single device can connect to.

Each device will contain at least two channels, one home channel (default) and one or more ephemeral
channels. The purpose of the home channel is to enable devices to have a well known location at which they can
be contacted; this will be used for device discovery and to request to start a connection on one of the ephemeral
channels.

In order to uniquely identify each connection, a triple of identifiers is required:

• transport layer address of each host the system is running on (IP address or Rime address).

• transport layer multiplexing identifier associated with the running system process (UDP port or Rime
channel).

• a multiplexing identifier for each connection to a device, called a channel.

4.2.4 Selective Multicast/Unicast

The use of multicast in a network can be extremely expensive, both in terms of the bandwidth consumed on
the network as well as the time and energy cost of every device being forced to receive and process the packet.
Therefore multicast transmissions must be kept to a minimum and where they are necessary, ensure that it is not
used excessively.

In the case of device discovery, multicasting is required due to the distributed nature of the system, where
no central name server exists and therefore the network needs to be queried in order to locate devices. In order
for this to work, all devices on the network need to listen on a well known address (e.g. UDP port), to which
the discoverer can send multicast discovery packets. Once a device receives a multicast discovery packet, it can
decide whether or not to reply, based on whether the query information, device type or name, matches its own.
If it does match, then it replies using a unicast message to notify the sender of an available device matching its
request. Because filtering is used at the receiving end, this further reduces the strain on the network resources,
by stopping unnecessary packets from being transmitted.

21

4.2.5 Selective Reliability

In an effort to both reduce the cost of data transmission for devices and bandwidth consumption on the net-
work, reliability will only be ensured for critical data transmissions, including connection set-up, tear-down and
actuator commands.

Because of the unreliable nature of the underlying network, ensuring that connections are formed correctly is
extremely important, otherwise a connection forming packet might be dropped, causing one device to believe the
connection has been fully set-up whilst the other waits for the dropped packet which will never arrive. Another
case where this is important is when issuing commands to actuators, as it is necessary to ensure actions are in fact
carried out and the command hasn’t been lost on the network. This can achieved through at-least-once semantics,
ensuring that the actuator receives at least one command, so that it performs the action, and any repeat requests
can be ignored.

Whereas, when sending data such as sensor readings the reliability of it arriving is not as important, this
is largely attributed to the ephemeral nature of sensor readings, especially in a real-time environment like the
“Internet of Things”. For example, in a scenario where the current temperature is being displayed to the user, the
need for old, out of sequence data, which may have been lost and retransmitted becomes unnecessary, as the user
is only interested in the current temperature.

4.2.6 Liveness response

In order to ensure the connections between devices are kept alive, the liveness of a connection needs to be tracked,
this is done differently depending on the device.

Sensor - Because sensors transmit data back to a controller at a set frequency, the controller can easily keep track
of the liveness by simply monitoring incoming packets. If an arbitrary number of packets is not received
after a multiple of the frequency period, then a time-out will occur and the connection can then be probed
using a PING message to check if the packet loss is transient. If no responses are received in the form of
PACKs, then the connection can be closed gracefully.

Actuator - Because actuators just listen on the connection for any commands from a controller, it becomes necessary
to regularly check at an arbitrary frequency that the connection is still alive using PINGs. Without PINGs,
if a command was sent, it would initially be difficult to tell whether the packet was lost or the connection
is dead. By using PINGs, the status of the connection to the actuator can be regularly monitored, and if
necessary, the associated channel closed when the actuator is persistently unresponsive.

Controller - Because controllers actively keep track of actuators, actuators therefore implicitly know that the controller
is still alive. However, this is not the case for sensors, which are only liveness checked passively unless
there is packet loss. Because of this, the sensor must therefore regularly send PINGs at an arbitrary
frequency to check to see if the controller is still alive to receive the packets of data being transmitted. If
this was not checked, then the sensor would be not only wasting its own resources by needlessly sending
data, but it would also consume the resources of other devices if this was deployed on a low-power multi-
hop mesh network, typical for “Internet of Things” networks.

In order to ensure the network does not become congested by the retransmission of PINGs within a short
period of time, an exponential back-off will be used. This will ensure that if a device were to disappear of the
network, the rest of the network would not suffer. In a large network where multiple devices could fail at once,
perhaps due to a common link, the network could become heavily congested if exponential back-off were not
used.

22

If after an arbitrary number of PINGs, a PING ACK is not received, the connection is deemed dead and the
associated channel closed.

4.2.7 Data integrity

Whilst most data sent in the “Internet of Things” network does not need to be sent reliably, due to it’s ephemeral
nature, it is important however that when it arrives it is consistent and accurate; if sensor readings were to become
corrupt in transit, then unintended actions could result from inaccurate data. For example, a temperature sensor
transmits the current temperature to a controller, which becomes corrupt in transit, as a result of the corrupt
sensor reading, the controller believes the current temperature is too hot and the thermostat is commanded to turn
off, when in fact the temperature was at an acceptable level.

Therefore, the use of a mechanism to ensure the integrity of the data is necessary, such as a Cyclic Redun-
dancy Check, CRC. In this protocol, a 16bit CRC will be used to ensure that when data is sent from one device
to another, that it is possible to discern whether or not it is accurate and consistent. If the integrity of the data
is found to be compromised, then the packet will simply be dropped. If the packet was sent as reliable data
(connection request or command), a timeout will occur in the sender device expecting an acknowledgement, and
the packet will be resent.

4.2.8 Flow of messages

Based upon the use cases described in the Requirements section, a set of messages are described and demon-
strated in the sequence diagram contained in figure 4.1, which illustrates the flow of messages between the
different roles of devices within the network.

Device discovery – Controller→ Sensors/Acutators

In order for a controller to locate devices on the network, a device query must be broadcast across the network;
any devices which match the request and have resources available can reply with an acknowledgement, other-
wise they ignore the message, implicitly signalling no. If a controller receives no responses from the initial
query, it could be a result of either, no devices on the network matching the request, or a response packet was
lost/corrupted on the network. Because it’s not possible to distinguish between an implicit no and a network
failure, it may be necessary to retransmit a query multiple times, perhaps with an exponential back-off, so as not
to congest the network whilst still achieving a confident scan of the available devices on the network.

Set up channel – Controller→ Sensors/Actuators

In order to ensure that a channel is fully set up, it becomes necessary to introduce reliability, via acknowledgement
messages. Similar to TCP, a three-way handshake is used to ensure the channel is fully opened on both sides.

• This covers most scenarios and allows for devices to recover from dropped packets during the exchange.
For example, device A initiates setting up a channel,

– if the initial message is dropped, an acknowledgement timeout occurs on A, A then resends message.

– if B’s ACK is dropped, an acknowledgement timeout occurs on A, A then resends the message with
the same sequence number, when B receives the initial message again, its ACK message must have
been dropped, so B resends the ACK message.

23

– if A’s ACK message is dropped, an acknowledgement timeout occurs on B, then B resends the second
message with the same sequence number, when A receives B’s ACK message again, its ACK message
must have been dropped, A then resends the ACK message.

– if A receives no more ACK messages from B, it knows the channel has been fully set up.

Send sensor data – Sensor→ Controller

Once a channel has been set up to a controller, a sensor then needs to send its sensor readings at the previously
agreed upon frequency. Due to the high frequency requirements and transient nature of the data, using reliability
becomes an expensive overhead without providing much benefit, i.e., consuming twice the bandwidth, and if a
packet is dropped and resent out of sequence it becomes useless in a real-time environment, like the “Internet of
Things”. Without reliability, packets may be dropped, but because of the timeliness of the data it will usually
go unnoticed to the user. For example, a dropped packet won’t have noticeable effect on a real-time temperature
display with a frequency granularity of 5 seconds.

Send command – Controller→ Actuator

Once a channel has been set up to an actuator, a controller needs to be able to send it commands to carry
out. To ensure that an action is carried out, it becomes necessary to acknowledge each command. By using
acknowledgements in combination with message sequence numbers, it is possible to ensure that a command is
carried out exactly once per request.
• The following cases are covered via the use of acknowledgements and sequence numbers

– if command message is dropped, an acknowledgement timeout occurs on the controller, controller
then resends command.

– if ACK message is dropped, an acknowledgement timeout occurs on the controller, controller then
resends command with the same sequence number, when the actuator receives repeat commmand, it
ignores command and resends ACK message.

Ping – All roles

Once a channel has been set up between two devices, it is possible for one to disappear without closing the
channel gracefully, which could be due to various reasons e.g., loss of battery power, failed network link, device
failure, etc. Therefore it becomes necessary to test the channel and see if the other participant is still alive,
terminating it and cleaning up the channel if not.

Other cases for its use in this protocol are the following: for the controller to check that the channel to the
actuator is still alive, and for the sensor to check that the controller is still alive to receive its data, ensuring
network resources are not being wasted sending data to a disconnected controller.

To test the channel a PING is sent from one device to the other, with the expectation of receiving a PING
ACK to signify the channel is alive.

Close channel – All roles

Once a channel has been set up between two devices, one of the devices may decide at a later time that it either
no longer needs the services provided by the channel, or is unable to support it, perhaps due to limited power.

24

Therefore, it becomes necessary to close the channel gracefully, ensuring the both ends understand the channel
is closed and all associated state destroyed. In order to ensure the channel is closed on both sides correctly, an
acknowledgement must be used to signify the other side received the command.

• The following cases are covered via the use of acknowledgements between devices A and B:

– if the close channel message sent from A is dropped, an acknowledgement timeout occurs on A, A
then resends the message.

– if B’s ACK message is dropped, an acknowledgement timeout occurs on A, A resends the close
channel message, when B receives the message it checks for any channel associated to A and closes
it (if not done already), then resends the ACK message to A.

Controller Sensor

Device discovery

Unreliable, broadcast request - unicast response

Actuator

Any one sense temperature?

Yes No (implicit)

Set up channel

Anyone control a thermostat?

Yes

Send me the temperature
every minute.

OK

Connected

Let me control the heating

OK

Connected

Send sensor data

Unreliable, unicast

It’s 24C

It’s 22C

It’s 24C

It’s 23C

It’s 50 lux

Close channel

Reliable, unicast request - unicast response

Reliable, unicast request - unicast response

Stop

Stop

Stop (ACK)

Stop (ACK)

Send command

Reliable, unicast request - unicast response

Increase temperature

OK

PING

Reliable, unicast request - unicast response

Are you alive?

Are you alive?

Are you alive?

Yes

Yes

Figure 4.1: Controller - Sensor message diagram

25

4.2.9 Protocol state machines

With the use of the message sequence diagrams to help understand the flow of messages within the network, the
sequence of states each connection within a role can transition between can be discerned, and is shown in the
following figures.

Within these diagrams, a number of message types are show as labels on the transitions between the various
states within each system, these message types are later described in the next section, 4.3

Sensor

Connected
Channel request

ACK sent

Service search
Req rcvd

Service match
Response sent

Close channel
request revd

Close ACK sent

Awaiting Ping
ACK

Idle

Close channel
req rcvd

ACK recvd

Channel
request rcvd

Ping
ACK rcvd

Ping
req sent

Send
sensor data

Ping
rcvd

PACK
sent

Figure 4.2: Sensor life cycle diagram

Actuator

Connected
Channel request

ACK sent

Service search
Req rcvd

Service match
Response sent

Close channel
request revd

Close ACK sent

Awaiting Ping
ACK

Idle

Close channel
req rcvd

ACK recvd

Channel
request rcvd

Ping
ACK rcvd

Ping
req sent

Ping
rcvd

PACK
sent

Perform Command

ACK Sent

Command
req rcvd

Figure 4.3: Actuator life cycle diagram

26

Controller

Connected

Channel request sent

Sending ACK
ACK sent

Service search
Req Sent

Service match
Responses rcvd

Awaiting close
channel ACK

Close ACK rcvd

Awaiting Ping
ACK

Command sent

Idle

Command
req sent

Command
ACK rcvd

Close channel
req sent

Request
ACK rcvd

Set-up
channel

Ping
ACK rcvd

Ping
req sent

Receive
sensor data

Ping
rcvd

PACK
sent

Figure 4.4: Controller life cycle diagram

4.3 Protocol Data Unit

This section discusses and illustrates the design of the Protocol Data Unit (PDU), starting with the protocol header
format and followed by the various message types and their respective payload formats. Where appropriate, for
each message type, a short pseudo code analysis will be discussed to illustrate the various scenarios that could
occur in the relevant state machine, as a result of receiving the respective messages.

4.3.1 Protocol Header

The design of the protocol header tries to minimise the overall size by only containing a minimal set of non-
textual data fields, with the purpose of reducing the power consumption for transmitting and receiving packets.
The included fields are essential for identifying channels, distinguishing message types and ensuring the integrity
of the data transmitted.

The protocol header contains 6 data fields:

• source and destination channel fields to identify the connection (used with lower layer addressing to
uniquely identify each connection),

• a sequence number field to detect duplicates and out of order packets,

• a command field to distinguish what type the payload is,

• a payload length field which contains the size of the payload, maximum size = 32 bytes

• and a checksum is computed over the entire packet to detect any errors that might have occurred during in
transmission.

– When initially computed for the packet, the checksum field is filled with 0’s and then filled with the
result. Once received, the checksum can then be recomputed and the result should be 0 if the packet
is correct.

27

0 8 16 24 31

Src channel Dest channel SeqNo Command

Payload length Checksum

}
Header

Command specific payload
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 4.5: Protocol header format

To further illustrate the different classes of messages and how they relate to the header, a packet class digram
is shown in figure 4.6.

IoT Header

+SeqNo

+Src Channel

+Dst Channel

+Command

+Checksum

+Payload Length

+Payload

Payload

Connect

+Rate

+Name

Query

+Name

Query Resp

+Name

+Rate

Connect ACK

+Accept

+Name

Response

+Data

+Name

Figure 4.6: Message hierarchy

4.4 Payload Message Types and Formats

This section discusses the various payload message types which can be sent, and the associated actions taken
upon receiving a message. For each message type the payload format is described and illustrated.

4.4.1 QUERY

Before a controller can connect to any devices, it must first try to discover any matching devices on the local
network. To do this, the device’s home channel sends a QUERY message to the home channel on every other
device in the network.

The receiving state machine does the following on receipt of a QUERY message:

– if the destined channel is the home channel, it checks the type field,

28

∗ if it matches its own type then transmits a unicast QUERY Response message back to the sender.
∗ if the type does not match, message is dropped and device does not respond.

– if the destined channel is not the home channel, the message is dropped as the requesting channel is
confused.

The QUERY message contains two data fields: the type of device the controller is searching for, light sensor,
temperature sensor, informational display or otherwise, and the name of the device sending the QUERY message.
This packet is sent as a broadcast transmission to all devices on the network.

0 8 16 24 31

type

name = 16 bytes

Figure 4.7: QUERY message payload format

4.4.2 QUERY Response

After a device receives a QUERY message, it can decide whether or not to reply to it, based on a type match and
if there are resources available, if so it replies with the QUERY Response message.

The receiving state machine does the following on receipt of a QUERY Response message:

– if destined for the home channel, it accepts all messages and passes them up to any application on
top.

– if not destined for the home channel, then the message is dropped as the requesting channel is con-
fused.

The QUERY Response message contains 3 data fields: the type and name of the device which is responding
and the rate, which either indicates the default rate that a sensor transmits readings at, or the rate at which an
actuator will expect PING messages from a connected controller to confirm the connection is still alive.

0 8 16 24 31

type rate

name = 16 bytes

Figure 4.8: QUERY Response message payload format

4.4.3 CONNECT

Once a device has been located, either a priori or through querying, a controller needs to send a CONNECT
message to start the process of creating a channel with the desired device. As shown in the message sequence
diagrams, this uses a three-way handshake, of which this is the initial message.

The receiving state machine does the following on receipt of a CONNECT message:

– if destined for the home channel, and the device has not previously allocated a channel for the re-
questing device, it checks if the rate is compatible with its own,

29

∗ if compatible, it creates a new channel for this connection, sets it to the CONNECT sent state
and responds with an accepting CONNECT ACK from the new channel.
∗ if not, respond with a declining CONNECT ACK.

– if it has already allocated a channel for the requesting device and is in the CONNECT sent state, then
the CONNECT ACK must have been lost, CONNECT ACK is resent.

– if it has allocated a channel for the requesting channel and is in the CONNECTED state, then the
requesting device state machine is confused.

– if not destined for the home channel, then the requesting channel state machine is confused.

The CONNECT message contains 2 data fields: the rate at which the controller wants to either receive data
readings from sensors, or receive PINGs from actuators, and the name of the controller.

0 8 16 24 31

rate

name =16 bytes

Figure 4.9: CONNECT message payload format

4.4.4 CONNECT ACK

Once a device receives a CONNECT or CONNECT ACK message, unlike when receiving a QUERY message,
it must respond with the second or third part of the three-way handshake with either a positive or negative
acknowledgement in order to ensure the connection has been set-up fully. When responding to a CONNECT or
CONNECT ACK message, the device can either accept the connection or decline it, which could be based on
device being unable to match the demands from the controller or due to a lack of available resources needed to
support the connection.

The receiving state machine does the following on receipt of a CONNECT ACK message:

– if destined for an ephemeral channel which is in the CONNECT sent state,

∗ check if the connection has been accepted, if so reply with another CONNECT ACK.
∗ otherwise, close the newly opened channel.

– if destined for an ephemeral channel which is in the CONNECT ACK sent state,

∗ check the accept field to confirm the connection has been fully accepted, if so move to the
CONNECTED state
∗ otherwise, close the newly opened channel.

– if destined for an ephemeral channel which is in the CONNECTED state, third handshake (CON-
NECT ACK) must have been lost, resend CONNECT ACK.

– if destined for an ephemeral channel which has not been allocated or does not exist, requesting
channel must be confused.

– if destined for home channel, requesting channel is confused.

The CONNECT ACK message contains 2 data fields: accept, which declares whether or not the recipient accepts
to create a channel, and the name of the device sending the message.

30

0 8 16 24 31

accept

name = 16 bytes

Figure 4.10: CONNECT ACK message payload format

4.4.5 RESPONSE

Once a channel has been set up and is in the connected state, the sensor connected to the channel can then send
RESPONSE messages containing its sensor readings at the previously agreed upon rate.

The receiving state machine does the following on receipt of a RESPONSE message:

– if destined for an ephemeral channel which is associated with the sender channel and in the CON-
NECTED state

∗ accept the data and pass to application on top

– if destined for an ephemeral channel which is associated with the sender channel, but is not in the
CONNECTED state, then sender is confused.

– if destined for an ephemeral channel which is not associated with the sender channel, then sender is
confused.

– if destined for home channel, then sender is confused.

The RESPONSE message contains 2 data fields: the data being sent, for example a temperature reading or a
light reading, and the name of the sensor.

0 8 16 24 31

data

name = 16 bytes

Figure 4.11: RESPONSE message payload format

4.4.6 COMMAND

Once a channel has been set up between a controller and actuator, the controller can then send COMMAND
messages to the actuator indicating that it needs to perform its action. This is part of a reliable request-response
sequence of messages and expects an acknowledgement in return to signify the command has been received, but
not necessarily carried out.

The receiving state machine does the following on receipt of a COMMAND message:

– if destined for an ephemeral channel which is associated with the sender channel and in the CON-
NECTED state

∗ executes command and replies to sender with a COMMAND ACK

– if destined for an ephemeral channel which is associated with the sender channel, but is not in the
CONNECTED state, then sender is confused.

– if destined for an ephemeral channel which is not associated with the sender channel, then sender is
confused.

31

– if destined for home channel, then sender is confused.

These is no payload specific data for the COMMAND message.

4.4.7 COMMAND ACK

The COMMAND ACK is the response to a COMMAND message, which must be sent upon receipt of the
COMMAND message.

The receiving state machine does the following on receipt of a COMMAND ACK message:

– if destined for an ephemeral channel which is associated with the sender channel and in the COM-
MANDSENT state

∗ cancels retry timer and changes to back to CONNECTED

– if destined for an ephemeral channel which is associated with the sender channel, but is not in the
COMMANDSENT state, then sender is confused.

– if destined for an ephemeral channel which is not associated with the sender channel, then sender is
confused.

– if destined for home channel, then sender is confused.

These is no payload specific data for the COMMAND ACK message.

4.4.8 PING

Once a connection has been made between two devices, a channel is created within each device to handle this
connection. Due to the nature of devices, especially those on wireless networks or battery powered, devices can
disappear off the network without gracefully closing the connection. If this occurs, then the connected devices
must be able to detect if the connection is still alive, if not then clean up after it. To do this PING and PING
ACKs are used to create a failure detector.

The receiving state machine does the following on receipt of a PING message:

– if destined for an ephemeral channel which is associated with the PINGing channel then respond with
a PING ACK

– if destined for an ephemeral channel which is not associated with the PINGing channel, then drop
message as PINGing channel is confused.

– if destined for the home channel, drop packet as PINGing channel is confused.

These is no payload specific data for the PING message.

4.4.9 PING ACK

The PING ACK is the response to a PING message for use in detecting failures in the network.

The receiving state machine does the following on receipt of a PING ACK message:

32

– if destined for an ephemeral channel which is associated with the responding channel then reset the
PING timeout as well as the deletion timeout, to stop any further PINGs and ensure the channel is
not deleted.

– if destined for an ephemeral channel which is not associated with the responding channel, drop the
message as the responding channel is confused.

– if destined for the home channel, drop packet as responding channel is confused.

There is no payload specific data for the PING ACK message.

4.4.10 DISCONNECT

When a device has already formed a connection to another device and wishes to disconnect, perhaps due to
either power concerns, the device is no longer needed or otherwise, a method for gracefully disconnecting the
two devices and cleaning up the channels is necessary.

The receiving state machine does the following on receipt of a DISCONNECT message:

– always send the DISCONNECT ACK message back to the sender (otherwise ignoring it will likely
cause another to be sent).

– if the destined channel is an ephemeral channel which is associated with the DISCONNECTing
channel, then close the channel.

– otherwise drop message.

There is no payload specific data for the DISCONNECT message.

4.4.11 DISCONNECT ACK

The DISCONNECT ACK is the response to the DISCONNECT message used to disconnect two devices grace-
fully.

The receiving state machine does the following on receipt of a DISCONNECT ACK message:

– if destined for an ephemeral channel which is associated with the responding channel, then close the
channel.

– if destined for an ephemeral channel which is not associated with the responding channel, drop the
message as the responding channel is confused.

– if destined for the home channel, drop the message as the responding channel is confused.

There is no payload specific data for the DISCONNECT message.

4.5 Comparisons to other systems

This section will compare and contrast some of the key design choices of this new system with the design of
other pre-existing protocols and systems.

33

Distributed vs Centralised

One of the fundamental design decisions in creating the protocol, was to create a distributed system, which would
relieve the system of a single point of failure, but in turn increase the complexity in discovering new devices. In
contrast to this, the Java Messaging System (JMS) adopts a centralised approach, using a central name server
to discover and locate devices on the network. Whilst JMS is not directly targeted towards “Internet of Things”
networks, it does provide adequate abstractions that could be used in an “Internet of Things” network, such as
the Publish - Subscribe model.

Because of the centralised name server, which is known a priori, it becomes very simple to join the network,
by just querying the server for any devices or services that it is interested in. To contact the server it only
requires a single unicast message, in contrast to the broadcast message sent to every device on the network for
the proposed distributed system.

However, the centralised approach assumes that the network and devices used are reliable and are unlikely
to fail, which is incompatible with the assumed traits of an “Internet of Things” network implemented on con-
strained devices. In the case where the central server fails, the new devices entering the network would no longer
be able to connect, and if the central server was used to facilitate the communication via Publish - Subscribe,
then the whole system would be rendered inoperable. In the constrained devices environment where resources
are limited and wireless links are susceptible to interference, this becomes a significant problem.

Therefore, although the cost of device discovery does increase with the use of a distributed system, it offers
far more fault tolerance than a centralised system.

Selective Unicast/Multicast vs Multicast

The xAP system chooses to use a multicast medium to interconnect all devices, where every device broadcasts
its events/commands to every other device on the local network. This provides the benefit that devices don’t
need to explicitly set up connections between themselves and instead just listen for broadcasted packets on the
network. Whilst this is truly distributed in nature, it does come at a considerable cost as the network scales to
large quantities of devices. The core problem with this approach is that every device on the network is forced to
receive and process every packet that is transmitted, regardless of whether it’s relevant information or not. For
constrained devices this is highly undesirable, as resources are severely constrained, especially battery life and
processor speed. Using the radio on a constrained device is the most expensive operation, therefore by forcing
all messages to be received, the power consumption on such a device becomes a significant problem.

Hence, the need to reduce the use of broadcast is necessary, but due to the distributed architecture its use is
still necessary to discover devices. In the proposed protocol a compromise is made, in order to discover devices
broadcast queries are used, but every other message in the protocol is unicast. This ensures that devices can still
easily join and discover other devices on the network, but without the continual cost of each device receiving
every devices data.

Another problem with the broadcast-only network approach is the issue of reliability; how can a device
be sure that what it has sent, be it a command, sensor reading or otherwise, has been received, either by the
device it wants to send it to, or anyone at all? A recipient could reply with an acknowledgement but that would
further congest the broadcast-only network, especially in the case when multiple devices want to acknowledge
the reciept.

34

Cloud vs Local

SmartThings, unlike the proposed design, chose a cloud-first approach in connecting the different devices on
the network together. In comparison the the proposed design it does pose some benefits, such as instant and
easy connectivity to other cloud services and making the devices accessible from anywhere with an Internet
connection. But as previously discussed, this also poses several risks as well, these include security risks of the
data both in transit and storage (who has control and access to the data or control devices, is it being intercepted?)
and reliability risks (what happens if the cloud fails? Will all the doors unlock and the sprinklers not stop?). In
regards to both risks, there have been various failures in the industry relating to both the security of data,[22],
and the reliability of cloud services / online services [2, 10].

Adopting the alternative, the proposed system uses a local-first approach, which gives the user complete
control and access to the data, enables the system to function without Internet connectivity and if desirted can
be expanded by connecting to an Internet connection. This provides the safety and assurance of a local system
without compromising the possibility of upgrading it to support the cloud based features which SmartThings
benefits from.

Textual encoded packet vs Integer encoded packet

As one of the requirements, the new protocol must ensure an efficient use of resources, in which minimising
the size of the packet is most important, because the protocol centres around sending, receiving and processing
these packets. In order to achieve this, the packet header only contains a minimal set of fields, all of which are
non-textual.

However, if the type of a device was described using a string representation, such as “Light Sensor”, it would
consume 12 bytes of data, not including any associated fields such as text length to allow for variable length
identifiers. Instead, by using an integer encoding, whereby the types are predefined integers within the protocol,
given the assumption that there are no more than 255 devices, the size of the field can be reduced to a single byte.
Applying this to the rest of the header results in a total size of 12 bytes (not including the payload). This not only
considerably reduces the cost of sending and receiving packets, but also reduces the complexity in parsing the
data.

Compare this to xAP, which is based on the requirement of human readable messages, and exclusively uses
a textually formatted packet header and payload. To illustrate xAP’s textual format, an example header is shown
in figure 4.12 In total, 87 bytes are used to represent a similar array of information to that contained within the

xap-header
{
v=12
hop=1
uid=FF123400
class=xap-temp.notification
source=ACME.thermostat.lounge
}

← signals block is header

← defines protocol version
← how many hops left
← a unique identifier for the source
← the type of payload the message contains
← text representation of source of the message

Figure 4.12: xAP packet header

designed system’s header, which consumes 12 bytes. In contrast, xAP consumes almost 8 times more bytes. This
has a large impact on the potential transmission cost and processing complexity if used on constrained devices,
such as the TelosB mote.

35

Reliable vs Unreliable

The proposed protocol is designed to run on top of an unreliable link (e.g. UDP), enforcing reliability itself,
but only when absolutely necessary. The reasons for this are related to power consumption, where reducing the
number of packets both sent and received can have a significant impact on the overall battery life of constrained
devices.

The reasons for not implementing the protocol on top of a reliable link, like TCP, is such that TCP requires
an acknowledgement for each packet sent, therefore doubling the total packets sent and received. Not only this,
but if packets are lost and resent, they will be received out of sequence; in the “Internet of Things” environment
where most data sent is ephemeral, receiving packets late and out of sequence is pointless, as the interest in most
cases is the present moment and not the past.

Therefore the choice to use an unreliable link, such as UDP, combined with building reliability on top for
only absolutely necessary messages, such as connection handling, ensures that the overall sending and receiving
of packets is reduced, reducing the overall power consumption, but without compromising the operation of the
protocol.

CoAP

Comparing the proposed protocol to the aforementioned CoAP, currently in development in the IETF, both try
to tackle the problem of designing a protocol suitable for the constrained devices. Taking similar approaches
both protocols are based on a distributed architecture, whereby no central server has to be used to locate devices.
Instead both allow the device to either know the target device a priori or discovery it via broadcast queries.

One of the significant differences between the two, is that CoAP is designed around generic, non-specific
devices; whereas the proposed protocol classifies devices into the three main roles, sensors, actuators and con-
trollers. Because of this, CoAP doesn’t impose certain functions on devices, in the same way that the proposed
protocol enforces that a sensor must transmit data at a set rate to its connected devices. However, CoAP does
support the possibility of such functionality; devices can subscribe to one another, by doing so they will be in-
formed by the subscribed device when an event has occurred, after which the subscriber can then decide to pull
the event data from the subscribed device. This functionality works similar to a controller and sensor forming
a connection and sending data, however because of the additional step of notifying the subscriber, additional
packets must be sent and received by both devices.

Lastly, One of the core goals of CoAP is to ensure that constrained devices can easily transition into the
World Wide Web, which is enabled by the RESTful style protocol, where commands (GET, PUT, etc) are used
that are very much like those used in HTTP. This ensures minimal translation of packets needs to be performed.
However, this is not the case in the proposed protocol, whereby instead an application would need to be built on
top of the protocol to support WWW integration, due to the unrelated packet format.

36

Chapter 5

Implementation

Following on from the design, this chapter discusses the process of taking the protocol from design to imple-
mentation on constrained devices. The chapter discusses the challenges faced throughout the implementation
process, and the development on the event based operating system, Contiki, for the TelosB mote.

5.1 Implementation break-down

In order to manage the implementation of the protocol, the development was broken down into functional com-
ponents; these components were then implemented individually and tested, ensuring that the system functioned
correctly before developing the next component.

Because of the functional similarities between the sensor and actuator, the initial development focused upon
the communication model betweet the sensor and controller, with the sensor later modified to support the actuator
functionality.

The implementation was broken down into the following:
1. Test basic broadcast and unicast communication between two devices.

2. Define packet structure, payload structures and device types.

3. Implement broadcast device discovery and unicast response mechanism.

4. Implement single channel device connections between devices after discovery.

5. Implement sending sensor data and pings between connected devices.

6. Implement multiple channel support for devices.

7. Implement channel closing.

8. Implement API bindings for application support.

9. Implement mock applications on top of API.

5.2 Initial challenges

This section will discuss the challenges faced which initial choice of available hardware and software platforms.

37

5.2.1 Arduino

As described in the background chapter, 2.3.1, the Arduino is unanimously the most popular open source con-
strained device available for consumers; thus developing an implementation of the protocol for it would allow it
to be used with all the Arduino compatible devices currently available.

However, after much research into the platform, it was discovered that the Arduino did not natively support
hardware interrupts from the available Ethernet network board.[3] Instead any program expecting data from the
network is forced to poll the Ethernet driver to check if any packets have arrived, resulting in a busy-wait. This
busy-wait method of acquiring data from the network is extremely inefficient and directly opposite to what the
protocol requirements and design aims to achieve, thus the Arduino was not chosen as the target development
platform.

5.2.2 TelosB and operating system choice

After deciding not to develop for the Arduino platform, the alternative platform available, due to the resources
available in the School of Computing Science, was the TelosB mote. As described in section 2.3.3, the TelosB
mote is a widely used device within academia for research into wireless sensor networks and constrained oper-
ating systems. Because of this research, there are several operating systems to choose from when developing for
the device, including TinyOS and Contiki.

Between TinyOS and Contiki there are some considerable differences, both in the programming model, event
based vs hybrid (threaded & event driven), and the structuring of the operating system, discussed previously in
section 2.3.3. Because of Contiki’s programming model and language similarity to native C, it was chosen over
TinyOS, in the hope that it would prove to be considerably easier to develop for.

5.3 Telos B Mote and Contiki implementation

After choosing to develop for the TelosB mote with Contiki, the next step involved getting to grips with how to
best implement the system on the platform. This section discusses the process of implementing the system on
the chosen platform, the various issues encountered, the overall structure dictated by the platform choice and the
resulting system created.

5.3.1 Contiki & Protothreads, a hybrid multi-threaded and event driven system

For implementing the system on Contiki, the hybrid programming model Contiki uses must first be understood.
When developing an application in Contiki, the application can use one or more protothreads to run. Contiki’s
protothreads are lightweight, stackless threads which allow for linear code execution within an event-driven
system, and also provide functionality to wait on events, either posted from other protothreads or from external
events, such as a button press. This enables a developer to mix multiple threads of execution with an event-driven
system to create a reactive system; this not only takes advantage of the constrained devices but also helps reduce
the power consumption by sleeping when all threads are waiting on external events.

38

5.3.2 Overall system architecture

Before implementing the system, the overall architecture had to be decided upon, shown in figure 5.1. In partic-
ular the method by which separate components, implemented as protothreads, interacted with each other within
the system. For interaction two methods could be used:

• Callback functions, by passing pointers of functions from the application to the API, when an event arrives
such as a sensor reading, the appropriate function in the application can be called, passing it the related
data.

• Posting events, by defining new protocol specific events which the application program can wait on, and
when an event occurs, such as a sensor reading arriving, the event is then rippled up to the application
passing with it the related data.

For the majority of the system, the event based approach was chosen because fits in better with the event
driven style of the rest of Contiki and also means the application can wait on events to occur and then wake
up directly. However, to simplify retrieving sensor readings and calling actions from the application, function
pointers to functions which return the wanted data or carry out an action will be used, this enables the system to
call the functions directly without having to wait for an event to be posted to the application and then waiting for
one to return.

Contiki OS

Protocol

Network stack

Network event
(Packet received)

Network command
(Send packet)

Application

API event
(Sensor data, etc)

API command
(Discover, Connect, etc)

Protocol API

Figure 5.1: Overall system architecture

5.3.3 Choosing the transport layer: uIP vs Rime

Within the Contiki OS, several communication stacks are implemented, including a miniature IP stack called uIP
(IPv4 & IPv6) and the native Contiki Rime stack. Both stacks claimed to support the mechanisms required for
the protocol, both broadcast and unicast, so either could be used. In an effort to enable easy integration into other
IPv4 networks the uIPv4 stack was chosen. This meant that packets passed around the network could be routed
to a gateway and sent to a neighbouring IPv4 network and possibly then on to the Internet without the need for
translation.

39

5.3.4 Problems Encountered

Whilst learning about and developing the system in Contiki, a variety of issues and problems occurred, each of
which affected the time spent and complexity of the project in some way.

Documentation

Whilst Contiki is a well developed and established operating system for constrained devices, such as the TelosB
mote, the documentation for the OS and its libraries are mostly outdated, incomplete and provide no easy place
to get started. Although most of the C syntax, structure and libraries remain consistent and intact, it’s still fairly
difficult to learn quite how the Contiki protothreads actually work and integrate with the system. Because of this
a considerable amount of time was spent searching for up to date documentation.

Constrained resources

Using the Contiki OS, which provides a significant amount of the standard C libraries that C programmers are
familiar with, can provide some initial problems. An example of this is the inclusion of malloc, which in a
normal x86 pc environment is very useful to enable run time allocation of data structures. But when used in a
constrained environment where RAM is extremely limited, it becomes useless due to the limited heap space and
the fragmentation of memory.

Because of this, it is necessary to use static allocation to ensure memory is allocated correctly, but with this
another problem arises. Because statically allocated memory is allocated at compile time, the size of the memory
required needs to be known at compile time as well. When allocating fixed data structures this is not a problem,
as the size of the data is already defined and known at compile time. Whereas, when allocating memory for the
packets in the proposed protocol, it becomes difficult due to the varying payload lengths. In order to resolve this,
the size to allocate for a packet can be defined as, size of the packet header + size of the largest payload. Doing
this ensures that memory is always available for any packet, but at the same time for packets which don’t have
any payload the overallocation can waste a significant portion of the limited memory. In the implementation,
this method of allocation is chosen, and each channel in the system is allocated one packet to send and receive
messages.

As an alternative, which could save space at the cost of complexity, two pools of packets could be allocated;
one pool stores packets with only the header, which would be used for sending messages with no command-
specific payload, and the other pool stores packets with the maximum payload size, which would be used for
all other command types. The complexity increases due to the need to ensure packets are allocated correctly
between channels, ensuring that enough are available to service any incoming or outgoing request. In the case
of resending packets, due to timeouts or repeat requests, if packets were returned to the pool after each use, the
data for the retransmission would need to be regenerated; whereas in the implemented case, packets are only ever
used by the channel to which they were assigned, so if the last packet needed to be resent, the data would still be
contained within the stored packet, without the need of regeneration.

IPv4 Broadcast support

After having chosen to use the uIPv4 UDP stack for communication, it was later discovered that the broadcast
mechanism was just a stub. The uIPv4 stack is implemented on top of the native Rime stack, so all IP packets
are routed around using the Rime primitives for messages. Through much investigation it was found that when
a broadcast packet is sent, it is given the normal “all ones” broadcast address, 255.255.255.255, but when the

40

uIP layer is passed the packet to send, it detects the destination is outside of the local network and tries to find a
gateway to send it over. Instead, the address should be recognised as a broadcast destination and then broadcast
over the network.

After many attempts at contacting the Contiki developers community, no answer or solution was found; so
instead a fix had to be created. As mentioned previously the uIPv4 stack is run over the Rime stack, and as
discovered, using only a unicast Rime connection. In order to allow for broadcast packets to be sent, a new
broadcast Rime connection needed to be created and correctly set up without breaking the existing code base.
Once the broadcast code was in place, the system was tested to ensure it worked correctly and as expected for
both unicast and broadcast packets.

5.3.5 Final implementation and API

After deciding upon the architecture of the system, the communication stack to use and overcoming the various
problems which arose throughout development, the implementation of the protocol on the TelosB motes with
Contiki was completed.

As shown in figure 5.2, the implementation of the protocol uses only one protothread to receive, process and
send any messages. The protothread is only active when an event occurs, either from the UDP stack, indicating
a message has arrived, or from one of the timers in the system. In the implementation there are two types of
timers, the clean up timer and the channel timer. The clean up timer is created once for the whole system and
manages packet timeouts for reliable messages, occurring every 20ms. The channel timer, is instantiated once
for each channel in the channel table; depending on the device, it either signals when the device should send
out a sensor reading on a particular channel, which is defined when the channel is set up, or it defines when the
actuator should send a ping to the connected controller to signify it is still alive. In the case of the controller it is
used to signify by when it should receive a packet from a channel, defined as 3 times the predefined rate.

For communication between the protocol and the application, as discussed previously, events are used to
pass information back to the application and commands are used to initiate actions, such as discovering devices,
connecting to devices or closing connections.

Whilst the implementation adheres to the protocol design and specification proposed in chapter 4, it does
have some limitations in its current form. These include:

• Channel table limited to 10 channels due to memory constraints.

• Two devices can create multiple channels between themselves.

5.3.6 Testing and Simulation

Throughout the implementation it was absolutely necessary to test the code as often as possible to ensure that
it functioned correctly and as expected. Tests were performed both on real devices and within the provided
simulator, Cooja, for the platform developed on, Contiki on TelosB motes. The Cooja simulator, shown in figure
5.3, provided the ability to test scenarios which wouldn’t be possible with the real devices, including testing with
10’s of devices and with varying conditions such as radio strength and interference.

To test the implementation, unit tests were performed on each component of the system as it was developed,
this was done to ensure that that each component functioned correctly before being integrated into the rest of the
system. After which, the system was tested to see if the new component functioned correctly and did not break

41

the existing code base. Using the Cooja simulator made it extremely easy to perform these tests and see how any
changes effected the operation, without the need to reprogram each mote individually.

Channel
table

Cleanup
timer

Channel
timers

UDP
Stack

Protocol Protothread

Receive UDP events

Application Protothread

Post Protocol API events

Call Protocol API commands

Call sensor
and actuator
functions

Send Protocol packets

Figure 5.2: Communication and threading architecture

Figure 5.3: Cooja Simulator

42

Chapter 6

Evaluation

This chapter evaluates and discusses how successful the design and implementation was at meeting the proposed
requirements for the project. To do this, the chapter will discuss how the protocol was tested to satisfy the initial
use cases, the implementation size, followed by a comparison of the performance characteristics of the protocol
and its implementation to other existing protocols / systems discussed in chapter 2.

6.1 Testing

To ensure the protocol worked throughout development, both the simulator and TelosB motes were used to test
some of the scenarios described in the use cases contained in chapter 3.

6.1.1 Sensor logging

In order to test the multiple channel support of devices, the scenario of sensor logging was set up; where one
or more controllers search the network for available sensors and request data from them at regular intervals. To
demonstrate this, the scenario was set up in the Cooja simulator, with one controller device, three light sensor
devices and three actuators; the controller was set to locate and connect to three sensing devices which could
sense light.

In figure 6.1, the controller is labelled as mote 1, and can be seen to receive messages from sensor motes 3,
5, 7. Motes 8, 9, 10 are actuator motes, listening for any broadcast queries which match their type. In the Mote
Output box, each mote prints out its temperature locally, as designated by the Mote column, and sends it to the
controller, where it also prints it.

6.1.2 Light/Presence detector

In order to ensure multiple types of devices could be connected, so that a closed loop system could be created, a
scenario involving a controller, light sensor and light switch was created. The controller attempts to locate and
connect to a light sensor and light switch actuator on the network, using the readings from the light sensor to
decide when to turn the light switch on and off. The purpose of such a scenario is to demonstrate the possibility
of the “Internet of Things” sensing either, the presence of a user by obscuring a sensor, or the change in lighting
conditions, which would require a light to be turned on to assist the user. To test and demonstrate this, the

43

Figure 6.1: Sensor logging scenario

scenario was set up using both real motes and the simulator, with one controller device, one light sensor device
and one light switch actuator device.

In figure 6.2, the controller is labelled as mote 2, and can be seen to receive messages from sensor mote 1 and
send messages to actuator mote 3. In the Mote Output box, the various print outs can be seen, displaying sensor
readings received, decisions based on the sensor readings and the commands sent and received. In the network
view box, it’s possible to see the LEDs on mote 3 alight, due to the recent command to turn on the lights.

Figure 6.2: Light/Presence detector

6.2 Implementation size

Creating a lightweight protocol is one of the primary requirements, thus ensuring that the protocol could be
implemented on even the most constrained devices, such as the TelosB or Arduino. Because of this, each aspect
in the protocol had to be made as low cost as possible, whilst still maintaining flexibility and upgradeability. With
this in mind, the TelosB implementation performs well in regards to consuming device resources when compared
to a variety of other applications, as shown in figure 6.3.

To demonstrate the amount of ROM and RAM occupied, a simple hello world program was created, which

44

upon receiving an event, output “Hello world” to a connected serial port. This provided the baseline from which
to compare the implementation against; also included as another baseline is the same hello world program with
uIP included, which shows how much is added to the binary when uIP is included, without any additional code
being written.

When comparing the Hello world app with the Hello world app with uIP included, a significant difference
can be seen in the size of ROM consumed as well the RAM, leaving around 18,000 bytes ROM and around 3,300
bytes RAM left for an application and other libraries.

The sensor implementation of the IoT protocol with uIP and a minimal sensor application (used to connect a
sensor to the API and print out a message), consumes only an additional 2428 bytes ROM and 994 bytes RAM
with 10 channels and 554 bytes RAM with 5 channels. Similarly the actuator implementation performs on par,
only consuming a minimal amount more in both cases. Unlike the two other implementations, the controller
implementation consumes a much higher, 3848 bytes of ROM but with a minimal increase in RAM, due to the
necessity to discover, communicate and connect to both of the other device roles.

During runtime, the amount stored in RAM due to the protocol should not change, because of the static
allocation for all data structures made at compile time.

Setup ROM (bytes) RAM (bytes) Channels Notes
Hello world 19,812 5,538 n/a ...
Hello world 29,494 6,764 n/a with uIP stack.
Sensor app 31,922 7,708 10 with uIP stack, IoT Protocol and light sensor
Actuator app 32,032 7,750 10 with uIP stack, IoT Protocol and LEDs
Controller app 33,318 7,808 10 with uIP stack, IoT Protocol
Sensor app 31,922 7,318 5 with uIP stack, IoT Protocol and light sensor
Actuator app 32,032 7,320 5 with uIP stack, IoT Protocol and LEDs
Controller app 33,318 7,378 5 with uIP stack, IoT Protocol

Figure 6.3: Table showing implementation sizes against stock Contiki

6.3 Comparison to other systems

To better demonstrate the lightweight and scalable nature of the protocol, as well as the fault tolerance which it
can provide, two comparisons are made, one on the number of packets received within the network and another
on the case of resilience to failures in the network.

6.3.1 xAP - Receiving packets

As described previously in chapter 2, xAP is implemented on top of a multicast network, to enable a distributed,
highly fault tolerant network. But as a consequence, the cost of all devices broadcasting packets has a great
impact on devices in the network, especially as the number of devices increases.

To contrast this against the proposed protocol, the graphs below show the number of messages received by
different types of devices on the network on both the proposed protocol and xAP.

xAP does not differentiate between different devices explicitly, but to better understand the activity of each
device both graphs display the messages received by controllers, actuators and sensors. Another key difference to

45

take into consideration is that xAP does not implement reliability on any of the messages, however does suggest
the use of “heartbeats” to signify a device is still alive on the network, therefore “heartbeats” have been included
as pings [27].

To observe how both protocols performed as the network scaled, two scenarios are demonstrated:

• Scenario one: 1 controller, 1 actuator and 1 sensor

• Scenario two: 1 controller, 2 actuators and 2 sensors

Whilst neither scenario demonstrates a large number of devices, both clearly show how the traffic changes as the
network scales.

To simulate a simple “Internet of Things”, the following messages are sent within the network:

• Sensors send sensor readings to the controller every one second.

• Controllers send commands to actuators every 4 seconds.

• In response to the commands, actuators send acknowledgements to the controller every 4 seconds.

• Sensors send a PING message to the controller as part of a liveness detector every 10 seconds, actuators
don’t need to send PING messages when they are receiving messages from the controller and returning
acknowledgements, unless they do not receive a message within an expected period of 10 seconds, like the
sensor.

0

20

40

60

80

100

120

140

160

180

200

220

240

Controller Actuator Sensor

To
ta

lm
es

sa
ge

s
re

ce
iv

ed

Device Type

Sense Msg
Command Msg

Sensor Ping
Actuator Ping

ACK

Figure 6.4: Messages received in 1 minute using IoT
protocol

0

20

40

60

80

100

120

140

160

180

200

220

240

Controller Actuator Sensor

To
ta

lm
es

sa
ge

s
re

ce
iv

ed

Device Type

Sense Msg
Command Msg

Sensor Ping
Actuator Ping

Controller Ping

Figure 6.5: Messages received in 1 minute using xAP
protocol

As shown in figure 6.4, the controller receives the most messages, due to it’s request for data from the sensor
and the acknowledgements from the actuator. In the case of the actuator and sensor, relatively little messages are
received but reliability is kept for commands and liveness checked for both.

46

Comparing this to xAP in figure 6.5, the controller receives less messages than the equivalent in the proposed
protocol, but in the cases of the actuator and sensor, far more unnecessary messages are received and then thrown
away by the devices. This creates a huge waste of time spent receiving and processing the messages for no
reason; in cases where the devices are battery powered this has an even greater impact, reducing the battery life
of the device.

The second set of graphs, figures 6.6 and 6.7, show how this initial observation evolves as the network scales
up to contain double the number of sensors and actuators. As expected, in the proposed protocol the number
of messages received by the controller doubles in proportion to the number of devices connected to it, however
the number of messages received by the individual actuators and sensors remains the same as in the previous
scenario. This is not the case in xAP however, instead the situation for the actuators and sensors continues to
worsen as the number of devices increases.

0

20

40

60

80

100

120

140

160

180

200

220

240

Controller Actuator Sensor

To
ta

lm
es

sa
ge

s
re

ce
iv

ed

Device Type

Sense Msg
Command Msg

Sensor Ping
Actuator Ping

ACK

Figure 6.6: Messages received in 1 minute using IoT
protocol x 2

0

20

40

60

80

100

120

140

160

180

200

220

240

Controller Actuator Sensor

To
ta

lm
es

sa
ge

s
re

ce
iv

ed

Device Type

Sense Msg
Command Msg

Sensor Ping
Actuator Ping

Controller Ping

Figure 6.7: Messages received in 1 minute using xAP
protocol x 2

In a network with a limited number of devices, devices can cope with the unnecessary messages received,
but as soon as the network size starts to increase, devices will very quickly be swamped by unwanted data.

In regards to the proposed protocol, devices received no unwanted messages, saving time and power for the
devices, however it can be observed that the controller still received lots of messages as a result of the high
frequency of messages from the sensors. Whilst in this implementation the controller is also implemented on the
TelosB motes, a better solution would be to create a controller from perhaps a low-power ARM or x86 pc, such
as the Raspberry Pi, which would be much better suited to receiving that amount of traffic. Another alternative,
is to distribute the control around the network by creating multiple controllers, which each control certain parts
of the network, in turn also increasing the fault tolerance of the network.

47

6.3.2 JMS & xAP - Failure

As previously discussed, JMS provides adequate abstractions for implementing a centralised “Internet of Things”
network, running on devices with no resource constraints. In contrast to this both xAP and the proposed protocol
are designed around a distributed architecture in order to reduce the effects of a failure within the network.

In the situation where a single sensor or actuator in the network were to fail, xAP would be least affected due
to its connectionless set up; devices would not require any cleaning up of state upon realising the failure, because
no state is kept for connections. However, in the case of JMS and the proposed protocol, a device would need
to ensure that when a device failure is detected, that it is in fact no longer available and isn’t due to a transient
network failure; once ensured, the device detecting the failure can then remove any state relating to the failed
device, reducing the resources consumed.

In the situation where a controller in the network fails, with the proposed protocol, connected devices would
try to ping the failed device to ensure it’s not a transient failure and then remove the connection state related
to that controller. Because the controller facilitates the co-operation between the sensors and actuators within
the network, the relationship between these two devices is now lost. In the case of xAP, because it doesn’t
have the concept of a controller within the network, every device can contain some processing within it, further
distributing the control around the network; but due to the connectionless architecture, devices don’t understand
when a recipient of their data fails, and in the case of the only recipient dying, the device can’t know that there is
no device out there to receive its data, and so will continue to broadcast the data unnecessarily. Whereas, in the
case of JMS, when the central server fails, which facilitates the publishing and subscribing, the entire network of
devices becomes inoperable because of their sole reliance on this server, with no way to communicate directly to
one another.

Whilst the proposed protocol does have the controller role, which if fails, can have a significant impact on
the network, the possibility of distributing the role of the controller among several devices is also available.
By doing so, controllers could be set up within different areas across the network, or even act as redundancy,
detecting when the original controller fails and then taking over the connections with minimal network down
time. When compared to xAP, whilst xAP provides robustness through absolute distribution of logic, it does so
at the cost of excessive broadcasting; whereas, the compromise observed within the proposed protocol, ensures
that the criticality of failures can be reduced without any significant costs to the network.

48

Chapter 7

Conclusion

This chapter concludes the report, reviewing the initial objectives, assessing the successes and contributions
resulting from it. The chapter ends discussing some future work which could follow on from the project.

7.1 Summary of Project

The original purpose of this project was to try and solve the problem of creating a lightweight protocol for the
“Internet of Things”, by designing and implementing a new protocol which could run on the most constrained
devices, scale up to the more powerful devices we use everyday and scale out to 10’s / 100’s of devices within an
environment such as the home or office.

The design of the protocol was heavily influenced by existing systems currently available, and seeked to
adapt their concepts to better fit the “Internet of Things”, such as xAP’s distributed broadcast architecture and
TCP’s reliability concepts. By doing so, a protocol which could run efficiently on the most low-power devices,
saving power and reducing the strain on the CPU, was created.

Evaluating this against other implementations, the protocol proves its ability to scale across different network
sizes, and withstand failures in a manageable fashion when they occur, with the possibility of distributing control
across the network and even creating redundancy to further reduce the impact. The overall size of the protocol
implementation shows that it has a minimal impact on the resources of a device, even whilst offering 5 to 10
connections per device, which on a small to medium network would prove sufficient for both the actuator and
sensor roles. In the case of the controller, porting it across to a more powerful platform suits the role far better,
given the quantity of connections and data it will usually handle and request.

However, given the development constraints, including both the limited time and availability of different
platforms, further work developing the protocol would be necessary to improve, test, port and validate its appli-
cability in a real heterogeneous “Internet of Things” environment.

Overall, the project has been very successful in designing and implementing a protocol which meets the
initial requirements, surpassing existing implementations in its applicability to constrained devices within the
“Internet of Things” paradigm.

49

7.2 Future Work

This section describes some of the possible future work for developing this protocol further, from improving its
feature set to trying to maximise the use of available resources.

• Applications

– In order to fully understand the applicability of the protocol and to ensure it provides the correct
abstractions, applications need to be developed for the protocol. Within the project timescale, only a
subset of the original use cases could be implemented and tested, with more time the remaining use
cases should be implemented at the very least to test the protocol’s uses.

• Expanding the protocol

– In the current protocol, sensors and actuators were only observed to be very primitive, single function
devices, when in reality the possibility of a device being able to sense or perform more than one action
exists. Therefore the need to be able to somehow store, search and interpret a devices functions is
necessary. Perhaps a further step after discovering a device could be used to investigate the different
functionality available to it.

• Further power saving techniques

– In the current protocol, by reducing the number of unnecessary packets sent and received, the battery
life of the constrained devices is significantly improved. To further this approach, compacting several
high frequency sensor readings or actuator commands into one packet, which is then sent a lower
frequency, could reduce the power consumption further, whilst still maintaining the same granularity
as before when timing is not an issue.

• Security

– Before being able to truly connect to the Internet, the protocol needs to ensure adequate security
measures are put in place; encryption and authentication need to be considered and implemented,
to ensure that eavesdropping on the data is not possible, as well as the assurance devices are who
they claim to be and can’t be spoofed on the network. The Datagram Transport Layer Security
(DTLS) protocol could be used for ensuring packets can’t be eavesdropped or forged; currently there
is support for DTLS on Contiki, [9] .

• Porting to different platforms

– Just as with applications, the protocol needs to be ported across a variety of platforms to really test its
ability to perform and meet the requirements. By porting to other platforms, the true heterogeneous
nature of the “Internet of Things” can be realised and utilised to the full extent of its capabilities;
allowing not only constrained devices to interact, but also smart phones, tablets, home pcs and even
Internet services, providing a much more dense and rich “Internet of Things”.

50

Appendices

51

Bibliography

[1] 2013: The year of the Internet of Things. http://www.technologyreview.com/view/509546/
2013-the-year-of-the-internet-of-things/. Accessed: 21/03/2013.

[2] Amazon Cloud outage. http://aws.amazon.com/message/680587/. Accessed: 21/03/2013.

[3] Arduino Network Interrupt support. http://arduino.cc/en/Main/
ArduinoEthernetShield. Accessed: 21/03/2013.

[4] Arduino numbers in 2011. http://www.adafruit.com/blog/2011/05/15/
how-many-arduinos-are-in-the-wild-about-300000/. Accessed: 21/03/2013.

[5] Botanicalls. http://www.botanicalls.com/about/. Accessed: 21/03/2013.

[6] CoAP library for C. http://sourceforge.net/projects/libcoap/. Accessed: 21/03/2013.

[7] CoAP library for Java. http://code.google.com/p/jcoap/. Accessed: 21/03/2013.

[8] CoAP library for TinyOS. http://docs.tinyos.net/tinywiki/index.php/CoAP. Accessed:
21/03/2013.

[9] Contiki DTLS support. http://tinydtls.sourceforge.net/. Accessed: 21/03/2013.

[10] Google Mail outage. http://news.cnet.com/8301-1023_3-57415281-93/
gmail-users-experience-outage/. Accessed: 21/03/2013.

[11] Internet of Things first coined. http://www.rfidjournal.com/article/view/4986. Ac-
cessed: 21/03/2013.

[12] LG Smart Appliances. http://www.lg.com/us/press-release/
lg-smart-appliances-for-2012-deliver-connectivity-efficiency-through-smart-thinq-technologies.
Accessed: 21/03/2013.

[13] Manufacturer’s smart home. http://edition.cnn.com/2011/TECH/innovation/01/07/
internet.connected.appliances/index.html. Accessed: 21/03/2013.

[14] Qualcomm announces IoT platform. http://www.qualcomm.com/media/releases/2013/
01/07/qualcomm-and-att-support-internet-everything-development-platform.
Accessed: 21/03/2013.

[15] Raspberry Pi Lego Super Computer. http://raspberrypicloud.wordpress.com/. Accessed:
21/03/2013.

[16] Raspberry Pi Media Centre. http://www.raspbmc.com/about/. Accessed: 21/03/2013.

[17] Raspberry Pi sold 500,000 in 8 months. http://www.wired.com/opinion/2013/09/
raspberry-pi-insider-exclusive-sellout-to-sell-out/. Accessed: 21/03/2013.

52

http://www.technologyreview.com/view/509546/2013-the-year-of-the-internet-of-things/
http://www.technologyreview.com/view/509546/2013-the-year-of-the-internet-of-things/
http://aws.amazon.com/message/680587/
http://arduino.cc/en/Main/ArduinoEthernetShield
http://arduino.cc/en/Main/ArduinoEthernetShield
http://www.adafruit.com/blog/2011/05/15/how-many-arduinos-are-in-the-wild-about-300000/
http://www.adafruit.com/blog/2011/05/15/how-many-arduinos-are-in-the-wild-about-300000/
http://www.botanicalls.com/about/
http://sourceforge.net/projects/libcoap/
http://code.google.com/p/jcoap/
http://docs.tinyos.net/tinywiki/index.php/CoAP
http://tinydtls.sourceforge.net/
http://news.cnet.com/8301-1023_3-57415281-93/gmail-users-experience-outage/
http://news.cnet.com/8301-1023_3-57415281-93/gmail-users-experience-outage/
http://www.rfidjournal.com/article/view/4986
http://www.lg.com/us/press-release/lg-smart-appliances-for-2012-deliver-connectivity-efficiency-through-smart-thinq-technologies
http://www.lg.com/us/press-release/lg-smart-appliances-for-2012-deliver-connectivity-efficiency-through-smart-thinq-technologies
http://edition.cnn.com/2011/TECH/innovation/01/07/internet.connected.appliances/index.html
http://edition.cnn.com/2011/TECH/innovation/01/07/internet.connected.appliances/index.html
http://www.qualcomm.com/media/releases/2013/01/07/qualcomm-and-att-support-internet-everything-development-platform
http://www.qualcomm.com/media/releases/2013/01/07/qualcomm-and-att-support-internet-everything-development-platform
http://raspberrypicloud.wordpress.com/
http://www.raspbmc.com/about/
http://www.wired.com/opinion/2013/09/raspberry-pi-insider-exclusive-sellout-to-sell-out/
http://www.wired.com/opinion/2013/09/raspberry-pi-insider-exclusive-sellout-to-sell-out/

[18] Roomba, autonomous vacuum robot. http://www.irobot.com. Accessed: 21/03/2013.

[19] Size of the Internet. http://www.guardian.co.uk/business/2009/may/18/
digital-content-expansion. Accessed: 21/03/2013.

[20] Smart Things IoT platform. http://smartthings.com/. Accessed: 21/03/2013.

[21] Social funding platform, Kickstarter. http://www.kickstarter.com/help/faq/
kickstarter%20basics#Kick. Accessed: 21/03/2013.

[22] Sony Playstation Network Breach. http://blog.us.playstation.com/2011/04/26/
update-on-playstation-network-and-qriocity/. Accessed: 21/03/2013.

[23] TelosB Sky Motes. http://www.willow.co.uk/TelosB_Datasheet.pdf. Accessed:
21/03/2013.

[24] Tweeting Plant. http://blog.makezine.com/2008/02/25/
how-to-make-plants-talk-t/. Accessed: 21/03/2013.

[25] Twine “Internet of Things” Thing. http://supermechanical.com/. Accessed: 21/03/2013.

[26] xAP: eXtensible Application Platform. http://www.xap.com/. Accessed: 21/03/2013.

[27] xAP: Heartbeats. http://www.xapautomation.org/index.php?title=Protocol_
definition#Device_Monitoring_-_Heartbeats. Accessed: 21/03/2013.

[28] xAP: Protocol specification. http://www.xapautomation.org/index.php?title=
Protocol_definition. Accessed: 21/03/2013.

[29] David Braginsky and Deborah Estrin. Rumor routing algorthim for sensor networks. In Proceedings of the
1st ACM international workshop on Wireless sensor networks and applications, WSNA ’02, pages 22–31,
New York, NY, USA, 2002. ACM.

[30] Castellani. CoAP to HTTP mapping. https://datatracker.ietf.org/doc/
draft-castellani-core-http-mapping/. Accessed: 21/03/2013.

[31] Adam Dunkels. Rime — a lightweight layered communication stack for sensor networks. In Proceed-
ings of the European Conference on Wireless Sensor Networks (EWSN), Poster/Demo session, Delft, The
Netherlands, January 2007.

[32] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a lightweight and flexible operating system
for tiny networked sensors. In Proceedings of the 29th Annual IEEE International Conference on Local
Computer Networks, LCN ’04, pages 455–462, Washington, DC, USA, 2004. IEEE Computer Society.

[33] Jeong-hwan Hwang and Hyun Yoe. Design and implementation of wireless sensor network based livestock
activity monitoring system. In Proceedings of the Third international conference on Future Generation
Information Technology, FGIT’11, pages 161–168, Berlin, Heidelberg, 2011. Springer-Verlag.

[34] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In Proceedings of the 6th annual international con-
ference on Mobile computing and networking, MobiCom ’00, pages 56–67, New York, NY, USA, 2000.
ACM.

[35] Sukun Kim, Shamim Pakzad, David Culler, James Demmel, Gregory Fenves, Steven Glaser, and Martin
Turon. Health monitoring of civil infrastructures using wireless sensor networks. In Proceedings of the 6th
international conference on Information processing in sensor networks, IPSN ’07, pages 254–263, New
York, NY, USA, 2007. ACM.

53

http://www.irobot.com
http://www.guardian.co.uk/business/2009/may/18/digital-content-expansion
http://www.guardian.co.uk/business/2009/may/18/digital-content-expansion
http://smartthings.com/
http://www.kickstarter.com/help/faq/kickstarter%20basics#Kick
http://www.kickstarter.com/help/faq/kickstarter%20basics#Kick
http://blog.us.playstation.com/2011/04/26/update-on-playstation-network-and-qriocity/
http://blog.us.playstation.com/2011/04/26/update-on-playstation-network-and-qriocity/
http://www.willow.co.uk/TelosB_Datasheet.pdf
http://blog.makezine.com/2008/02/25/how-to-make-plants-talk-t/
http://blog.makezine.com/2008/02/25/how-to-make-plants-talk-t/
http://supermechanical.com/
http://www.xap.com/
http://www.xapautomation.org/index.php?title=Protocol_definition#Device_Monitoring_-_Heartbeats
http://www.xapautomation.org/index.php?title=Protocol_definition#Device_Monitoring_-_Heartbeats
http://www.xapautomation.org/index.php?title=Protocol_definition
http://www.xapautomation.org/index.php?title=Protocol_definition
https://datatracker.ietf.org/doc/draft-castellani-core-http-mapping/
https://datatracker.ietf.org/doc/draft-castellani-core-http-mapping/

[36] Yongsheng Liu, Yu Gu, Guolong Chen, Yusheng Ji, and Jie Li. A novel accurate forest fire detection system
using wireless sensor networks. In Proceedings of the 2011 Seventh International Conference on Mobile Ad-
hoc and Sensor Networks, MSN ’11, pages 52–59, Washington, DC, USA, 2011. IEEE Computer Society.

[37] Z. Shelby. IETF, Constrained RESTful Environments - Resource Discovery, 2012. RFC6690, 1.2.1.

54

	Introduction
	Background and Related Work
	What is the ``Internet of Things''
	Past, Present and Future
	Motivation

	Typical ``Internet of Things'' examples
	``Internet of Things'' at Home
	``Internet of Things'' at Work

	Open source constrained devices
	Arduino
	Raspberry Pi
	TelosB Motes
	Wireless Sensor Networks

	Existing systems/protocols
	Java JMS
	xAP
	Remote Procedure Call - RPC

	Developing systems/protocols
	OpenWSN
	CoAP
	SmartThings
	Qualcomm

	Requirements gathering
	Primary Requirements
	Typical Use Cases
	Functional Requirements
	Non-Functional Requirements
	System Requirements
	Development Constraints
	Development Assumption

	Design
	The three device roles
	Sensor
	Actuator
	Controller

	Protocol Design
	Features
	Transport Layer
	Multiplexing devices, channels
	Selective Multicast/Unicast
	Selective Reliability
	Liveness response
	Data integrity
	Flow of messages
	Protocol state machines

	Protocol Data Unit
	Protocol Header

	Payload Message Types and Formats
	QUERY
	QUERY Response
	CONNECT
	CONNECT ACK
	RESPONSE
	COMMAND
	COMMAND ACK
	PING
	PING ACK
	DISCONNECT
	DISCONNECT ACK

	Comparisons to other systems

	Implementation
	Implementation break-down
	Initial challenges
	Arduino
	TelosB and operating system choice

	Telos B Mote and Contiki implementation
	Contiki & Protothreads, a hybrid multi-threaded and event driven system
	Overall system architecture
	Choosing the transport layer: uIP vs Rime
	Problems Encountered
	Final implementation and API
	Testing and Simulation

	Evaluation
	Testing
	Sensor logging
	Light/Presence detector

	Implementation size
	Comparison to other systems
	xAP - Receiving packets
	JMS & xAP - Failure

	Conclusion
	Summary of Project
	Future Work

	Appendices

