
Multi-Threaded Maximum Clique

Ciaran McCreesh

School of Computing Science
Sir Alwyn Williams Building
University of Glasgow
G12 8QQ

Level 4 Project — March 21, 2013

Abstract

Deciding whether a graph contains a clique of a given size is one of the fundamental NP-complete problems.
Here we discuss finding a clique of maximum size, a problem which has applications not just in computing
science, but also in mathematics, biology, biochemistry, electrical engineering and communications.

We implement variations of an existing state of the art maximum clique algorithm, and show that its per-
formance is competitive with published results. By using standard techniques for parallelism branch and bound
algorithms, we present a threaded adaptation and implementation that is able to make use of the multi-core
parallelism offered by modern computers. This implementation is tested on a variety of standard and random
benchmarks, and its performance is compared to the sequential implementation. We show that a near-linear
speedup can consistently be obtained on non-trivial problems, and that super-linear speedups are common. Fur-
thermore, when super-linear speedup does happen, it can make some hard graph instances easy. We provide a
theoretical explanation for these results, and conjecture that the techniques and results presented will generalise
to other similar problems.

Education Use Consent

I hereby give my permission for this project to be shown to other University of Glasgow students and to be
distributed in an electronic format. Please note that you are under no obligation to sign this declaration, but
doing so would help future students.

Name: Signature:

i

Contents

1 Introduction1 Introduction 1

1.1 Graphs, Cliques and Colouring1.1 Graphs, Cliques and Colouring . 1

1.2 Complexity of Clique and Colouring1.2 Complexity of Clique and Colouring . 2

1.3 Parallelism1.3 Parallelism . 2

2 Sequential Algorithms for the Maximum Clique Problem2 Sequential Algorithms for the Maximum Clique Problem 4

2.1 A Simple Branch and Bound Algorithm2.1 A Simple Branch and Bound Algorithm . 4

2.2 Improving the Algorithm2.2 Improving the Algorithm . 6

2.3 Bitset Encodings2.3 Bitset Encodings . 8

3 Parallel Algorithms for the Maximum Clique Problem3 Parallel Algorithms for the Maximum Clique Problem 10

3.1 Existing Parallel Algorithms for Clique-Related Problems3.1 Existing Parallel Algorithms for Clique-Related Problems . 10

3.2 Parallel Branch and Bound3.2 Parallel Branch and Bound . 11

3.3 Potential Speedup3.3 Potential Speedup . 13

3.3.1 Avoiding a Slowdown3.3.1 Avoiding a Slowdown . 15

3.3.2 Complications from Hyper-Threading3.3.2 Complications from Hyper-Threading . 16

3.4 Options for Splitting Distance3.4 Options for Splitting Distance . 17

4 Implementation4 Implementation 18

4.1 Choice of Environment4.1 Choice of Environment . 18

4.2 Graph Data Structures4.2 Graph Data Structures . 19

4.3 Data Sharing4.3 Data Sharing . 19

4.4 Number of Threads4.4 Number of Threads . 19

ii

5 Experimental Evaluation5 Experimental Evaluation 20

5.1 Experimental Data and Methodology5.1 Experimental Data and Methodology . 20

5.2 Comparison of Sequential Algorithm to Published Results5.2 Comparison of Sequential Algorithm to Published Results . 21

5.3 Analysis of Implementation Choices for the Threaded Algorithm5.3 Analysis of Implementation Choices for the Threaded Algorithm 22

5.3.1 Locking Mechanism for Sharing the Incumbent5.3.1 Locking Mechanism for Sharing the Incumbent . 22

5.3.2 Splitting Distance and Work Donation5.3.2 Splitting Distance and Work Donation . 22

5.4 Threaded Experimental Results on Standard and Random Benchmarks5.4 Threaded Experimental Results on Standard and Random Benchmarks 24

5.5 Comparison of Threaded Results with Theoretical Limits5.5 Comparison of Threaded Results with Theoretical Limits . 27

5.6 Analysis of Super-Linear Speedups5.6 Analysis of Super-Linear Speedups . 28

6 Conclusion6 Conclusion 30

iii

Chapter 1

Introduction

The maximum clique problem is theoretically interesting [GJ90GJ90] and practically important. Within computing
science, applications include computer vision and pattern recognition; beyond, they extend to mathematics,
biology, biochemistry, electrical engineering and communications [BBPP99BBPP99, BW06BW06]. Some existing algorithms
for the maximum clique problem are suitable for use on dense and challenging graphs, but are sequential. Others
have been presented as suitable for parallelisation, but are only able to be used with sparse graphs [PPG+12PPG+12].
Here we present a shared memory parallel adaptation of a state of the art algorithm which can handle dense
graphs.

In Chapter 22 we start with a simple branch and bound algorithm for the maximum clique problem and develop
it into a state of the art algorithm. We then discuss using bitset encodings for a further performance increase.
In Chapter 33 we review existing parallel algorithms and techniques, then develop a threaded version of our
algorithm. We also analyse the potential for speedup.

Chapter 44 discusses an implementation of these algorithms, and in Chapter 55 this implementation is evaluated
experimentally. We begin by showing that our sequential implementation performs competitively with published
results. We then present experimental results evaluating various possible implementation choices for the threaded
algorithm. With these choices made, we run our threaded implementation on a variety of standard and random
benchmarks and show that we can consistently obtain close-to-linear speedups on non-trivial problems, with
super-linear speedups being common. Chapter 66 concludes.

But first we begin with some background: we describe the maximum clique problem and related concepts,
and discuss parallelism, with a focus on the form of homogeneous shared memory parallelism offered by a typical
modern multi-core desktop computer. We also justify the importance of exploiting this parallelism.

1.1 Graphs, Cliques and Colouring

A graph consists of a pair of finite sets (V,E). The elements of V are known as vertices. The elements of E are
edges, represented as pairs (v1, v2) ∈ V × V . We call vertices v1 and v2 adjacent if (v1, v2) ∈ E. Throughout,
we assume that our graphs are undirected, that is (v1, v2) ∈ E ⇒ (v2, v1) ∈ E, and contain no loops, that is for
all (v1, v2) ∈ E we have v1 6= v2.

IfG = (V,E) is a graph, we may write V(G) for V and E(G) forE. For v ∈ V we define the neighbourhood
of v to be the vertices adjacent to v, that is N(G, v) = {v′ ∈ V : (v, v′) ∈ E}, and the degree of v to be |N(G, v)|.

We define the order of a graph G = (V,E) by |G| = |V |. If |G| = 0 we say G is empty.

1

A graph G′ = (V ′, E′) is called a subgraph of a graph G = (V,E) if V ′ ⊆ V and E′ ⊆ E. The subgraph
induced by V ′ is the subgraph with vertices V ′ and all edges between those vertices. A subgraph is induced if it
is induced by some set of vertices.

A graph G = (V,E) is called complete if all its vertices are adjacent—that is, for every distinct pair of
vertices v1 and v2 we have (v1, v2) ∈ E. A complete subgraph is known as a clique. We may represent a clique
by the vertex set that induces it, and we define the size of the clique as the size of this vertex set. Dually, an
independent set is a set of vertices, no two of which are adjacent.

A clique is maximal if it cannot be extended by adding a vertex from the main graph, and maximum if there
is no other clique of larger size. Any maximum clique is maximal. Given a graph G, we may ask whether G
contains a clique of size k. This is the clique decision problem. We may instead ask for a maximum clique in
G (there may be more than one such clique). Determining the size of such a clique, which we call the clique
number, is the clique optimisation problem or the maximum clique problem. We denote the clique number by
ω(G), or ω where the graph is clear. The clique number of the empty graph is defined to be 0.

A colouring of a graph G = (V,E) is a function c : V → C for some set C such that the preimage of each
value in C under c is an independent set—that is, if (v1, v2) ∈ E then c(v1) 6= c(v2). We may think of the
elements of C as being colours, so a colouring is an assignment of colours to vertices such that adjacent vertices
are differently coloured. We say G is k-colourable if a colouring exists with |C| ≤ k. The smallest k such that
G is k-colourable is called the chromatic number of G, denoted χ(G) or χ. The chromatic number of the empty
graph is defined to be 0.

A greedy colouring of a graph is a colouring obtained by considering each vertex in turn in some particular
order, and assigning it the first available colour. For any non-empty graph G and greedy colouring χ∗ we have
the inequalities [HHM08HHM08]

ω(G) ≤ χ(G) ≤ χ∗(G) ≤ |G|.

1.2 Complexity of Clique and Colouring

The clique decision problem is NP-complete, and may be viewed as one of the “basic” problems in that class
[GJ90GJ90]. The optimisation problem is NP-hard, as is approximation to within n1−ε for any ε > 0 [Zuc06Zuc06].

Despite this, we are able to provide exact solutions to many large problems: in Chapter 55 we deal with graphs
with up to 15,000 vertices and over 10,000,000 edges. This is because although some graph instances require
exponential time to solve, many are in practice much easier—this phenomenon is common for hard problems
[CKT91CKT91, MM11MM11]. As a rule of thumb, most sparse graphs are “easy”, and some dense graphs are “hard”; this is
why we consider only being able to operate on sparse graphs to be a significant limitation for an algorithm.

Deciding whether a graph is k-colourable is also NP-complete [Kar72Kar72], and approximation to within n1−ε

for any ε > 0 is NP-hard [Zuc06Zuc06]. A greedy colouring may be computed in polynomial time [WP67WP67].

1.3 Parallelism

Multi-core machines are now the norm [SL05SL05, Sut05Sut05], and it is expected that core numbers will continue to
increase [HBK06HBK06]. Our goal is to make use of multi-core parallelism to reduce the start-to-finish runtime of the
algorithm—that is, to produce a speedup.

2

We defined a speedup of S as being

S =
Tseq
Tpar

,

where Tseq is the runtime for the sequential algorithm and Tpar is parallel runtime. We call a speedup of n from
n cores linear. A speedup of greater than n is said to be super-linear, and a speedup of less than 1 is called a
slowdown.

Obtaining a speedup may require doing more overall work (i.e. computational effort). We say that a parallel
algorithm that performs effectively the same amount of work as its sequential variant is work efficient. We
consider non-work-efficient algorithms to be acceptable if this leads to faster completion. We are also not directly
concerned with maximising processor utilisation—sometimes not using all available computational resources
may reduce runtimes.

We do not require a parallel algorithm to produce the same answer as the sequential version—in the same
way that sorting algorithms may not be stable, we only require a parallel algorithm to provide a correct answer,
not a particular correct answer. For the clique optimisation problem, this translates to always finding the size
of a maximum clique correctly, but possibly providing a different witness to this fact. Due to scheduling and
communication nondeterminism, we do not even require that a parallel algorithm produce the same witness each
time it is run.

Here we deal exclusively with homogeneous shared memory parallelism of the kind found in a typical desk-
top computer. We have a number of threads, each with its own context and stack, which may be run in parallel on
identical11 processing cores22. There is a shared pool of memory that may be accessed uniformly by each thread.
We also have access to various synchronisation mechanisms to allow multiple threads to read from and write to
the same section of memory.

The potential for improvement from multi-core systems is substantial. Existing work on the maximum clique
problem using bitset encodings for local parallelism [SSRLJ11SSRLJ11, SMRLH11SMRLH11] claims performance improvements
of between a factor of two and twenty. The number of cores available on inexpensive modern hardware falls
within the same range; if we can translate this to a similar speedup, we will have made a major impact. We note
Karp’s comment [Fre86Fre86] that

“even though you may never be able to go from exponential to polynomial, it’s also clear that there
is tremendous scope for parallelism on those problems, and parallelism may really help us curb
combinatorial explosions”.

1This is somewhat complicated by hyper-threading. We discuss this issue further in Section 3.3.23.3.2.
2Such an environment is also offered by some systems with multiple processors rather than multiple cores on a single processor. The

system used for evaluation in Chapter 55 has multiple processors each with multiple cores, but for our purposes we do not need to make
any kind of distinction. For simplicity we use the term “core” to emphasise that we are talking about shared memory.

3

Chapter 2

Sequential Algorithms for the Maximum
Clique Problem

In this chapter we start with a simple branch and bound algorithm for the maximum clique problem, and develop
it into a state of the art algorithm. We then discuss using bitset encodings for a further performance increase.

2.1 A Simple Branch and Bound Algorithm

Let G = (V,E) be a graph, and v ∈ V . We observe that any maximal clique in G either does not contain v,
or contains only v and possibly some vertices adjacent to v. This provides the basis for the branching part of a
simple branch and bound algorithm: we build up a candidate clique recursively from our choices of whether to
take a vertex.

For a bound, we keep track of the size of the largest clique found so far, which we call the incumbent.
If the size of the current candidate clique plus the size of the set of remaining undecided vertices that are
adjacent to every vertex in the candidate clique is not greater than the size of the incumbent, we know we
cannot find a larger clique at the current location, so we abandon search and backtrack. This leads to Algo-
rithm 1 on the following page1 on the following page, which we call mc. Here, c is our growing candidate clique, and p (for ‘potential’)
contains those vertices adjacent to every vertex in c. The incumbent is stored in b (for ‘best’).

We note that we may represent c and p as stacks, and implement the choice at 1 by selecting the top of
the stack. In this case, the two lines marked 3 of expand correspond to pop operations. Empirical testing
suggests that for non-trivial problems, a pre-allocated array is the best underlying data structure for this stack;
improvements to this algorithm require a richer set of operations, but an array remains suitable.

We verify that 2 , where we set p′ to be p intersected with the vertices adjacent to v, is sufficient to ensure that
p′ contains only vertices adjacent to every vertex in c: although we are only intersecting pwith the neighbourhood
of the vertex we just added to c, we know that p contains only vertices adjacent to every other vertex in c. Thus
we do not need any further adjacency testing to ensure that p′ is valid for the recursive call.

Figure 2.1 on the next page2.1 on the next page illustrates a possible sequence of recursive calls to expand, plus the final values
of c when p is empty, that could be made by mc on a small graph. Nodes shown in grey are eliminated by the
bound.

In practice, this algorithm is too naı̈ve to be of use on anything but the most trivial problems. However, it
forms the basis for current state of the art algorithms.

4

Algorithm 1: mc, a very simple maximum clique algorithm.

1 mc :: (Graph g)→ Vertices
2 begin
3 b← ∅
4 expand(g, ∅,V(g), b)
5 return b

6 expand :: (Graph g, Vertices c, Vertices p, Vertices b)
7 begin
8 while p 6= ∅ and |c|+ |p| > |b| do
9 v ← a vertex chosen from p

10 c← c ∪ {v}
11 p′ ← p ∩N(g, v)
12 if p′ = ∅ then
13 if |c| > |b| then b← c

14 else expand(g, c, p′, b)
15 c← c \ {v}
16 p← p \ {v}

c: Candidate clique
p: Vertices adjacent to everything in c
b: Incumbent

1

2

3

Figure 2.1: A small graph. Below, a possible execution tree for mc: boxes show values of c and p, and boxes in
grey show nodes that are eliminated by the bound. To the right, a constructive colouring as produced by colourise
from mcsa (Algorithm 2 on page 72 on page 7).

1 2

3

45

6

1 2 3 4 5 6 Greedy colouring

1 5 2 3 4 6 Generated p

1 1 2 2 3 3 Entries of ω

∅, {1, 2, 3, 4, 5, 6}

{6}, ∅{5}, {6}

{5, 6}, ∅

{4}, {5}

{4, 5}, ∅

{3}, {4, 6}

{3, 6}, ∅{3, 4}, ∅

{2}, {6}

{2, 6}, ∅

{1}, {2, 3, 4, 6}

{1, 6}, ∅{1, 4}, ∅{1, 3}, {4, 6}

{1, 3, 6}, ∅{1, 3, 4}, ∅

{1, 2}, {6}

{1, 2, 6}, ∅

5

2.2 Improving the Algorithm

The order in which vertices are selected has a profound effect upon search speed. Guaranteeing an ideal ordering
is effectively as hard as the main problem; however, there are heuristics which provide good results. Here we
will order vertices by non-increasing degree at the top of search.

The other major contribution to search speed is the strength of the bound. Rather than using |p| as a measure
of how much further our candidate clique could grow, we can get a better estimate from graph colouring. By
the inequality ω(G) ≤ χ(G) ≤ |G| on the remaining subgraph induced by p, we see that the chromatic number
provides a bound that is as least as good as using size, and potentially better. We cannot efficiently calculate the
chromatic number, but a greedy approximation is still an improvement.

The simplest greedy colouring algorithm iterates over vertices, colouring each vertex in turn with the first
available colour [WP67WP67]. As with the main algorithm, vertex ordering can have a large effect upon how close
a greedy colouring is to the chromatic number. A good heuristic is to colour vertices of highest degree first. If
two vertices have equal degree, we may tie-break arbitrarily, or by more sophisticated methods [Bré79Bré79]. We may
recalculate the order used for colouring at every stage, or we may determine a static degree ordering at the start
of search. We may also attempt to improve the colouring obtained by recolouring vertices to avoid introducing
a new colour number [TSH+10TSH+10]. However, more intricate methods do not necessarily yield an improvement in
runtimes [Pro12Pro12].

A greedy colouring algorithm is constructive: as well as a number, it may easily be extended to give us a
witness (that is, a colouring of vertices). This observation is central to Tomita’s MCQ [TS03TS03], MCR [TK07TK07]
and MCS [TSH+10TSH+10], which make use of a constructive colouring to reduce the total number of colourings
that need to be performed. This technique couples together the two improvements—we show this in Algo-
rithm 2 on the following page2 on the following page, which we call mcsa. This corresponds to Prosser’s MCSa1 [Pro12Pro12], which is
Tomita’s MCS with a non-increasing degree ordering and without the colour repair step.

We begin by calculating a vertex ordering, which is held in the variable o throughout. This ordering is used
to perform the graph colouring, which in turn gives us p at 1 . Here p is a permutation of o (the orders are related,
but not the same—the degree ordering influences colouring directly, and p only indirectly), and ω is an array of
colour numbers, not a single value. To understand this interaction, we must look at how colouring is done in
more detail. The variable k inside colourise 3 may be thought of as a series of coloured buckets (it is an array
where the elements are a sequence of vertices, and each sequence forms an independent set). Vertices are placed
in turn, using the order in o, into the first bucket of k that does not create a colour conflict. We then iterate over
each item in each bucket in turn to produce an ordered p (in the manner of a pigeonhole sort), whilst recording
in the result ωi the number of colours required to colour the first i vertices of p.

We illustrate this in Figure 2.1 on the previous page2.1 on the previous page. With the given graph, taking o to be in numerical order,
we greedily colour vertex 1 as blue, vertices 2 and 3 as green, vertex 4 as yellow, vertex 5 as blue, and vertex 6 as
yellow11. Flattening the buckets then brings like-coloured vertices together to produce our order for p. From this,
we know not only that we can colour the entire graph using three colours, but also that we can colour the graph
induced by vertices {1, 5, 2, 3, 4} using three colours, the graph induced by {1, 5, 2, 3} using only two colours,
the graph induced by {1, 5} using only one colour, and so on.

At 2 , we must remove v from o. Unlike the removals from c and p, which may be simple stack pop operations
as per Algorithm 11, v may be located anywhere inside o. We none-the-less use an array for o, and do not mind
paying an O(n) penalty for this removal since both n and the constant factor are small.

An observant reader may question our assertion that this algorithm is Prosser’s MCSa1. Prosser passes
both p and (what we call) o as parameters to expand, uses p rather than o for bound calculations, and performs

1Where “blue” may be “dark grey”, “green” may be “medium grey” and “yellow” may be “light grey”.

6

Algorithm 2: mcsa, a state of the art maximum clique algorithm.

1 mcsa :: (Graph g)→ Vertices
2 begin
3 b← ∅
4 expand(g, ∅,V(g) in non-increasing degree order, b)
5 return b

6 expand :: (Graph g, Vertices c, Vertices o, Vertices b)
7 begin
8 (ω, p)← colourise(g, o)
9 for i← |p| downto 1 do

10 if |c|+ ωi > |b| then
11 v ← pi
12 c← c ∪ {v}
13 o′ ← o ∩N(g, v)
14 if o′ = ∅ then
15 if |c| > |b| then b← c

16 else expand(g, c, o′, b)
17 c← c \ {v}
18 p← p \ {v}
19 o← o \ {v}

20 colourise :: (Graph g, Vertices o)→ (Array of Integer, Vertices)
21 begin
22 k ← an empty array of sets of vertices
23 for i← 1 to |o| do
24 l← the first entry in k that does not contain a vertex adjacent to oi
25 append oi to l

26 ω ← an empty array of integers
27 p← ∅
28 for i← 1 to |k| do
29 for v ∈ ki do
30 append v to p
31 append i to ω

32 return (ω, p)

c: Candidate clique
o: Vertices adjacent to everything in c, in order
b: Incumbent

1

2

3

7

adjacency filtering on both sets. In fact our algorithm is equivalent, but as we do not require the same degree of
modularity, we may make certain simplifications and perform less work. We observe that p and o always contain
the same number of elements, so we may use either for the bound. We also do not need to pass p as a parameter
(and thus do not need to perform two lots of adjacency filtering): colourise produces p from o, and does not use
the previous value of p to do so.

2.3 Bitset Encodings

It is possible to represent g, c and p as bitsets rather than arrays [SSRLJ11SSRLJ11, SMRLH11SMRLH11]. This allows us to
perform some parts of the algorithm using bitwise operations—for example, intersecting a vertex set with the
neighbourhood of a given vertex may be treated as a bitwise-and operation. This can be viewed as a form
of (local) parallelism, since we are operating on a number of vertices equal to the word size of the machine
simultaneously.

We may implement Algorithm 22 using a bitset encoding, obtaining Algorithm 33, which we call bmcsa.
This corresponds to to San Segundo’s BBMCI [SMRLH11SMRLH11] with a simpler initial vertex ordering, or Prosser’s
BBMC1 [Pro12Pro12]. The trace of the algorithm is unchanged—when executed, the same sequence of calls to
expand are carried out. The difference is in the representation.

In mcsa we pass in a vertex ordering as a parameter to expand. Here we opt for a different approach: at 1 ,
we instead permute the entire graph. (We may also take this opportunity to re-encode g using bitsets.) This is
necessary for the implementation of colourise.

Inside expand we make use of the bitset encoding at 2 and 4 . We replace unions and intersections by
bitwise-or and bitwise-and operations respectively, and removing an element from a set corresponds to unsetting
a particular bit; we use the recoded graph to obtain N(g, v) as a bitset. We may determine |c| at 3 either by using
a “population count” operation22, or by passing an additional parameter to expand.

The bitset implementation of colourise is not a direct translation from the one of mcsa, and deserves explana-
tion. We cannot permute a bitset, so as well as returning colour numbers, we return a conventionally represented
vertex ordering. At 5 , ω and o are to form our result, Ω is the current colour number, and p′ contains the vertices
in p that we have yet to colour. While some of these vertices remain uncoloured, we pick the first of these ver-
tices, colour it, and then try to give further vertices the same colour. The variable q at 6 contains those vertices
that have yet to be coloured, and that are not adjacent to any of the vertices to which we have already assigned
the current colour. The operation at 7 is commonly known as “find first set bit”, and is often implemented
directly in hardware33. It selects for us the next vertex that we can colour using the current colour (this is why we
permute the graph at 1). The operations marked 8 again rely upon bitset representations—the bitwise-and is an
intersection operation that removes from q all vertices adjacent to the vertex just coloured.

It is not entirely obvious that this method produces the same colouring as for mcsa. Rather than allocating
colours to vertices in turn, we are allocating vertices to colour classes (independent sets). The reader will con-
vince himself that although we appear to be appending vertices in a different order, we do in fact end up with the
same result due to the bucket flattening done in mcsa.

2GCC makes this operation available as an intrinsic named popcount.
3GCC makes this operation available as an intrinsic named ffs.

8

Algorithm 3: bmcsa, a bitset encoding of mcsa.

1 bmcsa :: (Graph g)→ Vertices
2 begin
3 b← ∅
4 permute g so that the vertices are in non-increasing degree order
5 expand(g, ∅,V(g), b)
6 return vertices corresponding to the set bits in b

7 expand :: (Graph g, BitSet c, BitSet p, BitSet b)
8 begin
9 (ω, o)← colourise(g, p)

10 for i← |p| downto 1 do
11 if |c|+ ωi > |b| then
12 v ← oi
13 set bit v in c
14 p′ ← p ∧N(g, v)
15 if p′ = ∅ then
16 if |c| > |b| then b← c

17 else expand(g, c, p′, b)
18 unset bit v in c
19 unset bit v in p

20 colourise :: (Graph g, BitSet p)→ (Array of Integer, Vertices)
21 begin
22 ω ← an empty array of integers
23 o← an empty array of vertices
24 p′ ← p
25 Ω← 0
26 while p′ 6= ∅ do
27 Ω← Ω + 1
28 q ← p′

29 while q 6= ∅ do
30 v ← the first set bit in q
31 unset bit v in p′

32 unset bit v in q
33 q ← q ∧N(g, v)
34 append Ω to ω
35 append v to o

36 return (ω, o)

c: Candidate clique
p: Vertices adjacent to everything in c
b: Incumbent

1

3

6

7

2

4

5

8

9

Chapter 3

Parallel Algorithms for the Maximum Clique
Problem

In this chapter we review existing parallel algorithms and techniques, and develop threaded versions of our
algorithm from Chapter 22. We then analyse the potential for speedup.

We may split opportunities for parallelism into two categories. On the one hand, we may exploit local or
data parallelism—that is, to try speed up parts of the algorithm by implementing, say, the bound function in
parallel. The bit parallelism in bmcsa may be considered to be of this type. Here though we discuss global
parallelism—that is, we decompose the problem into smaller work units which may be executed by different
threads in parallel.

3.1 Existing Parallel Algorithms for Clique-Related Problems

The maximum clique algorithm presented by Pattabiraman et. al. [PPG+12PPG+12] is described as being “well-suited
for parallelization”, although no speedup figures are given. The algorithm is specifically designed for sparse
graphs, and does very badly for dense graphs. For example, “MANN a27” from DIMACS [DIMDIM] is reported
as taking over 10,000 seconds to solve, but we would expect mcsa to require only a few seconds to produce a
result. The paper also claims that Tomita’s MCQ [TS03TS03] (a precursor to our mcsa) is “inherently sequential or
otherwise difficult to parallelize”, which we dispute.

Methods for enumerating all maximal cliques are provided by Karp and Zhang [KZ93KZ93], and by Schmidt
[SSTP09SSTP09]. Both focus upon sparse graphs. Methods for partitioning a graph are provided by Szabó [Sza11Sza11], but
no implementation is discussed. Pullan et. al. present a cooperative local search method that scales well over
multi-core processors [PMB11PMB11], but as it is an approximation method it can only be used to find a large clique,
not a maximum clique.

The results of Pardalos et. al. [PRR98PRR98], and previous experiments by Prosser and the author [MP12MP12], suggest
that a parallel implementation of a state of the art algorithm is viable. The former is based upon a sequential
algorithm by Carraghan [CP90CP90], which is consistently outperformed by newer algorithms, uses MPI rather than
threading (we discuss this in Section 4.14.1), and was not taken beyond four processors. The latter uses a “quick
and dirty” approach to adapt code by Prosser [Pro12Pro12] with as little work as possible to run on a cluster of student
PCs; we aim for a much more refined implementation.

10

3.2 Parallel Branch and Bound

To parallelise an algorithm we look for “units of work” that may be executed independently. We may view our
algorithm’s execution as forming a tree (in a similar way to Figure 2.1 on page 52.1 on page 5), with each call to expand being
a node. Each recursive call is then on “the next level down” of the tree, and each step of the loop can be viewed
as going “from left to right”. We can treat these nodes as potentially separate work units. Each node is dependent
upon all the nodes directly above it, since the appropriate values of c and o must have been calculated. It may
appear that each node is also dependent upon every node to its left, since executing one of these sibling nodes
may result in our node being eliminated. However, we may ignore this dependency, and speculatively execute a
node anyway. This may turn out to be wasted work, but it does not affect the correctness of the algorithm.

Thus a possible design presents itself. We have a global queue, whose entries represent nodes in the execution
tree (i.e. each entry contains the values for c and o) together with all the children of that node (i.e. the recursive
calls). This queue is populated with parts of the tree, and a number of worker threads each take items from
the queue and execute them. For completeness, it suffices to ensure that every part of the tree that cannot be
eliminated ends up being processed at least once.

For branch and bound in general this technique has been widely studied [Rou87Rou87, PR90PR90, GC94GC94, Gro95Gro95,
BHP04BHP04, BB10BB10]. In particular, the assumption that we may ignore the left-to-right dependency appears to be
a reasonable one. Pardalos [PRR98PRR98] takes exactly this approach. Conceptually method used by McCreesh and
Prosser [MP12MP12] is similar, but rather than a queue, a fixed pool of subtrees is used; this is due to environment
limitations, rather than being a genuine improvement.

A common variation on this approach is to use task rather than thread decomposition, and avoid an explicit
queue [MRR12MRR12]. This is conceptually simpler, and can be easier to implement [Lee06Lee06]. It does require efficient
task cancellation, which can be problematic—using a queue and a fixed number of workers sidesteps this issue.
More significantly, such an approach is incompatible with the conditions for avoiding a slowdown that we shall
discuss later in this chapter. Thus we will not take this simplification.

Our primary difficulty is that our sequential algorithm typically makes a huge number of recursive calls, each
node of which is reasonably cheap to process—we expect to be exceeding 100,000 nodes per second on modern
hardware. We cannot expect competitive performance if we simply replace every single call to expand with a
queue operation. Nor is it possible to pre-generate the entire tree, since the number of nodes is exponential in
order of the graph. We must therefore decide what level of granularity we desire, and how the queue is to be
populated.

In previous work [MP12MP12] the search tree was split at distance 2 from the root, and then some subtrees were
joined together to avoid having too many work items. The problem with such a static partition is that different
subtrees can be of massively different sizes. Furthermore, there is generally no way to estimate up-front where
the large subtrees are. It was shown that such a static distribution can sometimes lead to processors sitting idle.
Although idle processors are not a priori a problem, it is easy to envision circumstances where effectively all of
the work ends up on a single processor, resulting in no speedup at all.

Splitting work entirely dynamically would avoid this, but as we have many small nodes, the overheads would
make this approach useless. We could instead split statically and use work stealing [BS81BS81, KZ93KZ93, BL99BL99], to
allow idle processors to take subproblems from other threads. But this would still require each thread to make
its active subproblem public. An alternative is presented by Clausen [CLT91CLT91] where overly busy processors can
pass work onto other processors—this is done regardless of whether or not other processors are idle. In Tzeng
et. al. [TPO10TPO10] something similar is done on a GPU, with the aim of allowing fixed size queues. We opt for a
middle ground: we split statically to begin with, and then if there are idle processors later on, we advertise this
fact. Other processes may then choose to “donate” parts of their work back onto the global queue.

11

Figure 3.1: Work splitting and queueing mechanism for tmcsa. Nodes correspond to a call to expand. We
illustrate splitting at a distance d = 1 from the root, and work donation occurring once when the donating
worker’s position is at the node marked ?.

. . .The initial populating thread splits off work
items at a fixed distance from the root. . .

. which are enqueued, treating the queue as
being bounded. . .

. . . and processed by worker threads.

?

If the initial populating thread is done, and the
queue is empty, worker threads may donate their
current node and every node to its right onto the
queue.

We assume at this stage that a single global queue will not be an excessive source of contention; if, when
evaluating performance, it turns out that this assumption is overly optimistic, then we may switch to a multiple-
queue method without requiring non-local design changes.

We must decide how to populate the queue initially. Although static splitting at a fixed distance from the root
sometimes leaves processors idle, our previous work shows that it is none-the-less usually quite reasonable. Thus
we retain this approach, and rely upon work donation to cover the awkward cases. We do, however, introduce a
refinement. Rather than pre-populating the queue before starting worker threads, we make an additional thread
that does the initial population. This allows us to start processing subtrees before population has finished. If
we treat the queue as being bounded during the initial population (but not for work donation), we may reduce
the amount of work done in cases where a good bound is found quickly. This also avoids the potential problem
of having nd items on the queue when splitting at distance d from the root. It remains to decide at what this
value of d should be; we defer this decision until Section 3.43.4. We provide a general illustration of the queueing
mechanism in Figure 3.13.1.

We must consider what data may be shared or should be shared between workers, and how if at all workers
communicate the discovery of a better value of b to each other. For now we assume that b is globally visible and
may safely be updated by any thread without the possibility of a race; we address this properly in Chapter 44.

This gives us Algorithm 4 on page 144 on page 14, which we call tmcsa (for “threaded mcsa”). The variable b at 1 is
shared between all threads. (In practice, we share only |b|, and take the full value of b from the appropriate
thread before joining.) At 4 we must ensure that we are reading a valid value, which may or may not require
synchronisation. At 5 the test and update must be synchronised, to avoid the possibility of a data race resulting
in a higher value of |b| being overwritten by a lower value.

The condition at 2 is subtle: the loop must continue whilst it is possible that the queue will later not be
empty. Simply checking whether the queue is currently empty is insufficient, since the populating thread may
have more work to produce, or other threads may later choose to donate work.

12

Work donation is handled by points 3 and 6 . We note that once we have decided to donate something, we
also donate every non-eliminated node to the right at the current level. For the condition at 6 , we should decide
to start donating work only if the populating thread is done, and if the queue is currently empty.

The enqueue operation at 7 should be blocking and bounded for the populating thread, but non-blocking and
unbounded for work donation.

We may perform the same modifications we did to create tmcsa from mcsa to obtain a threaded version of
bmcsa. We shall call this algorithm tbmcsa.

3.3 Potential Speedup

Intuitively, we may expect that doubling the number of cores available could at best halve the runtime of the
algorithm—that is, the speedup we obtain could at best be linear. However for branch and bound algorithms,
and backtracking search in general, this is not the case, and super-linear speedup is possible—we may be able
to obtain a speedup of greater than n using n processors [LS84LS84, MG85MG85, LW86LW86, Spe89Spe89, HM90HM90, CHH91CHH91, BKT95BKT95,
Sut08Sut08]. In particular, Amdahl’s law [Amd67Amd67] is not a limiting factor, since it operates under the assumption that
the amount of work to be performed is fixed.

We may analyse the potential for speedup in more detail. Again, we view our search as operating over a
tree, where each node is a call to expand. We say a node is eliminable if it can be eliminated by a bound, if a
sufficiently large incumbent has been found, and ineliminable if it cannot be eliminated by the bound regardless
of the incumbent. Assuming neither the bound function nor the ordering is changed, proving optimality of a
solution requires exploring at least all ineliminable nodes. Thus, once a maximum clique has been found, the
remaining amount of work is fixed, and the best speedup we can hope for is linear, minus overheads.

Before a maximum has been found, matters are more complicated. If additional workers are exploring por-
tions of the search tree, they may be wasting their time visiting parts of the tree that, in the sequential run, would
be eliminated by virtue of a better incumbent having been found. Conversely, it is possible that an additional
worker may find a good incumbent much more quickly than in the sequential run, eliminating large portions
of the tree that would otherwise have to be explored. In this case the speedup gained may be super-linear; we
illustrate this (and other possibilities) in Figure 3.2 on page 163.2 on page 16.

Given certain reasonable assumptions, a bound on the best speedup we could hope to achieve for a given
problem can be calculated. We assume that nodes and runtime are roughly interchangeable, and that there are no
overheads and no sequential portion of the algorithm. Furthermore, we assume that the tree is “wide” rather than
“deep”, so we do not worry about the cost of getting to any particular node. We may decompose the time spent
on a sequential run Tseq into the time spent visiting ineliminable nodes Tinelim, the time spent visiting nodes
which could be eliminated Twasted, and the shortest possible time it takes to find but not prove optimality of a
maximum clique Toracle (if the heuristic were an oracle, which always made the best possible choice). Thus

Tseq = Tinelim + Twasted + Toracle.

We assume that Toracle is effectively zero—this is a reasonable assumption, since for non-trivial problems the
cost of ω calls to expand is dwarfed by Tinelim. Thus

Tseq = Tinelim + Twasted. (3.1)

In the best possible case, one of the workers in the parallel algorithm will make choices close to those of the
oracle heuristic. This leads to effectively zero wasted effort. Thus, assuming we can gain a perfect linear speedup

13

Algorithm 4: tmcsa, a threaded variation of mcsa.

1 tmcsa :: (Graph g)→ Vertices
2 begin
3 b← ∅
4 launch the populating thread do
5 expand(g, ∅,V(g) in non-increasing degree order, b)

6 launch multiple worker threads do
7 while there is work left do
8 (c, o)← dequeue
9 expand(g, c, o, b)

10 join all threads
11 return b

12 expand :: (Graph g, Vertices c, Vertices o, Vertices b)
13 begin
14 enqueueing ← false
15 if we are the populating thread, and |c| equals the splitting distance then
16 enqueueing ← true
17 (ω, p)← colourise(g, o)
18 for i← |p| downto 1 do
19 if |c|+ ωi > |b| then
20 v ← pi
21 c← c ∪ {v}
22 o′ ← o ∩N(g, v)
23 if o′ = ∅ then
24 if |c| > |b| then b← c

25 else
26 if we should start to donate then
27 enqueueing ← true
28 if enqueueing then enqueue(c, o′)
29 else expand(g, c, o′, b)

30 c← c \ {v}
31 p← p \ {v}
32 o← o \ {v}

33 colourise :: (Graph g, Vertices o)→ (Array of Integer, Vertices)
as per Algorithm 2 on page 72 on page 7

c: Candidate clique
o: Vertices adjacent to everything in c, in order
b: Incumbent (shared between threads)

3

1

2

4

5

6

7

14

from n cores, the best possible parallel runtime Tpar is

Tpar =
Tinelim
n

and so a limit to achievable speedup S is given by

S =
Tseq
Tpar

=
Tinelim + Twasted(

Tinelim
n

)
= n

(
1 +

Twasted

Tinelim

)
. (3.2)

In particular, if the sequential run wastes no time (Twasted = 0), we can at best gain a linear speedup (S = n),
but if the sequential run is wasteful then the speedup may be super-linear (S > n).

We may reformulate S in terms of easily measured quantities. We rearrange (3.13.1) to be in terms of Twasted,

Twasted = Tseq − Tinelim,

and observe that we may measure both terms on the right. Tseq is simply a sequential run of the algorithm; to
obtain Tinelim, we rerun the sequential algorithm, but with a preset incumbent size equal to what we know the
maximum to be. Substituting into (3.23.2),

S = n

(
1 +

Tseq − Tinelim
Tinelim

)

= n

(
Tseq
Tinelim

)
. (3.3)

Again, we see that a linear speedup being the best possible corresponds to the sequential run taking the least
possible time (that is, if there is no wasted effort).

Finally, we preempt the possible criticism that a super-linear speedup is only possible when the sequential
implementation is defective [FLJ86FLJ86]. Whilst it is true that a super-linear speedup corresponds to poor ordering
choices being made by the sequential algorithm, if it were possible to always make good choices in polynomial
time, we would be able to solve the decision problem in polynomial time too, and would thus have P = NP. We
therefore cannot expect that the sequential algorithm will always perform the minimum amount of work required
to obtain a solution—that is, we should not expect Twasted to be small. In fact, even an average super-linear
speedup is not an indication of a defect [Spe89Spe89].

3.3.1 Avoiding a Slowdown

Although in the best case speedups are possible, we must also be careful not to introduce the possibility of a
slowdown (where Tseq < Tpar). Ignoring overheads, this may be done by ensuring that one worker follows “the
same path” (or a subset thereof) as the sequential version of the algorithm [BKT95BKT95] (but see Section 3.3.23.3.2 for
complications). We may do this by ensuring that items placed into our work queue are evaluated in the order in
which they appear in the sequential call tree; indeed, using a queue rather than a pool provides this guarantee
(work donation may interfere, but this can be avoided by only donating when another worker is idle). Since

15

Figure 3.2: Possibilities for speedup in parallel branch and bound algorithms. Assume the algorithm traverses
from left to right. For parallel execution consider two workers, initially splitting at distance 1 from the root and
with work donation enabled. The triangles denote a large search space. We have a unique solution, marked ?,
that is able to eliminate parts of the tree shown in light grey. On the left, we expect effectively no speedup: all
the work done by the second worker is wasted. In the middle, we expect a linear speedup: the solution does not
allow us to eliminate any nodes, so we are simply dividing a fixed amount of work up. On the right, super-linear
speedup: if the second worker finds the solution quickly, the first worker may eliminate a large amount of the
search space that would be explored in the sequential case.

?

No speedup

Worker 1 Worker 2

?

Linear speedup

?

Super-linear speedup

the only information learned during search is the size of the incumbent (which we are assuming can be shared
“instantly” between workers), we do not have to worry about losing additional knowledge by eliminating parts
of the search tree that cannot contain a maximum clique. With this in mind, we obtain a range of possibilities,
which we illustrate in Figure 3.23.2:

• We get a slowdown. If this happens, it is due either to overheads or to matters discussed in the following
section.

• We get no speedup. This happens if the sequential algorithm quickly finds the largest clique, and if all
remaining nodes can be eliminated by this bound. In other words, all the work done by additional threads
ends up being wasted effort.

• We approach a linear speedup. This happens if the sequential algorithm quickly finds the largest clique,
but proving optimality requires more work, which can be distributed evenly between threads.

• We get a super-linear speedup. This happens if the sequential algorithm takes a long time to find the largest
clique, but one of the additional threads “gets lucky” and finds it quickly, allowing the bound to eliminate
large portions of the tree that would have otherwise been explored.

We will return to these possibilities, and see that “gets lucky” actually happens in practice, in Section 5.65.6.

3.3.2 Complications from Hyper-Threading

Hyper-threading “makes a single physical processor appear as two logical processors; the physical execution
resources are shared and the architecture state is duplicated for the two logical processors” [MBH+02MBH+02]. The
system we will be using in Chapter 55 is hyper-threaded; this causes complications.

Firstly, it means that when going from using one thread per physical processor to one thread per logical pro-
cessor, we should not expect to be able to double our speedup. The cited Intel literature suggests a performance
increase of “up to 30%”—this figure is derived from benchmarks (which show performance increases of “21%”

16

and “16 to 28%”), not theory. Taken at face value, this means that a speedup of around 15.6 on the 12 core,
hyper-threaded system we describe later should be considered “linear”.

Secondly, and more problematically, this means that if two (software) threads are running on the same phys-
ical processing core, each will run more slowly than if it had the core to itself [BP04BP04]. Because we are not
executing a fixed amount of work on each thread, this can lead to a slowdown anomaly—this is a variation of
what Bruin et. al. describe as the “[danger of increasing] the processing power of a system by adding a less
powerful processing element” [BKT95BKT95]. We will assume that so long as the number of threads we use is no
greater than the number of physical processing cores, the operating system scheduler will be smart enough to
allow us to ignore this issue. For larger numbers of threads, we proceed with the understanding that this could
possibly make matters worse, not better11.

3.4 Options for Splitting Distance

With our analysis of the potential for speedup, we may consider what depth we should use for splitting the search
tree. If the splitting distance d is large (i.e. we split a long way from the root), we closely follow the steps of the
sequential algorithm. On the other hand, if d is 1, the path taken by our additional workers diverges heavily.

If we expect the sequential algorithm to find a maximum clique almost immediately, we will be spending
most of our time proving optimality. In this case, choice of splitting distance should make little difference with
a sufficiently efficient implementation. If we are more pessimistic, we might expect the sequential algorithm to
start off well but spend a long time deep down in the tree before it finds a maximum. A large splitting distance
will allow our additional threads to speed up this process.

But in general a heuristic is weakest at the top of search—this is the basis of Harvey and Ginsberg’s limited
discrepancy search [HG95HG95]. Splitting at distance 1 could be seen as an alternative way of hedging our bets against
a bad initial heuristic choice. If this intuition is correct (and Prosser and Unsworth provide evidence in its favour,
at least for hard problems [PU11PU11]), this approach will maximise our opportunities for super-linear speedups: we
would expect that often the sequential algorithm would waste considerable time exploring parts of the tree that
could have been eliminated, if we had made better decisions early on.

We consider sometimes producing a super-linear speedup to be more desirable than consistently producing a
near-linear speedup: following Gustafson’s Law [Gus88Gus88], we wish to open up the possibility of tackling larger
problems, rather than just tacking the same problems faster. Thus, noting that our potential speedup is highest
when Twasted is large, we conjecture that a splitting distance of 1 is the best choice. We measure the effects of
using different splitting distances to verify this in Sections 5.3.25.3.2 and 5.65.6.

1The same problem arises if we use more worker threads than can be executed simultaneously. This, however, is directly under our
control.

17

Chapter 4

Implementation

In this chapter we discuss an implementation of the algorithms developed in Chapters 22 and 33.

4.1 Choice of Environment

We chose to program our implementation in C++. Our justification is threefold.

Firstly, a claimed speedup is more convincing if our sequential runtimes are comparable to state of the art
implementations. The implementation of Carmo and Züge [CZ12CZ12], which uses Python, comes with the note that
“implementations geared toward maximum efficiency are reported to run the same algorithms discussed here in
times orders of magnitude smaller”; we wish to avoid the necessity of such a disclaimer. The two sequential
implementations [TSH+10TSH+10, SMRLH11SMRLH11] upon which our algorithm is based use C and C++ respectively.

Secondly, the new C++11 standard [ISO12ISO12] provides extensive language level support for threading [Wil12Wil12],
including support for atomics which would not be available via C with POSIX threads [IEE95IEE95]. (Atomics are
supported in C11 [ISO11ISO11]; however, compiler support was not available at the start of this project. Further, we
find C++11 threads to be considerably less verbose and simpler to work with.)

In particular, we will not be using MPI [MPI94MPI94]. Although MPI has commonly been used for parallel branch
and bound, we are targeting shared memory systems, and so message passing is not our only option. We will
also not be using OpenMP [Ope11Ope11]: using C++11 threads directly presents us with considerably more flexibility
when it comes to sharing of data, and we are willing to deal with a possible increase in programming difficulty.
We note the comparison of MPI and OpenMP by Barreto and Bauer [BB10BB10], and aim for more favourable results
than either method.

Finally, interesting phenomena tend to emerge as we consider larger problems. An efficient implementation
allows us to consider a wider range of graphs, giving us a more powerful research environment [Mor02Mor02].

Due to hardware availability, we operate exclusively in Linux. There is nothing inherently unportable in our
code; however, we do not deliberately avoid C++11 features that are not implemented in compilers other than
GCC 4.7.

18

4.2 Graph Data Structures

Let G = (V,E) be a graph with |G| = n. We may assume without loss of generality that V is of the form
{0, 1, . . . , n − 1}. Thus we need only store n to determine the vertex set. For the edge set E, we have a choice
of two simple representations. The first is to use an n × n adjacency matrix with boolean entries representing
adjacency. This requires O(n2) memory and allows adjacency tests to be performed in constant time. Alterna-
tively, for each vertex we may store a list of adjacent vertices. This requires less memory for sparse graphs, but
random adjacency tests are no longer constant time. (Use of a more complex data structure in place of a list may
circumvent this issue.) In both cases, we have the option of exploiting symmetry to halve the number of entries
that must be stored, at the expense of a (constant) slower lookup time.

We are not restricting ourselves to sparse graphs, so we use an adjacency matrix. For bmcsa, to allow the use
of bit operations, each row must be laid out as a sequence of adjacent bits in memory. For mcsa we have slightly
more freedom, and may use either representation of E.

4.3 Data Sharing

Since we are using shared memory parallelism, and since the graph data structure is not modified during execu-
tion, we may share the graph between threads to save memory (and improve cache performance). C++ provides
us with strong enough guarantees to do this without locking [Wil12Wil12].

Sharing the incumbent requires more attention. Our performance guarantees require that updates to the
incumbent are made available “immediately”, and McCreesh and Prosser [MP12MP12] provide examples where not
doing so leads to considerable performance problems. To simplify the problem, we note that we only need to
share the size of the incumbent, not what its members are. Thus we need only share a single integer, and can
retrieve the actual maximal clique when joining threads.

The standard approach is to use a mutex to guarantee exclusive access to the integer. However, this is a
stronger form of exclusivity than is required: we expect that most of the time, we will be reading the integer,
but not updating it. There is no facility for dealing with this directly in C++11, but the Boost Thread libraries
[WE12WE12] provide a shared (read-write) mutex. We could alternatively use an atomic to avoid the need for lock-
ing altogether. We cannot be sure upfront which solution is best, so we implement all three and compare the
performance in Section 5.3.15.3.1.

4.4 Number of Threads

The number of threads to use is left as a configuration parameter—this allows experiments to be performed
evaluating scalability. For a sensible default, C++11 provides a library function11 which gives us a hint as to
how many threads to use. The standard does not define how this value is calculated, but in practice, on hyper-
threaded platforms, hardware threads are counted, not processor cores. As discussed in Section 3.3.23.3.2, this could
potentially cause a slowdown, and we must evaluate whether this is a problem. (Specifying more threads than
can be executed simultaneously leads to the same issue.)

We do not count the initial populating thread towards the thread count—it is expected that the amount of
work performed for population will be a very small part of the overall work. We also do not count the main
program thread, which just spawns then joins child threads.

1std::thread::hardware concurrency

19

Chapter 5

Experimental Evaluation

In this chapter we begin by showing that our sequential implementation performs competitively with pub-
lished results. We then present experimental results comparing various possible implementation choices for
our threaded algorithms, and justifying our choice of splitting distance. With these choices made, we run our
implementation on a variety of standard and random benchmarks and show that we can consistently obtain close-
to-linear speedups on non-trivial problems, with super-linear speedups being common.

5.1 Experimental Data and Methodology

We work with three sets of experimental data. The first set, from the DIMACS Implementation Challenges
[DIMDIM], contains a smörgåsbord of random and real-world problems of varying difficulty—some can be solved in
a few milliseconds, whilst others have not been solved at all. We report results for all of these graphs.

The second set consists of “Benchmarks with Hidden Optimum Solutions for Graph Problems” [BHOBHO].
Each of these contains a maximum clique of known size that has been hidden in a way intended to make it
computationally very hard to find. We present results only for the smaller problems.

Finally, we work with Erdős-Réyni random graphs, which have a chosen number of vertices, and an edge
between each (unordered) pair of vertices with a given independent probability. We denote by G(n, p) such a
graph with n vertices and edge probability p.

For timing results, following standard practice we exclude the time taken to read in the graph from the file.
We include the time to do preprocessing on the graph (this is not entirely standard, but we consider it the more
realistic approach). We measure the wallclock time until completion of the algorithm. In the case of threaded
algorithms, we include the time taken to launch and join threads and to accumulate results as part of the runtime.
When giving speedups, we compare threaded runtimes against the sequential algorithm, not against the threaded
algorithm running with a single thread, and all experiments have actually been performed on real hardware and
are not simulations. We also spend the following section verifying that our implementation of the sequential
algorithm is competitive with published results. In other words, our speedup figures measure what we can
genuinely gain over a state of the art implementation [Bai09Bai09].

Except where otherwise noted, experiments are performed on a computer with two Intel Xeon E5645 (“West-
mere-EP”) processors running at 2.4GHz. Each of these processors has six cores, and hyper-threading is enabled,
giving a total of twelve “real” cores, or twenty-four hardware threads. To get a better view of scalability we report
results using four, eight, twelve and twenty-four worker threads. As discussed in Section 3.3.23.3.2, we should not

20

expect speedup to double when going from twelve to twenty-four threads, and a lower speedup-per-thread here
(or even a slowdown) is not a sign of scalability issues.

5.2 Comparison of Sequential Algorithm to Published Results

The Java implementation by Prosser [Pro12Pro12] allows for easy validation of the sequential implementation. By
copying the node counting mechanism used, and ensuring that tie-breaking in sorting by degree was performed
in the same way (via vertex number), we are able to ensure that our implementation carries out exactly the same
steps on sample problems. In addition, running both implementations on the same problems on the same machine
and comparing runtimes allows us to be confident that we have not introduced substantial slowdowns due to poor
programming (for example, the wrong choice of representation for the candidate and adjacency sets can easily
double runtimes).

We use the “brock400” instances from DIMACS and obtain the results in Table 5.15.1. It was verified that
the node counts were identical in each case. We observe that our implementation runs significantly faster (but
by a more or less constant factor for mcsa, and a different more or less constant factor for bmcsa). This is not
unexpected: our implementation is written in C++ rather than Java, and we have coded with performance in mind
rather than modularity.

Table 5.1: Comparison of sequential runtimes (in seconds) and nodes with the implementation of Prosser
[Pro12Pro12]. Our mcsa is the same algorithm as Prosser’s MCSa1, and bmcsa is the same as BBMC1.

Problem mcsa MCSa1 bmcsa BBMC1
brock400 1 1510s 198,359,829 2566s 198,359,829 275s 198,359,829 716s 198,359,829
brock400 2 1112s 145,597,994 1860s 145,597,994 201s 145,597,994 500s 145,597,994
brock400 3 864s 120,230,513 1440s 120,230,513 159s 120,230,513 396s 120,230,513
brock400 4 428s 54,440,888 721s 54,440,888 78s 54,440,888 196s 54,440,888

The source code for the implementation by San Segundo [SMRLH11SMRLH11] is not publicly available. However, we
obtained access to a machine with the same CPU model as was used to produce the published results. Although
our algorithm is not identical due to differences in initial vertex ordering, we see from Table 5.25.2 that runtimes
are comparable. Results in the penultimate column were provided by Pablo San Segundo for a more optimised
implementation on the same machine. Note that the computer used to produce this comparison is not the same
as the one used for other experiments in this report.

Table 5.2: Comparison of runtimes (in seconds) for bmcsa with San Segundo’s published and improved results
for BBMCI [SMRLH11SMRLH11] (which differs slightly from our algorithm), and with runtimes using Prosser’s BBMC1
[Pro12Pro12] (which is the same as our algorithm). The system used to produce these results has the same model CPU
as was used by San Segundo.

Problem bmcsa BBMCI San Segundo BBMC1
brock400 1 198s 341s 270s 507s
brock400 2 144s 144s 113s 371s
brock400 3 114s 229s 180s 294s
brock400 4 56s 133s 107s 146s

21

5.3 Analysis of Implementation Choices for the Threaded Algorithm

In Chapters 33 and 44 we left certain implementation choices open: we did not decide how the incumbent would
be shared, and we did not commit to a particular splitting distance. Here we evaluate our options experimentally.

5.3.1 Locking Mechanism for Sharing the Incumbent

In Section 4.34.3 we discussed three possible ways of sharing the incumbent: by using a mutex, by using a shared
mutex, or by using atomics. All three methods were implemented for tmcsa, and benchmarks were performed
using a varying number of threads over 500 instances of G(200, 0.9). The average runtimes and speedups (i.e.
the sum of the sequential runtimes over the sum of the parallel runtimes [BW05BW05]) are presented in Table 5.35.3.
These figures use splitting at distance 1 from the root and no work donation.

Table 5.3: Average runtime (in seconds) and speedup over mcsa for tmcsa with 500 instances of G(200, 0.9)
using different locking mechanisms for sharing the incumbent, and 4 to 24 threads on a 12 core hyper-threaded
system.

Method tmcsa
4 8 12 24

Mutex 66.6s 4.0 34.1s 7.8 25.5s 10.4 26.3s 10.1
Shared mutex 75.5s 3.5 48.1s 5.5 44.0s 6.1 45.6s 5.8
Atomics 65.7s 4.1 33.0s 8.1 23.6s 11.3 22.8s 11.7

We see that shared mutexes consistently give worse runtimes than simple, exclusive mutexes, and that the
disadvantage increases as the number of threads increases. There is less of a difference between mutexes and
atomics, but using atomics does provide a measurable advantage. It is also interesting to note that only with
atomics does performance continue to improve when going from 12 to 24 threads. With this in mind, we opt to
use atomics despite the increased programming difficulty.

5.3.2 Splitting Distance and Work Donation

In Section 3.43.4 we suggested that splitting closer to the root may increase the possibility for super-linear speedup.
We put this to the test by benchmarking the effects of splitting at different distances from the root over 500
instances of G(200, 0.9). We also measure the effect of work donation.

The results are presented in Table 5.4 on the next page5.4 on the next page. We see that on average, the splitting distance has
little effect on runtimes. Work donation appears to provide a slight benefit in some cases, and a slight penalty
in others. However, the table does not tell the full story: we wish to know whether splitting distance affects the
possibility of super-linear speedups. For this we refer to Figure 5.1 on the following page5.1 on the following page, which shows threaded
versus sequential runtimes for each instance. We see that for splitting at distance 1 with or without work donation,
we get a variety of speedups, whereas for distances 2 and 3 the speedups in each case are always close to the
average.

We argued in Section 3.43.4 that increasing the possibility of a super-linear speedup is more desirable than
gaining a consistent speedup. With that in mind, we opt for splitting at distance 1, and using work donation: we
will be hedging our bets against bad early heuristic choices, rather than assisting a nearly-sequential search. (We
see in Section 5.65.6 that for some problems, the extent of the super-linear speedup goes considerably beyond what
we have observed from G(200, 0.9).)

22

Table 5.4: Average runtime (in seconds) and speedup over mcsa for tmcsa with 500 instances of G(200, 0.9)
using different splitting mechanisms, and 4 to 24 threads on a 12 core hyper-threaded system. A more detailed
picture is presented in Figure 5.15.1.

Method tmcsa
4 8 12 24

Depth 1 65.7s 4.1 33.0s 8.1 23.6s 11.3 22.8s 11.7
Depth 1 with donation 65.9s 4.0 32.5s 8.2 22.3s 11.9 18.4s 14.5
Depth 2 67.3s 4.0 33.6s 7.9 23.0s 11.6 18.1s 14.7
Depth 2 with donation 67.4s 4.0 33.6s 7.9 23.2s 11.5 18.1s 14.7
Depth 3 67.5s 3.9 33.8s 7.9 23.3s 11.5 18.5s 14.4
Depth 3 with donation 67.6s 3.9 33.9s 7.9 23.5s 11.3 18.5s 14.4

Figure 5.1: Runtimes for mcsa vs tmcsa, 500 instances of G(200, 0.9) with different splitting distances using
12 threads on a 12 core hyper-threaded system. Each point is a problem instance. Points below the line represent
super-linear speedups. We see that splitting at distance 1, with or without donation, increases the possibility of
super-linearity at the expense of consistency.

0

20

40

60

80

100

0 200 400 600 800 1000

tm
cs

a
ru

nt
im

e
(s

ec
on

ds
)

mcsa runtime (seconds)

12 threads, distance 1

Problem instance
Linear speedup

0

20

40

60

80

100

0 200 400 600 800 1000

tm
cs

a
ru

nt
im

e
(s

ec
on

ds
)

mcsa runtime (seconds)

12 threads, distance 1 with donation

Problem instance
Linear speedup

0

20

40

60

80

100

0 200 400 600 800 1000

tm
cs

a
ru

nt
im

e
(s

ec
on

ds
)

mcsa runtime (seconds)

12 threads, distance 2

Problem instance
Linear speedup

0

20

40

60

80

100

0 200 400 600 800 1000

tm
cs

a
ru

nt
im

e
(s

ec
on

ds
)

mcsa runtime (seconds)

12 threads, distance 3

Problem instance
Linear speedup

23

5.4 Threaded Experimental Results on Standard and Random Benchmarks

Experimental results on graphs from DIMACS and BHOSLIB are presented in Table 5.5 on the next page5.5 on the next page, and
on Erdős-Réyni random graphs in Table 5.6 on page 265.6 on page 26. The DIMACS benchmarks include a wide variety of
problem sizes and difficulties. Problems which took under one second to solve with mcsa are shown with a
grey background. We attempted every DIMACS instance at least with tbmcsa with 24 threads. Some problems
took over a day to solve, and for these we indicate the largest clique we found in that time. Blank entries in
the table indicate problems that were not attempted with other algorithms or numbers of threads due to resource
limitations—as per Gustafson’s law [Gus88Gus88], we are using parallelism in these cases to tackle larger problems
rather than to produce a speedup.

When the sequential execution takes less than one quarter of a second, we sometimes get a speedup, and
sometimes get a slowdown. Runtime measurements in this area are not consistently reproducible. This is not
unexpected: we must still launch and join all our worker threads, and this overhead can only be ignored for
non-trivial problems. There is also the sequential pre-processing of the graph to overcome. We do not attempt to
address this issue: other sequential algorithms are already better for “easy” graphs.

For sequential runtimes above one quarter of a second, we always produce a speedup. On the DIMACS
benchmarks, with 4, 8 and 12 threads this speedup is usually at least close to linear and super-linear speedups are
common. Over the instances where the mcsa runtime is at least one second (those not shown in grey in Table 5.55.5),
our worst speedups are 2.9 from 4 threads, 3.7 from 8 threads, and 3.6 from 12 threads with tmcsa, and 3.2 from
4 threads, 4.5 from 8 threads, and 4.2 from 12 threads with tbmcsa. These all correspond to problems where
the threaded runtimes end up below one second. In the best case, we get speedups of 18.1 from 4 threads (and
of 139.8 on one of the trivial instances), 126.3 from 8 threads and 109.1 from 12 threads using tmcsa, and from
tbmcsa, 19.5 from 4 threads, 75.3 from 8 threads and 102.2 from 12 threads. We get super-linear speedups for
in between one third and one half of these cases.

For the BHOSLIB benchmarks, which are designed to be hard to solve, our results are particularly consistent:
our speedups are nearly always super-linear, with a speedup of between 11.7 and 15.0 from 12 threads.

On random graphs we still produce a speedup for every non-trivial data set, although the speedups are lower.
This is not surprising: most of our random graphs are relatively large and sparse, and have an expensive initial
sequential portion.

When using 24 threads we must worry about hyper-threading; nonetheless, our speedups typically (but not
always) improve over those for 12 threads, and even when they do not, a speedup is still obtained.

We do not see any evidence of scalability problems when making use of all the cores available to us. A single
shared queue does not appear to be a source of contention, and the use of atomics for sharing the incumbent
directly is successful. We cannot say when this design will no longer be adequate, but it is at a point beyond the
number of cores commonly available in current systems.

24

Table 5.5: Experimental results for DIMACS and BHOSLIB instances. Shown first are runtimes for mcsa, and runtimes with speedups over mcsa for tmcsa
using 4 to 24 threads on a 12 core hyper-threaded system. Next are runtimes for bmcsa, and runtimes with speedups over bmcsa for tbmcsa. Super-linear
speedups are shown in bold; problems where mcsa takes under one second have a grey background, and blanks indicate unattempted problems.

Problem ω mcsa tmcsa bmcsa tbmcsa
4 8 12 24 4 8 12 24

brock200 1 21 2.5s 631ms 3.9 293ms 8.5 255ms 9.7 164ms 15.2 386ms 98ms 3.9 57ms 6.8 37ms 10.4 34ms 11.4
brock200 2 12 16ms 7ms 2.3 16ms 1.0 18ms 0.9 30ms 0.5 2ms 3ms 0.7 6ms 0.3 6ms 0.3 7ms 0.3
brock200 3 15 71ms 22ms 3.2 19ms 3.7 24ms 3.0 26ms 2.7 10ms 6ms 1.7 8ms 1.2 8ms 1.2 9ms 1.1
brock200 4 17 261ms 72ms 3.6 49ms 5.3 49ms 5.3 41ms 6.4 40ms 12ms 3.3 12ms 3.3 9ms 4.4 10ms 4.0
brock400 1 27 1,510.3s 386.6s 3.9 198.6s 7.6 137.7s 11.0 69.9s 21.6 274.9s 69.3s 4.0 36.0s 7.6 25.3s 10.9 11.7s 23.4
brock400 2 29 1,112.2s 285.0s 3.9 126.2s 8.8 94.4s 11.8 50.0s 22.2 200.8s 50.7s 4.0 22.2s 9.0 16.6s 12.1 8.9s 22.5
brock400 3 31 864.1s 207.7s 4.2 95.5s 9.0 59.0s 14.7 31.6s 27.4 159.4s 38.6s 4.1 17.4s 9.1 10.6s 15.1 5.7s 28.0
brock400 4 33 428.4s 101.0s 4.2 47.9s 8.9 12.7s 33.7 10.1s 42.6 77.5s 17.9s 4.3 8.5s 9.1 1.9s 40.4 1.7s 45.5
brock800 1 23 20,781.5s 5,170.0s 4.0 2,511.8s 8.3 1,714.2s 12.1 1,122.8s 18.5 4,969.8s 1,216.5s 4.1 587.1s 8.5 405.6s 12.3 269.9s 18.4
brock800 2 24 20,714.6s 5,211.3s 4.0 2,536.1s 8.2 1,629.9s 12.7 1,109.3s 18.7 4,958.2s 1,237.8s 4.0 584.8s 8.5 386.0s 12.8 266.7s 18.6
brock800 3 25 19,036.9s 4,753.8s 4.0 2,241.6s 8.5 1,457.5s 13.1 964.6s 19.7 4,590.7s 1,125.2s 4.1 533.2s 8.6 347.8s 13.2 222.2s 20.7
brock800 4 26 7,559.4s 1,802.3s 4.2 965.7s 7.8 656.0s 11.5 548.4s 13.8 1,733.0s 408.7s 4.2 220.3s 7.9 152.3s 11.4 131.5s 13.2
c-fat200-1 12 0ms 7ms 0.0 10ms 0.0 15ms 0.0 24ms 0.0 0ms 2ms 0.0 6ms 0.0 6ms 0.0 4ms 0.0
c-fat200-2 22 0ms 3ms 0.0 9ms 0.0 11ms 0.0 18ms 0.0 0ms 1ms 0.0 5ms 0.0 4ms 0.0 8ms 0.0
c-fat200-5 58 1ms 7ms 0.1 26ms 0.0 13ms 0.1 24ms 0.0 0ms 2ms 0.0 6ms 0.0 6ms 0.0 8ms 0.0
c-fat500-1 14 1ms 18ms 0.1 151ms 0.0 75ms 0.0 110ms 0.0 1ms 4ms 0.2 7ms 0.1 8ms 0.1 12ms 0.1
c-fat500-10 124 3ms 21ms 0.1 62ms 0.0 85ms 0.0 133ms 0.0 2ms 4ms 0.5 8ms 0.2 12ms 0.2 13ms 0.2
c-fat500-2 26 1ms 21ms 0.0 51ms 0.0 77ms 0.0 206ms 0.0 1ms 3ms 0.3 8ms 0.1 10ms 0.1 15ms 0.1
c-fat500-5 63 1ms 23ms 0.0 53ms 0.0 88ms 0.0 143ms 0.0 2ms 3ms 0.7 9ms 0.2 10ms 0.2 13ms 0.2
C125.9 34 318ms 102ms 3.1 45ms 7.1 47ms 6.8 41ms 7.8 43ms 13ms 3.3 11ms 3.9 15ms 2.9 21ms 2.0
C250.9 44 11,311.4s 2,902.6s 3.9 1,588.8s 7.1 974.3s 11.6 844.2s 13.4 1,606.8s 411.2s 3.9 228.1s 7.0 147.8s 10.9 149.0s 10.8
C500.9 ≥54 >1 day
C1000.9 ≥58 >1 day
C2000.5 16 4,347.9s
C2000.9 ≥65 >1 day
C4000.5 ≥18 >1 day
DSJC500 5 13 6.0s 1.8s 3.3 883ms 6.8 727ms 8.2 535ms 11.2 1.0s 266ms 3.9 152ms 6.7 130ms 7.9 89ms 11.5
DSJC1000 5 15 611.4s 155.9s 3.9 78.8s 7.8 53.3s 11.5 44.7s 13.7 135.7s 34.7s 3.9 17.4s 7.8 11.7s 11.6 9.1s 15.0
gen200 p0.9 44 44 16.7s 4.5s 3.7 903ms 18.4 792ms 21.0 329ms 50.6 2.5s 654ms 3.9 109ms 23.2 100ms 25.3 95ms 26.6
gen200 p0.9 55 55 1.4s 233ms 6.0 18ms 77.1 31ms 44.8 43ms 32.3 212ms 39ms 5.4 8ms 26.5 11ms 19.3 17ms 12.5
gen400 p0.9 55 ≥55 >1 day
gen400 p0.9 65 65 17,773.9s
gen400 p0.9 75 75 3,799.6s
hamming6-2 32 0ms 2ms 0.0 5ms 0.0 7ms 0.0 10ms 0.0 0ms 1ms 0.0 5ms 0.0 5ms 0.0 8ms 0.0
hamming6-4 4 0ms 2ms 0.0 5ms 0.0 5ms 0.0 8ms 0.0 0ms 2ms 0.0 4ms 0.0 2ms 0.0 9ms 0.0
hamming8-2 126 2ms 12ms 0.2 23ms 0.1 31ms 0.1 45ms 0.0 1ms 3ms 0.3 7ms 0.1 10ms 0.1 10ms 0.1
hamming8-4 16 272ms 77ms 3.5 56ms 4.9 47ms 5.8 51ms 5.3 43ms 13ms 3.3 13ms 3.3 12ms 3.6 10ms 4.3
hamming10-2 511 133ms 218ms 0.6 398ms 0.3 511ms 0.3 1.3s 0.1 35ms 32ms 1.1 38ms 0.9 44ms 0.8 44ms 0.8
hamming10-4 ≥40 >1 day
johnson8-2-4 4 0ms 2ms 0.0 4ms 0.0 3ms 0.0 5ms 0.0 0ms 1ms 0.0 2ms 0.0 5ms 0.0 5ms 0.0
johnson8-4-4 14 0ms 2ms 0.0 4ms 0.0 4ms 0.0 8ms 0.0 0ms 1ms 0.0 2ms 0.0 3ms 0.0 7ms 0.0
johnson16-2-4 8 320ms 88ms 3.6 59ms 5.4 39ms 8.2 60ms 5.3 50ms 15ms 3.3 12ms 4.2 11ms 4.5 24ms 2.1
johnson32-2-4 ≥16 >1 day
keller4 11 52ms 15ms 3.5 14ms 3.7 12ms 4.3 16ms 3.2 8ms 5ms 1.6 6ms 1.3 7ms 1.1 9ms 0.9
keller5 27 10,241.3s
keller6 ≥55 >1 day
MANN a9 16 0ms 1ms 0.0 5ms 0.0 3ms 0.0 6ms 0.0 0ms 1ms 0.0 3ms 0.0 5ms 0.0 5ms 0.0
MANN a27 126 2.9s 787ms 3.7 392ms 7.5 310ms 9.5 296ms 9.9 262ms 71ms 3.7 62ms 4.2 63ms 4.2 116ms 2.3
MANN a45 345 1,726.9s 432.4s 4.0 211.6s 8.2 127.6s 13.5 107.1s 16.1 224.8s 56.3s 4.0 27.1s 8.3 18.2s 12.3 12.5s 17.9
MANN a81 ≥1100 >1 day
p hat300-1 8 5ms 10ms 0.5 28ms 0.2 37ms 0.1 58ms 0.1 1ms 4ms 0.2 9ms 0.1 9ms 0.1 10ms 0.1
p hat300-2 25 35ms 18ms 1.9 26ms 1.3 40ms 0.9 53ms 0.7 7ms 5ms 1.4 6ms 1.2 9ms 0.8 12ms 0.6
p hat300-3 36 6.0s 1.6s 3.7 918ms 6.6 668ms 9.0 531ms 11.4 1.1s 291ms 3.7 156ms 7.0 129ms 8.4 103ms 10.5
p hat500-1 9 49ms 34ms 1.4 74ms 0.7 76ms 0.6 151ms 0.3 10ms 9ms 1.1 13ms 0.8 13ms 0.8 11ms 0.9
p hat500-2 36 1.5s 411ms 3.6 290ms 5.1 247ms 6.0 248ms 6.0 251ms 69ms 3.6 44ms 5.7 42ms 6.0 40ms 6.3
p hat500-3 50 646.3s 171.4s 3.8 89.4s 7.2 62.8s 10.3 51.1s 12.6 108.7s 29.5s 3.7 15.1s 7.2 10.8s 10.1 8.1s 13.4
p hat700-1 11 170ms 94ms 1.8 149ms 1.1 146ms 1.2 251ms 0.7 60ms 19ms 3.2 19ms 3.2 22ms 2.7 20ms 3.0
p hat700-2 44 13.5s 3.5s 3.9 1.8s 7.4 1.8s 7.6 1.4s 10.0 3.1s 946ms 3.3 402ms 7.7 403ms 7.7 270ms 11.5
p hat700-3 62 7,446.4s 1,886.9s 3.9 1,009.3s 7.4 700.8s 10.6 603.3s 12.3 1,627.6s 419.9s 3.9 223.9s 7.3 156.8s 10.4 120.4s 13.5
p hat1000-1 10 1.4s 365ms 4.0 395ms 3.7 398ms 3.6 563ms 2.6 232ms 72ms 3.2 51ms 4.5 44ms 5.3 48ms 4.8

Continued on next page

25

Table 5.5 – continued from previous page
Problem ω mcsa tmcsa bmcsa tbmcsa

4 8 12 24 4 8 12 24
p hat1000-2 46 699.8s 179.3s 3.9 91.6s 7.6 62.3s 11.2 52.0s 13.5 159.2s 40.5s 3.9 20.4s 7.8 14.3s 11.1 11.7s 13.7
p hat1000-3 68 53,424.6s
p hat1500-1 12 12.1s 3.0s 4.1 1.7s 7.1 1.5s 8.1 1.5s 8.1 3.2s 821ms 3.9 433ms 7.4 341ms 9.4 259ms 12.4
p hat1500-2 65 72,775.5s 18,389.1s 4.0 9,261.7s 7.9 6,327.2s 11.5 5,682.0s 12.8 24,338.5s 6,117.3s 4.0 3,089.0s 7.9 2,094.6s 11.6 1,789.1s 13.6
p hat1500-3 ≥81 >1 day
san200 0.7 1 30 74ms 6ms 12.3 13ms 5.7 18ms 4.1 22ms 3.4 15ms 3ms 5.0 7ms 2.1 9ms 1.7 12ms 1.2
san200 0.7 2 18 2ms 5ms 0.4 10ms 0.2 11ms 0.2 23ms 0.1 1ms 2ms 0.5 6ms 0.2 7ms 0.1 9ms 0.1
san200 0.9 1 70 559ms 4ms 139.8 12ms 46.6 16ms 34.9 20ms 28.0 92ms 2ms 46.0 6ms 15.3 11ms 8.4 9ms 10.2
san200 0.9 2 60 2.4s 318ms 7.5 19ms 126.3 22ms 109.1 47ms 51.1 348ms 48ms 7.2 8ms 43.5 8ms 43.5 11ms 31.6
san200 0.9 3 44 54.7s 3.0s 18.1 2.1s 25.7 956ms 57.3 993ms 55.1 8.5s 439ms 19.5 319ms 26.8 177ms 48.3 271ms 31.5
san400 0.5 1 13 28ms 23ms 1.2 103ms 0.3 53ms 0.5 93ms 0.3 8ms 5ms 1.6 8ms 1.0 12ms 0.7 11ms 0.7
san400 0.7 1 40 1.1s 381ms 2.9 113ms 9.8 111ms 10.0 145ms 7.6 224ms 68ms 3.3 24ms 9.3 21ms 10.7 19ms 11.8
san400 0.7 2 30 9.7s 2.3s 4.1 1.7s 5.7 909ms 10.7 394ms 24.6 2.0s 590ms 3.4 298ms 6.7 176ms 11.4 76ms 26.3
san400 0.7 3 22 5.9s 441ms 13.5 311ms 19.1 295ms 20.1 281ms 21.1 1.3s 84ms 15.0 62ms 20.3 54ms 23.4 58ms 21.7
san400 0.9 1 100 201.9s 37.2s 5.4 2.6s 77.9 1.9s 108.7 1.5s 136.6 23.5s 5.3s 4.4 312ms 75.3 230ms 102.2 191ms 123.0
san1000 15 5.6s 1.5s 3.8 985ms 5.7 791ms 7.1 879ms 6.4 1.9s 488ms 3.9 281ms 6.8 173ms 11.1 108ms 17.7
sanr200 0.7 18 695ms 184ms 3.8 94ms 7.4 79ms 8.8 80ms 8.7 106ms 35ms 3.0 19ms 5.6 16ms 6.6 14ms 7.6
sanr200 0.9 42 138.3s 37.7s 3.7 19.5s 7.1 14.3s 9.7 14.4s 9.6 19.4s 5.3s 3.7 2.8s 6.8 2.2s 9.0 3.0s 6.4
sanr400 0.5 13 1.5s 389ms 3.7 240ms 6.1 194ms 7.5 186ms 7.8 253ms 80ms 3.2 44ms 5.8 36ms 7.0 27ms 9.4
sanr400 0.7 21 393.9s 100.9s 3.9 50.6s 7.8 33.9s 11.6 25.3s 15.6 72.1s 18.1s 4.0 9.1s 7.9 6.2s 11.7 4.6s 15.7
frb30-15-1 30 3,421.7s 851.1s 4.0 408.1s 8.4 234.7s 14.6 181.1s 18.9 657.1s 160.2s 4.1 76.6s 8.6 43.9s 15.0 35.5s 18.5
frb30-15-2 30 6,058.3s 1,509.6s 4.0 742.2s 8.2 481.5s 12.6 310.2s 19.5 1,183.1s 287.7s 4.1 141.7s 8.3 93.6s 12.6 65.8s 18.0
frb30-15-3 30 1,879.0s 431.8s 4.4 207.1s 9.1 133.1s 14.1 96.0s 19.6 356.7s 80.8s 4.4 38.8s 9.2 25.3s 14.1 19.5s 18.3
frb30-15-4 30 10,173.2s 2,612.6s 3.9 1,293.7s 7.9 870.8s 11.7 662.5s 15.4 1,963.2s 496.0s 4.0 246.1s 8.0 166.0s 11.8 124.4s 15.8
frb30-15-5 30 3,118.3s 705.2s 4.4 370.4s 8.4 229.6s 13.6 203.9s 15.3 577.1s 129.2s 4.5 68.4s 8.4 44.4s 13.0 42.1s 13.7
frb35-17-1 35 198,847.8s 46,934.9s 4.2 23,018.9s 8.6 14,760.7s 13.5 8,385.8s 23.7 51,481.7s 12,072.8s 4.3 5,949.7s 8.7 3,800.8s 13.5 2,532.0s 20.3
frb35-17-2 35 351,034.7s 85,171.0s 4.1 42,558.0s 8.2 27,787.8s 12.6 20,867.1s 16.8 91,275.0s 21,867.3s 4.2 10,959.2s 8.3 7,175.1s 12.7 5,677.3s 16.1
frb35-17-3 35 126,010.7s 31,243.8s 4.0 15,230.6s 8.3 10,578.8s 11.9 8,544.3s 14.7 33,852.1s 8,278.8s 4.1 4,063.2s 8.3 2,813.6s 12.0 2,349.3s 14.4
frb35-17-4 35 141,670.0s 35,293.6s 4.0 17,226.5s 8.2 10,051.0s 14.1 8,090.6s 17.5 37,629.2s 9,319.5s 4.0 4,522.7s 8.3 2,638.6s 14.3 2,196.1s 17.1
frb35-17-5 35 776,775.2s 191,165.9s 4.1 95,960.1s 8.1 62,805.0s 12.4 37,306.0s 20.8 205,356.0s 49,901.9s 4.1 25,130.3s 8.2 16,365.4s 12.5 10,363.4s 19.8

Table 5.6: Experimental results for random graph instances. Shown first are runtimes for mcsa, and runtimes with speedups over mcsa for tmcsa using 4 to 24
threads on a 12 core hyper-threaded system. Next are runtimes for bmcsa, and runtimes with speedups over bmcsa for tbmcsa. Super-linear speedups are shown
in bold; problems where mcsa takes under one second have a grey background.

Problem Sample size mcsa tmcsa bmcsa tbmcsa
4 8 12 24 4 8 12 24

G(200, 0.9) 500 266.6s 65.9s 4.0 32.5s 8.2 22.3s 11.9 18.4s 14.5 39.2s 9.6s 4.1 4.8s 8.2 3.5s 11.2 4.6s 8.5
G(1000, 0.1) 10 31ms 95ms 0.3 211ms 0.1 328ms 0.1 575ms 0.1 18ms 18ms 1.0 23ms 0.8 26ms 0.7 33ms 0.5
G(1000, 0.2) 10 262ms 159ms 1.6 244ms 1.1 326ms 0.8 559ms 0.5 65ms 30ms 2.2 30ms 2.2 32ms 2.0 36ms 1.8
G(1000, 0.3) 10 2.5s 791ms 3.2 556ms 4.6 538ms 4.7 706ms 3.6 532ms 151ms 3.5 100ms 5.3 83ms 6.4 76ms 7.0
G(1000, 0.4) 10 28.5s 7.3s 3.9 3.9s 7.3 3.1s 9.3 2.4s 11.8 6.1s 1.6s 3.9 860ms 7.1 585ms 10.5 439ms 13.9
G(1000, 0.5) 10 629.6s 158.3s 4.0 80.2s 7.8 54.3s 11.6 42.0s 15.0 138.6s 34.9s 4.0 17.6s 7.9 12.2s 11.3 8.9s 15.6
G(3000, 0.1) 10 1.9s 769ms 2.5 877ms 2.2 1.1s 1.8 1.8s 1.1 640ms 220ms 2.9 171ms 3.7 156ms 4.1 168ms 3.8
G(3000, 0.2) 10 37.7s 9.8s 3.9 5.4s 6.9 4.4s 8.5 4.4s 8.6 11.9s 3.1s 3.9 1.7s 7.0 1.2s 10.1 900ms 13.3
G(3000, 0.3) 10 1,042.1s 274.1s 3.8 132.2s 7.9 89.4s 11.7 76.6s 13.6 358.5s 90.3s 4.0 45.6s 7.9 30.7s 11.7 23.2s 15.4
G(10000, 0.1) 10 214.5s 57.6s 3.7 36.3s 5.9 31.5s 6.8 50.9s 4.2 84.6s 21.8s 3.9 11.5s 7.3 8.5s 9.9 7.3s 11.6
G(15000, 0.1) 10 1,417.3s 375.5s 3.8 281.2s 5.0 282.4s 5.0 299.0s 4.7 403.5s 102.8s 3.9 53.8s 7.5 38.1s 10.6 33.2s 12.2

26

5.5 Comparison of Threaded Results with Theoretical Limits

For the 500 G(200, 0.9) instances, Figure 5.25.2 plots obtained speedups versus the speedup limit discussed in
Section 3.33.3. For the x position of each graph instance, we perform a sequential run and note the runtime and
the size of the maximum clique (i.e. ω and Tseq). We then re-run the sequential implementation, priming the
incumbent with what we now know to be the size of a maximum clique, to find the time spent visiting ineliminable
nodes Tinelim. The speedup limit from Equation 3.3 on page 153.3 on page 15 is then the number of threads, multiplied by the
ratio of the sequential runtime to the primed sequential runtime. For the y position, we take the sequential runtime
divided by the threaded runtime to get the actual speedup.

The straight line plots y = x. Points below this line are “acceptable”, in that they do not exceed our theoretical
limit. We see that in some cases we get very close to the line, but we do not pass it11. This is empirical evidence
that our theory and implementation are in agreement.

Figure 5.2: Achieved speedup vs speedup limit with tmcsa and tbmcsa, G(200, 0.9), on a 12 core hyper-
threaded system. We expect all points to be below the line.

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

O
bt

ai
ne

d
sp

ee
du

p

Speedup limit

4 threads

Problem instance (mcsa)
Problem instance (bmcsa)

Best possible speedup

0

5

10

15

20

25

30

0 5 10 15 20 25 30

O
bt

ai
ne

d
sp

ee
du

p

Speedup limit

8 threads

Problem instance (mcsa)
Problem instance (bmcsa)

Best possible speedup

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45

O
bt

ai
ne

d
sp

ee
du

p

Speedup limit

12 threads

Problem instance (mcsa)
Problem instance (bmcsa)

Best possible speedup

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90

O
bt

ai
ne

d
sp

ee
du

p

Speedup limit

24 threads22

Problem instance (mcsa)
Problem instance (bmcsa)

Best possible speedup

1There is one point that is ever so slightly over the line in the graphs for 4 and 8 threads. This is not evidence of a bug: we made a
number of simplifying assumptions, such as that every node took the same amount of time to evaluate, and the point is well within the
margins of measurement error.

2The difference in behaviour seen in the graph for 24 threads, where speedups from tbmcsa are consistently lower than those of tmcsa,
is due to hyper-threading. The benefit obtainable from hyper-threading depends upon patterns of memory accesses and computations,
which differ between the two encodings.

27

5.6 Analysis of Super-Linear Speedups

The behaviour we saw from the DIMACS instance “san400 0.9 1” in Table 5.55.5 is particularly interesting: we
go from a slightly better than linear speedup with four threads, to a speedup of greater than 100 when using
twelve or twenty four threads. A more detailed examination of this behaviour is instructive33. We plot the
total CPU time spent (i.e. runtimes multiplied by the number of threads) for varying numbers of threads in
Figure 5.3 on the next page5.3 on the next page. We also show the total CPU time taken to find a maximum clique but not to prove
its optimality (we rerun the program, telling it to exit as soon as it finds a clique of the size we now know to be
the maximum), and the total CPU time to find and prove optimality if we split at distance 3 rather than distance 1.

Total CPU time spent, as opposed to runtime, is perhaps not an obvious choice of y-axis. To understand why
this information is useful, we should take a moment to consider what we would expect to see here for the total
CPU times. We refer back to Figure 3.2 on page 163.2 on page 16. In the “no speedup” case, we would expect runtimes to
remain constant, and so total CPU time would rise linearly with the number of threads. In the “linear speedup”
case, we would expect roughly horizontal lines (this is similar to saying that our algorithm is work efficient—we
can think of the y-axis as being “work done”). But as we are getting a super-linear speedup, we expect a decrease
in the overall CPU time (our algorithm is better than work efficient, so we are doing less total work) as the
number of threads increases. That is indeed what happens.

But we can discover more from the graph by looking at the times taken to find but not prove optimality. With
a single thread, we see that most of the time spent is on finding a maximum clique, and that proving optimality
once such a clique has been found is a relatively simple affair. With eight or more threads, a maximum clique
is found almost immediately, and almost all the CPU time is spent proving optimality. Furthermore, with this
maximum found, a large portion of the search space that would have be explored in a sequential run is eliminated.

Going beyond eight threads, the total amount of work done is more or less constant. We still gain an increas-
ing speedup by splitting this work between threads, but this is now effectively linear (i.e. the graph is horizontal).

Finally, we see that the line for splitting at distance 3 from the root are much closer to being horizontal, and
do not show the same degree of super-linear speedup. This strongly justifies our choice in Section 3.43.4 of splitting
closer to the root: we are right not to commit heavily to an early heuristic choice.

This kind of behaviour is not unique to “san400 0.9 1”. A similar effect is observed with several members
of the “brock400” family of graphs and the “gen200” instances (we are unable to say whether the “gen400”
instances exhibit the same behaviour—we were unable to obtain sequential runtimes at all for these graphs).
The second graph plots “brock400 4”: we see that the ninth thread finds a maximum reasonably quickly. This
matches up with the data in Table 5.55.5, where we see a speedup of around 9 from 8 threads, but between 30 and
40 for 12 threads. The rising slope of the distance 3 line again validates our decision on splitting distance.

For comparison, we also present “brock400 1”, where our speedup is a little below linear. There are two
factors at work here. We see that we do not quickly find a maximum clique. Further experiments show that,
if we were using at least 20 threads instead of 12, we would find a maximum clique quickly—this explains the
speedup of over 20 from 24 threads, despite hyper-threading44. Even if a maximum is found immediately, though,
less than half of the search space can be eliminated, which reduces the possibilities for super-linearity.

These results provide a compelling case in favour of the kind of global parallelism we have introduced. Even
in non-ideal cases, we still produce a good speedup. But as predicted, we do not just gain a speedup from
exploiting multi-core parallelism; we also make certain problems much easier to solve.

3Here we look only at tmcsa for clarity. The same pattern is observed with tbmcsa.
4One may ask why we do not then use more threads than we have cores, to make this more likely to happen. Such an approach would

sometimes be of benefit, but only if we are prepared to accept the possibility of a considerable slowdown in other cases.

28

Figure 5.3: Total CPU time spent (i.e. runtimes multiplied by number of threads) for “san400 0.9 1”, “brock400 4” and “brock400 1” from DIMACS with
varying numbers of threads. Also shown is the total CPU time taken to find a maximum clique, but not prove its optimality, and the total CPU time to find and
prove optimality if we split at distance 3 instead of distance 1. Horizontal lines correspond to linear speedups, and downwards sloping lines are super-linear.

0

50

100

150

200

250

0 2 4 6 8 10 12

R
un

tim
e

(s
ec

on
ds

)×
nu

m
be

ro
ft

hr
ea

ds

Number of threads

san400 0.9 1

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12

R
un

tim
e

(s
ec

on
ds

)×
nu

m
be

ro
ft

hr
ea

ds

Number of threads

brock400 4

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

0 2 4 6 8 10 12

R
un

tim
e

(s
ec

on
ds

)×
nu

m
be

ro
ft

hr
ea

ds

Number of threads

brock400 1

tmcsa1 (finding maximum and proving optimality, splitting distance 1)
tmcsa1 (finding maximum only, splitting distance 1)

tmcsa1 (finding maximum and proving optimality, splitting distance 3)

29

Chapter 6

Conclusion

We discussed the maximum clique problem and presented two variations of a state of the art maximum clique
algorithm. We discussed standard techniques for parallelising branch and bound algorithms, and introduced new
threaded versions of the maximum clique algorithms, together with an analysis of the potential for speedup.
We implemented both the sequential algorithms and our threaded versions, and showed that the performance of
our sequential implementation is competitive with published results. We evaluated the threaded implementation
experimentally on a variety of standard and random benchmarks, and showed that near-linear speedups can
consistently be obtained on non-trivial problems, and that super-linear speedups are common.

This is important for two reasons. Firstly, existing work on local parallelism using bitset encodings has
produced a speedup of between two and twenty over the basic algorithm. We have shown that a further speedup of
around the same magnitude is possible by making use of the resources offered by today’s multi-core processors.

Secondly, we have shown that super-linearity can happen in practice, and not just as a rare event. Further-
more, when it does happen, the effects can be extremely significant. This super-linearity occurs only because
we designed for it, by using parallelism to offset bad early heuristic choices. Had we not used this approach, we
would be repeating Lai and Sahni’s claim that “our experimental results indicate that such anomalous behaviour
will be rarely witnessed in practice” [LS84LS84].

Our success contradicts some of the more pessimistic claims that have been made in the literature regarding
the suitability of sequential maximum clique algorithms for parallelisation: being unable to split the problem
into genuinely independent parts is not an insurmountable problem. Previous attempts at parallelising maximum
clique solvers either restricted themselves to sparse graphs, or were not taken beyond a very small number of
processors. By taking a threaded approach rather than using MPI or OpenMP, and by moving beyond a simple
dependency-free work splitting mechanism, we have shown that making use of multi-core parallelism for hard
clique problems is possible and worthwhile.

This work could be extended in several directions in the future. The results obtained so far suggest we might
expect similar kinds of speedups within families of graphs, and that hard instances may be more amenable to
super-linear speedups than easy ones—is this really the case, and if so, why? Or in a different direction, the
implementation could be adapted to use a hybrid threaded and MPI approach, to target clusters and allow for
even larger problems to be tackled. This is not just an engineering problem: with sufficiently many cores, there
may be better work splitting mechanisms available. Finally, it would be interesting to repeat the entire approach
with a different problem—say, graph colouring or SAT—and see whether the techniques and results generalise.
If they do, we will not just have a way of solving hard problems faster; thanks to super-linear speedups, we can
also make some hard problem instances easy.

30

References

[Amd67] Gene M. Amdahl, Validity of the single processor approach to achieving large scale computing
capabilities, Proceedings of the April 18-20, 1967, spring joint computer conference (New York,
NY, USA), AFIPS ’67 (Spring), ACM, 1967, pp. 483–485.

[Bai09] David H. Bailey, Misleading Performance Claims in Parallel Computations, 2009.

[BB10] Lucio Barreto and Michael Bauer, Parallel Branch and Bound Algorithm - A comparison between
serial, OpenMP and MPI implementations, Journal of Physics: Conference Series 256 (2010),
no. 1, 012018.

[BBPP99] Immanuel M. Bomze, Marco Budinich, Panos M. Pardalos, and Marcello Pelillo, The maximum
clique problem, Handbook of Combinatorial Optimization (Supplement Volume A) 4 (1999), 1–74.

[BHO] BHOSLIB: Benchmarks with Hidden Optimum Solutions for Graph Problems,
http://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-benchmarks.htmhttp://www.nlsde.buaa.edu.cn/˜kexu/benchmarks/graph-benchmarks.htm.

[BHP04] David A. Bader, William E. Hart, and Cynthia A. Phillips, Tutorials on Emerging Methodologies
and Applications in Operations Research: Presented at INFORMS 2004, Denver, CO, International
Series in Operations Research & Management Science, ch. Parallel Algorithm Design for Branch
and Bound, Springer, 2004.

[BKT95] Arie de Bruin, Gerard A. P. Kindervater, and H. W. J. M. Trienekens, Asynchronous Parallel
Branch and Bound and Anomalies, Proceedings of the Second International Workshop on Parallel
Algorithms for Irregularly Structured Problems (London, UK, UK), IRREGULAR ’95, Springer-
Verlag, 1995, pp. 363–377.

[BL99] Robert D. Blumofe and Charles E. Leiserson, Scheduling multithreaded computations by work
stealing, J. ACM 46 (1999), no. 5, 720–748.

[BP04] J.R. Bulpin and I.A. Pratt, Multiprogramming performance of the Pentium 4 with Hyper-Threading,
Workshop on Duplicating, Deconstructing, and Debunking (WDDD04), 2004.

[Bré79] Daniel Brélaz, New methods to color the vertices of a graph, Commun. ACM 22 (1979), no. 4,
251–256.

[BS81] F. Warren Burton and M. Ronan Sleep, Executing functional programs on a virtual tree of pro-
cessors, Proceedings of the 1981 conference on Functional programming languages and computer
architecture (New York, NY, USA), FPCA ’81, ACM, 1981, pp. 187–194.

[BW05] Holger Bast and Ingmar Weber, Don’t compare averages, Proceedings of the 4th international
conference on Experimental and Efficient Algorithms (Berlin, Heidelberg), WEA’05, Springer-
Verlag, 2005, pp. 67–76.

[BW06] Sergiy Butenko and Wilbert E. Wilhelm, Clique-detection models in computational biochemistry
and genomics, European Journal of Operational Research 173 (2006), no. 1, 1–17.

31

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm

[CHH91] Scott H. Clearwater, Bernardo A. Huberman, and Tad Hogg, Cooperative Solution of Constraint
Satisfaction Problems, Science 254 (1991), no. 5035, 1181–1183.

[CKT91] Peter Cheeseman, Bob Kanefsky, and William M. Taylor, Where the really hard problems are,
Morgan Kaufmann, 1991, pp. 331–337.

[CLT91] Jens Clausen and Jesper Larsson Träff, Implementation of parallel branch-and-bound algorithms
experiences with the graph partitioning problem, Annals of Operations Research 33 (1991), 329–
349 (English).

[CP90] Randy Carraghan and Panos M. Pardalos, An exact algorithm for the maximum clique problem,
Operations Research Letters 9 (1990), 375–382.

[CZ12] Renato Carmo and Alexandre P. Züge, Branch and bound algorithms for the maximum clique
problem under a unified framework, J. Braz. Comp. Soc. (2012), 137–151.

[DIM] DIMACS Implementation Challenges, http://dimacs.rutgers.edu/Challenges/http://dimacs.rutgers.edu/Challenges/.

[FLJ86] V. Faber, Olaf M. Lubeck, and Andrew B. White Jr., Superlinear speedup of an efficient sequential
algorithm is not possible, Parallel Computing 3 (1986), no. 3, 259 – 260.

[Fre86] Karen A. Frenkel, Complexity and parallel processing: an interview with Richard Karp, Commun.
ACM 29 (1986), no. 2, 112–117, Interviewee-Karp, Richard.

[GC94] Bernard Gendron and Teodor Gabriel Crainic, Parallel Branch-and-Branch Algorithms: Survey
and Synthesis, Operations Research 42 (November/December 1994), no. 6, 1042–1066.

[GJ90] Michael R. Garey and David S. Johnson, Computers and Intractability; A Guide to the Theory of
NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1990.

[Gro95] UEA Calma Group, Parallelism in Combinatorial Optimisation, 1995.

[Gus88] John L. Gustafson, Reevaluating Amdahl’s law, Commun. ACM 31 (1988), no. 5, 532–533.

[HBK06] Jim Held, Jerry Bautista, and Sean Koehl, From a Few Cores to Many: A Tera-scale Computing
Research Overview, Tech. report, 2006.

[HG95] W.D. Harvey and M.L. Ginsberg, Limited discrepancy search, International Joint Conference on
Artificial Intelligence, vol. 14, LAWRENCE ERLBAUM ASSOCIATES LTD, 1995, pp. 607–615.

[HHM08] J. Harris, J.L. Hirst, and M. Mossinghoff, Combinatorics and Graph Theory, Undergraduate Texts
in Mathematics, Springer, 2008.

[HM90] D. P. Helmbold and C. E. McDowell, Modeling Speedup (n) Greater than n, IEEE Trans. Parallel
Distrib. Syst. 1 (1990), no. 2, 250–256.

[IEE95] Information Technology — Portable Operating Systems Interface (POSIX) — Part: System Appli-
cation Program Interface (API) — Amendment 2: Threads Extension [C Language], IEEE Stan-
dard 1003.1c–1995, Institute of Electrical and Electronic Engineers, Inc., New York, NY, 1995.

[ISO11] ISO, ISO/IEC 9899:2011 Information technology — Programming languages — C, International
Organization for Standardization, Geneva, Switzerland, December 2011.

[ISO12] , ISO/IEC 14882:2011 Information technology — Programming languages — C++, Inter-
national Organization for Standardization, Geneva, Switzerland, February 2012.

[Kar72] Richard M. Karp, Reducibility Among Combinatorial Problems., Complexity of Computer Com-
putations (Raymond E. Miller and James W. Thatcher, eds.), The IBM Research Symposia Series,
Plenum Press, New York, 1972, pp. 85–103.

32

http://dimacs.rutgers.edu/Challenges/

[KZ93] Richard M. Karp and Yanjun Zhang, Randomized parallel algorithms for backtrack search and
branch-and-bound computation, J. ACM 40 (1993), no. 3, 765–789.

[Lee06] Edward A. Lee, The problem with threads, COMPUTER 39 (2006), 2006.

[LS84] Ten-Hwang Lai and Sartaj Sahni, Anomalies in parallel branch-and-bound algorithms, Commun.
ACM 27 (1984), no. 6, 594–602.

[LW86] Guo-Jie Li and Benjamin W. Wah, Coping with anomalies in parallel branch-and-bound algo-
rithms, IEEE Trans. Comput. 35 (1986), no. 6, 568–573.

[MBH+02] D.T. Marr, F. Binns, D.L. Hill, G. Hinton, D.A. Koufaty, J.A. Miller, and M. Upton, Hyper-
threading technology architecture and microarchitecture, Intel Technology Journal 6 (2002), no. 1,
4–15.

[MG85] Ravi Mehrotra and Edward F. Gehringer, Superlinear speedup through randomized algorithms,
ICPP’85, 1985, pp. 291–300.

[MM11] Cristopher Moore and Stephan Mertens, The Nature of Computation, Oxford University Press,
USA, July 2011.

[Mor02] Bernard ME Moret, Towards a discipline of experimental algorithmics, Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges,
vol. 59, AMS, 2002, pp. 197–213.

[MP12] Ciaran McCreesh and Patrick Prosser, Distributing an Exact Algorithm for Maximum Clique: max-
imising the costup, ArXiv e-prints (2012).

[MPI94] MPI: A Message-Passing Interface Standard, Tech. Report UT-CS-94-230, University of Ten-
nessee, Knoxville, TN, USA, May 1994.

[MRR12] M. McCool, J. Reinders, and A. Robison, Structured parallel programming: Patterns for efficient
computation, Elsevier Science, 2012.

[Ope11] OpenMP Application Program Interface Version 3.1, Tech. report, 2011.

[PMB11] Wayne Pullan, Franco Mascia, and Mauro Brunato, Cooperating local search for the maximum
clique problem, Journal of Heuristics 17 (2011), 181–199 (English).

[PPG+12] B. Pattabiraman, M. M. A. Patwary, A. H. Gebremedhin, W.-k. Liao, and A. Choudhary, Fast
Algorithms for the Maximum Clique Problem on Massive Sparse Graphs, ArXiv e-prints (2012).

[PR90] P.M. Pardalos and Rodgers, Parallel branch and bound algorithms for quadratic zeroone programs
on the hypercube architecture, Annals of Operations Research 22 (1990), 271–292 (English).

[Pro12] Patrick Prosser, Exact Algorithms for Maximum Clique: A Computational Study, Algorithms 5
(2012), no. 4, 545–587.

[PRR98] P.M. Pardalos, J. Rappe, and M.G.C. Resende, An exact parallel algorithm for the maximum clique
problem, High performance algorithms and software in nonlinear optimization. Kluwer Academic
Publishers (1998).

[PU11] P. Prosser and C. Unsworth, Limited discrepancy search revisited, Journal of Experimental Algo-
rithmics 16 (2011), Article 1.6.

[Rou87] Catherine Roucairol, A parallel branch and bound algorithm for the quadratic assignment problem,
Discrete Applied Mathematics 18 (1987), no. 2, 211 – 225.

33

[SL05] Herb Sutter and James Larus, Software and the Concurrency Revolution, Queue 3 (2005), no. 7,
54–62.

[SMRLH11] Pablo San Segundo, Fernando Matia, Diego Rodrı́guez-Losada, and Miguel Hernando, An im-
proved bit parallel exact maximum clique algorithm, Optimization Letters (2011).

[Spe89] Ewald Speckenmeyer, Is average superlinear speedup possible?, CSL ’88 (Egon Börger, Han-
sKleine Büning, and Michael M. Richter, eds.), Lecture Notes in Computer Science, vol. 385,
Springer Berlin Heidelberg, 1989, pp. 301–312.

[SSRLJ11] Pablo San Segundo, Diego Rodrı́guez-Losada, and Agustı́n Jiménez, An exact bit-parallel algo-
rithm for the maximum clique problem, Comput. Oper. Res. 38 (2011), no. 2, 571–581.

[SSTP09] Matthew C. Schmidt, Nagiza F. Samatova, Kevin Thomas, and Byung-Hoon Park, A scalable,
parallel algorithm for maximal clique enumeration, Journal of Parallel and Distributed Computing
69 (2009), no. 4, 417 – 428.

[Sut05] Herb Sutter, The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software, Dr.
Dobb’s Journal 30 (2005), no. 3.

[Sut08] Herb Sutter, Going Superlinear, Dr. Dobb’s Report (2008).

[Sza11] S Szabó, Parallel algorithms for finding cliques in a graph, Journal of Physics: Conference Series
268 (2011), no. 1, 012030.

[TK07] E. Tomita and T. Kameda, An efficient branch-and-bound algorithm for finding a maximum clique
with computational experiments, Journal of Global Optimization 37 (2007), no. 1, 95–111.

[TPO10] Stanley Tzeng, Anjul Patney, and John D. Owens, Task management for irregular-parallel work-
loads on the GPU, Proceedings of the Conference on High Performance Graphics (Aire-la-Ville,
Switzerland, Switzerland), HPG ’10, Eurographics Association, 2010, pp. 29–37.

[TS03] Etsuji Tomita and Tomokazu Seki, An efficient branch-and-bound algorithm for finding a maximum
clique, Proceedings of the 4th international conference on Discrete mathematics and theoretical
computer science (Berlin, Heidelberg), DMTCS’03, Springer-Verlag, 2003, pp. 278–289.

[TSH+10] E. Tomita, Y. Sutani, T. Higashi, S. Takahashi, and M. Wakatsuki, A Simple and Faster Branch-
and-Bound Algorithm for Finding a Maximum Clique, WALCOM 2010, LNCS 5942, 2010,
pp. 191–203.

[WE12] Anthony Williams and Vicente J. Botet Escriba, Boost Thread Library, 3.1.0,
http://www.boost.org/doc/libs/1_52_0/doc/html/thread.htmlhttp://www.boost.org/doc/libs/1_52_0/doc/html/thread.html, November
2012.

[Wil12] Anthony Williams, C++ Concurrency: Practical Multithreading, Manning Pubs Co, 2012.

[WP67] D. J. A. Welsh and M. B. Powell, An upper bound for the chromatic number of a graph and its
application to timetabling problems, The Computer Journal 10 (1967), no. 1, 85–86.

[Zuc06] David Zuckerman, Linear degree extractors and the inapproximability of max clique and chromatic
number, Proceedings of the thirty-eighth annual ACM symposium on Theory of computing (New
York, NY, USA), STOC ’06, ACM, 2006, pp. 681–690.

34

http://www.boost.org/doc/libs/1_52_0/doc/html/thread.html

	Introduction
	Graphs, Cliques and Colouring
	Complexity of Clique and Colouring
	Parallelism

	Sequential Algorithms for the Maximum Clique Problem
	A Simple Branch and Bound Algorithm
	Improving the Algorithm
	Bitset Encodings

	Parallel Algorithms for the Maximum Clique Problem
	Existing Parallel Algorithms for Clique-Related Problems
	Parallel Branch and Bound
	Potential Speedup
	Avoiding a Slowdown
	Complications from Hyper-Threading

	Options for Splitting Distance

	Implementation
	Choice of Environment
	Graph Data Structures
	Data Sharing
	Number of Threads

	Experimental Evaluation
	Experimental Data and Methodology
	Comparison of Sequential Algorithm to Published Results
	Analysis of Implementation Choices for the Threaded Algorithm
	Locking Mechanism for Sharing the Incumbent
	Splitting Distance and Work Donation

	Threaded Experimental Results on Standard and Random Benchmarks
	Comparison of Threaded Results with Theoretical Limits
	Analysis of Super-Linear Speedups

	Conclusion

