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Abstract

The Insense programming language is a domain-specific language for programming wireless sensor networks
supporting both an efficient mode of communication between devices and a scalable concurrency model. The
aim of this work is to extend Insense to improve the random access memory utilisation on devices such as
the T-Mote Sky during network communication. We present an interprocedural data flow analysis to enforce
soundness of a language extension used to improve the efficiency of the message passing mechanism within the
Insense programming language. We provide empirical results to show the improvements obtained from utilising
the extension, including overall memory consumption, less severe external fragmentation, and larger free blocks
on memory-constrained devices.
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Chapter 1

Introduction

There are many approaches to programming wireless sensor networks [MP11]. Typically, the devices within such
a network are small with random access memory, and program store memory on the order of tens of kilobytes.
The nature of the network requires frequent communication between devices mandating the programming lan-
guage provide an efficient mechanism for concurrency. The space limitations constrain the amount of data that
can be buffered during communication.

Insense [Dea+08] is a domain-specific language for programming wireless sensor networks, among other
devices, supporting both an efficient mode of communication between devices and a scalable concurrency model.
The aim of this work is to extend Insense to improve the random access memory utilisation on devices such as
the T-Mote Sky during network communication.

1.1 Insense

Insense is an actor-based language aimed at easing the programmability of wireless sensor nodes for domain
experts that are non-specialist programmers. The primary facilities offered by Insense include components (also
known as actors), which are stateful objects that maintain complete isolation from the outside environment, and
represent a concurrent thread of execution; typed channels, the communication mechanism used in Insense to
send information between components using blocking rendezvous semantics 1; and interfaces, a list of channels
that are provided by components implementing the interface i.e. what type of information they can send, and
what they can receive.

Similar to the idea of classes in many object-oriented programming languages, a component can have one
or more constructors which can be passed arguments. Every component has a behaviour clause, a section of
code that is executed, looping indefinitely or until a stop statement is reached, once the component is started.
The behaviour clause of a component represents the thread which animates the component. Inside a component,
the programmer can specify variables that are private to the component and inaccessible to the outside world.
Therefore, the only way to pass data between components is to use the channel communication mechanism.

Channels are defined as being either in, or out, depending on whether a component will receive information
from the channel, or send information over the channel, respectively. The type of data passed through a channel
is specified in the channel declaration. Insense provides send and receive primitives to facilitate passing of data

1In other words, sending components will block until the corresponding receiver accepts the message, and receiving components
will block until there is a message sent from the corresponding sender. This communication scheme is also known as synchronous
communication.
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across an in/out channel pair. The send operation performs a deep-copy of the data to prevent state from being
shared with the sending component.

Listing 1.1 provides an example of an Insense application. The main program creates a sensor component,
then a logger component, and then connects the out channel of the sensor with the in channel of the logger. Thus,
the system can now log temperature readings retrieved from the environment by the sensor.

In order to communicate a message is sent across the channel, in this case a temperature reading. The
reading is then logged by the logger. After the temperature has been sensed, the sensor goes off to do some long
computational task unrelated to the sensing of temperatures. The channel performs a deep-copy of the memory
passed to it since a component’s state is private, and therefore cannot be sent directly. Thus, the memory occupied
by the sensedTemp reference variable is unused in the Sensor component after the send operation. Heap memory
in Insense is managed by reference-counted garbage collection, and because the sensedTemp reference is still in
scope, the memory allocated to it cannot be used for other resources. This represents a problem if the data to be
sent is relatively large with respect to the random access memory capacity of the device.

1.2 Memory Optimisation

So what can be done to solve such memory inefficiencies? It would appear the problem lies in a component no
longer needing a resource after it has sent it across a channel to a receiving component. However, since Insense
does not allow the programmer direct access to memory, it is not possible for the programmer to deallocate the
memory herself. Indeed, this approach would be very error prone. Instead, the project brief is to define a new
“memory type” for the Insense programming language. The new type would allow references to be sent across
a channel between communicating components without the need for an expensive deep-copy operation, freeing
up space on memory-constrained devices, and preventing the programmer from accessing memory no longer
available from within the sending component. Ideally, the memory type extension would not require alteration
of the type inferred nature of Insense since such a change may make it more difficult for non-experts to use.

The approach taken in this work is to extend the Insense programming language to provide a new annotation
(mov) to heap allocation points. The Insense compiler is extended to track the movability of heap-allocated
objects using data flow analysis, a technique commonly used in compilers to discern the properties of a program
(usually with, but not limited to, the aim of performing transformations on the internal representation of the pro-
gram that will optimise the program’s size or execution time characteristics). Before we discuss the contributions
of this work in detail, we must first introduce concepts from the literature used herein.
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Listing 1.1: Example Insense application
type TempReading is struct(integer epoch ; real temp)
type ISensor is interface(out TempReading temp)
type ILogger is interface(in TempReading temp)

component Sensor presents ISensor {
sensedTemp = new TempReading(0, 15.0);

constructor() {
}

proc sense() {
// ...

}

proc doSomeUnrelatedLongComputation() {
// ...

}

behaviour {
sense();
send sensedTemp on temp;
doSomeUnrelatedLongComputation();
stop;

}
}

component Logger presents ILogger {
constructor() {}

behaviour {
receive tr from temp;
log(tr);

}

proc log(TempReading tr) {
// do some logging...

}
}

sensor = new Sensor();
logger = new Logger();
connect sensor.temp to logger.temp;
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Chapter 2

Background

This chapter presents the relevant theory and context for the project.

2.1 Compiler Theory

This section presents the relevant theoretical background in compilers necessary to understand the subsequent
material in this work. We describe the common data structures used within a compiler, the framework used to
analyse programs, and the algorithms and techniques used to facilitate the analysis of program properties.

2.1.1 Preliminaries

We begin with some preliminary defintions of the foundational mathematics behind the compiler analysis tech-
niques that will be introduced later. The following definitions are taken, or adapted, from [Kil73; KU76; KSK09].

Defintion 2.1.1. [Kil73] A finite meet semilattice, L, is a set with a binary meet operator, u, with the following
properties for all x, y, z ∈ L:

x u x = x (idempotence)

x u y = y u x (commutativity)

(x u y) u z = x u (y u z) (associativity)

Defintion 2.1.2. [Kil73] [KU76] For a finite meet semilattice L, a partial ordering is defined for all x, y ∈ L
such that

x ≤ y ⇒ x u y = x

x < y ⇒ x ≤ y and x 6= y

x ≥ y ⇒ x u y = y

Let L be a finite meet semilattice. The least element, denoted ⊥, of L, is such that ∀x ∈ L, x u ⊥ = ⊥. A
sequence, x1, x2, . . . , xn of elements of L, is called a chain if for 1 ≤ i < n we have xi > xi+1. L is bounded if
for all x ∈ L there exists a constant bx, signalling a bound on the length of any chain beginning with x. We can
define ⊔

x∈S
x where S = {x1, x2, . . .}, to be lim

n→∞
u

1≤i≤n
xi, for any bounded meet semilattice L.
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A control flow graph (CFG) [All70] represents a procedure in a program as a directed graph, G = (N,E),
where the nodes, N , contain the procedure’s instructions, and the edges, E, represent control flow through the
procedure. By control flow, we mean the constructs of the source language that determine whether or not a
section of code is executed. Traditional control flow constructs are the if, while, and for statements. The CFG,
by convention, has a unique entry node, nentry, and a unique exit node, nexit.

The nodes in a CFG represent basic blocks as a sequence of instructions in which the only branching code
occurring throughout the entire block is located at the end of the block. In other words, if a program enters
a block during execution, then all of the instructions inside the block are executed. Each block has zero or
more successor blocks, and zero or more predecessor blocks represented by the directed edges of the CFG. Let
succs(n) and preds(n) denote the set of (immediate) successors and predecessors respectively, of node n. That
is, there is an edge (p, n) ∈ E for all p ∈ preds(n), and an edge (n, s) ∈ E for all s ∈ succs(n). Let
paths(n) denote the set of all paths from nentry to n where a path from nentry to n is a sequence of edges,
(nentry,m1), (m1,m2), . . . , (mk, n) where m1,m2, . . . ,mk ∈ N , in E.

Defintion 2.1.3. Let G = (N,E) be an arbitrary CFG. We can construct a reverse post-ordering of the blocks
in G by performing a topological sort on G which assigns a reverse post-order number to the blocks in G (see
Algorithm 1, rpon is a globally available variable). For any basic block n ∈ N , let rpon(n) return the reverse
post-order number for n. Then after performing the topological sort on G, we have,

• A forward edge in E is any (p, q) ∈ E such that rpon(p) < rpon(q),

• A back edge in E is any (p, q) ∈ E such that rpon(p) ≥ rpon(q).

Algorithm 1: Topological sorting of CFG nodes using depth-first search to produce reverse post-ordering.

1 void rpo cfg(CFG G = (N,E))
2 begin
3 rpon← |N |
4 for n ∈ N do
5 if n is unvisited then
6 dfs topsort(n)

7 void dfs topsort(BasicBlock n)
8 begin
9 mark n as visited

10 for s ∈ succs(n) do
11 if s is unvisited then
12 dfs topsort(s)

13 rpon(n)← rpon
14 rpon← rpon− 1

The instructions inside a basic block are some intermediate representation of the program such as three-
address code (also known as quadruple code), where each instruction contains at most three addresses and an
operator e.g., x = y op z, where x, y, and z are storage locations (representing abstract or physical memory
addresses), and op is some binary operator. The exact constructs defined in the intermediate representation
will depend on its level of abstraction, and correlation to the source and target languages. Muchnick [Muc97]
describes various levels of abstraction for intermediate languages. The design of the intermediate representation
used for Insense programs is described in Section 4.2.

A call graph (CG) [Ryd79], or call multigraph [Cal+90], is a directed graph, G = (N,E), where the nodes
of the graph, N , represent procedures in the program, and the edges of the graph, E, represent calls from the
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source node to the destination node. It is a useful representation of the relationship between caller and callee,
and can serve as an information repository on procedures during an analysis (see Section 4.4.2.1).

The supergraph [Mye81] representation of a program connects the CFGs of callers and callees, using inter-
procedural edges. The supergraph, G∗ = (N∗, E), can be constructed as follows:

• Let P be the set of procedures in the program,

• Represent each procedure call as a single-instruction block (a call is a kind of branching instruction so this
representation does not depart from the single-entry/single-exit notion of a basic block),

• Represent each procedure p by a CFG, Gp = (Np, Ep) with pnentry and pnexit as its unique entry and exit
nodes, respectively,

• For each procedure call site i, calling p, in a basic block n, replace the basic block n with two empty basic
blocks ci (called a call node), and ri (called a return node),

• Add the intraprocedural edges, ∀m ∈ preds(n), (m, ci), and ∀s ∈ succs(n), (ri, s), to Ep,

• Add the interprocedural edges, (ci, pnentry) (called a call edge), and (pnexit , ri) (called a return edge) to
E,

• Set N∗ =
⋃
p∈P

Np,

• Set E = E ∪
⋃
p∈P

Ep.

The supergraph can be considered to have a unique entry and exit point, similar to a CFG, denoted by nentry
and nexit, respectively. An interprocedurally valid path is a path in G∗ from nentry to a node n ∈ N∗ consisting
of a sequence of edges in E such that:

• The path consists of intraprocedural edges only, or

• Any matching pair of interprocedural edges, call edge and return edge, in the path are separated by an
interprocedurally valid path.

We denote the set of all interprocedurally valid paths in G∗ from nentry to a node n ∈ N∗ as pathsG∗(n). Any
path p /∈ pathsG∗(n) is called an interprocedurally invalid path.

2.1.2 Data Flow Analysis

Data flow analysis is the tracking of data within a program, typically program variables and their values, in order
to capture properties about the program. The intention is to use the details obtained to optimise the program using
some metric (running time, memory consumption, etc). The properties in which we are interested are referred
to as the data flow values. Data flow analysis of a program is separated into two phases, intraprocedural and
interprocedural.

6



2.1.2.1 Intraprocedural Analysis

Intraprocedural analysis considers the contents of each procedure in isolation, representing them as CFGs. Global
data flow analysis is described by Kildall [Kil73], and Kam and Ullman [KU76] in the context of the control flow
graph. A meet semilattice is used to encode the data flow values of interest. In this formulation, the elements of
the semilattice are typically subsets of the program variables, or some property thereof. To encode the effect of
basic blocks on the data flow values we shall introduce the concept of admissible flow functions [KU76]; associ-
ated with each basic block n is a function fn : L 7→ L, which encodes the effect of the instructions, contained
within the block, on the data flow values provided. These flow functions can be used to define simultaneous data
flow equations used to compute the data flow values valid on entry (Inn), and exit (Outn), of each basic block
in a CFG:

Inn =

 BI if n is nentry⊔

p∈preds(n)
Outp otherwise

Outn = fn(Inn)

(2.1)

where BI is the data flow information available upon entry to the CFG, for example, data flow information
associated with global variables. Whilst we said intraprocedural analysis considers each procedure in isolation,
it will be useful to state these equations using some non-empty data flow value as the initialisation for nentry to
make extending the model to the interprocedural setting easier. To consider intraprocedural analysis in isolation
we could simply set BI = ⊥. We perform a meet over the Out sets of the predecessor blocks to obtain the data
flow information on entry to block n.

For a bounded meet semilattice L, Kam and Ullman [KU76] defined the necessary properties that a set of
functions, F , mapping L to L, must satisfy to be an admissible set of flow functions for L:

∀f ∈ F,∀x, y ∈ L : f(xu y) = f(x)u f(y) (distributivity)

∃id ∈ F,∀x ∈ L : id(x) = x (identity function)

∀f, g ∈ F ⇒ (f ◦ g) ∈ F (closure under function composition)

∀x ∈ L,∃H ⊆ F : x = ⊔

h∈H
h(BI) (existential meet)

where u is the meet operator for L. The existential meet property ensures that the elements of L are only those
data flow values which can been computed from a finite meet of the admissible flow functions from F applied to
the initialising data flow value for the CFG.

We define a distributive data flow framework as a tuple, D = (L,u, F ), where L is a bounded meet semilat-
tice, u is the meet operator of the lattice, and F is a set of admissible flow functions for L. A framework may
be instantiated with an instance, I = (G,M), where G is the particular CFG under consideration, and M is a
function mapping basic blocks within G to flow functions in F .

Algorithm 2 computes the data flow sets Inn for each basic block n in the input CFG. The algorithm is
from the description provided by Khedker, Sanyal, and Karkare [KSK09, p. 90]. The input is an instance for a
distributive data flow framework, with fn denoting the function, retrieved from the basic block to flow function
mapping M , for block n. The blocks in G are numbered in reverse post-order. Algorithm 2 computes what is
termed the maximal fixed point (MFP) assignment.

Let d(G), the loop-connectedness [KU76] of a CFG G, be the largest number of back edges in any acyclic
path of G. We have the following theorem:

Theorem 2.1.4. [KU76] [KSK09] Let D = (L,u, F ) be a distributive data flow framework. Then Algorithm 2
halts after at most d(G) + 3 iterations for every instance I = (G,M) of D and every reverse post-ordering
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Algorithm 2: General intraprocedural data flow algorithm.

1 void dfa(Instance (G = (N,E),M))
2 begin
3 In0 = BI
4 for i = 1 to |N | − 1 do
5 Ini = u

p∈preds(i)∧rpon(p)<rpon(i)
Inp

6 change← true
7 while change do
8 change← false
9 for i = 1 to |N | − 1 do

10 temp = u
p∈preds(i)

Inp

11 if temp 6= Ini then
12 Ini ← temp
13 change← true

definable for G = (N,E), if and only if D satisfies:

∀f, g ∈ F,∀x,BI ∈ L : (f ◦ g)(BI) ≥ g(BI)u f(x)ux (2.2)

Theorem 2.1.4 is the famous “rapid” condition for distributive data flow frameworks.

Lemma 2.1.5. [KSK09] Bit vector frameworks are rapid.

A data flow analysis is flow-sensitive if it takes account of the control flow. It is flow-insensitive if it computes
the effect of each block irrespective of the control flow.

Intraprocedural analysis does not handle the effect of procedure calls within a procedure’s CFG, and the
effect of the procedure called is either ignored, or approximated. Thus, the data flow information obtained from
intraprocedural analysis is imprecise due to the approximation of procedure calls. To increase the precision of
the data flow analysis, we must take account of procedure calls by performing interprocedural analysis.

2.1.2.2 Interprocedural Analysis

Interprocedural analysis considers the effects of procedure calls on data flow values. That is, if at program
point n there is a procedure call, interprocedural analysis analyses the called procedure to compute the effect
of the procedure’s statements on the data flow values in Inn. Two main approaches have been described in the
literature, the functional approach and the call-strings approach [SP78; SP81].

The functional approach maintains the separation of the control flow graphs of each procedure from each
other. The effect of a function on data flow values incoming to a call of the function are encoded by a summary
flow function, a composition of the effects of the individual instructions within the function definition. Whilst this
approach is efficient since it analyses the effect of functions only once, the call-strings approach is adopted in this
work because it results from a simple extension of the intraprocedural case, and can be understood intuitively as a
simulation of actual program execution (the call stack). We shall now focus entirely on the call-strings approach
for the remainder of this work.
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In contrast to the functional approach, the call-string approach operates on the supergraph representation of
a program. The key concept in the call-strings approach for interprocedural data flow analysis is to maintain a
token stack, where each token represents an uncompleted call to a procedure i.e. a procedure call which has not
yet returned. The tokens on the stack are known as the call string, or the calling context. A data flow analysis
is context-sensitive if it distinguishes between different calling contexts, meaning data flow information can be
propagated back to the specific call site under analysis. Conversely, a context-insensitive analysis merges the
information from all calling contexts resulting in potentially imprecise information for callers due to data flow
information being generated for interprocedurally invalid paths.

To take account of interprocedural effects we must somehow keep a record of the data flow values with
respect to the token stack. The solution is to use qualified data flow values. The data flow equations described in
Section 2.1.2.1 are extended to operate on pairs of the form < γ, x >, where γ is the calling context (a sequence
of call sites concatenated together representing the token stack), and x represents the data flow information of
the original problem in the specified context. Let λ denote the empty calling context. We define the qualified
data flow values at each n ∈ N∗, QInn and QOutn, as:

QInn =

 < λ,BI > if n is nentry⊎
p∈preds(n)

Outp otherwise

QOutn =


{< γ ◦ ci, x > | < γ, x >∈ Inn} if n is ci
{< γ, x > | < γ ◦ ci, x >∈ Inn} if n is ri
{< γ, fn(x) > | < γ, x >∈ Inn} otherwise

(2.3)

where ◦ concatentates the call node onto the calling context, fn is the admissible flow function for node n, and⊎
is defined as [KSK09]:

X ] Y ={< γ, xu y > | < γ, x >∈ X,< γ, y >∈ Y }∪
{< γ, x > | < γ, x >∈ X,∀z ∈ L,< γ, z >/∈ Y }∪
{< γ, y > | < γ, y >∈ Y, ∀z ∈ L,< γ, z >/∈ X}

If during the analysis we encounter a call node, it is appended to the context, and data flow information is propa-
gated along the call edge to the entry node of the CFG representing the callee. When a return node is encountered,
the corresponding call node is removed from the context, and the data flow information is propagated along the
return edge to return node of the CFG representing the caller. For all other nodes in the supergraph the flow
functions from the intraprocedural data flow framework are applied to the data flow value x and the context is
unchanged.

Equations 2.3 are used to compute the data flow values, Inn and Outn, for each node n ∈ N∗ by performing
a meet over the sets of pairs:

Inn = ⊔

<γ,x>∈QInn

x

Outn = ⊔

<γ,x>∈QOutn

x
(2.4)

For programming languages without recursion the maximum length of the calling context is bounded by the
depth of the call graph. Therefore, if the original data flow problem terminates so too does the interprocedural
extension of the problem.

2.2 Literature Review

This section presents a review of the relevant literature for the project. The focus is compiler analysis techniques
for reasoning about program properties, and related efforts in programming language research.
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2.2.1 Movability

Movability is similar in nature to other concepts within programming language research. We can think of sending
a block of memory across a communications channel in Insense as an operation on the type of the memory. If
the memory has type mov then the operation may only be applied once, otherwise it is valid any number of
times. Additionally, once sent, a mov typed memory object may not be used again. Thus, the set of applicable
operations on a particular type changes depending on the context in which the type is used. The notion of
typestate [SY86] captures this general concept of contextualising operations, of which movability is a special
case. Essentially, mov enforces the notion of a destructive send operation as described in the paper. The approach
described by Strom and Yemini performs a kind of intraprocedural data flow analysis to validate a program,
but requires annotations to specify the effect of a procedure call on the typestate of a variable, in contrast to
our approach where we perform fully context-sensitive interprocedural analysis in addition to intraprocedural
analysis. The advantage of interprocedural analysis over annotations is the compiler handles the entire checking
process whereas manually writing annotations can be a tedious and error-prone task for the programmer. Strom
and Yemini’s algorithm for tracking typestate performs flow-insensitive aliasing by coalescing aliased variables
to a single identifier. Our approach is more precise, using flow-sensitive may-alias analysis to allow a variable’s
alias set to change over the execution of the program.

Hogg [Hog91] describes the use of bridges to encapsulate islands of state within object-based languages in
the presence of aliasing. Conceptually, an Insense component is a stricter form of a bridge, since the state inside
a component will never escape its scope. Destructive reads are similar to the movability property. Our approach
differs in syntactic cost; the compiler tracks movables throughout the program from a single annotation at the
object allocation point (new), whereas (in addition to object allocation points) the “access mode” of parameters
and function results must be specified in [Hog91].

Rust [Moz14] has a similar memory and concurrency model to Insense. A task in Rust is similar to a
component with defined communication channels. In Rust, communication is performed using pipes; a channel
is a sending endpoint of a pipe, a port is a receiving endpoint for a pipe. The notion of channels and pipes are
equivalent to in and out channels in Insense, respectively. Tasks cannot share data with each other and must
transfer ownership using a global exchange heap. The Send trait acts to communicate between tasks such that
the memory can be transferred ensuring that it is no longer used by the sender after being sent. The Send trait
allows only owned boxes to be sent between tasks, where an owned box is an object that has a single pointer
(owning pointer) to it. A managed box is an object that can have any number of pointers (managed pointers) to
it. The heap can be viewed as split into regions for owned and managed boxes, respectively.

The notion of borrowing is provided in Rust by borrowed pointers, to which managed or owning pointers
can be assigned using an automatic pointer conversion operation provided by the language. For example, an
owning pointer can be borrowed by passing it as an argument to a function accepting a borrowed pointer. During
the execution of the function (known as the lifetime of the borrowed pointer), the owning pointer cannot be used
since the object is on loan to the function; the function is known as the borrower. When the borrower returns,
the owning pointer may be used again. Further, a borrower cannot send the object over a communication channel
to another task; the object may only be sent from an owning pointer. These rules for move semantics require the
programmer to know about lifetimes and pointer conversion operations. Non-specialist programers may find it
difficult to grasp such concepts easily.

The mov property is an almagmation of the managed and owning pointers in Rust- allowing multiple refer-
ences to the object within a component (analogous to multiple references within a task)- yet still maintains the
task-level ownership analogous to an owning pointer in Rust. Additionally, there is no need for the programmer
to understand lifetimes or pointers since these concepts are not made explicit in the move semantics defined for
Insense (see Section 3.1). Instead, the programmer simply annotates heap allocation points with mov and the
compiler tracks references to all such objects. No annotations are required to pass such references as arguments
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to functions or return them as results, the movability of references is tracked entirely by the compiler analysis
(see Section 3.2).

Ownership types [CPN98] were developed for providing strict, static object encapsulation for object-based
languages. Insense provides the semantics of rep for all components by definition, and a component is the owner
of its entire state. “Ownership transfer” is conceptually the same as the movability property, allowing objects
to “jump” across the articulation point represented by the component. In the object graph described by Clarke,
Potter, and Noble [CPN98] there is no dual of the Insense channel mechanism but we can think of these as
gateways or bridges (as in [Hog91]) to allow an object to move across the boundary. It is also worth noting that
alias protection is reserved with movability since only one component will have any aliases to an object at one
time, though that component can have any number of aliases of its own.

Naden et al. [Nad+12] present a type system that allows transference of object ownership by using a “permis-
sion” based mechanism. The system provides a simple mechanism for procedures to borrow, or even consume, an
object through changing the permission attribute; a more powerful and flexible notion than linear types [Wad90],
where conversion to a linear (corresponds to “unique” in [Nad+12]) type is stricter. The system could easily
provide higher-level abstractions on top of the defined permission semantics to provide a form of the movability
property. Indeed, a mov type acts in much the same way as an object initially set with a “shared” permission.
Send and receive primitives could be defined as functions which change the permission of the provided object to
“none”. The system also gives the programmer tight control of aliasing through the permission system. The pro-
grammer has to explicitly manage the permissions, and have detailed knowledge of language theory to understand
the effect of permissions on aliasing, which could detract from the task of developing the application, obscuring
the workings of the algorithm to be implemented with type theory concepts. Our approach tries to minimise the
burden placed on the programmer, requiring very few changes to a source program to enable the extension, and
leaving the analysis to perform the movability tracking throughout the program and the management of aliases.

2.2.2 Error Detection Using Data Flow Analysis

Static analysis techniques have been employed to determine whether programs contain errors. Fosdick and Os-
terweil [FO76] describe an approach for detecting errors in FORTRAN programs using static data flow analysis
techniques. Their approach utilises global data flow analysis techniques from Hecht and Ullman [HU73]. In
general, the technique is flow-sensitive but not path-sensitive, where path-sensitive means generating informa-
tion based on a single path within a control flow graph rather than merging information at nodes with multiple
predecessors. However, Fosdick and Osterweil suggest extensions to the technique to treat potentially erroneous
paths as path-sensitive. Aliasing between formal parameters is not considered, thus context sensitivity is limited.
Additionally, as in this work, recursion is not handled.

The Broadway compiler system [GBL02] used annontations to provide safety guarantees from the program-
mer to the runtime including those to ensure there are no format string vulnerabilities or deadlocks. The anno-
tations define their own data flow analysis lattice, and are utilised by a “scalable aggressive” compiler analysis
to detect programming errors such as privacy issues, and security vulnerabilities. The approach is similar to this
work in that a context-sensitive and flow-sensitive interprocedural analysis (call-strings approach) is used to pro-
vide precise data flow information. The use of annotations is more burdensome for the programmer yet allows
library routines that have been pre-compiled to be integrated into a new software package provided the interface
is kept up-to-date. Guyer, Berger, and Lin must bound the calling context since C allows recursion, resulting
in imprecision for large programs; our method does not suffer from such imprecision due to the restriction on
recursion imposed by Insense (see Section 3.1).
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Chapter 3

Theoretics of Move Analysis

This chapter summarises the semantics for defining movable memory in Insense, and develops the theoretical
basis for the implementation. We introduce the steps necessary to perform move analysis on an Insense program.
Namely, the type-checking that ensures correct usage of the language extensions imposed by movability (in
particular, the copy and mov keywords), and the data flow equations used to compute, for each program point,
the set of movable objects that cannot be used. A use is defined to be any reference to a variable that does
not re-define that variable e.g. x = x, is a use of x, denoted use(x), since the value of x is loaded before the
assignment.

3.1 Insense Move Semantics

The aim of this section is to enumerate the semantics of the movability property. It is important to first highlight
some restrictions imposed on the programmer by Insense. Firstly, the programmer may not define truly (mu-
tually) recursive structures. The programmer may implicitly define such a structure using the any type, which
signifies a generic object, but the object must be surrounded with the “any()” cast expression. Additionally, the
programmer cannot dereference an any type, and must use a project statement (see Figure 3.1) to access the
fields of an object assigned to an any reference. Secondly, it is not possible to define (mutually) recursive proce-
dures (or functions) in Insense. As stated in Section 2.1.2.2, this restriction guarantees that if the intraprocedural
version of the data flow problem terminates so too does the interprocedural extension of the problem. Thus, we
can focus our termination concerns on the intraprocedural setting alone.

Conceptually, we can view movability as a property of the memory we are referencing. In other words, we
can view the heap of an Insense program as two separate spaces (Figure 3.1). Each component in Figure 3.1
has its own local heap space, and shares the movable memory heap (also known as exchange heap [Hun+07;
HL07]) space with other components in an application. Note this model is purely conceptual, and there is no
actual partitioning of the heap.

Consider the Insense program in Listing 3.2. The mov keyword instructs the compiler to create the heap
object in the movable heap memory space. In the listing, x is a reference which references a movable heap object,
z (w, and y) reference “local” (non-movable) heap object(s). The assignment y := x, modifies the reference y
to refer to the heap object referenced by x. In other words, it is much the same as a pointer assignment in C.
Similarly, the assignment x := z, performs a pointer assignment on x such that it will now refer to the same Bar
object as z. At point (1), x is sent across the channel, and since x refers to an object on the component local
heap, the object will be deep-copied and the copy sent, the same is true for sending w, and z. However, when y
is sent across the channel a copy is not made, and a pointer to the object referenced by y will be sent across the
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Listing 3.1: Example of projecting an any typed variable.
type IAny is interface()
type Complex is struct(real a; real b)

component AnyTest presents IAny {
constructor() {
}
behaviour {

a = any(new Complex(5.0, 3.0));

// Output: Complex a = 5.0 + 3.0i
project a as value onto

Complex : {
printString("Complex a = ");
printReal(value.a);
printString(" + ");
printReal(value.b);
printString("i\n");

}
real : {

printString("real\n");
}
default : {

printString("neither!\n");
}

stop;
}

}

// Insense main
s = new AnyTest();

movable heap memory

Insense component · · · Insense component

component local heap memory · · · component local heap memory

Figure 3.1: Conceptual view of heap memory in Insense
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Listing 3.2: Associating the movability with the memory object
component Sensor presents ISensor {

behaviour {
x = mov new Blah();
w = new Foo();
y = new Foo();
z = new Bar();
y := x; // y now references a movable Blah object
x := z; // x now references a non-movable Bar object
send x on refBarOut; // (1) deep-copy the Bar object referenced by x
send y on refBlahOut; // (2) move the Blah object referenced by y

// and invalidate all references to it.
}

}

movable heap memory

Insense component · · · Insense component

component local heap memory · · · component local heap memory

x

w y z

Figure 3.2: Result of assignments before send operation on x in Listing 3.2

channel. We say that y (and all other references which refer to the Blah object sent) has been invalidated by the
send operation. A use of y after point (2) in Listing 3.2 would be detected at compile-time by the analysis, and
the compiler would generate an error since the memory y references has been moved to the receiving component,
and is no longer accessible to the Sensor component.

In the example, a behaviour clause has been used, and it should be noted that a behaviour clause loops
indefinitely or until a stop is encountered. Section 3.1.3 gives more details on the use of stop in the presence
of movability. The key point is, in every iteration of the behaviour loop, a new movable heap object is being
allocated and assigned to x so there are no accesses to invalid memory.

Figure 3.2 shows the situation before (1) in Listing 3.2. Note that in reality both x, y,w, and z will themselves
be in the local heap memory area associated with the owning component but to simplify the example the Figure
places them inside the Insense component.
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Listing 3.3: struct examples demonstrating movable semantics.
type simpleStruct is struct(integer i);
type complexStruct is struct(integer i ; simpleStruct s);

component Sensor presents ISensor {
simpleA = new simpleStruct(1);
simpleB = mov new simpleStruct(10);

complexA = new complexStruct(1, simpleA);
complexB = new complexStruct(10, simpleB);
complexC = mov new complexStruct(10, simpleA);
complexD = mov new complexStruct(10, simpleB);

behaviour {
send simpleA on chan; // deep copy
send simpleB on chan; // send reference and invalidate simpleB

send complexA on chan; // deep copy
send complexB on chan; // deep copy complexB, but use the reference

// of simpleB. Invalidate simpleB
send complexC on chan; // pass the reference of complexC, and

// deep copy simpleA. Invalidate complexC
send complexD on chan; // just pass the reference of complexD.

// invalidate complexD and simpleB
}

}

3.1.1 Semantics of Composite Data Types

Insense provides support for composite data types in the form of arrays and structures. The semantics for mov-
ability with regard to composite data types are described in this section.

3.1.1.1 Structure Types

A structure type in Insense contains a number of fields of the Insense primitive type, or a reference. A structure
or array variable is considered a reference type in Insense, allowing nesting of structures.

The semantics for structure data types in Insense is to recursively apply the move semantics for references to
heap memory e.g. a structure denoted movable will have all primitive fields moved, and the references within the
structure will have their movability checked to determine whether to deep-copy or move the reference. Listing 3.3
highlights a number of the possible combinations of movable-nonmovable heap objects within structures. The
first two send cases follow the same rules as described above. Sending complexA will require (1) copying the
reference held to simpleA, (2) creating a copy of complexA, and (3) assigning the copy of simpleA to field
s of the new copy of complexA. At the other end of the movable-nonmovable continuum, complexD requires
no copying, and all references can be sent freely. The complexC case is illustrated in Figure 3.3, and involves a
deep-copy of simpleA, followed by a pointer update to set complexC.s to reference the new copy.
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movable heap memory

Insense component Insense component

component local heap memory component local heap memory

ComplexC

simpleA

receiving ref.

send

deep copy

Figure 3.3: complexC case: movable structure with non-movable structure field.

3.1.1.2 Array Semantics

An array in Insense can contain any of the Insense primitive types or a reference to an array or structure. In the
following discussion we assume an array element is a reference to a heap-allocated object. The semantics for
arrays of primitive types are unchanged.

A flexible array is one in which the size is unknown at compile-time i.e. the array size can be initialised by an
expression whose value isn’t known until run-time. The presence of flexible arrays in Insense create a problem
for the movability analysis in determining how many references exist to a particular object. For example, an
array could have all its elements refer to the same object. Further, array indices could be arbitrary expressions
meaning we cannot determine at compile-time which array element is being accessed, making it impossible to
determine whether there are any accesses to invalid (moved) memory in general.

To handle the complexity, restrictions are placed on arrays, and extensions to the existing Insense array
creation mechanisms are provided to enable usage of move semantics. When declaring an array, a template
object is provided to the new operator. A copy of the template object is made for each element in the array. For
non-movable arrays, reference-counting of the array elements is performed and the array is deep-copied on send
operations. For movable arrays, the array is reference-counted, and individual elements have the same count
as the entire array. An assignment in which an array element appears on the right-hand side will increment the
count of the array. In other words, the left-hand side will alias (see Section 3.3) the array, not the single element.
Additionally, you cannot send individual array elements across a channel, only the entire array. The justification
for this restriction is that sending the entire array is the most common use case in Insense. Sending a reference
that aliases an array will invalidate the entire array.

An array can be declared to contain movable or non-movable objects but not both. Hence, only arrays created
in the movable heap (using mov) are considered to contain references to movable memory, and all elements must
be movable. It is prohibited to assign a non-movable object into an array element of a movable array, or vice-
versa. Consider Listing 3.4, where assignments to array elements of objects in different memory spaces results
in a compile-time error. Note that the assignment, c := a[n], is valid since this will just decrement the reference
count on the movable object referenced by c before the assignment, and increment the reference count on the
non-movable object referenced by a[n]. Similar for d := b[n].

What if a programmer wants to perform a[n] := c? To perform the assignment, the memory referenced
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Listing 3.4: Cannot assign movable memory to non-movable array or vice versa.
type simpleStruct is struct(integer i);

a = new simpleStruct[n] of simpleStruct(0);
c = mov new simpleStruct(2);

b = mov new simpleStruct[n] of simpleStruct(0);
d = new simpleStruct(2);

a[n] := c; // error, a is an array of references to non-movable memory

b[n] := d; // error, b is an array of references to movable memory

Listing 3.5: An example of an interface specifying a channel receiving movable memory.
type IRecvComp is interface(in mov simpleStruct refin; // <--- movable heap objects

out simpleStruct refout;
out integer intout)

by c must be copied into non-movable (component local) memory. Annotating the assignment with copy
(a[n] := copy c) instructs the compiler to create a duplicate of the object referenced by c, and set a[n] to
reference it. The type of memory returned by the copy operator is inferred by the type of the left-hand side of the
assignment. In other words, copy preserves the memory space type of the left-hand side. The same rule applies
for assignment of non-movable objects to movable array elements.

3.1.2 Channel Semantics

The defintion for channels within an interface is extended to provide the possibility of declaring the memory
object being received as movable. Listing 3.5 demonstrates the use of the mov annotation in this context. An
implementing component will use the receive primitive in the regular manner, the only difference being that the
received heap object is contained within the movable heap memory space and the analysis will track the reference
to ensure the object is only ever moved at most once. Note that it does not matter whether or not a movable was
sent from the sender, either a deep-copy was performed or the sender sent the heap object as a movable. In either
case, the memory is not owned by any other component and can safely be used by the receiver.

3.1.3 Effect on Behaviour Clause

Any movable memory references that are sent within the behaviour clause, either directly, or indirectly via a
procedure call, must be initialised somewhere inside the behaviour clause without any encapsulating control
flow construct. The use of the stop statement within the behaviour clause does not negate this requirement. For
example, Listing 3.6 shows an ill-formed behaviour clause. Even though a will never be sent twice because of
the presence of the stop statement, the program is not valid since, in general, the presence of a stop statement
does not guarantee behaviour termination after one iteration (see Listing 3.7).
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Listing 3.6: Ill-formed behaviour clause
a = mov new Foo;
behaviour {

send a on chan;
stop;

}

Listing 3.7: Why use of stop does not save programmer
a = mov new Foo;
behaviour {

send a on chan;
receive v from intchan;
if v == 1 then {

stop;
}

}

3.2 Formulating the Move Analysis

This section presents the data flow equations required to track movability of heap objects within an Insense pro-
gram. In particular, we first define the intraprocedural data flow equations for handling movability, abstracting
away the handling of aliasing which is subsequently presented as another set of data flow equations in the fol-
lowing section, then we extend the equations to the interprocedural setting using the theory presented earlier in
Chapter 2.

3.2.1 Intraprocedural Move Analysis

The equations act on a data flow framework defined as (L,F,∪), where L is the bounded meet semilattice of
data flow values, F is the set of flow functions operating on elements of L, and ∪ is the meet operator to handle
control-flow merge points. Our bounded meet semilattice of data flow values is the set of variables that cannot
be moved at a specific program point, therefore our greatest element is ∅ and our least element is the number of
reference variables to movable memory in the program, M . We also have that, M ≤ V , where V denotes the
set of all variables in the program. Recall, that a use is defined to be any reference to a variable that does not
re-define that variable. If an instruction n is x = y, then we can say that n is use(y) (“n contains a use of y”).

We shall utilise Equation 2.1. We need to define the flow function fn. The flow functions for move analysis
must take into consideration the aliases of references, including global, component member and local variables,
and reference formal parameters. For the moment, assume the aliases of all references, and reference formal
parameters have been computed for all program points u such that for all references (including reference formal
parameters) x, ALIAS(x, u) is the set of references that may be aliases of x upon entry to program point u (see
Section 3.3); that is, x may reference the same memory location as the variables in ALIAS(x, u). Then our
equation can be formulated as:
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fn(x) = (x−Killn) ∪Genn if n is use(v), and v ∈ x, then generate an error (3.1)

where

Genn =


{v} ∪ALIAS(v, n) if n is a send operation sending v, v ∈M
{y} ∪ALIAS(y, n) if n is a send operation sending y, y is a reference formal parameter
∅ otherwise

(3.2)

Killn =


{v} if n is an assignment v = r, v ∈M , r ∈ V − (v ∪ALIAS(v, n))
{y} if n is an assignment y = r, y is a reference formal parameter, r ∈ V − (y ∪ALIAS(y, n))
{v} if n is a receive operation receiving v, v ∈M,
∅ otherwise

(3.3)

The side-effect of fn(x) is our error checking on the data flow values reaching program point n. Thus, for
x ∈ L and v ∈ x, if at program point n we send v across a channel, an error should be generated since v has
already been moved in some path from the entry node of the CFG under consideration to n.

For each program point n, we associate an In and an Out set denoting the data flow values at the entry and
exit of program point n, respectively:

Inn =


∅ if n is the entry node of the CFG⋃
p∈pred(n)

Outp otherwise

Outn = fn(Inn)

Lemma 3.2.1. Using Algorithm 2, the data flow framework, (L,F,∪), for intraprocedural move analysis will
terminate after at most d(G) + 3 iterations for every instance of the problem.

Proof. Since f : L 7→ L can be written in the form f(x) = (x − Kill) ∪ Gen, that is, as a bit-vector frame-
work [KSK09] it follows that (L,F,∪) is distributive [KU76]. From Lemma 2.1.5 and Theorem 2.1.4 we have
that our data flow framework for intraprocedural move analysis satisifies the rapid condition and thus will termi-
nate after at most d(G) + 3 iterations for every instance of the problem.

3.2.2 Interprocedural Move Analysis

To extend the move analysis to the interprocedural setting we utilise the call-strings approach described in Sec-
tion 2.1.2.2 and extend our data flow equations to qualify data flow values based on the calling contexts. The
definitions in Section 2.1.2.2 hold for the move analysis and we simply need to plug our flow function fn into
Equation 2.3. Call and return nodes affect propagation of movability through aliasing of actual and formal
parameters, we discuss this issue in Section 4.4.2.3.
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3.3 Alias Analysis

Consider a control flow graph, G = (N,E), with entry node nentry. At some node n ∈ N , two program
reference variables, x and y, are may-aliased to each other at n if they refer to the same object in at least one
path from nentry to n. If x and y refer to the same object in all paths from nentry to n, then we say x and y are
must-aliased. In this work we focus our attention on may-alias information.

In order to track all references that could potentially refer to movable memory we must define a data flow
framework for computing aliases. The framework for alias analysis is loosely based on the flow-sensitive may-
alias analysis work described by Choi, Burke, and Carini [CBC93]. Where our approach differs is in the use
of the control flow graph rather than the sparse evaluation graph (SEG), and performing interprocedural alias
computation using the call-strings approach as opposed to realisable execution paths and alias instances. Our
approach has the advantage that the extension to the interprocedural case is simpler than propagating alias in-
stances, requiring minimal changes to the definitions of Gen and Kill. While using the SEG would be less
computationally expensive than using the CFG, the size of Insense procedures and hence the number of nodes in
a CFG, in general, is likely to be very small. We shall now discuss the intraprocedural and interprocedural cases
separately.

3.3.1 Intraprocedural Alias Analysis

We define an alias pair, < x, y > for program reference variables x and y, to denote the possibility that x and y
may refer to the same memory location at some program point. The data flow equations for alias analysis act on
a data flow framework defined as (LAA, FAA,∪), where LAA is the meet semilattice of data flow values, FAA
is the set of flow functions operating on elements of LAA, and ∪ is the meet operator to handle control-flow
merge points. The elements of the meet semilattice are sets of alias pairs at a specific program point, therefore
our greatest element is ∅ and our least element is the cartesian product of the number of variables in the program,
V × V .

Following [CBC93], we can define the analysis using In and Out sets for each program point, noting that
only assignment statements to references and call sites modify the sets. We shall defer discussion of call sites for
the moment as this is handled by the interprocedural phase of the analysis.

Let g : LAA 7→ LAA be the flow function for tracking aliases. Then

gn(x) = (x−Killn(x)) ∪Genn(x) (3.4)

where

Genn(x) =

{
{(v, u)} if n is v := u, u, v ∈ V
∅ otherwise

(3.5)

Killn(x) =


⋃
w∈V
{(v, w), (w, v)} if n is v := u and (u, v) /∈ x, where u, v ∈ V

∅ otherwise
(3.6)

Equation 3.5 says that upon reaching an assignment or declaration statement, n : v := u, the alias pair (v, u)
is added to the gen set for program point n. Note, the aliases of v before the assignment do not become aliased
to u since v := u is equivalent to a pointer assignment in C. Equation 3.6 says that upon reaching a statement,
n : v := u, the analysis adds all alias pairs involving v to the kill set for program point n. If v is involved in any
other alias pair as a prefix, it is replaced by one of its former aliases in the alias pair.
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In Section 3.2.1 we defined the set ALIAS for each pair, program point n and variable v ∈ V ; it is the set of
the access paths that are may-aliased to each heap object at the particular program point. For Insense, an access
path is an expression combining variable names, subscript operators, and field selectors such that the expression
evaluates to a reference. Equation 3.4 does not provide the setALIAS but the set of alias pairs valid at a program
point. The move analysis requires the alias mapping so we must define ALIAS formally from the set of alias
pairs provided by our meet semilattice LAA. Now, we make our definition of ALIAS more concrete:

Defintion 3.3.1. The setALIAS(v, n) returns the transitive closure of the alias pairs of v upon entry to program
point n. Formally, u ∈ ALIAS(v, n) if and only if there exists alias pairs (v, y1), (y1, y2), . . . , (yn, u) ∈ x at
program point n, where x ∈ LAA and represents the set of data flow values entering program point n, and
v, y1, y2, . . . , yn, u ∈ V .

3.3.2 Interprocedural Alias Analysis

Using the call-strings approach, we extend the alias analysis to handle call and return nodes created for each
call site; these nodes generate and kill aliases, between actual and formal reference parameters, respectively. We
amend Equations 3.5 and 3.6 to handle these interprocedural cases. IntraGenn and IntraKilln handle the
intraprocedural cases described in Section 3.3.1. Given actual and formal parameters, ai, fi ∈ V for 1 ≤ i ≤ n
(n ∈ N), and u, v ∈ V , we have:

Genn(x) =



n⋃
i=1
{(ai, fi)} if n is a call node for procedure call p(a1, a2, . . . , an),

n⋃
i=1

⋃
(fi,u),(v,fi)∈x∧v 6=u

{(u, v)} if n is a return node for procedure call p(a1, a2, . . . , an),

{(v, p(a1, a2, . . . , an))} if n is return statement returning v for procedure call p(a1, a2, . . . , an),
IntraGenn(x) otherwise

(3.7)

Killn(x) =


n⋃
i=1

⋃
w∈V
{(fi, w), (w, fi)} if n is a return node for procedure call p(a1, a2, . . . , an),

IntraKilln(x) otherwise
(3.8)

Equation 3.7 generates alias pairs between actual and formal parameters upon entry to the call node for a
procedure call site, propagates any aliases created, to formal parameters, during the analysis of a call upon entry
to the return node for a procedure call site, and handles aliasing of returned references with their respective call
sites (see Section 4.4.1.2 for a more concrete description).

Equation 3.8 kills all alias pairs involving formal parameters upon entry to the return node for a procedure call
site. For cases where there are no parameters to the procedure call, no alias generation or killing is performed.
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Chapter 4

Implementation

This chapter discusses the implementation details of the compiler and, in particular, the move and alias analyses.

4.1 Implementation choices

The compiler frontend that formed the basis for this work was implemented in C, therefore C was chosen for
the implementation language for the compiler middle-end modules. The entire compiler middle-end was written
in approximately 7,000 lines of code and the data flow analyses (framework, alias analysis, and move analysis)
constitute 1,493 lines of the total (including unit tests) 1.

4.2 Intermediate Representation

The result from the frontend of the Insense compiler is an abstract syntax tree of the program. This form is not
suitable for program analysis since it does not represent control flow explicitly. Further, expressions may be of
arbitrary length, and the structure of expressions defined by the grammar presents too much irrelevant detail.
This section describes the intermediate representation on which the analyses operate. In the first section we
describe the main constructs used to represent entire Insense programs, components, functions, and interfaces.
In the following section we describe the instructions and values within the intermediate representation.

4.2.1 Representing Programs, Components, and Functions

The IR defines a representation for the entire program, enabling the later stages of the middle-end to obtain
information about a variety of program properties by querying well-defined interfaces. The IRProgram ADT
describes an entire Insense program; it holds mappings for all components, globally defined procedures, and
interfaces defined within the program. The mappings map names to IR ADT instances (IRComponent, IR-
Function, or IRInterface, which are described below). Additionally, it maintains the program call graph (see
Section 4.4.2.1) and the control flow graph for the primordial main (component initialisation, connection state-
ments, etc).

1Calculated using Wheeler’s SLOCCount tool [Whe14].
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Kind Description Form Uses
assign Assignment a := b uses(a), b, uses(b)

call Procedure call f (a1, a2, . . .) a1, uses(a1), a2, uses(a2), . . .
cjump Conditional jump cjump cond,B1,B2 cond, uses(cond)

connect Connect statement connect a to b a, uses(a), b, uses(b)
decl Declaration statement a = b b, uses(b)

disconnect Disconnect statement disconnect a a, uses(a)
jump Unconditional jump jump B1 -
nop No operation nop -
recv Receive statement receive a from b b, uses(b)
ret Return statement return r r, uses(r)

send Send statement send a on b a, uses(a), b, uses(b)
stop Stop statement stop -

Table 4.1: List of available IR instructions and their internal uses.

The IRComponent ADT defines an Insense component which stores the local declarations of program vari-
ables (in a separate CFG) and the local procedure definitions in a mapping from their name to an IRFunction
instance.

The IRInterface ADT describes an Insense interface. The typed channels defined by the interface are main-
tained in a mapping; components implementing the interface may query this mapping to obtain the channel’s
type information e.g. whether a certain in channel receives movable memory or not.

The IRFunction ADT defines an Insense procedure; it maintains a list of the formal parameters to the
procedure and the control flow graph representing the body of the procedure.

4.2.2 Representing Instructions

To simplify the representation for the analysis, an intermediate representation was defined closely modelling
Insense constructs, but deconstructing control flow constructs into simple conditional and unconditional jump
instructions. Expressions are decomposed so that at most three operands appear in one instruction along with
a binary operator. Note, however, the IR is not technically three-address code since some constructs, such as
procedure calls, are not deconstructed. Additionally, some expressions, such as array and structure dereference
expressions, are not deconstructed to provide the analysis a simple method for tracking composite movables;
simply having access to the left and right hand side of an expression to compare movable status. This approach is
taken since we must restrict array assignments to comparable memory types (see Section 3.1.1.2), so the analysis
has to take those cases into account which cannot be adequately determined by the frontend type checker such
as the movable status of a function call, for example.

The IR instructions are collected together into basic blocks. The exit point at the end of the block is either a
conditional or unconditional jump to at most two blocks. Each block may have any number of predecessor blocks.
An entire Insense procedure is represented by a CFG. Table 4.1 gives an overview of the instructions in the
intermediate representation. Figure 4.1(a) shows an Insense code snippet, Figure 4.1(b) shows the corresponding
Insense IR upon transformation (basic block labels have been added for clarity), and Figure 4.1(c) displays the
corresponding control flow graph segment.

23



if val == 0 then {
printString("Rec: got tic\n");

} else if val == 1 then {
printString("Rec: got toc\n");

} else if val == 2 then {
printString("Rec: got tac\n");

} else if val == 3 then {
printString("Rec: got def\n");

}
if val == 0 then {

printString("Rec: got tic\n");
} else {

printString("Rec: got toc\n");
}

(a) Insense Source

B40:
t20 := val == 0
if t20 then goto B41 else goto B42
B41:
printString("Rec: got tic\n")
goto B48
B42:
t21 := val == 1
if t21 then goto B43 else goto B44
B43:
printString("Rec: got toc\n")
goto B48
B44:
t22 := val == 2
if t22 then goto B45 else goto B46
B45:
printString("Rec: got tac\n")
goto B48
B46:
t23 := val == 3
if t23 then goto B47 else goto B48
B47:
printString("Rec: got def\n")
goto B48
B48:
t24 := val == 0
if t24 then goto B49 else goto B50
B49:
printString("Rec: got tic\n")
goto B51
B50:
printString("Rec: got toc\n")
goto B51
B51:
goto EXIT

(b) Insense IR (textual)

B40

B41 B42

B43 B44

B45 B46

B47

B48

B49B50

B51

EXIT

(c) Insense IR (graphical)

Figure 4.1: Transformation from Insense to Insense IR
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Description Form Uses

Array construction new <type> [n1][n2] · · · [nk] of init
uses(n1), uses(n2), . . .,

uses(nk), uses(init)
Binary operation a op b a, b, uses(a), uses(b)

Channel construction new out integer -
Structure construction new <type> (v1, v2, . . .) uses(v1), uses(v2), . . .

Copy Operation copy v v, uses(v)
Array subscript

expression
v1[v2]

abs base(v1), uses(v1),
v2, uses(v2)

Structure field expression a.x abs base(a), uses(a)
Constant integer 4 -

Identifier v -
Literal v -

Channel selection (select
statement)

select {ticker, tocker, tacker} ticker, ticker, tacker

IR Temporary t4 -
Unary operation unary op v v, uses(v)

Function call f (a1, a2, . . .)
a1, uses(a1), a2, uses(a2),

. . .

Table 4.2: List of available values and their internal uses.

4.3 Value Representation

We need to represent program variables, and other values, within the IR instructions. Since the data flow anal-
yses require a representation for program variables, it was convenient to use the same representation within IR
instructions as for the data flow values rather than the more commonly used bit-vector representation. The addi-
tional space overhead within the data flow sets is not onerous, and provides efficient access to various properties
of program variables that can be used in the analysis to provide detailed error generation and obtain memory type
information.

Table 4.2 summarises the possible values that can appear in an Insense program. Notice that a call is repre-
sented both as an IR instruction and a value. The value encodes Insense procedures that return values whereas
an IR call instruction corresponds to a void procedure. To distinguish between the two, we use the term function
to describe a routine returning a result and procedure to describe a routine returning void.

4.4 Data Flow Analysis

The computation of data flow information for movability and aliases required specification of the intraprocedural
data flow equations and transliteration of the algorithms presented in Section 2.1.2.

4.4.1 Implementing Intraprocedural Analysis

The data flow analysis is implemented in two parts. First, an alias analysis pass computes for all program
variables their set of may-aliases at each program point. Second, the move analysis pass performs movability
tracking and error detection on the program to determine whether or not it is sound. Both of these analyses have
interprocedural and intraprocedural components.
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A common framework for the iterative intraprocedural data flow analysis algorithm (Algorithm 2) was devel-
oped. Algorithm 3 illustrates the general data flow analysis framework for computing information for procedures.
The function, has changed, is a predicate returning true if the data flow values have changed during the pre-
vious iteration, false otherwise. An analysis will provide a function to implement the has changed predicate.
The advantage of leaving the details of the predicate to each analysis allows analysis-specific stopping conditions
(see Section 4.4.1.1). The functions, basic block init and basic block mfp, compute the initial and maximum
fixed point for the data flow values, respectively.

Algorithm 3: General data flow algorithm for computing MFP assignment on a CFG.

1 void dfa(CFG G)
2 begin
3 B ← reverse postorder of blocks in G
4 for b ∈ B do
5 basic block init(b)

6 while has changed() do
7 for b ∈ B do
8 basic block mfp(b)

Although the implementation of these functions are specific to an analysis, the general theme for basic-
block init and basic block mfp is that depicted in Algorithm 4 and Algorithm 5, respectively. The main idea

is for Algorithm 4 to compute the data flow values on entry to a basic block from only those basic blocks which
precede the block in the reverse post-ordering. In other words, the initial phase excludes back edges since the
blocks at the source of these edges will not have valid data flow information yet. Algorithm 5 will alter the return
value of the predicate if any data flow sets change during the iterative computation. In these algorithms we have
assumed, for simplicity of the exposition, that the predicate returns some globally accessible boolean, changed,
initially set to true.

Algorithm 4: General approach for computing initial data flow values of a basic block.

1 void basic block init(BasicBlock b)
2 begin
3 P ← predecessor blocks of b
4 for p ∈ P do
5 if rpo number(p) < rpo number(b) then
6 Inb = Inb u fp(Inp)

Algorithm 5: General approach for computing MFP data flow values of a basic block.

1 void basic block mfp(BasicBlock b)
2 begin
3 P ← predecessor blocks of b
4 temp← ∅
5 for p ∈ P do
6 temp = temp u fp(Inp)
7 if temp 6= Inb then
8 Inb = temp
9 changed = true

The common framework accepts a state instance to all the interface functions enabling each analysis to define
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its own state structure for use within its implementations of the interface functions. We shall discuss the specifics
of the intraprocedural move and alias analyses in the following two sections.

4.4.1.1 Move Analysis

The state structure provided for the move analysis pass is the MAS type which maintains information such as
special flags, a DataFlowSet instance, a Context instance, an IRPRogram instance, an alias mapping, and a
MovableSet instance.

The MovableSet instance maintains the set of values which correspond to references pointing to movable
memory. It is updated after each instruction during the analysis, and initialised upon entry to every local proce-
dure of a component with the component’s local declarations. Later, an algorithm will be presented to show how
the set is affected by an IR instruction.

Prior to starting any analysis, the module computes the aliases for the program using the alias analysis pass
(see Section 4.4.1.2) and stores the result in the alias mapping field of a MAS instance.

The IRProgram instance is stored within the state structure to provide access to whole-program information
such as the program’s call graph.

The Context instance stores the current calling context of the analysis.

The DataFlowSet instance maintained by the MAS type is used to store the data flow values being computed
for the current CFG of interest.

The special flags maintained by the MAS type are to control the has changed predicate. The changed flag
indicates whether the data flow values, associated with a CFG’s basic blocks, have been modified during the last
iteration. The error flag indicates whether a move error was detected during the analysis of a CFG. The move
analysis exits the iterative computation on a CFG early when a move error is detected, preventing spurious error
messages being generated due to the propagation of invalid data flow information.

Algorithm 6 depicts the algorithm for the move analysis flow function which computes the moved variables
at the end of the specified block. The algorithm traverses the instructions of the block b computing the data
flow values present at the end of the block (Outb) and updates the current set of references to movable memory
(see below and Algorithm 7). The functions compute gen and compute kill implement Equations 3.2 and 3.3
respectively. Discussion of the interprocedural effects computed by Algorithm 6 is deferred until Section 4.4.2.3.
Algorithm 6 handles checking for array assignment cases that cannot be detected by the frontend type checker.
In particular, if an array element is assigned the result of a function call we cannot know prior to performing
data flow analysis whether the returned reference points to movable memory or not. Checking for invalid array
assignments involves analysing the instruction using aliasing information known about its operands. An error
message, which takes a similar form to the one produced by the frontend for the trivial cases, is displayed if any
invalid assignments are detected and the error flag is set in the MAS instance.

Algorithm 7 provides the IR instruction cases which require modification of the movable set. The cases for
assignment and declaration are straightforward. An in channel annotated with the mov keyword will receive
movable memory, so the declared variable within the receive primitive must be added to the movable set. Note
for return IR instructions, the value representing the call from the call site is added to the movable set if the called
function returns a movable memory object, so as to propagate the movability information back to the caller.
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Algorithm 6: Algorithm for the move analysis flow function.

1 void compute moved values(MAS mas,BasicBlock b)
2 begin
3 for inst ∈ b do
4 if inst does not contain a move error then
5 if inst contains procedure call then
6 compute effect of procedure call on data flow values
7 if move error detected then return
8 if inst contains invalid array assignment then return
9 Gen← compute gen(mas, inst)

10 Kill← compute kill(Inb, inst)
11 Outb ← (Inb −Kill) ∪Gen
12 update movables set(mas, inst)

else
13 return

Algorithm 7: Algorithm for updating the movable set.

1 void update movables set(MAS mas, IRInst inst)
2 begin
3 MS ← get movable set(mas)
4 switch inst do
5 case a := b
6 if a is not movable and b is movable then
7 MS ←MS ∪ {a}
8 if a is movable and b is not movable then
9 MS ←MS \ {a}

10 case receive v from chan
11 if chan receives movable memory then
12 MS ←MS ∪ {v}

13 case a = b
14 if a is not movable and b is movable then
15 MS ←MS ∪ {a}

16 case return r
17 if r is movable then
18 Ctx← get calling context(mas)
19 if Ctx has at least one edge then
20 site← retrieve call site of first edge in Ctx
21 vc← value representing the function call of site
22 MS ←MS ∪ {vc}

23 otherwise
return
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4.4.1.2 Alias Analysis

The state structure provided for the alias analysis pass is the AAS type which maintains information such as
special flags, a DataFlowSet instance, a Context instance, an IRPRogram instance, and an alias mapping. The
usage of these instances is similar to the use cases for the MAS type. Of note however, is the alias mapping field
of an AAS instance which stores the mapping to be returned from the analysis. The has changed predicate for
alias analysis is based solely on whether the data flow values, associated with a CFG’s basic blocks, have been
modified during the last iteration.

The alias analysis pass computes for each instruction (not basic block) the may-alias pairs present at that
program point. We must store sets of alias pairs per instruction rather than per basic block since aliases are altered
at the instruction level and the alias information for each instruction is needed for movability error checking.
Thus, the In and Out sets defined in Equation 3.4 refer to the alias pairs which hold on entry to and on exit from
an IR instruction.

The alias analysis flow function simply computes the effect of all instructions in the provided basic block.
Algorithm 8 depicts the algorithm for computing the effect of an instruction on the input data flow set. The
retrieve aliasable value function handles dereference expressions such as array subscript expressions, whose
aliasable value is the entire array (see Section 3.1.1.2), and structure field expressions which do not have aliasable
values (see Chapter 6). For regular program reference variables, retrieve aliasable value returns the value
corresponding to the reference variable itself.

Algorithm 8: Algorithm for the computing effect of an instruction on alias analysis data flow sets.

1 void compute inst effect(AAS aas, IRInst inst,DataFlowSet DFS)
2 begin
3 switch inst do
4 case a := b or a = b
5 lhs← retrieve aliasable value(a)
6 rhs← retrieve aliasable value(b)
7 if lhs and rhs are valid values then
8 for every alias pair (x, y) ∈ AS such that x = lhs or y = lhs do
9 DFS ← DFS \ {(x, y)}

10 DFS ← DFS ∪ {(lhs, rhs)}

11 case return r
12 Ctx← get calling context(aas)
13 v ← retrieve aliasable value(r)
14 if v is a valid value and Ctx has at least one edge then
15 site← retrieve call site of first edge in Ctx
16 if site is an assignment or declaration IR instruction then
17 vc← value call of site
18 DFS ← DFS ∪ {(r, vc)}

19 otherwise
return
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4.4.2 Implementing Interprocedural Analysis

As described in Section 2.1.2.2, interprocedural data flow analysis considers the effect of procedure call instruc-
tions within an Insense program. The call-strings approach [SP81] maintains a stack of uncompleted procedure
calls. Upon the discovery of a call, the callee must be analysed with the incoming data flow information pro-
vided by the caller, and the synthesised information passed back to the correct call site. In other words, data
flow information should be propagated along interprocedurally valid paths only. While the literature defines the
call-strings approach in terms of analysing the program supergraph [Mye81], the implementation in the Insense
compiler extends the intraprocedural data flow analyses to handle IR procedure call instructions and function
call values by utilising the properties of the program call graph to connect callees to their callers. In the follow-
ing sections, we expand on the main implementation issues arising from adding interprocedural analysis to the
Insense compiler.

4.4.2.1 Call Graph

To facilitate the interprocedural analysis in the Insense compiler, the program’s call graph is constructed. For
Insense, the call graph consists of nodes representing global procedures, component procedures and behaviour
clauses of every component, and the built-in functions defined by the standard library. Each call in the program is
represented in the graph as an edge, p c−→ q, where caller p calls q at call site c. The graph maintains information
of each call so that the actual parameters can be substituted into the function, in place of the formal parameters,
during the analysis. The call graph construction algorithms for an entire Insense program, component, and
function are shown in Algorithms 9-11, respectively. A node in the call graph is created for IRFunctions during
their first involvement in edge creation. From the algorithms, and remembering that Insense does not have
recursive procedures, we can see that construction of the program call graph is bounded byO(|C||LPC |+ |GP |)
where |C| denotes the number of components in the program, |LPC | denotes the largest number of procedures
defined locally within a component c ∈ P , and |GP | denotes the number of globally defined procedures.

Algorithm 9: Constructing the call graph from an Insense program’s IR.

1 void program build call graph(CallGraph G, IRProgram P )
2 begin
3 for every Insense component C ∈ P do
4 component build call graph(G,C)

5 for every globally defined function F ∈ P do
6 function build call graph(G,F )

Algorithm 10: Constructing the section of the program call graph of an Insense IR component.

1 void component build call graph(CallGraph G, IRComponent C)
2 begin
3 for every locally defined procedure P ∈ C do
4 function build call graph(G,P )

In addition to an edge in the call graph being associated with the caller, the callee, and the call site, each edge
has a payload to which an analysis can attach information that it wishes to propagate between caller and callee.
The payload for both the alias and move analyses are the set of data flow values on entry and exit to the call.
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Algorithm 11: Constructing the section of the program call graph of an Insense IR function.

1 void function build call graph(CallGraph G, IRFunction F )
2 begin
3 CFG← get function cfg(F )
4 for every instruction I ∈ CFG do
5 if I is an IR call instruction calling function Q then
6 create an edge F I−→ Q in G

7 else if I contains a value representing a call to function Q then
8 create an edge F I−→ Q in G

4.4.2.2 Calling Contexts

To handle interprocedural analysis, a calling context is maintained by each analysis. The context is a stack of
uncompleted procedure calls. Upon the discovery of a call, the corresponding edge in the call graph is pushed
onto the stack and the function is analysed. Thus, the data flow sets contain qualified data flow values and a meet
over the values in the sets must have matching contexts before they are combined (using the

⊎
operator defined

in Section 2.1.2.2).

4.4.2.3 Move Analysis

Algorithm 12 shows the algorithm for generating a fully context-sensitive error message from the move error
created from using v in the inst instruction. We can obtain line number information from the IR instruction, and
use the edges of the call graph to provide context in the form of procedure calls leading to the error; the edges
in the calling context are traversed in FIFO order. Line number information for each call site can be obtained
from the stored instruction in each call graph edge. Providing such detailed error messages to the (likely, non-
specialist) programmer will aid in resolving issues with movability.

Algorithm 12: Move error message generation algorithm.

1 void generate error message(MAS mas, IRInst inst,Value v)
2 begin
3 Ctx← get calling context(mas)
4 output← “error: invalid use on line ” + inst linenum(inst) + v + “ has been moved.”
5 for edge ∈ Ctx do
6 callee← cgedge callee(edge)
7 caller ← cgedge caller(edge)
8 site← cgedge call site(edge);
9 output← “ in call to ” + callee + “ from ” + caller + “ on line ” + inst linenum(site)

Algorithm 13 shows the propagation of movability status upon encountering a call site. A formal parameter
of a callee is added to the current set of references to movable memory if and only if their corresponding actual
parameter at the call site is in the movable set. Algorithm 14 shows the propagation of movability status upon
returning from analysing a procedure call. We must remove all formal parameters of the callee from the movable
set and the set of data flow values that will be propagated back to the caller. The latter is required since any

31



moved formal parameters really correspond to moved actual parameters, and formal parameters must have their
state reset after every call.

Algorithm 13: Propagating move analysis data flow information upon entry to a call site.

1 void handle movability on call(IRFunction Callee,MovableSet MS)
2 begin
3 for every (actual, formal) parameter pair (a, f) of Callee do
4 if a ∈MS then
5 MS ←MS ∪ {f}

Algorithm 14: Propagating move analysis data flow information upon return from a call.

1 void handle movability on return(IRFunction Callee,MovableSet MS,DataFlowSet DFS)
2 begin
3 for every formal parameter f of Callee do
4 MS ←MS \ {f}
5 DFS ← DFS \ {f}

4.4.2.4 Alias Analysis

Algorithm 15 shows the creation of aliasing between actual and formal parameters upon encountering a call site.
Algorithm 16 shows the handling of the return from analysing a procedure call. We must propagate any aliases
created within the function involving the formal parameters since these are aliased to the actual parameters. This
propagation step involves obtaining the transitive closure (see Defintion 3.3.1) of aliases of each formal parameter
then adding these implicit aliases found through transitivity to the alias set. The transitive closure function
returns the transitive closure of the specified formal parameter. Trivial aliases such as an alias with oneself are
not added. Finally, we remove any aliasing associated with the formal parameters in preparation for any further
calls of the callee.

Algorithm 15: Propagating alias analysis data flow information upon entry to a call site.

1 void handle aliasing on call(IRFunction Callee,AliasSet AS)
2 begin
3 for every (actual, formal) parameter pair (a, f) of Callee do
4 AS ← AS ∪ {(a, f)}

4.5 Correctness and Testing

A unit testing framework was developed to test the individual modules but also to test integration between
modules. The integration modules represent phases in the compiler middle-end, for example the AST to IR
transformation phase, or the move analysis pass. The framework operates by defining for each unit test a set of
functions to run and the output specifies any error messages from test asserts and a summary of how many tests
passed or failed.

In order to reason about the correctness of the implementation of the analysis we must do a case analysis on
the instructions and values to ensure that the analysis will never accept an invalid program as valid, although it
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Algorithm 16: Propagating alias analysis data flow information upon return from a call.

1 void handle aliasing on return(IRFunction Callee,AliasSet AS)
2 begin
3 for every formal parameter f of Callee do
4 aliases← transitive closure(AS, f)
5 for every v ∈ aliases do
6 for every u ∈ aliases do
7 if v 6= u then
8 AS ← AS ∪ {(v, u)}

9 for every formal parameter f of Callee do
10 for every alias pair (x, y) ∈ AS such that x = f or y = f do
11 AS ← AS \ {(x, y)}

Listing 4.1: Movable Insense program rejected by compiler.
10 component MovComp presents IMovComp {
11 a = new simpleStruct(0);
12 b = mov new simpleStruct(0);
13
14 behaviour {
15 x = a;
16 if false then {
17 a := b;
18 }
19 send a on chan;
20 x.i := 75; // error: invalid use on line 20, ’x’ has been moved.
21 send n on waitchan;
22 stop;
23 }
24 }

may reject a valid program. To see this, consider the program snippet, and corresponding compilation error, in
Listing 4.1 where a initially references non-movable memory. Clearly, the program will never branch into the
then clause of the if statement yet this program is rejected since, in general, the conditioning will not be statically
determinable. Special cases such as this example could be allowed by the compiler if the compiler is extended to
perform a conditional constant propagation data flow analysis with “type determination” [WZ91].

This strategy provides a safe approximation and is similar to how code optimisation is approximated for
regular data flow analysis. The approach taken was to formalise for each Insense IR instruction the set of values
that it uses, and then to show that the implementation checks all these cases by writing regression tests for them
in the test framework. Indeed, in some instances, this will create stronger assertions than required since the list of
uses of a particular value could be empty in the case of values that cannot be further decomposed e.g. identifier
values. It follows then that there is no use that could follow a send which would result in an invalid memory
access.

For each IR instruction, we define a set of uses for the instruction. For each value kind defined by the IR,
we define a set of uses for the value. This information is tabulated in Table 4.1 and Table 4.2, respectively. The
function, uses(x), gathers the uses of a value. In the tables, a, b, cond, r, and v represent values. B1, and B2
represent basic block identifiers.
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The uses of an instruction are captured by the values. To obtain the uses within a value, uses(x) returns the
list of values used within the value x, if x contains sub-values as part of its definition, otherwise it returns an
empty list. The recursive nature of the value definition is necessary to facilitate correct analysis on array subscript
expressions since they must appear in all assignments in which they are involved in order to be checked for valid
move semantics, and, therefore, they must not be decomposed. If they were, it would not be possible to infer any
assignments to the array by virtue of the straight-line sequence of code.

In Table 4.2, v1 in the array subscript case will be either a primitive (temporary, or identifier), or it will
be another dereference value. In the former case, we can return v1 as the single use. In the latter case, we
must find the absolute base of the array, abs base(v1), and return it as well. To achieve this, we need to return
all intermediate uses, e.g. a[b.x][c.y][d.z] shall return {a[b.x][c.y], d.z, {a[b.x], c.y, d, {a, b.x, c, {b}}}} where
the nesting is used to illustrate the recursive calls to uses to obtain sub-values. Structure field expressions are
handled similarly. Constants, identifiers, literals, and temporaries are single values and so have no sub-value
uses. A channel selection value encodes the non-determinism in an Insense select statement which will choose
between the channels specified in the value.
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Chapter 5

Evaluation

This chapter evaluates the space savings on non-trivial Insense applications. We present the methodology and
the performance results.

5.1 Methodology

We evaluate our system on a number of Insense applications; some are real applications, others are contrived
for the purposes of highlighting the benefits of movability. We compare our empirical results with previous
work [CHS13].

5.2 Performance Measurements

The river cats program consists of two T-mote Skys, a base station, and a data logger. The base station sends
commands to the data logger obtained from a serial connection with a PC. The data logger samples from its
sensors and temporarily stores them on local flash storage to be sent to the base station upon receipt of a “dump”
command. The data logger is implemented using three Insense components: a controller component that waits
for commands from the base station; a sensor sampler component that periodically samples from the T-mote’s
sensors storing the results in an array before sending the array to the data gatherer component; and, a data
gatherer component that waits to be sent the samples from the sampler and then sends them to the component’s
flash storage component which is defined by the standard library. The experiment in [CHS13] on the river cats
program was repeated, and the memory usage graph for the data logger is shown in Figure 5.1(a). Compare
the memory usage of this program with that of the modified river cats program used to take advantage of move
semantics (Figure 5.1(b)). From the graphs we see that from allocations 500 to 3500 the spikes in memory usage
are less severe in the case of the movable version. To achieve this performance improvement, the data logger’s
in channel from the sensor sampler was marked as receiving movable memory thus there is no copy when the
data logger sends the data to local flash storage. Figure 5.1(c) highlights (in yellow) the change to the river cats
program necessary to provide the efficiency savings of the movable version over the non-movable version. The
design of the application was amenable to the movability property, requiring only a single addition of the mov
annotation to specify that an in channel receives movable memory therefore removing the need for a deep-copy
when the data received is subsequently sent on.

A typical example where movability is helpful occurs when there are intermediary component(s) between a
sender and a receiver, and the intermediary does not require its own copy of the data being sent. Marking the in
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(a) Memory usage graph for the original (non-movable version) River
cats program.

 0

 2000

 4000

 6000

 8000

 10000

 0  1000  2000  3000  4000  5000  6000

M
e

m
o

ry
 c

o
n

s
u

m
p

ti
o

n
 (

b
y
te

s
)

Malloc/Free operations since initialisation (180 second simulation)

(b) Memory usage graph for the movable version of the River cats pro-
gram.

52 type IDataGather is interface(in bool controller; out bool sas;
53 in mov integer[] sasDone; out integer[] writeChan)

(c) Source code change required to enable efficiency saving.

Figure 5.1: Memory usage graphs for river cats program.

channels of all intermediatries as movable prevents the need to create a copy, and the memory reference can be
sent across all channels. An example forwarding application was developed to illustrate the benefits of movabil-
ity. The application consists of three components which was run, separately, on a Cooja simulator [Com14] and a
single T-mote Sky; the experiments were initially conducted using a single T-mote Sky but the serial connection
used to retrieve the memory usage data was being corrupted for as-yet unknown reasons, so we present results
obtained from the simulator (Figure 5.2(a)) and the T-mote Sky (Figure 5.2(b)) (the river cats experiment above
was performed on the T-mote’s only for direct comparison with [CHS13]). The sender generates an array of
packets which are sent to a forwarding component which simply sends the packets on. The forwarder also pauses
for a number of seconds before waiting for more packets to be sent from the sender. The pause is to simulate the
assumed behaviour of a forwarder in a real application; either its own processing of the packets or calculation
of some routing information. Figure 5.2(a) presents the results obtained from running the two versions of the
forwarding application on the Cooja simulator. Figure 5.2(b) presents the results obtained from running the two
versions of the forwarding application on a single T-mote Sky. As expected, the memory usage for the movable
version is considerably lower than for the non-movable version (in both experiments) due to the deep-copying
performed by the sender and forwarder in the non-movable version. The output from the movable version finishes
earlier in the figures because the x-axis measures the number of malloc and free operations during the simulation
run, and since the movable version uses less memory, this number is necessarily smaller. Note, in Figure 5.2(b)
the anomaly at the beginning of execution; while it alters the output somewhat, the periodic behaviour starting
after around 1000 allocations clearly shows the benefits of movability. While the forwarding example is con-
trived, it is not uncommon for an intermediary component(s) to be present in a particularly complex application.
Indeed, we saw this very setup in the river cats program between the data logger, the sensor sampler, and the
flash storage component. Additionally, an Insense version of SNEE [Gal+11] would benefit from similar uses of
movability.

We compare the external fragmentation of the non-movable and movable version of the forwarding applica-
tion running on the Cooja simulator in Figures 5.3(a) and 5.3(b), respectively. As can be seen, external fragmen-
tation in the movable version of the application is less severe than in the non-movable version due to its reduced
number of memory allocations. Similar improvements running on the T-mote Sky are achieved but because of
anomalies in the output, as explained earlier, we omit these graphs.
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(a) Memory usage graph for the forwarding example program simulated
in Cooja.
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(b) Memory usage graph for the forwarding example program on phys-
ical T-Mote Sky.

Figure 5.2: Memory usage graph for the forwarding example program.
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(a) External fragmentation for non-movable version of forwarding ap-
plication.
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(b) External fragmentation for movable version of forwarding applica-
tion.

Figure 5.3: External fragmentation for the forwarding example program.
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(a) Largest free block over time non-movable version of forwarding ap-
plication.
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(b) Largest free block over time for movable version of forwarding ap-
plication.

Figure 5.4: Largest free block over time for the forwarding example program.

We compare the largest free block over the simulation run of the non-movable and movable version of the
forwarding application running on the Cooja simulator in Figures 5.4(a) and 5.4(b), respectively. As can be seen,
the movable version has larger free blocks throughout its execution compared to the non-movable version. The
reduced fragmentation and better utilisation of memory enables larger blocks to stay relatively untouched.
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Chapter 6

Conclusion and Future Work

We have presented an interprocedural data flow analysis to enforce soundness of a language extension used to
improve the efficiency of the message passing mechanism within the Insense programming language. We have
presented empirical results to show the improvements obtained from utilising movable memory, including overall
memory consumption, less severe external fragmentation, and larger free blocks.

6.1 Future Work

The movability property is currently not supported for arrays, and channels contained within structures. Fur-
thermore, Insense does not support nested structure types. Thus, the movability property for nested structures
described in Section 3.1.1.1 was not implemented. Future work would be to extend the analysis to cope with
the extra complexities involved in nesting references within structures, for example, handling overlapping alias
regions.

Implementing these changes would improve the efficency savings obtained from the river cats application.
We reproduce our experimental results for the river cats application from Chapter 5 (Figure 5.1(b)) in Fig-
ure 6.1(a) which shows the current savings due to movability changes which can be guaranteed sound by the
compiler (statically enforced). Figure 6.1(b) illustrates further improvements possible once the described fu-
ture work is implemented to guarantee soundness. Finally, Figure 6.1(c) highlights (in yellow) the changes to
the source program to obtain the improvements shown in Figure 6.1(b) from the version of the program that
produced Figure 6.1(a).
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(a) Memory usage graph for the movable version of the River cats pro-
gram.
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(b) Memory usage graph for River cats program with future work mov-
ability extensions.

34 proc createReadStruct(in integer[] reader; integer[] dataBuffer) : readStruct
35 {
36 c = new out integer[];
37 connect c to reader;
38 rs = mov new readStruct(c, dataBuffer);
39 return rs;
40 }
41
42 proc createDataPacket(unsigned addr; unsigned id; integer[] buf) : RadioPacket
43 {
44 ds = new dataPacket(id, buf);
45 rp = mov new RadioPacket(addr, any(ds));
46 return rp;
47 }

(c) Source code change required to enable additional efficiency savings.

Figure 6.1: Comparing memory usage graphs for movable river cats programs.
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