Umver51ty ‘ School of

of Glasgow | Computing Science

vvvvvvvvvvvvvv

A Parallel Implementation of the Self Organising Map using OpenCL

Gavin Davidson

School of Computing Science
Sir Alwyn Williams Building
University of Glasgow

G12 8QQ

Level 4 Project — 27th March 2015

Abstract

The self organising map is a machine learning algorithm used to produce low dimensional representations of high
dimensional data. While the process is becoming more and more useful with the rise of big data, it is hindered
by the sheer amount of time the algorithm takes to run serially.

This project produces a parallel version of the classical algorithm using OpenCL that is suited for use on
parallel processor architectures. The use of the Manhattan distance metric is also explored as a replacement for
the traditional Euclidean distance in an attempt to decrease run times. The output from the parallel program is
compared to that of a widely used package, SOM_PAK, to ensure validity. The parallel implementation is tested
on a variety of architectures, including graphics hardware, to determine which parameters run times. A 10x speed
up is demonstrated when compared with SOM_PAK.

Education Use Consent

I hereby give my permission for this project to be shown to other University of Glasgow students and to be
distributed in an electronic format. Please note that you are under no obligation to sign this declaration, but
doing so would help future students.

Name: Signature:

Acknowledgements
I would firstly like to thank my supervisor Dr Vanderbauwhede for proposing such an interesting project and also
for providing sound advice whenever it was needed.

I’d also like to thank Rachel for her constant patience while I continually talked about a subject she has no
interest in and for her help in proof reading this report.

Contents

1_Intr 1 1
LT Motivation]. o o o e 1
M27AIMS . .« oo e 1
M30UNE . . . e e 2

2 The Self Organising Map| 3
2.1 Algorithm| oL 3

R1.1 TheProcess|. o o 3
[2.1.2 Map Initialisation| 4
[2.1.3 Find a Winning Neuron|. L 5
[2.1.4 Update Neurons in Neighbourhood| 5
[2.1.5 Reduce Neighbourhood and Learning Rate| 5

[3 Background| 7
B.1 Applications|. e e e e 7
[3.2 Self Organising Map Software| e 7
3.3 Related Work| e 9
B4 _Discussionl. e 10

4 Op 12
M1 BasicStructurel 12
B2 RKemels . . o oo 13
4.3 Memory Model| 15

[4.3.1 Memory Hierarchy| 15

[4.3.3 Barrier Synchronisation| L oo 16

4.4 Example OpenCL System|. e 16
[Implementation| 18
[5.1 Single Threaded SOM| e 18
D11 TheProcess|. o 18
[5.1.2 Map Initialisation| 19
[5.1.3 Find a Winning Neuron|. 20
[5.1.4 Update Neurons in Neighbourhood| 20
[5.1.5 Reduce Neighbourhood and Learning Rate| 21

5.2 Adaptionto OpenCL| e 22
5.2.1 Whatto Parallelise?l e 22
[5.2.2 HostProgram|. e 24

0.3 Visualisation] e 25
B3T HIML Visualiserl o e 26

532 PPMVisualiser oL 27

5.4 DataGeneratorl e 27
541 UnifformRandom|. 28
542 Uniform Clusters| 28
543 Gaussian Clustersl. e 29

6 Evaluation| 31
6.1 Architectures| 31
6.1.1 AMD CPUl e 31

6.12 Intel CPUl e 32

6.13 nVidiaGPUl. 32

[6.2 Running SOM_PAK]. e 32
63 Validationl 33
[6.3.1 Quantisation Error] 33

ii

[6.4.1 Strategy| L e e e e e e e

642 Results|]

[6.5 Varying Map Size Tests| oL

[6.5.1 Strategy| e e e

[6.6.1 Strategy| e e e e e

6.62 Results|

[7.1.1 Improve Functionality and User Interface of parallel SOM|

[7.1.2 Run paralle]l SOM on Intel XeonPh1

[7.1.3 Support Vector Machine in OpenCL]

"Il (I

[A_Use of Softwarel

A1 parallel SOM| o o

[ATT Building parallel. SOM|

IA.1.2° Running parallel SOM|

IA.1.3 InputFile Format|

ii

A2 dataset_generator] e e e e e e e e e e e e e

|A.2.1 Bulding dataset_generator{ L

|A.2.2 Running dataset_generator] e

A3 drawPPMmap|

v

Chapter 1

Introduction

The idea of an intelligent machine is one that has long fascinated computer scientists and engineers that strive
to mimic the skills and behaviors of humans. The field of artificial intelligence aims to achieve this through
a combination of robotics and machine learning. While robotics provides the physical, motor skills necessary,
machine learning is tasked with providing perception and decision making abilities to these machines.

There are many machine learning algorithms being pursued by those interested in the area [19, 35, [9]. Of
these algorithms, the one that this project will explore is the Self Organising Map, originally proposed by Tuevo
Kohonen [19]].

1.1 Motivation

Since their inception, self organising maps have been used in genetics [[6], climatology [27]] data mining [[16] and
many other fields. The self organising map is able to reduce highly dimensional data to much lower dimensions
while still preserving topology. It is this ability that gives the algorithm its value. With the recent rise in big
data, and with scientific data in general, it is becoming more and more necessary to analyse massive, often highly
dimensional data sets.

The drawback of the classical self organisng map algorithm is that when run serially on even the most
powerful machines it can take a substantial amount of time to complete. This is true with even moderately
sized maps. However, the algorithm itself is inherently parallel and is therefore well suited to an implementation
designed for multi-core and many-core architectures.

Graphics hardware provides the architecture necessary to take advantage of the highly parallel nature of
the self organising map. The rise of general purpose graphics hardware has been facilitated by frameworks
like nVidia’s CUDA [24] and Khronos’s OpenCL [13]]. These frameworks have made graphics hardware pro-
grammable and have opened them up to non-graphics related applications. This new programmability coupled
with the fact that GPUs are inexpensive when compared to highly parallel CPUs has made graphics hardware
increasingly popular when processing large data sets.

1.2 Aims

It is the aim of this project to study the classical self organising map algorithm and devise an efficient imple-
mentation that takes advantage of the highly parallel nature of the algorithm. The implementation will be suited

for use on many-core architectures, such as general purpose graphics processors. A further aim is the demon-
stration of a measurable speedup when compared to a widely used self organising map package, SOM_PAK
[[17]. This parallel implementation of the self organising map will be written using the OpenCL framework for
heterogeneous architecture

1.3 Outline

Chapter 2 will explain the original self organising map algorithm in great detail and provide a more formal
algorithmic specification. Background including applications, software packages and research work will be
discussed in chapter 3 and chapter 4 explains the basic concepts of OpenCL and how to write OpenCL compatible
code. Chapter 5 provides a detailed explanation of all software that was produced during the project and how
they are all related to one another. Evaluations of the main program, parallel SOM, are presented in chapter 6
and chapter 7 provides concluding remarks and ideas for future work.

Chapter 2

The Self Organising Map

A self organising map is a form of clustering or classification algorithm that involves projecting highly dimen-
sional data into much lower dimensions and is an example of an artificial neural network [19]]. The intention of
these networks is that they somehow imitate the properties of biological neural networks, like the central nervous
system. The network is made up of a set of neurons that are tuned to respond to certain input signals. In the case
of the classical self organising map, the neurons are arranged in a rigid grid.

As a machine learning algorithm, the self organising map is classified as an unsupervised learning process.
This categorisation is a result of the fact that it does not require an explicit training data set that has already
been processed before being able to understand new data. The map is trained continually during the organising
process with every input that it processes.

The main use of the self organising map is its ability to reduce highly dimensional data to a much smaller
dimensionality, so that it may be represented on a two dimensional map. As such, the input to the map is a set of
n-dimensional vectors.

2.1 Algorithm

The organising process can be split into 4 stages. An overview of the process is explained and then each of the
four stages is clarified along with associated definitions.

It is important to note that while the algorithm is explained in this section, optimal parameters for each stage
are not known. This is a problem within the field as optimal parameters for the organising process are specific to
the data set being processed. In order to find the best parameters for a data set, trial and error is necessary.

2.1.1 The Process

The process starts with map initialisation. From there, the first input vector is considered and a winner from
the map is found. Next, all of the neurons in the neighbourhood are updated according to the neighbourhood
function and learning rate. This is then done for the each of the input vectors. Input vectors are considered many
times during the process so exhausting the input vectors does not result in the termination of the algorithm.

After a set time and then periodically afterward, the neighbourhood size and learning rate are both reduced.
These reductions allow for the map to become more finely tuned as the algorithm runs.

Termination of the algorithm happens when the map converges. Convergence can be defined by a number
of mathematical criterion but in actuality it means that the neurons in the map have reached a stable state that
accurately resembles the input data set. The criterion for convergence will not be explored in this work.

Algorithm 1 Self Organising Map Algorithm

1: function MAIN

2 map <— INITIALISE() > Map is initialised with random vectors

3 while CONVERGENT(map)=False do > Iterate until map convergences

4: currentInputVector < GETINPUT()

5: winner <— FINDWINNER (map, currentInputVector)

6 UPDATEM AP(map, winner)

7 if currentlIteration mod 100 = O then > After a chosen time (100 is arbitrary)

8 REDUCENEIGHBOURHOOD > Reduce neighbourhood size

9 REDUCELEARNINGRATE > Reduce learning rate
return map

10: function FINDWINNER(map, inputVector)

11: minDistance < oo

12: for all neurons in map do

13: distance <— EUCLIDEANDISTANCE (neuron, inputVector)
14: if distance < minDistance then

15: WINNET <— Nneuron

16: minDistance < distance

return winner

17: function UPDATEM AP(map, winner)

18: for all neurons in map do
19: neighbourhoodCoef f < NEIGHBOURHOODFUNCTION (winner, neuron)
20: UPDATENEURON(neuron, neighbourhoodCoeff, winner)

2.1.2 Map Initialisation

The first stage in the algorithm is to initialise the map. A map of predefined size is created where the size is
the number of neurons in the map. Each neuron is assigned a vector that has the same number of dimensions as
all of the vectors in the input data set. The vector is sometimes called the weight of the neuron. The vector at
every neuron is set to hold random values. Figure 2.T|shows an example of a map after initialisation, where each
neuron is represented by a pixel.

Figure 2.1: Initial map example

2.1.3 Find a Winning Neuron

The algorithm works on a single input vector at a time. When each vector is considered, a winning neuron in
the existing map must be found. The winning neuron in the map is the neuron whose vector is most closely
related to the current input’s vector. In the classical self organising map algorithm, the relationship between two
n dimensional vectors is defined by the Euclidean distance between them.

Euclideandistance(p,q) = \/(p1 —q1)?+ (p2 — @)%+ ... + (Pn — qn)?

The neuron whose vector is the shortest Euclidean distance away from the current input vector is the winner.

2.1.4 Update Neurons in Neighbourhood

In order to describe the update phase, first a neighbourhood and a neighbourhood function must be defined.

The neighbourhood of a neuron is simply an area on the map surrounding that neuron. A neuron is in
the neighbourhood if it is within a defined distance away from the original neuron. This distance that defines
neighbourhood size decreases to zero during the runtime of the algorithm. Neurons within the neighbourhood of
the winning neuron are changed according to the neighbourhood function.

The neighbourhood function is often a Gaussian function. This function defines how much a neuron’s vector
is changed during an update according to how far away the neuron is from the winning neuron on the map.
The winning neuron and its close neighbours will be changed the most, while the neurons on the outer edges
of the neighbourhood are changed the least. Figure shows an example neighbourhood. The neurons in the
neighbourhood of size 1 will be changed more than the neurons in the neighbourhood of size 2.

Figure 2.2: Neighbourhood example

OPOC
ae=
.
.

oot -3

Once the winning neuron has been found, all of the neurons within the current neighbourhood must have
their vectors updated. The vectors are updated so that they are closer to the input vector. How much each vector
changes is determined by a combination of the learning rate and the neighbourhood function at this position in
the neighbourhood.

000,
0000

2.1.5 Reduce Neighbourhood and Learning Rate

When the algorithm begins, the neighbourhood size and the learning rate at every neuron in the neighbourhood
are maximal. Usually this means that the neighbourhood of every neuron encompasses every other neuron in the
map. The effect of this is that, in the early stages of the organisation process, all of the neurons are affected by
every update and form a vague initial organisation. From this initial organisation, it is necessary to more finely
tune the neurons in the map to produce an accurate representation.

In order to produce this finely tuned map, the size of the neighbourhood and the learning rate for each neuron
is reduced as the algorithm continues. At a set time after the start of the algorithm, the neighbourhood size for
each neuron is decreased and so is the learning rate for the map. Reducing the neighbourhood size means that
less neurons are affected during an update. Reducing the learning rate means that the neurons that are affected
by an update are changed less than with a larger learning rate. Both the learning rate and neighbourhood size are
reduced periodically as the algorithm runs.

Chapter 3

Background

3.1 Applications

Since its original proposal, the self organising map has been widely explored for use in many areas. Work was
done by Kohonen et al. [20] to implement a document classification system using a self organising map. The
resulting system created maps using histograms of the vocabularies of a set of documents. The maps were then
presented as HTML pages that allowed a user to explore related documents. In the largest experiment of the
work, a map of 1 002 240 neurons was created to represent 6 840 568 documents and each input document
was represented by a 500 dimensional vector. At the time (2000) these computations took 6 weeks to complete.
Even with modern CPUs however, the computations involved to create a map of that size using inputs of that
specification could take days.

Work carried out by Caridakis et al. [4] uses self organising maps to recognise hand gestures in real time. The
system that is described in the paper processes images to determine position and trajectory values for a particular
hand. These values are then used as the input to a self organising map which classifies the data. The organised
map is used in the decision process to determine which gesture was performed. In order to ensure that responses
from the system are real time, the self organising map is implemented using a parallel computing model, namely
nVidia’s CUDA [24].

Self organising maps are used heavily in meteorology and climatology. According to Liu and Weisberg [21]],
the algorithm is used as a pattern recognition tool in the analysis of air temperature, precipitation, snow, humidity
and sea ice among many others. The book goes on to explain that the self organising map has been used all over
the world in numerous meteorological experiments and studies.

3.2 Self Organising Map Software

Possibly the most widely used self organising map package is the freely available SOM_PAK. The program was
developed by Teuvo Kohonen, the original proposer of the self organising map, along with his colleagues at
Helsinki University of Technology in the early 90’s [17]]. The package itself is written using C and seems to have
compatibility issues with newer versions of the C compiler. For example, when SOM_PAK was installed during
the research part of this project, it was found that the original authors had implemented functions that now exist
in standard libraries. This caused clashes during compilation and the original code had to be changed slightly
to avoid this. Once the program is installed, it works on the basis of running a number of trial maps and then
measuring the quantisation error on each of the maps that are produced. The trial map that produces the lowest

@ Vissovery SOMine - Fermeniation€ 6 - N
e

Edit Vew Mep Custer Segmentation Wndow Heb
BE0D fee ? BEARCHuicww PP R 8@ o=
5

e g
]

585 0 (0.00%)
0(0.00%)

0(0.00%)
12389 000.00%)
00.00%)

(a) SOM_PAK
@ alcohol @ tot. phenols B col. hue
B malic acid @ flavonoids B OD ratio
O ash @ non-flav. phenols @ proline
O ash alkalinity B proanth
O magnesium B col.int.

(c) Kohonen Package

Figure 3.1: Visualisations of Maps from Various Software

quantisation error is output as the best map for that input data set. Along with the programs that perform the
organisation and calculate quantisation error, the package also provides programs to create visual representations
of maps. While the production of visualisations is a necessity for a good self organising map package, SOM_PAK
also provides a program that takes a number of input vectors and shows where on a particular map they would
end up. It is this extra program that provides some form of classification in SOM_PAK.

A self organising map package that seems to have been kept more up to date is Viscovery [29]. The devel-
opment of Viscovery, like SOM_PAK, started in the early 90’s. However, Viscovery’s development took a more
commercial approach and was funded by venture capitalists. While this commercialisation means that Viscovery
is not free, it has allowed the package to continue to develop and grow into a suite of data mining programs.
According to Viscovery’s marketing literature [30]], the package provides a cacophony of features for data min-
ing and exploratory data analysis. These features include visual cluster analysis, correlation analysis, principal
component analysis and a range of graph production abilities. The package claims to be intuitive even for users
with little knowledge of statistical analysis while also being extensible and flexible enough for experts in the
field. Viscovery has been used in research into document classification [7]] and medicine among other areas.

For those familiar with the statistical language R there is a self organising map package called Kohonen
[36]. The Kohonen package puts emphasis on visualisations and aims to provide functions for the production of
self organising maps that are easy to use. Though free to use like SOM_PAK, the Kohonen package seems to

have many more features than its C based counterpart. Along with functions for the classical self organising map,
the package also provides functions for variants of the original algorithm. Where visualisations are concerned,
the Kohonen package produces a wide array of graph and map representations.

3.3 Related Work

Previous to this work, it has been widely appreciated that the self organising map is extremely useful in the
analysis of large, highly dimensional data sets. It is also universally accepted that the time required to run the
algorithm on such data sets is a hindrance. Due to this, much work has been done to create a self organising map
program that organises data in a greatly reduced time.

A graphics hardware version of the self organising map is presented by Gajdo and Plato [[11f]. The work
focuses on a version of the algorithm implemented using CUDA. The algorithm updates map vectors in parallel
and also demonstrates a parallel reduction. The algorithm is evaluated in four experiments running on both a
CPU and a GPU. Two experiments varied the size of the map, the others changed the dimensionality of the
vectors. The results showed that changing vector dimensionality did not separate the CPU from the GPU until
the number of dimensions was as high as 100. However, the GPU outperformed the CPU when the size of the
map was made larger. The evaluation strategy used by Gajdo and Plato [11]] is similar to the strategy that will be
employed in this work, as is the use of a parallel reduction.

The system detailed by Prabhu [[26] implements a self organising map in a context more traditionally asso-
ciated with a GPU. The system is designed to recognise patterns in an input image. The input image is reduced
somewhat through mathematical transformations before being processed by the self organising map in order to
reduce complexity. The strategy employed by Prabhu[26]] is designed for GPU use and involves processing more
than one input vector at a time. After a winner for each input vector is found, a matrix representing winning
neurons in the map is constructed and acts as a mask for the whole map during the update phase. In this case, the
GPU is used in both finding winning neurons and updating vectors on the map. This strategy shows a marked
speedup on a GPU when compared to a CPU in all tests performed. The paper mentions the overhead of transfer-
ring data between main memory and GPU memory as a concern in some of the tests. While the strategy Prabhu
[26] employs is a successful one for the organising process, it is not the strategy that will be used in this work.
However, the consideration of the overhead of data transfer between devices is one that this work will take into
account.

Work by McConnell et al. [22]] compares a number of implementations of the self organising map for multi-
core and many-core hardware. The map is implemented in OpenCL [[13] and CUDA [24] along with a version
written using message passing. The strategy described by McConnell et al. [22] is very similar to the one de-
scribed by Prabhu [26] in that many input vectors are processed at a time before the map is updated in batches.
The value of McConnell’s work [22] comes from the comparisons between parallelism frameworks that are pre-
sented. The work shows that all three implementations produced a speedup when compared to a serial version but
also that the CUDA implementation outperformed the OpenCL implementation when run on the same platform.
While all the tests presented by McConnell et al. [22]] show CUDA performing twice as fast as OpenCL, CUDA
will not be used in this work. It is the aim of this work to produce a self organising map program that can be run
on varying architecture. If the program were to be implemented using CUDA then it would only be able to run
on nVidia graphics hardware. Though more in favour of a CUDA implementation, the results of McConnell’s
work [22] still show that vast speedups are possible when using OpenCL to implement a self organising map.

A graphics hardware implementation of a varient of the self organising map is presented by Campbell et al.
[3]. This variant of the original map is called a “parameterless” self organising map and eliminates the need
to decide on the necessary parameters of the original algorithm (neighbourhood size, learning rate etc). While
Campbell et al. [3]] does not use recent parallel computing frameworks like OpenCL [13]] or CUDA [24], the

strategy for parallelising is very similar to the one that will be employed in this work. The work shows that when
the algorithm is run on a GPU it outperforms a desktop computer with ease. With larger map sizes, the GPU
even out performs a super computer of the time (2005).

The self organising map algorithm is used by Strong and Gong [31]] to group visually similar images. The
desired use of the system is a way for users to navigate through a library of images. The hope is that users can
easily find the image they are looking for by locating similar images and from there moving to the desired image.
The organising process is parallelised using a GPU and OpenCL and shows a speed up of up to 37 times when
compared to a sequential version running on a CPU. The work carried out supports the use of OpenCL and also
shows examples of the use of larger maps and input dimensionality.

In Kohonen’s book on self organising maps [[18]] a hardware implementation for the self organising map is
suggested. This suggested implementation makes use of SIMD [28]], a hardware component present in graphics
hardware, to accelerate the self organising process. The book outlines a system where each neuron in a map is
dealt with using a part of the SIMD and each input vector is broadcast across the SIMD. The distance from the
input vector to each neuron is therefore calculated simultaneously. When the winner is found from these neurons,
the updates to every neuron’s vector also happen simultaneously. It is a form of this suggested model that will be
implemented in this work.

A short discussion of the use of more efficient distance metrics is present in Kohonen’s book [[18]]. The book
explains that it would be possible to greatly reduce the computations necessary by using what is calls city block
distance rather than the traditional Euclidean distance. City block distance is more commonly called Manhattan
distance and is a simple operation involving only addition rather than the square and square root operations
used by Euclidean distance. When this distance metric is applied to the find a winning neuron phase of the
organising process the number of necessary computations is reduced. However, the book does not recommend
this approach. It is stated in the book that the use of Euclidean distance leads to a more isotropic display of the
map. This means that the layout of the neurons on the map are more uniform when comparing horizontal and
vertical orientations. The book’s negative view of Manhattan distance is supported by Marqués et al. [23]. In
this case, the main opposition to Manhattan distance comes from the fact that it is shown to produce maps with
slightly more distortion. Distortion in this context means that some of the topological information of the map
is lost. However, this distortion is only slightly increased by the use of the simpler metric and Marqués et al.
[23]] accept that it may be more appropriate to use Manhattan distance for some implementations. The use of
Manhattan distance as a way to accelerate the organising process will be explored in this work.

3.4 Discussion

It is clear that self organising maps have been widely explored since their original proposal. Their applications
are numerous across many fields and disciplines where it is necessary to reduce huge, highly dimensional data to
more understandable representations. The applications mentioned in [3.T] are just a small subset of the situations
that the self organising map has been applied and, with the use of data mining on the increase, the number of
applications of the algorithm are set to rise. However, in order to see the usefulness of the algorithm rise, it is
necessary to make it much faster than the classical, serial version. A measured speedup allows for self organising
map applications to become more real time and possibly even interactive. Faster applications may lead to the use
of the self organising map in situations where the time taken to process data with the original algorithm made the
output useless due to volatility of data.

Of the packages discussed in[3.2] none have support for many-core architectures like graphics hardware that
would allow any sort of speedup when compared to a serial version. SOM_PAK has absolutely no support for
parallel multi-core and many-core processors. This is simply due to the fact that it outdates the widespread use
of these parallel architectures. Without further analysis, it seems that Viscovery does not make use of parallel

10

architectures like GPUs as this feature does not appear in marketing literature. It is a reasonable assumption to
make however, that this more professional package will take advantage of the parallelism made available by the
widespread use of multi-core CPUs. The third package mentioned, the kohnonen package for R, does not have
direct support for the use of multi-core and many-core architecture. As a language, R does have support for
these parallel devices but a version of the Kohonen package designed for these architectures is yet to be made
available.

The work referenced in [3.3]is only a small portion of the research that has been performed in an attempt
to create a fast self organising map program. The sheer amount of research shows that the currently available
applications that perform the algorithm are inadequate for many situations. Most of the work into self organising
map programs for a GPU have been done using nVidia’s CUDA. Work by McConnell et al. [22] shows that
using CUDA rather than OpenCL is the best approach when speed is the only concern. However, the use of
CUDA limits the program to only being compatible with nVidia graphics hardware. Using OpenCL for a parallel
applications means that the program is compatible with any architecture whose vendor has released OpenCL
support. This list of hardware vendors includes Intel, nVidia and AMD [12].

All of the work mentioned in |3.3| suggests that a speedup compared to the sequential self organising map
algorithm is highly possible using many-core and multi-core hardware, regardless of whether the program is
written using CUDA, OpenCL or message passing. The suggestion of using parallel architecture is even present
in Kohonen’s 2001 book [[18]] which predates the widespread use of multi-core and many-core architecture.

Many different strategies for parallelising the original self organising map algorithm are presented by research
into the area. The majority of strategies focus on processing data for all of, if not some of, the neurons in the
map at the same time. Others process more than input at a time. As the original algorithm causes the neurons in
the map to change with every input vector, it seems apparent that any parallel algorithm that truly duplicates the
outcome of the original algorithm should be constrained to process inputs one at a time. This logical constraint
forces the strategy to be followed in this work to be one of evaluating many neurons at once rather than many
inputs at once.

11

Chapter 4

OpenCL

OpenCL is a framework for writing software that runs in parallel across heterogeneous platforms. In this context,
heterogeneous platforms are different kinds of processors and this means that OpenCL allows a programmer to
write software that is compatible with more than one type of processor or graphics processor. The OpenCL code
requires little to no modification to be run on different platforms.

4.1 Basic Structure

OpenCL works on the basis of running the same instructions in parallel on large data sets. These instructions are
called kernels and are explained in[4.2] In order to understand how these kernels are executed it is necessary to
understand the device hierarchy that is present within OpenCL.

The base object in this hierarchy is the host. The host is a CPU based computer that handles the initialisation
phase of the program as well as harvesting the final result of all of its operations. Contained in the host are
devices. Each device contains a number of compute units which in turn contain a number of processor elements.

Figure 4.1: OpenCL Host Structure (from [33]])
101 M1
il

Processing Y H H
Element RNals Host
il

1
A

Compute Unit OpenCL Device

7

The host is responsible for allocating memory (explained further in 4.3), loading kernel code and assign-
ing work to devices. Work is submitted to compute units as kernels (explained in which are executed on
processing elements.

Each individual element of execution is called a work item in OpenCL. Work items can be thought of as the
single, smallest parts of a problem. For example, a single value to be processed. Work items are grouped into
independent work-groups where a work group is an up to three dimensional array of work items that is executed in

12

parallel by the device. The size of the work group is limited to the size of CL_LKERNEL_WORK_GROUP_SIZE
which is the maximum number of concurrent threads that are possible for this device’s compute units. That is to
say, the work group can only have as many work items as there are threads to process them on a compute unit.
Figure {.2] shows the structure of global work in OpenCL. In the figure, each work group is a 4 x 4 matrix (a 2
dimensional array) and there are 9 work-groups. In order for this to be possible, the compute unit used in this
situation must have at least 16 concurrent threads available.

Figure 4.2: OpenCL work structure

Work group

HE
I

Global work

e

Work item

When writing programs that use OpenCL, there are two categories of code that must be considered. The
first of these is the host code. The host code is the program that specifically runs on the host that deals with
initialisation, distributing work and harvesting results, along with other things. The host code can be written in
any language for which there is an OpenCL implementation available. For example, the host code in this work
is written using C++.

The second code base that must be considered is the kernel code and will be discussed in

4.2 Kernels

As mentioned before, OpenCL kernels are sets of instructions that are executed in parallel. These instructions
are written in a variant of C99 and have mostly the same syntax. OpenCL C has some extra built in abilities,
like extra mathematical functionality, but suffers from being more restricted in some cases, such as the fact that
recursion is not possible and random number generation is not available [8].

Each kernel program is stored in a separate file, often with the extension .cl. During the initialisation phase
of the host program, each kernel program is compiled using the OpenCL compiler and is stored as a kernel object
in the host code. Once the kernel has been built, the arguments that the kernel needs to run are assigned to it.

13

Figure 4.3: OpenCL kernel to calculate Manhattan distance

__kernel void Manhattan_distance (
__global float * input, // __global keyword
__global float =* map,
__global float = distance_map,
int vector_length,
int input_start_index)

size_t tid = get_global_id(0); // Global work item number
int base_map_position = tidxvector_length;

float sum = 0;

for (int component = 0; component < vector_length; component++)

{
sum += fabs (input [input_start_index + component] -
map [base_map_position+component]) ; // "fabs ()’ function
}

distance_map[tid] = sum;

In order to assign work to a device, a kernel must be queued. Queuing involves setting up work-groups (see
[.1) of appropriate sizes that represent pieces of the total work to be processed. It can aid understanding to think
that when a kernel is queued many copies of that kernel program are made and assigned to each work item. In
that case, every kernel is executed sequentially to process a single work item.

Figure [4.3] shows a kernel that calculates Manhattan distances. The first point to be made here is the way
in which arguments are passed to the kernel. Passing arguments to kernels is done by the host code before the
kernels are enqueued. In the case of array arguments, buffers are assigned (see [.3] for buffers). From there, a
number of other things are important to observe in this figure. Firstly, the use of the keyword __global in the
arguments to the kernel. This keyword will be explained in[4.3]

Another observation is the use of the function ger_global_id(0). If the global work amount is thought of as
an n dimensional array, get_global_id(0) returns the size of the first dimension. This means that ger_global_id(1)
returns the second dimension and get_global_id(2) the third.

In the particular case of the kernel in Figure 4.3 the kernel is run using a one dimensional global work size,
meaning that the global work can be thought of as a normal, linear array. In turn, this means get_global_id(0)
returns a value that is unique to every work item. This value is used to determine which elements in the map and
distance_map arrays are accessed. There are similar functions that allow a programmer to access the dimensions
of the current local work group.

A third observation is the use of the function fabs() that returns the absolute value of a floating point number.
This is an example of the functions that are included as part of standard OpenCL. In C99, the function abs()
performs the same action but is only available as part of the math.h header.

14

4.3 Memory Model

4.3.1 Memory Hierarchy

The memory model used in OpenCL reflects the hierarchical nature of the device structure that is employed.
Figure 4.4 demonstrates this hierarchy.

The smallest, most exclusive element of the memory model is the private memory of a work item. This is
the memory that a single kernel uses for variables during its execution. In Figure 43| for example, the variable
base_map _position is stored in private memory. The variable is only accessible by this kernel and only exists
during the processing of the current work item.

Local memory is accessible to all kernels that execute as part of a single work group. In more hardware-
centric terms, local memory is only accessible to kernels that are running on the same compute unit. The contents
of this local memory only exists for as long as the work group is being executed. In order to designate local
memory, the keyword __local is used. As an example from Figure [4.3] if the keyword __global were to be
replaced by the keyword __local when defining the distance_map argument then the distance_map array would
only be accessible to kernels in the same work group.

The peak of the device memory hierarchy is the global memory. Intuitively, global memory is accessible
from all kernels that are executed while processing all work groups. The contents of global memory exist until
they are manually dereferenced by the host.

The host memory is not present in this hierarchy as it is not directly accessible by any kernel during execution,
it is only accessible by the host.

Figure 4.4: OpenCL Memory Hierarchy

OpenCL Device
s N B

Private Private Private Private
Memory Memory Memory Memory

(Work Item ’[Work ltem J [Work Item M Work Item 1

[Local Memory J [Local Memory]

Workgroup Workgroup
[Global/Constant Memory }
[Host Memory }
Host

15

4.3.2 Buffers

All memory transactions in OpenCL are explicit and must be done manually by the programmer. In order to pass
data to a device, the host must create buffers of appropriate sizes to contain all of the values that the device will
need. For example, if the device requires a set of 10 floats in order to execute, the buffer size is the size of a
single float in bytes multiplied by 10.

Buffers for both local and global memory must be made and assigned appropriately as kernel arguments to
avoid memory inconsistencies. When global memory buffers are made, the host can transfer values from host
memory to the buffers. The host can also transfer values from buffers back into host memory. It is this ability
to transfer data between host memory and global device memory that allows the original data to be passed to the
device and the final result of all computations to be harvested by the host.

4.3.3 Barrier Synchronisation

In general, OpenCL attempts to remove the need for synchronisation between threads but sometimes it is neces-
sary to coordinate for the sake of keeping data valid. Barriers provide the desired synchronisation in OpenCL.
There are two types of barrier that can be used in kernel code, local and global.

When a local barrier is placed in a kernel, the effect is that no kernel within a work group can continue past
that barrier until all other kernels in the group have reached that barrier. That is to say that until all the kernels
have executed the program on their work unit up to the point where the barrier is placed, the program cannot
continue. The use of local barriers means that any changes to local memory before the barrier can be guaranteed
to have happened when code after the barrier is executed.

A global barrier is very similar, other than the fact that when a global barrier is placed in kernel code, all
kernels in the global work must reach the barrier before any of them can continue. Global barriers should be used
over local barriers when changes to global buffers are made.

4.4 Example OpenCL System

This section will attempt to give an outline of how a simple OpenCL program works.

Firstly the host must determine which devices in the system it can access and choose one. After choosing
a device to run the kernels on, a context is set up so that it can be used when initialising other structures that
OpenCL programs need. When the device has been set up properly, a command queue for that device is made
that allows the host to pass work to the device.

The next thing the host does is initialise buffers to correct sizes for kernels to use. The data that kernels will
need to execute is loaded onto appropriate buffers while those buffers that will have data loaded into them by the
kernels are left just initialised.

Next, files containing kernel code are read by the host and compiled. At this point, if the code in the kernel
files does not compile for any reason the host program ends and informs the user of its failure. In the case that
the kernel code does compile, arguments are assigned to the compiled object. When the host code is assigning
an array argument it actually assigns a reference to the buffer that was built to hold that array. For constants, the
argument for the kernel is simply set to the value rather than a buffer.

16

Once arguments have been set, it is time to enqueue work to the device. To do this, the command queue must
be passed information on the kernel that is to be run as well as a set oof values that specifiy global and local work
sizes. The queue is also passed an Event object that it uses to signal when the work has been finished. For those
familiar with more traditional concurrency techniques this Event object is essentially a condition variable that is
signalled by the command queue when all of the current batch of work has been finished. When the host has
given work to the command queue, it waits on the Event object before continuing.

When the command queue signals that the work is done, it is the time for the host to harvest the results of the
computations. This is done by queueing a read request from a particular buffer and supplying information about
where to put the read values and how many bytes should be read from the buffer. The results are now stored in
the location specified to the read request and can be accessed normally by the host code to do whatever it needs
to with it.

17

Chapter 5

Implementation

In the course of this work a number of programs were produced. Along with the main program, the parallel self
organising map, there were some smaller, utility programs produced. All of the applications that were produced
by this work are explained in this section, along with explanations of design choices for the main program.

5.1 Single Threaded SOM

The main result of this work is a program called parallel SOM. Parallel_ SOM is written using C++ and uses
OpenCL to provide parallelism on multi-core and many-core processor architecture. However, before OpenCL
and GPU programming could be even considered it was necessary to develop a single threaded version of the
program.

For consistency, this section will follow the same structure as section - where the original organising
algorithm is explained.

5.1.1 The Process

As explained before, the algorithm begins with map initialisation, followed by continually loading an input vec-
tor, finding a winning neuron in the map for that input vector and then updating neurons in the neighbourhood of
the winning neuron. This process continues until the program’s termination condition is fulfilled and periodically
there is a reduction of the neighbourhood and learning rate.

There are two differences in the process implemented here when compared to the original specification of
the algorithm in[2.1] one rather major and the other less so. There is also an extra constraint applied to the whole
process.

The extra constraint in the process is that the map that is output by the process must be square. That is, the
x dimension and y dimension of the map must be equal. This is simply due to the way that some features have
been implemented and this rule would likely be removed in later versions of the program.

The major difference in this implementation is the termination condition for the algorithm. In the original
definition of the algorithm, the process terminates when the map converges. In simple terms, the process ends
when the neurons in the map change very little between processing input vectors or stop changing all together.
This implementation does not support any notion of convergence but rather terminates when a certain number of

18

iterations is reached. The justification for this decision is taken from the implementation of the self organising
map package SOM_PAK as the same concept of maximum iterations for termination is used there. The value for
this maximum number of iterations is calculated as follows:

maz_iterations = (map_xr_dimension) x (number_of _input_vectors) x 20

The second, almost trivial difference between this implementation and the original algorithm is the inclusion
of the idea of trials. That is to say, the implementation allows a user to specify how many times the program
should run the whole algorithm to make a map before deciding which of the maps produced is the best and
outputting it. The best map is defined as being the map that has the lowest quantisation error when compared
to the original dataset. After each trial, if the map that has just been produced is deemed to be better than the
previous best map then the best map is over written with the new map. At the end of all of the trials it is this best
map that is output.

Quantisation error will be explained in This is another feature that is present in SOM_PAK and was
seen as a useful feature.

5.1.2 Map Initialisation

In the classical organising algorithm, the map initialisation phase simply involves assigning random vectors to
every neuron in the map. This simple initialisation takes place in this implementation with one small constraint.
The constraint here is that only values from a certain range can be used as the components of the vectors.
This range is calculated before the map is created by finding the maximum and minimum of all of the vector
components in the input data set and using these values as the maximum and minimum of the range.

In the single threaded version, the map is stored in a one dimensional array of floats that has length equal to the
number of input vectors multiplied by the dimensionality of the input vectors. This simplistic data structure was
chosen because the access time for a static array cannot be beaten and time is of the utmost concern. This array
simply stores all of the values from the vectors associated with the neurons. For example, if the dimensionality
of the vectors is n then the first n elements of the map array represent the first neuron, the second n elements of
the map array represent the second neuron and so on.

The topology of the map is defined in a line by line basis. That is, if the width of the map is w then the first w
elements of the map array represent the top row of the map. The second w elements represent the second row and
the last w elements represent the bottom row of the map. The first element of the map array is the top left corner
of the map and the last element is the bottom right corner of the map. Figure 5.1 attempts to further explain this
idea.

19

Figure 5.1: Map Topology from Map Array

[,, 1,20, 2,G __

]

Neuron
(54,32,6)

Neuron
(12,4,66)

Neuron
(77,89,3)

Neuron
(1,20,2)

5.1.3 Find a Winning Neuron

To find a winning neuron for a particular input in the original organising process, the input vector is compared
to every neuron in the map and the distance between the two vectors found. This distance is found using the
Euclidean metric shown below.

Buclideandistance(p, q) = v/(p1 — ¢1)? + (p2 — 42)> + .. + (P — @n)?

In this implementation, it was decided that the use of Euclidean distance was an unnecessary drain on pro-
cessor resources as it involves a number of squaring functions and a square root function. The alternative is
Manhattan distance. Manhattan distance is a simplification where the distance between two points is calculated
by finding the differences between all of the components of the two points and then summing those components,
rather than using complex square and square root operations.

Manhattandistance(p,q) = (p1 — @1) + (P2 — @2) + ... + (Pn — dn)

As before, the neuron whose vector is the minimum distance away from the input vector is the winning
neuron. When this winner is found its position in the map array is returned as an integer. This integer is the index
in the map array at which the first component of the neuron’s vector is contained. It follows that the consecutive
elements of this index are the other vector components.

5.1.4 Update Neurons in Neighbourhood

The neighbourhood of a particular neuron is the area around that neuron that contains a number of other neurons
from the map. In the beginning this neighbourhood covers most of the map and reduces to be much smaller
around the original neuron. In the original algorithm, the neighbourhood function is used to determine how
much a neuron should change during an update, according to how far away it is from the winning neuron.
That is, neurons that are further away from the winner are changed less than those closer to the winner. The
neighbourhood function’s result for a particular neuron is combined with the learning rate at that time to form a
multiplier that is applied when updating that neuron.

20

Neighbourhood Function and Learning Rate

The neighbourhood function and learning rate are contained within one concept in this implementation, another
one dimensional, static array of floats. The array, the neighbourhood multiplier array, is of a length equal to the
x dimension of the map (or the y dimension, since they are constrained to be equal) and is populated when the
program starts with values from a Gaussian function.

(_ (n/hood/5)2)
1 * e 2*gaussValue2
gaussValue/2m

f(n'hood) =

The n’hood value is a value representing how many steps the current neuron is away from the winning neuron
(The neighbourhood size value in figure [2.2)). The gaussValue here is a constant that has been determined to be
optimal using trial and error. This value helps adjust the Gaussian curve to have desirable properties for its use
here. Each position in the static array mentioned above is calculated by using the index value for that position as
the n’hood value in the above function. Each element in the array therefore holds a multiplier for a neuron that
is in the neighbourhood of size equal to the index of that element. That is to say that the multipler sorted at index
n in the array is the multiplier that is applied when updating a neuron that is in a neighbourhood of size n of a
winning neuron.

The Update

When the update to a neuron actually happens, each component of the neuron’s vector is considered individually
with the corresponding component of the input’s vector. The idea behind the update here is that the current
neuron’s component is updated to be a little bit closer to the value of the input’s component. The difference
between the neuron’s component and the input is found and this value is multiplied by the value supplied by
the neighbourhood multiplier array at the position equal to the neuron’s current position in the neighbourhood.
Every component in a neuron’s vector is updated in turn. The calculation is shown below.

NeUTONypdate = NEUTONoriginal + (INpuUt — neuronomgmal) x netghbourhood M ultiplier

In this implementation, all neurons are considered in every update, regardless of whether they fall inside the
neighbourhood. This is where the size of the neighbourhood multiplier array comes into the fore. The array is
the size of the x dimension (and the y dimension, since they are equal) so that every possible neighbourhood
is accounted for in the array. When a particular neuron falls outside of the neighbourhood, the value at the
appropriate position in the neighbourhood multiplier is zero. This is explained in[5.1.5

5.1.5 Reduce Neighbourhood and Learning Rate

It is necessary to reduce the neighbourhood size and learning rate throughout the runtime of the algorithm to en-
sure that more accurate training of the map occurs as time progresses. Since the neighbourhood, neighbourhood
function and learning rate are implemented using the same concept, a static neighbourhood multiplier array, the
reduction in neighbourhood and learning rate is performed in one simple step - all of the values are shifted into
the element before and an element with value O is added on the end. The first element in this case is removed.
This produces the desired affects of reducing the neighbourhood size and lowering the learning rate.

The neighbourhood size is effectively reduced because an element that was previously non zero is now zero
and neurons that attempt to update using that value as the neighbourMultiplier will not change anything. The
size of the array does not change either.

21

Due to the fact that the array is populated using a Gaussian function, every element is smaller than the one
that appeared before it, with the first element being the largest. This means that the effect of shifting all the
elements in the array is that every element gets a lower value than it had previously. This is how the learning rate
is reduced.

5.2 Adaption to OpenCL

Once the single threaded version was complete, it was time to adapt the code to work with OpenCL. The first
step here is to consider which parts of the algorithm are easily parallelised.

5.2.1 What to Parallelise?

As was discussed in[3.3] the usual strategy for parallelising a self organising map algorithm is to have the neurons
of the map considered in parallel. That is to say, every neuron processes the same input at the same time. This
is the strategy that was be adopted here. Three kernels were specified for the three elements of the program that
are run in parallel.

The first kernel calculates the Manhattan distance between every neuron and the current input vector and
stores these distances in an array. The second kernel uses this distance array to determine the minimum distance
that was found and determines which neuron is the winner. This winning neuron value is then used by the third
kernel to update the map appropriately.

Manhattan_distance.cl

The Manhattan_distance.cl kernel, as the name suggests, calculates Manhattan distances. As input, the kernel
receives the whole input data set as a static one dimensional array structured in the same way as the map array.
In this case, the whole input data set contains every input vector to the program. As well as the input data set, the
map array, the number of dimensions in each of the input vectors and an integer representing where the current
input vector starts in the input array are passed to the kernel. The final argument in the kernel code is another
static, one dimensional array called distance_map. During the runtime of the kernel this array will be populated
with distance values.

When this kernel is queued by the host, the number of work items is equal to the number of neurons in the
map. As such, each instance of the kernel is responsible for finding the distance between a single neuron and
the current input vector. The calculation is very simple. The first step is using the global work item id and the
number of dimensions in the input vector to determine the starting index for this particular kernel’s work item.
That is, since the map array is one dimensional, the neuron’s vector that this kernel is meant to consider starts at
the element stored at the index equal to work item id multiplied by vector dimensionality.

Once the base has been determined, the sum of the differences between each of the components of the current
input vector and the current neuron’s vector is calculated as described previously. The result of this calculation
is stored in the distance_map array at the index equal to the global work item number.

The distance map array is used by another kernel, later in the cycle of the program.

22

min_distance.cl

This kernel takes arguments that are the distance_map calculated by the Manhattan distance kernel, a inte-

ger constant chunk_size and two global, one dimensional, static arrays of floats, winner_index_array and win-
ner_distance_array. The last two arguments are local, one dimensional, static arrays of floats local_winner_index_array
and local _winner _distance_array. This kernel is an example of a reduction and the calculation of minimum dis-
tance is performed in stages.

The integer chunk_size is calculated as the number of work units that each compute unit on a device should
be given so that each unit has roughly the same amount of work to do. The first stage in the reduction uses the
processing elements of the device and starts by determining a local_chunk_size by dividing the chunk_size by the
size of the local work group. This value is the amount of work units each processing element must deal with. The
kernel determines a starting point for the distance_map array using it’s global id and iterates from that start point
until a point that is local_chunk_size later. The minimum value found by the kernel in distance_map is stored in
one of the local arrays and the index of this minimum distance is stored in the other. This first stage ends with
a local barrier synchronisation (see forcing the work group to come to the same point. At this point, the
local arrays contain a set of candidate minimum distances.

The second stage is carried out by each compute unit. After the local barrier, the minimum value from the
local distance array is found and stored it in one of the global arrays at a position specified by the work group id.
The index of this minimum distance is stored in the other global array.

The final calculations are carried out by the host. Firstly, it reads the values from two global arrays that were
populated by the kernel. These arrays are both of length equal to the number of compute units on the device.
Next, it must find the minimum distance value from the appropriate array. Upon finding that value, the related
index value from the other array is stored as the value of the winning neuron.

update_weight.cl

The third kernel, update_weight.cl, handles changing the vectors associated to each neuron. These vectors are
sometimes called weights, hence the name of the kernel. As input, this kernel takes the whole input data set, the
map array, the number of dimensions in each of the input vectors and an integer representing where the current
input vector starts in the input array - the same inputs that the Manhattan distance kernel takes. As well as these
inputs, the update weight kernel is passed an integer representing the winning neuron in the map, an integer
representing the dimensions of the map and the neighbourhood multiplier array mentioned in

Like the manhatan distance kernel, each instance of this kernel is to process one neuron of the map. As such,
when the kernel is enqued the number of work items is equal to the number of neurons in the map.

The first thing that needs be done by the kernel during execution is determining which work item to work on.
A call to ger_global_id(0) does this since the global work is only singlely dimensional (this function is explained
in[4.2). The next stage is using this global work id and the integer representing the winning neuron to determine
what neighbourhood the current neuron is in. A code snippet showing this calculation is shown in figure[5.2] The
figure shows that this small function determines the x and y coordinates of the current neuron and the winning
neuron in the map using modulo arithmatic and integer division. From there, the function calculates the diffence
between each of the components of the coordinates and returns the maximum of the two. This has the affect of
creating the square neighbourhood shown in Figure [2.2]

23

Figure 5.2: Function contained within update_weight.cl to determine a neuron’s neighbourhood

int squareNeighbourhood (
int winner_index,
int map_side_size,
int current_id)

int neuron_x, neuron_y, winner_x, winner_y;

neuron_x = current_id % map_side_size;
neuron_y = current_id / map_side_size;
winner_x = winner_index % map_side_size;

winner_y winner_index / map_side_size;

return max (abs (neuron_x-winner_x), abs(neuron_y-winner_y));

Once the neighbourhood has been determined, the calculation shown in [5.1.4] can be carried out on each of
the components in the current neuron’s vector. This is done with a for loop that updates each position in the map
array as the new value is calculated.

5.2.2 Host Program

In it was explained that there are two code bases that must be considered when writing for OpenCL: the
kernel code and the host code. The host code is the code that runs on the normal CPU while the kernel code runs
on the parallel processors and does the bulk of the work. The host code deals with the initialisation phase of the
program as well as enqueueing work to devices and then harvesting the results of computations. The host code
in this work is written with C++.

Initialisation

Since the basis of OpenCL is passing work to devices for them to process, the first stage in the host program
is to set up the device to be used. To do this, the system is queried for a list of OpenCL compatible devices
and the host then chooses one of the devices from the list. With the device in mind, a context must be set up.
Contexts differ slightly between types of device (CPU, GPU, Accelerator etc.) and applying the wrong context
to a device will cause the program to crash. The context is used to set up all manner of constructs necessary to
run an OpenCL program, such as buffers, command queues and kernels.

In the initialisation phase all buffers are made and the buffers that hold the map array and the whole input
dataset are populated. All three kernel files are then loaded and compiled in preparation for being assigned
arguments by the host. In the runtime of the program, while the contents of arrays and buffers may change, the
buffers themselves are the same buffers. This means that in all cases of using buffers as arguments, the arguments
to each kernel need only be assigned once. This is due to the fact that buffers can essentially be thought of as
memory locations in that the contents of the buffer may change but the location of the data is always the same.
In the case of assigning values as arguments rather than buffers, this is not true. There are some cases, such as
the map dimension value handed to the update weight kernel, where these values are constant for the whole of

24

the runtime of the program and so do not need to be changed but there are others where a kernel argument must
be reassigned every time a batch of work is queued to the device. Examples of values that need to be reassigned
continuously are the integer representing the winning neuron and the integer representing where the current input
vector is stored in the whole input array.

Enqueueing Kernels

Since the self organising map algorithm is a very repetitive, cyclic process it is obvious that there are many
instances of enqueuing kernels in the program. Every time a new input vector is considered three batches of
work are queued, one for each kernel to process the data.

The first kernel to be enqueued is the Manhattan distance kernel. Before this is done however, the argument
representing where the current input vector starts is set to suit the current input. The kernel is then enqueued and
the host waits for the batch to complete.

When the Manhattan distance kernel batch is complete, the minimum distance kernel is enqueued. This
kernel does not need any new arguments and its main source of input is a buffer that will have recently been
populated by the Manhattan distance kernel. The host program waits for this kernel to complete but, before
enqueueing the third kernel, must now do some work of its own.

The next phase in the runtime involves the the host program reading the two buffers that are populated during
the runtime of the minimum distance kernel. One of these buffers contains a set of integers that represent a set of
possible winner neurons, the other contains the distance values calculated by the Manhattan distance kernel. The
two buffers are paired so that one buffer contains the index of a certain possible winner and the other contains the
distance for that winner. Both of these values are stored in the same position in each buffer. It is the job of the
host to search the distance array for the minimum value. When this minimum value is found, the corresponding
integer from the possible winner buffer is accessed and used as an argument to the update weight kernel.

The final kernel to be enqueued is the update kernel. Using the integer representing the winning neuron, this
kernel updates all of the appropriate neurons in the map.

Harvesting Results

Throughout the runtime, the map buffer is updated continually. However, once the host has loaded the map
buffer at the beginning of the process it does not access it again until the whole process is complete. At this
point, when the process’s termination condition has been reached, the host program reads the whole map buffer
into an appropriately sized array of floats. This array is then examined to determine whether it is the best map so

far (see[5.1.1)).

If there are more trails still to be run (see for trials), the whole process starts again from map initialisa-
tion. Otherwise, the program outputs the best map and ends.

5.3 Visualisation

It has been mentioned previously that a self organising map package is made infinitely more useful when some
form of visualisation tool is included. It is for that reason, and for the fact that this visualisation tool was
extremely useful for debugging during development, that a lightweight visualisation tool was developed in the
course of this work.

25

5.3.1 HTML Visualiser

The first version of the visualisation tool was written to take an array of floats representing a map and output a
file containg html code. The HTML produced was essentially a table that had a cell for every neuron in the map.
Each cell’s background colour was changed to represented the vector stored at that neuron. The original version
of the program was written to produce HTML because the program itself could be developed quickly and easily
thanks to previous knowledge.

The visualising code was written in C++ and the header file to access it was very simple. The header only
contained 2 functions that do the same thing but take different arguments. Figure[5.3|shows a condensed version
of the header file.

Figure 5.3: Condensed header file for DrawHTMLMap.cpp

#include <vector>
// ... other includes
#include <iostream>

// Class used to draw a html representation of a map

int drawMap (vector< vector<float > >, string);
int drawMap (float »*map, int map_size, int vector_length, string filename);

Calculate Colours

It is the intention of the program to produce a representation where the colours on the map vary in such a way
that the whole range of neurons in the map are appropriately shown. That is to say, the range of values that the
colours represent follow exactly the range of values that are contained in the vectors of the neurons in the map.
The values that are used to calculate colours are the distances of each of the neuron’s vectors from the origin.
For example, if the map vectors are three dimensional, the Euclidean distance from [0,0,0] to each of the vectors
is calculated and that value is used to calculate colours values.

The colour values themselves are encoded as RGB values. There are three values where one of the values
represents the red value, one the green value and the third the blue value for that colour. To make these three
dimensional colour values, the range mentioned earlier was split into six smaller ranges of equal size. Whether
or not the distance value for each of the neurons falls within each of the ranges determines how the colour is
made. If a value falls into a particular range then two of the RGB values are set and the third varies according to
the value. For example, if the distance value falls into the first range the red and green values are set to 0 and the
blue value is set according to the value. If the distance value falls into the fourth group, the green value is 255,
the blue value is 0 and the red value varies according to the distance value. In order to use the distance value, it
is adapted to be within the range of the colour values, O to 255. Figure shows how the colours are calculated
and also the start and end values for that range of colour.

26

Figure 5.4: Table showing how colour values are calculated

Red Green Blue Start Colour End Colour
Range1 | O 0 dist 0,0,0 0,0, 255
Range?2 | O dist 255 0,0, 255 0, 255, 255
Range 3 | 0 255 255 - dist | 0,255, 255 0, 255,0
Range 4 | dist 255 0 0, 255,0 255,255,0
Range 5 | 255 255-dist O 255,255,0 255,0,0
Range 6 | 255 O dist 255,0,0 255, 0, 255

Producing HTML

Once the colour values had been calculated, the production of HTML was simply a case of building a string that
was valid HTML and then outputting that string to a file. The start of the string defined the start of the table and
then every neuron in the map was iterated through and a cell produced for each. New table rows were started at
appropriate times using a map dimension value that is passed to the program.

5.3.2 PPM Visualiser

The HTML version of the visualiser tool was put together quickly and served well as a debugging tool in the
early stages of development. However, the HTML table is not an efficient way to show a graphical map and so a
new version had to be developed that used a more appropriate encoding. The format that was chosen was PPM.
The choice here was due mainly to it’s simple encoding. It meant that very little changes were necessary to the
HTML version of the program to make it produce PPM files.

In order to produce the PPM files it was necessary to produce RGB colour values for each neuron on the map
as it was for the HTML version. This meant that the same code was used here. The production the PPM image
code is handled by some a program that was supplied by the advisor to this project.

5.4 Data Generator

In the closing stages of development for this work, evaluation become a concern. In order to evaluate the self
organising map program well, it was necessary to use data sets with certain properties. These properties were
related to how many clusters of data were present in the data set and how these clusters were arranged. Tests
would be carried out in the evaluation stage to see whether the output from the main program shows the expected
properties that these data sets were built to have. Figure[5.5|shows histograms of example data from the program.
Each histogram shows the expected properties of the data.

The generator was written using C++ and produces three types of dataset. When the program runs it requests
a set of parameters. There are certain parameters that apply to all three data types while others only apply to
specific types. The first command defines the data set type, "uniform”, ”cluster” or ”Gaussian”. From here, the
number of vectors is requested along with vector length, output file name, maximum value for vector components
and minimum value for vector components.

27

1400 T T T T T T T T 1400

Tz00 - — 1200 - -

1000 - 1000 - —

&00 | G600 -

Occurences
Occurences

GO0 - GO0 - —
400 -

00

- L 1 0 I L !
a GO0 800 1000 1200 1400 1600 1600 a 200 400 600 800 1000 1200
Walue Yalue

(a) Gaussian clustered data (b) Uniform clustered data

1400 T T T T T

Tzo0 - —

1000 -

G600 | —

Occurences

GO0 - -

400 ~

a 100 200 300 400 500 600 700 G600 300 1000
Walue

(¢) Uniform random data

Figure 5.5: Histograms showing distribution of outputs from data generator

5.4.1 Uniform Random

For uniform random data, only the standard parameters mentioned above are needed. Uniform random, in this
case, means that the dataset that is produced is made up of vectors that are randomly generated inside of the
range specified by the maximum and minimum value parameters. The vectors are uniform because they form no
intentional patterns when considered as a large data set.

To produce the uniform random data set, every component of every vector is calculated using the code snippet
in Figure[5.6

Figure 5.6: Code snippet for uniform random data set generation

for (int 1 = 0; 1 < (num_vectors % vector_length); i++) {
output[i] = (rand()/ (float)RAND_MAX) * range + minj;
// 0 < (rand()/ (float)RAND_MAX) <= 1

5.4.2 Uniform Clusters

For clustered data, the standard parameters plus a number of clusters are required. Here, uniform clusters means
that the dataset has a set number of clusters where the vectors in each cluster vary in a uniform random way. For

28

example, if a single cluster was to be examined there would be no intentional patterns in the vectors.

Each of the clusters contains an equal amount of vectors. In order to build a cluster, a base value is generated
at random using the same technique shown in Figure [5.6] From there, more random values are calculated to be
inside a maximum variance value and added to the base value to produce vector components.

Figure 5.7: Code snippet for uniform clustered data set generation

// Assume variables have been previously initialised

int cluster_size = (array_size * vector_length)/clusters;
for (int outer = 0; outer < clusters; outer++) {
centre = (rand()/ (float)RAND_MAX) * range + min;
for (int inner = 0; inner < cluster_size; inner++) {
component = (rand () / (float)RAND_MAX) * max_variance + centre;
output [inner + (outerxcluster_size)] = component

5.4.3 Gaussian Clusters

The final data type, Gaussian clusters, requires a number of clusters and a spread value along with the standard
parameters. The data that is produced is clustered, but rather than the clusters being uniformly random they are
generated using a Gaussian curve. The spread value is used essentially as a measure of resolution and will be
explained further.

To make Gaussian clustered data, the first step is to define a Gaussian function. The Gaussian function is
then used to populate an array of size spread where each element in the array is the output from the function
when that element’s index is passed in. This Gaussian array technique is the same one that is employed in the
implementation of the self organising map program. Each value in the array is now normalised so that the sum
of the elements is equal to the number of desired values to be produced for that cluster. The number of values
to be produced is number of vectors multiplied by vector length divided by clusters. Now that the distribution of
values has been set up, it is time to produce the clusters.

As with the uniform cluster generator, a base for the cluster is defined first. The base is a random value within
the desired range for the output. The function then iterates over the array containing the distribution values. For
each element of the array, a value is produced by adding a fixed offset (defined by the index of the element in the
array is being processed) and then a random value to the base value. The same is done again but the offset and
random value are subtracted from the base value. The offset value is calculated so that it increases with the index
of the element being processed. This is done a number of times equal to the value held at the current element
in the distribution array being processed. This process is shown in pseudocode in figure 5.8 The result is that as
the offset increases, and values are further from the base, less values are made. The product here is a Gaussian
distribution of values.

29

Figure 5.8: Pseudocode snippet for Gaussian clustered data set generation

gauss_array = buildGaussArray (spread);
for (gauss_value in gauss_array) {
for (count in range (0, gauss_arrayl[gauss_value]) }{
newValue = centre + (gaus_list_position*xoffset) + randomValue;
output [current_index] = newValue;
current_index++;

newValue = centre - (gaus_list_position*offset) - randomValue;
output [current_index] = newValue;
current_index++;

}

This process is repeated for each cluster. The spread input parameter defines how wide each cluster is. That
is, a spread value of 1 would produce clusters that were completely uniform, where a large spread value would
produce clusters that better show the shape of a Gaussian function.

30

Chapter 6

Evaluation

Evaluation of the product of this work was performed on mostly quantitative basis. Most tests performed aimed
to measure how much of a speed up is achieved when comparing to SOM_PAK. Were there more of a user
interface to asses, a user study may have been appropriate.

The first evaluation however, was to check whether the product of parallel SOM was Reliable. Reliability
was determined by comparing the results of paralle]l_SOM with the results from SOM_PAK running with the
same parameters.

There were three phases in the speed evaluation. The first phase involved selecting a base test and varying
parameters from there. The second phase aimed to test performance with bigger maps. The final set of tests
performed were concerned with determining how much of a speed up, if any, was brought about by the use of
Manhattan distance over the classical Euclidean metric.

6.1 Architectures

During this evaluation, parallel_SOM was run on three different processors while SOM_PAK was run on a single
processor. There were 2 CPUs used and 1 GPU.

6.1.1 AMD CPU

The first of the CPUs used was an AMD Operton 6366HE processor[2]]. This processor is a device meant for use
in servers and as so has a high number of cores but is also concerned by power consumption and heat production.
Due to this, the base frequency is rather low when compared to processors with a lesser number of cores. The
device itself has 64 cores. While the base frequency of this processor is only 1.8 GHz, it comes with AMD’s
Turbo Core technology[1]. Use of the turbo mode on this processor means that when a process is running on a
single core the frequency can be increased up to 3.1 GHz. This evaluation revealed that this processor does not
seem to suit this particular program. It is suspected that this is due to the fact that the processor makes use of
shared floating point units and hyperthreading to produce its 64 cores. The application developed in this work
is very heavy on floating point operations and performing the same operations at the same time. It is these two
factors that lead to a slow runtime on this AMD CPU.

During this evaluation phase, tests were carried out to determine how variable the run times for each archi-
tecture were. This test involved running the same test case five times and calculating the standard deviation of

31

the resulting times. The standard deviated for the tests on this processor was 94.60 seconds or 1.98%.

6.1.2 Intel CPU

The other CPU used in this work was an Intel Core i7-2600[14]]. This device has 4 cores and a frequency of 3.4
GHz. It is for this reason that SOM_PAK is run on this processor during this evaluation. parallel_SOM was also
tested on this device.

The standard deviation found for tests on this device was 1.232 seconds or 0.18%.

6.1.3 nVidia GPU

The GPU used in the evaluation stage of this work was a nVidia GeForce GTX 590 [25]]. This GPU takes
advantage of SIMD and claims to have 1024 cores. However, in order to take advantage of all of these cores it
is necessary to run highly parallel programs that make use of the GPU’s SIMD lanes. parallel SOM is tested on
this device and it is this device that the distance metric tests are run on.

The standard deviation found for tests on this device was 0.3373 seconds or 0.14%.

6.2 Running SOM _PAK

In the process of this evaluation, results from parallel_SOM were compared to results from SOM_PAK ﬂ When
SOM_PAK runs, it performs the organising process in two phases. For the sake of fair comparison, one of these
phases was of length 0 when SOM_PAK was run here.

In order to run SOM_PAK, a great many parameters are required for the map. These parameters include x and
y dimensions for the map, file names and learning parameters. One of these parameters is a value that specifies
how many input vectors should be processed during the runtime. If this value, rlen, is larger than the number of
input vectors then the program uses some of or all of the input vectors more than once. It is explained in[5.1.1]
that parallel_ SOM takes a similar approach to the number of iterations and that this number is calculated using
the map size and the size of the input data set. When running SOM_PAK during this evaluation, rlen is set to the
number of iterations that parallel SOM would use for that particular scenario.

It is suggested in the documentation for SOM_PAK |[17] that users run a program called vfind that requests
users enter all necessary parameters through a simple text based interface. This program then runs other programs
in the package that initialise the map, perform the organisation and then check quantisation errors. However, in
order to write automated scripts for testing it was necessary to run these smaller programs directly as they allowed
input as arguments to the programs.

When SOM_PAK was compiled the 03 compiler optimisation flag was set in order to produce the most
efficient version of the program.

randinit.c

The first of the two programs run was the program that initialises a map with random vectors.

!SOM_PAK is available from http://www.cis.hut.fi/research/som-research/nnrc-programs.shtml

32

http://www.cis.hut.fi/research/som-research/nnrc-programs.shtml

./randinit -xdim 32 -ydim 32 -din test_cases/input_5120_3_gauss.dat -cout
test_cases/test_base.map -topol rect -neigh Gaussian -rand 123

This call to the program initialises a 32 x 32 map (-xdim and -ydim) that is prepared for the input from the
file stored at fest_cases/input_5120_3_gauss.dat (-din). The map has a rectangular topology (-topol) and uses a
Gaussian neighbourhood function (-neigh). The random function is seeded with the value 123 (-rand) and the
resulting, initialised map is stored at test_cases/test_base.map (-cout).

vsom.cC

The second program used in test cases is the program that actually performs the organisation process on the map.

./vsom —-cin test_cases/test_base.map —-din test_cases/input_5120_3_gauss.
dat -cout test_base.map -rlen 3276800 —-alpha 0.7 —-radius 32

This program runs the organisation process on the map stored at test_cases/test_base.map (-cin) using the input
file stored at test_cases/input_5120_3_gauss.dat (-din). The program runs through 3276800 input vectors (-rlen)
and the starting neighbourhood radius is 32 (-radius). The alpha value here is the starting learning rate value.
This value was chosen to be the same value that parallel SOM uses by default.

6.3 Validation

The first, perhaps most important, part of the evaluation was to determine whether the maps produced by paral-
lel_SOM are reliable and correct. This was done by comparing results to maps produced by SOM_PAK using the
same parameters.

6.3.1 Quantisation Error

It was mentioned previously that when both SOM_PAK and paralle]_SOM run they create many maps (according
to a trials parameter) and return the map with the lowest quantisation error. The quantisation error value is a
measure of how well the input data set fits with the resultant map. A lower, quantisation error means the data fits
well.

The error value itself is an average of the errors found for each of the input vectors. Once the map has been
built and the organising process is complete the quantisation error calculation happens. Each input vector in the
input data set is considered one more time and the winning neuron for each found. The error for this particular
input vector is now found by taking an average of the differences between each dimension in the input vector and
the winnning neuron’s vector. All of these error values for each input are then considered and averaged to find
the overall quantisation error.

6.3.2 Visual Topology Comparison

The self organising map algorithm is intended to produce representations of data that preserve the topology of
the data. It is therefore logical to compare the visual output from SOM_PAK and parallel SOM to determine

33

the similarity of their operations by comparing the shapes and groupings that are produced by each for a range
of different data sets. It should be noted however that it is unlikely that both programs will produce exactly the
same maps from the same data, due to the random nature of the initialisation phase of the process.

6.3.3 Validation Tests

The maps displayed here were all generated from Gaussian clustered data and were chosen to be shown because
they represent a range of parameters for the maps. The data itself was made values ranging from O to 10000. The
quantisation error value is calculated using the supplied gerror program as part of SOM_PAK.

32 x 32 Map trained with 5120 x 3 vectors

(a) SOM_PAK (b) paralle]_SOM
Quantisation error = 88.749619 Quantisation error = 94.319016

Figure 6.1: Visualisation of 32 x 32 map trained with 5120 x 3 vectors

The maps shown in figure [6.1] do not instantly look the same. However, if examined more closely it can be seen
that there are 3 major groups of data in each and that the sizes of the regions are similar between the maps. The
quantisation errors of the two maps are both good, and are very similar.

34

32 x 32 Map trained with 8192 x 3 vectors

(a) SOM_PAK (b) paralle]_SOM
Quantisation error = 90.356743 Quantisation error = 94.778107

Figure 6.2: Visualisation of 32 x 32 map trained with 8192 x 3 vectors

Figure [6.2] shows that both maps have the same 4 clusters of the same relative sizes. Both maps show that 2 of
the clusters are rather similar and seem to meld into one and other. Both maps also show a small, localised spike.
In [6.2D] this spike is pink and on the left side of the picture and in [6.2a] this spike is white and in the top right
corner. The quantisation errors here are also similar.

32 x 32 Map trained with 5120 x 8 vectors

o
00000
00000
00000
00000
00000
000000
00000
00000
000000
00000
00000
00000
0000000
0000000
0000000
00000
0000000
0000000
0000000
0000000
(a) SOM_PAK (b) paralle]_SOM
Quantisation error = 177.500992 Quantisation error = 184.272003

Figure 6.3: Visualisation of 32 x 32 map trained with 5120 x 8 vectors

35

Both maps in figure[6.3|show at least 2 definite clusters with a possible third that is very similar to another cluster.
The quantisation errors here are alike.

96 x 96 Map trained with 5120 x 3 vectors

(a) SOM_PAK (b) paralle]_SOM
Quantisation error = 40.706688 Quantisation error = 38.794975

Figure 6.4: Visualisation of 96 x 96 map trained with 5120 x 3 vectors

The maps in figure[6.4]seem to be completely different at first glance. They do show some of the same character-
istics however. Both have three clusters where one of the clusters is much larger than the other two. Both exhibit
the fact that one of the clusters varies a lot within the cluster. That is, in [6.4b] one of the clusters is red at one
extreme and yellow at the other. This characteristic is mirrored in [6.4a] in the bottom cluster. As with all other
maps in this section, the quantisation errors between the maps are similar.

36

6.4 Base Tests

6.4.1 Strategy

Figure 6.5: Graph demonstrating base evaluation strategy

ST 32432 map; 5170 % 8 vectors .

7l : : : : : e RO

B}
g 3 .
5 s _.._..32'?'("32; 82!..9.2__5__3§\fect0r'§' 48)(4é'rﬁap.;.__5_§_120"$('§3 vectors

79120 x 3 vectors,
g T -'-~::...3_1__2’3_(__32'-'1"r‘iap.;__2048 x3 v._e__(;:tors
7000 Lo el 32.%32 mapr 5120 x 1 vectpr s 50

40

it}

4000 i}

o000 z

Input size Map side size (Square root of number of neurans)

The strategy undertaken was to vary the three variables that could potentially determine how fast the program
runs. Each of the variables chosen contribute to how many calculations are necessary during the runtime of the
program. The variables that were changed in the basic tests are the size of the map, the number of input vectors
and the number of dimensions in the input vectors.

In order to form comparisons, initial values for the three variables were chosen. From these values a 32 x
32 map formed from 5120, 3 dimensional vectors was chosen as the base case for tests. This base case was
chosen as a map that allowed changing all the variables in both directions while still being a map that took a
relatively short time to be made. Once the base test had been performed, each of the other variables were tested
by increasing the value for that variable for one test and decreasing for another. This strategy resulted in 7 tests,
including the base test being performed. Figure[6.5]shows the base evaluation strategy as a 3 dimensional graph.

All tests in this section were performed using data containing Gaussian clusters from the data generator
explained in[5.4]

37

6.4.2 Results

Figure 6.6: Results from Base Evaluation

Seconds
b=

I idia GPU
[Intel CPU

[Jamp cru —
I =Pk

Base Test Tesﬁ

Figure 6.7: Test Data for Base Tests (All times are in seconds)

i
Test 2

l
Test 3

Bl
Test4

Test 5

Test | Map Size Input Size Vector Size | nVidia GPU Intel CPU AMD CPU SOM_PAK
Base | 32x32 5120 3 237.554 691.885 5181 194

1 32x32 8192 3 379.744 1106.41 9317 312

2 32x32 2048 3 95.3717 276.826 2124 78

3 32x32 5120 1 226.707 703.453 5628 176

4 32x32 5120 8 302.915 670.234 5903 231

5 16x 16 5120 3 127.156 402.576 2635 48

6 48 x 48 5120 3 378.444 955.024 7954 437

6.4.3 Discussion

The most obvious result from the graph in figure [6.6] is that the AMD CPU performs very poorly. The AMD
CPU seems to take an order of magnitude more time than the other two devices being tested with paralle]_SOM.
This is believed to be due to the architecutre details of this particular processor, in that it shares floating point
units and uses hyperthreading. The use of shared floating point units means that each core cannot necessarily
execute completely in parallel with other cores as it may be waiting for access to the floating point unit. Since
parallel_SOM is heavy on floating point operations, this slows run times. Hyperthreading means that each of
the physical processor cores that the AMD CPU has become 2 virtual cores that can execute in parallel when
multiple different instructions on the same data are required. parallel SOM does not require different operations
on the same data but rather performs the same operations on a large set of data. Since the AMD processor is

38

I Upoiate weight
an0n . I cate weight T T 1200 T T [Min distance
[win distance I Min distance read time
sooo [Min distance read time I 1 anhattan distance
I znhattan distance 1000 -

7000
6000 G00

5000

Seconds
Seconts
=
=
=

4000
3000
zona

200+
1000

Base Test Test1 Test2 Test 3 Test4 Tests TestB

Base Test Test1 Test2 Test3 Test4 Testd TestB

(a) Execution breakdown for AMD CPU (b) Execution breakdown for Intel CPU

400 T

I poate weight T T
[Min distance
M distance read time
I /anhattan distance

Seconds
ro
=
=
T
L

Base Test Test1 Testz Test 3 Test 4 Test 5 Test @

(c) Execution breakdown for nVidia GPU

Figure 6.8: Execution breakdown for nVidia GPU

running every core, the frequency is capped at 1.8 GHz. This, along with the diminished number of cores actually
available leads to this processor being much slower than the others for parallel SOM.

Another point here is that parallel SOM does not perform any faster than the serially run SOM_PAK for
almost all tests. The closest competitor to SOM_PAK in this case is parallel_SOM run on the nVidia GPU. From
the data shown in this section it could be postulated that the speed up achieved by parallel SOM when compared
to SOM_PAK increases with the size of the map being produced. This will be further explored in[6.5]

The data also shows that the number of dimensions in the vectors of the test set do not affect run times all that
much. It could be logical to assume that multiplying the number of dimensions in the vectors would multiply the
runtime but this is not the case. Further tests are needed to determine the relationship between dimensionality
and runtime.

According to the data, runtime increases linearly with the size of the input dataset. This was expected as each
input vector is considered serially by both parallel_ SOM and SOM _PAK.

The execution breakdown graphs in Figure [6.8] show that each element of the program, on each platform,
takes proportionally the same amount of time for each test. It also shows that the buffer read that happens after
the minimum distance kernel executes is much more expensive on the nVidia GPU than on either of the CPUs.

39

6.5 Varying Map Size Tests

6.5.1 Strategy

A number of works referenced in [3.3| point to the usefulness of larger maps. The tests discussed is show that
varying the size of the map affects the time taken to build the map. This section further explores the effect of
map size on execution times.

As before, all tests in this section were performed using data containing Gaussian clusters from the data
generator explained in[5.4]

6.5.2 Results

Figure 6.9: Line Graph of Results from Varied Map Size Tests

n¥idia GPU
— Intel CPU
SOMPAK
AMD CPU
n'L
5
S 'L
o
a
v
i
1’ I I I I I I |
] 20 40 B0 &0 100 120 140

Map side size
(Syuare root of number of neurans)

40

Figure 6.10: Bar Graph of Results from Varied Map Size Tests

1035 - _]

102;—

m';— I

1,;,0: I I I I

|
16 32 48 B4 96
tap side size
(Sguare root of number of neurans)

Secands

Figure 6.11: Test Data from Varied Map Size Tests (All times are in seconds)

Test | Map Size Input Size Vector Size | nVidia GPU Intel CPU AMD CPU SOM_PAK
1 16x 16 5120 3 127.156 402.576 2233.07 48
2 32x32 5120 3 236.923 692.568 5302.89 194
3 48 x 48 5120 3 378.444 955.024 8346.99 437
4 64 x 64 5120 3 510.364 1262.16 12 387 1565
5 96 x 96 5120 3 814.271 2219.9 21332.1 5240
6 | 128x128 5120 3 1173.72 3795.92 -- 12360

6.5.3 Discussion

There are two clear results here. The first is that parallel SOM running on the GPU outperforms everything and
that its run time increases almost linearly with the map side size (the square root of the number of neurons in the
map). The Intel CPU also performs very well but does not follow this same linear trend.

The second obvious result is that the AMD CPU performs very poorly and is an order of magnitude slower
than the nVidia GPU in all tests here. Unfortunately, the graph in figure [6.9) is missing a result for the AMD
CPU. This is due to the fact that runtime for this test, the 128 x 128 map, would be huge when considering the
previous results and the AMD CPU was required for other research.

This section has shown that map size most definitely effects the run time of the organisation process. It
has also shown that the GPU running parallel SOM produces a speed up of more than 10x when compared to
SOM_PAK. This result is comparable to the results found by McConnell et al. [22]] who found a maximum
speed up of 13.86x when running a parallel version of the self organising map using OpenCL on an nVidia Tesla

41

graphics card [32]. McConnell et al. compared their results to a single threaded version of the self organising
map that they had produced themselves, rather than SOM_PAK.

6.6 Distance Metric Tests

This work aimed to explore the performance benefits from using Manhattan distance rather than Euclidean dis-
tance as part of a self organising map. This section details the evaluation of distance metrics.

6.6.1 Strategy

The strategy here is essentially the same as the strategies in and but Manhattan_distance.cl has been
changed so that it calculates Euclidean distance rather than Manhattan distance. These tests were carried out
on the nVidia GPU and will be compared to the results from the nVidia GPU when the program was run using
Manhattan distance.

Data used here was generated using the data generator explained in[5.4]and contained Gaussian clusters.

6.6.2 Results

Figure 6.12: Graph showing Manhattan distance and Euclidean distance execution time against map side size

200

Ianhattan distance kernel run time
180 H Euclidean distance kernel run time

160

140 -

120 -

Seconds

100 -

a0 -

60 -

40

20 I I | | | | I
0 20 40 B0 an 10a 120 140

tap side size
(Square root of number of neurons)

42

Figure 6.13: Test Data for Distance Metric Evaluation (All times are in seconds)

Test | Map Size Input Size Vector Size | Euclidean distance Manhattan distance

Base | 32x32 5120 3 42.1586 41.4993
1 32x32 8192 3 65.66 64.0097
2 32x32 2048 3 17.3751 16.9048
3 32x32 5120 1 38.6156 37.9868
4 32x32 5120 8 63.5136 63.4081
5 16x 16 5120 3 28.9426 28.885
6 48 x 48 5120 3 73.9288 73.015
7 64 x 64 5120 3 85.7243 84.749
8 96 x 96 5120 3 136.108 134.716
9 128 x 128 5120 3 188.875 186.794

6.6.3 Discussion

The results here show that there is a negligible difference between the execution times for the Euclidean distance
metric and the Manhattan distance metric but that the Manhattan distance metric is always faster. This suggests
that the runtime of distance calculation is not dependent on how long the actual computations take and more on
other factors. Perhaps these factors are the overheads involved in running OpenCL code in parallel.

6.7 Overall Results

This chapter has demonstrated a number of things. First of all, it has shown that paralle]_SOM produces maps
that are comparable to those produced by SOM_PAK.

Secondly, it has been shown that for large map sizes and on certain architectures parallel_SOM outperforms
SOM_PAK. In these tests, when parallel SOM was run on a GPU it achieved a speed up factor of more than 10
when compared to the run time of SOM_PAK run serially.

This chapter has shown that the parameters that affect the run time for parallel SOM are the size of the input
dataset and the size of the map to be produced. The dimensionality of the input vectors seems to make little to
no difference to run times.

Finally, it has been shown that the use of Manhattan distance over Euclidean distance during the organising
process does bring about speed ups. These speed ups are negligible however and seem to show no trend with the
size of the map being produced.

43

Chapter 7

Conclusion

7.1 Future Work

This project has produced a basic self organising map program that achieves speed ups on parallel architecture.
There are many improvements that can be made to the program itself and there is much work that can be carried
out as a continuation.

7.1.1 Improve Functionality and User Interface of parallel SOM

Currently parallel_SOM does not provide nearly the amount of customisation of parameters for the organising
process that SOM_PAK provides. This customisation is necessary for real world use as there are no globally
optimal parameters for the learning process for every possible data set. Optimal parameters for each dataset are
unique and can only be found through trial and error currently. It would be desirable to allow a user to specify
at least the parameters that SOM_PAK allows through a textual interface of some kind or through loading a file
with a specification. This would make parallel SOM much more usable in the real world.

Currently paralle]_SOM runs all kernel code on the first device available in the system. If there were more
than one OpenCL compatible device in a system, the program would simply run on the first one and there is no
way to force the use of another device without changing program code. It may be desirable in some situations to
allow a user to select which device to run kernel code on.

It has been mentioned briefly previously that SOM_PAK allows a user to apply a number of vectors to a map
and be informed through a visual representation where those vectors lie on the map. This is a feature that would
likely be useful as part of paralle]l_SOM.

7.1.2 Run parallel SOM on Intel Xeon Phi

This work has shown that parallel_SOM runs well on multi-core and many-core architecture. The Xeon Phi
processor is a many-core processor with up to 61 powerful cores [15]. The device itself is suited to floating
point operations and makes use of vectorisation to achieve massive parallelism. parallel_SOM is both heavy on
floating point operations and vector calculations and so is suited to running well on a Xeon Phi processor or
similar many-core device.

44

7.1.3 Support Vector Machine in OpenCL

It has been proved in this work, and many previous (see [3.3), that OpenCL is a useful tool for writing parallel
code and cutting down run times for computationally heavy programs and operations. The self organising map is
just one example of a computationally heavy program. Another example is another machine learning algorithm,
the support vector machine [9]. Though work has already been done to create a version of the algorithm that runs
on graphics hardware [3]] it would perhaps be worthwhile to implement an OpenCL version that could be used
on many platforms.

7.2 Final Remarks

From the outset, this project aimed to create a parallel version of the original self organising map algorithm that
was suited to run on multi-core and many-core architecture. The program was to produce comparable results to a
widely used self organising map package, SOM_PAK, and it would be the ultimate goal to produce these results
in a much faster time.

Parallel_ SOM achieves both of these goals and makes use of OpenCL. The maps that are produced contain
the same features as those produced by SOM_PAK for the same dataset and the program provides a speed up of
up to 10x when running on graphics hardware. The fact that the program is written using OpenCL rather than
another system like CUDA means that it is not platform specific. The hardware need only support OpenCL for
the program to be compatible.

This work has also shown that the use of Manhattan distance rather than Euclidean distance provides further
slight speed up. The benefits shown in this work are extremely limited but the maps used for evaluation here
were relatively small.

The self organising map has applications in many areas but is limited by the amount of time the organising
process takes when run serially. This work has demonstrated the speed ups possible for the organising process
when using standard, widely available and affordable graphics hardware. Along with other work in the area, the
results of this will lead to widespread use of implementations of the self organising map for parallel architectures
and possibly increase the usefulness of the algorithm as a whole.

45

Appendices

46

Appendix A

Use of Software

All software produced by this project is available from the github repository at https://github.com/
KombuchaShroomz/ParallelismProject.

A.1 parallel SOM

A.1.1 Building parallel SOM

As well as the visualisation tool provided, parallel_ SOM requires C++ 11 and OpenCL to run. A makefile is
provided that compiles the program as it should. The original directory structure for parallel SOM.cpp and
drawPPMmap.cpp must be adhered to.

A.1.2 Running parallel SOM

When parallel SOM is run it needs 3 parameters, the input file, the size of one side of the map and the number
of trials to be run. These parameters can be entered as arguments to the program.

>> ./parallel_SOM datasets/input_5120_3_gauss.dat 32 1

Where the input file name is datasets/input_5120_3_gauss.dat, the map size is 32 and the number of trials is 1.

Otherwise the program will request their entry upon being run.

>> . /parallel_SOM

Standard usage: ./parallel_SOM <input file name> <map side size> <trials>
Enter input filename: datasets/input_5120_3_gauss.dat

<Reading input file>

Enter map dimension (x and y dimenions will be equal): 32

Enter number of trials: 1

47

https://github.com/KombuchaShroomz/ParallelismProject
https://github.com/KombuchaShroomz/ParallelismProject

A.1.3 Input File Format

Like SOM_PAK, parallel SOM takes input vectors from a file where each vector is on a single line and each
component is separated by a space. The first line of the file should contain an integer that represents the number
of vectors in the file and another that represents the size of the vectors.

5120 3

8500.47 8206.1 8601.49
8173.97 8451.26 8318.07
8593.93 8332.43 8540.37
8282.53 8559.09 8310.68

A.2 dataset generator
A.2.1 Building dataset generator

A makefile is provided to compile this program and it has no dependences other than a C++ compiler.

A.2.2 Running dataset_generator

The program does not take any arguments from the command line and provides a simple interface that informs
the user of their options and directs them in what to enter.

A.3 drawPPMmap

In order to use this program out with paralle]_SOM, the file PPM.c is necessary. This file is provided in the same
folder as drawPPMmap.cpp.

48

Bibliography

[1] AMD. AMD Opteron 6300 Series processor Quick Reference Guide. URL: https://www.amd.com/
Documents/Opteron_6300_QRG. pdf|(visited on 03/15/2015).

[2] AMD.AMD Opteron Processor Solutions. URL: http://products.amd.com/en—-us/OpteronCPUDetail
aspx?id=813&f1=AMD+Opteron%E2%84%A2+6300+Series+Processor&f2=6366+HE&
£f3=Yes&f4=1800&f5=1000&f6=G34&f7=C0&f8=32nm&f9=85+W&f10=6400&f11=16&

(visited on 03/15/2015).

[3] Alexander Campbell, Erik Berglund, and Alexander Streit. “Graphics hardware implementation of the
parameter-less self-organising map”. In: Intelligent Data Engineering and Automated Learning-IDEAL
2005. Springer, 2005, pp. 343-350.

[4] George Caridakis et al. “SOMM: Self organizing Markov map for gesture recognition”. In: Pattern Recog-
nition Letters 31.1 (2010), pp. 52-59.

[S] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. “Fast support vector machine training and
classification on graphics processors”. In: Proceedings of the 25th international conference on Machine
learning. ACM. 2008, pp. 104-111.

[6] Rocio Chavez-Alvarez, Arturo Chavoya, and Andres Mendez-Vazquez. “Discovery of possible gene rela-
tionships through the application of self-organizing maps to DNA microarray databases”. In: PloS one 9.4
(2014), €93233.

[7] William Claster, Subana Shanmuganathan, and Nader Ghotbi. “Text mining of medical records for radio-
diagnostic decision-making”. In: Journal of Computers 3.1 (2008), pp. 1-6.

[8] CMSoft. Basic aspects of OpenCL C99 language. URL: http://www.cmsoft.com.br/opencl-
tutorial/basic-aspects-opencl-c99-language9/ (visited on 03/07/2015).

[9] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine learning 20.3 (1995),
pp. 273-297.

[10] The R Foundation. R Homepage. URL: http://www.r—-project.org/about . html|(visited on
03/08/2015).

[11] Petr Gajdos and Jan Platos. “GPU based parallelism for self-organizing map”. In: Proceedings of the
Third International Conference on Intelligent Human Computer Interaction (IHCI 2011), Prague, Czech
Republic, August, 2011. Springer. 2013, pp. 231-242.

[12] Khronos Group. OpenCL Conformant Products. URL: https://www.khronos.org/conformance/
adopters/conformant-products#opencl (visited on 03/09/2015).

[13] Khronos Group. OpenCL Homepage. URL: https ://www . khronos .org/opencl/ (visited on
03/01/2015).

[14] Intel. Intel Core i7-2600 Processor. URL: http://ark.intel.com/products/52213/Intel-
Core—-17-2600-Processor—-8M-Cache—up-to—-3_80-GHz (visited on 03/15/2015).

[15] Intel Xeon Phi Product Family. URL: http://www . intel .co.uk/content /www/uk/en/
processors/xeon/xeon—-phi-detail.html|(visited on 03/19/2015).

49

https://www.amd.com/Documents/Opteron_6300_QRG.pdf
https://www.amd.com/Documents/Opteron_6300_QRG.pdf
http://products.amd.com/en-us/OpteronCPUDetail.aspx?id=813&f1=AMD+Opteron%E2%84%A2+6300+Series+Processor&f2=6366+HE&f3=Yes&f4=1800&f5=1000&f6=G34&f7=C0&f8=32nm&f9=85+W&f10=6400&f11=16&
http://products.amd.com/en-us/OpteronCPUDetail.aspx?id=813&f1=AMD+Opteron%E2%84%A2+6300+Series+Processor&f2=6366+HE&f3=Yes&f4=1800&f5=1000&f6=G34&f7=C0&f8=32nm&f9=85+W&f10=6400&f11=16&
http://products.amd.com/en-us/OpteronCPUDetail.aspx?id=813&f1=AMD+Opteron%E2%84%A2+6300+Series+Processor&f2=6366+HE&f3=Yes&f4=1800&f5=1000&f6=G34&f7=C0&f8=32nm&f9=85+W&f10=6400&f11=16&
http://www.cmsoft.com.br/opencl-tutorial/basic-aspects-opencl-c99-language9/
http://www.cmsoft.com.br/opencl-tutorial/basic-aspects-opencl-c99-language9/
http://www.r-project.org/about.html
https://www.khronos.org/conformance/adopters/conformant-products#opencl
https://www.khronos.org/conformance/adopters/conformant-products#opencl
https://www.khronos.org/opencl/
http://ark.intel.com/products/52213/Intel-Core-i7-2600-Processor-8M-Cache-up-to-3_80-GHz
http://ark.intel.com/products/52213/Intel-Core-i7-2600-Processor-8M-Cache-up-to-3_80-GHz
http://www.intel.co.uk/content/www/uk/en/processors/xeon/xeon-phi-detail.html
http://www.intel.co.uk/content/www/uk/en/processors/xeon/xeon-phi-detail.html

[16] Samuel Kaski. “Data exploration using self-organizing maps”. In: ACTA POLYTECHNICA SCANDINAV-
ICA: MATHEMATICS, COMPUTING AND MANAGEMENT IN ENGINEERING SERIES NO. 82. Cite-
seer. 1997.

[17] T Hynninen Kohonen. J., Kangas, J., and Laaksonen, J. 1996. SOM PAK: The Self-Organizing Map Pro-
gram Package. Tech. rep. Technical Report.

[18] Teuvo Kohonen. Self-organizing maps. Vol. 30. Springer Science & Business Media, 2001.
[19] Teuvo Kohonen. “The self-organizing map”. In: Proceedings of the IEEE 78.9 (1990), pp. 1464—-1480.

[20] Teuvo Kohonen et al. “Self organization of a massive document collection”. In: Neural Networks, IEEE
Transactions on 11.3 (2000), pp. 574-585.

[21] Yonggang Liu and Robert H Weisberg. A review of self-organizing map applications in meteorology and
oceanography. INTECH Open Access Publisher, 2011.

[22] Sabine McConnell et al. “Scalability of Self-organizing Maps on a GPU cluster using OpenCL and
CUDA”. In: Journal of Physics: Conference Series. Vol. 341. 1. IOP Publishing. 2012, p. 012018.

[23] Nicolas Juris Medrano-Marqués and Bonifacio Martin-del Brio. “Topology preservation in SOFM: an eu-
clidean versus manhattan distance comparison”. In: Foundations and Tools for Neural Modeling. Springer,
1999, pp. 601-609.

[24] nVidia. CUDA Homepage. URL: http://www.nvidia.com/object/cuda_home_new.html
(visited on 03/01/2015).

[25] nVidia. GeForce GTX 590. URL: http://www.geforce.co.uk/hardware/desktop—gpus/
geforce—-gtx—590 (visited on 03/15/2015).

[26] Raghavendra D Prabhu. “SOMGPU: an unsupervised pattern classifier on graphical processing unit”.
In: Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence).
IEEE Congress on. IEEE. 2008, pp. 1011-1018.

[27] AK Sahai et al. “A new method to compute the principal components from self-organizing maps: an
application to monsoon intraseasonal oscillations”. In: International Journal of Climatology 34.9 (2014),
pp- 2925-2939.

[28] SIMD Explaination. URL: https : / / www . kernel . org/pub/ linux / kernel / people /
geoff/cell/ps3-linux—-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.
html (visited on 03/03/2015).

[29] Viscovery Software. Viscovery Homepage. URL: http://www.viscovery.net/welcome| (visited
on 03/08/2015).

[30] Viscovery Software. Viscovery SOMine 6 Key Benefits. URL: http : / / www . viscovery . net /
somine/ (visited on 03/08/2015).

[31] Grant Strong and Minglun Gong. “Similarity-based image organization and browsing using multi-resolution
self-organizing map”. In: Image and Vision Computing 29.11 (2011), pp. 774-786.

[32] TESLA GPU ACCELERATORS FOR SERVERS. URL: http : //www . nvidia . com/ object /
tesla-servers.html (visited on 03/24/2015).

[33] Jonathan Tompson and Kristofer Schlachter. “An Introduction to the OpenCL Programming Model”. In:
Digital version (2012).

[34] Lowie EGW Vanfleteren et al. “Clusters of comorbidities based on validated objective measurements and
systemic inflammation in patients with chronic obstructive pulmonary disease”. In: American journal of
respiratory and critical care medicine 187.7 (2013), pp. 728-735.

[35] Kiri Wagstaff et al. “Constrained k-means clustering with background knowledge”. In: ICML. Vol. 1.
2001, pp. 577-584.

[36] Ron Wehrens and Lutgarde MC Buydens. “Self-and super-organizing maps in R: the Kohonen package”.
In: J Stat Softw 21.5 (2007), pp. 1-19.

50

http://www.nvidia.com/object/cuda_home_new.html
http://www.geforce.co.uk/hardware/desktop-gpus/geforce-gtx-590
http://www.geforce.co.uk/hardware/desktop-gpus/geforce-gtx-590
https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html
https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html
https://www.kernel.org/pub/linux/kernel/people/geoff/cell/ps3-linux-docs/CellProgrammingTutorial/BasicsOfSIMDProgramming.html
http://www.viscovery.net/welcome
http://www.viscovery.net/somine/
http://www.viscovery.net/somine/
http://www.nvidia.com/object/tesla-servers.html
http://www.nvidia.com/object/tesla-servers.html

	Introduction
	Motivation
	Aims
	Outline

	The Self Organising Map
	Algorithm
	The Process
	Map Initialisation
	Find a Winning Neuron
	Update Neurons in Neighbourhood
	Reduce Neighbourhood and Learning Rate

	Background
	Applications
	Self Organising Map Software
	Related Work
	Discussion

	OpenCL
	Basic Structure
	Kernels
	Memory Model
	Memory Hierarchy
	Buffers
	Barrier Synchronisation

	Example OpenCL System

	Implementation
	Single Threaded SOM
	The Process
	Map Initialisation
	Find a Winning Neuron
	Update Neurons in Neighbourhood
	Reduce Neighbourhood and Learning Rate

	Adaption to OpenCL
	What to Parallelise?
	Host Program

	Visualisation
	HTML Visualiser
	PPM Visualiser

	Data Generator
	Uniform Random
	Uniform Clusters
	Gaussian Clusters

	Evaluation
	Architectures
	AMD CPU
	Intel CPU
	nVidia GPU

	Running SOM_PAK
	Validation
	Quantisation Error
	Visual Topology Comparison
	Validation Tests

	Base Tests
	Strategy
	Results
	Discussion

	Varying Map Size Tests
	Strategy
	Results
	Discussion

	Distance Metric Tests
	Strategy
	Results
	Discussion

	Overall Results

	Conclusion
	Future Work
	Improve Functionality and User Interface of parallel_SOM
	Run parallel_SOM on Intel Xeon Phi
	Support Vector Machine in OpenCL

	Final Remarks

	Appendices
	Use of Software
	parallel_SOM
	Building parallel_SOM
	Running parallel_SOM
	Input File Format

	dataset_generator
	Building dataset_generator
	Running dataset_generator

	drawPPMmap

