
Dynamic Noise and Pollution Campus Map

Petar Plamenov Yordanov

School of Computing Science
Sir Alwyn Williams Building
University of Glasgow
G12 8QQ

Level 4 Project — February 23, 2015

Abstract

With the increased need to monitor the environment in the recent years, people have developed multiple ways to
observe and study fluctuations in nature. Temperature, air humidity, wind speed and air pressure are just some
of the variables that are constantly monitored. We can find up to date information about these in the news or
check them online at any time. However, in most cases the generation and collection of such environmental
data is highly limited to specialised agencies such as forecasting and meteorologist companies working for tele-
vision channels. There is nothing surprising so far, due to the fact that in order to acquire precise information,
professional equipment that is carefully configured is required, or at least that was the case until recently. As
technology advances on a daily basis, the sensors required to monitor the world around us have become more
and more readily available.

This project aims to showcase valuable ways of putting such specialized technology into practice by utilizing an
innovative sensor board, the Smart Citizen Kit. Some of the ways this goal can be achieved is by demonstrating
practical ways of interacting with trustworthy environmental information (noise and air pollution), such as pairing
the board with web services (facilitating the development process for mobile applications) and creating highly-
customizable dynamic maps that are updated in real-time and can be used for route recommendation. Extensive
evaluation consisting of a pilot and a final session with volunteers has been carried out to test the system as well
as collect feedback and suggestions for future improvements.

This is an innovative project and there have been no previous attempts to create similar systems relying on the
Smart Citizen Kit. Hopefully it will create a stable foundation for future development in the area.

Acknowledgements

I would like to thank Dr. Iadh Ounis and Mr. Richard McCreadie for supervising the project and helping with
ideas as well as facilitating the functional requirement gathering procedures for the system. Many thanks to the
Smart Citizen Kit co-founder Tomas Diez and his developer team from FabLab, Barcelona for the remote support
and also to all volunteers who agreed to take part in the evaluation.

Education Use Consent

I hereby give my permission for this project to be shown to other University of Glasgow students and to be
distributed in an electronic format. Please note that you are under no obligation to sign this declaration, but
doing so would help future students.

Name: Signature:

i

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 Smart Citizen Kit . 1

1.1.2 Web Services . 2

1.1.3 Mobile Web Applications . 2

1.2 Aims . 3

1.3 Motivations . 3

2 Context 5

2.1 Related Work . 5

3 Planning 8

3.1 Issue Analysis . 8

3.1.1 Battery life . 8

3.1.2 Sensor exposure . 8

3.1.3 Data Spikes . 9

3.1.4 Sensor accuracy (frequency of measurements taken) 9

3.1.5 Optimisation of the data space . 9

3.2 Implementation Techniques . 10

3.2.1 Agile Development Sprints . 10

3.3 Requirements . 10

3.3.1 Use Cases . 10

3.3.2 User Stories . 11

3.3.3 Functional, Non-Functional Requirements . 11

3.3.4 Non-Functional Requirements . 12

4 High-Level Design 14

4.1 Diagrams . 14

4.2 Paper Prototypes . 14

4.2.1 Server . 14

4.2.2 Client . 15

ii

4.3 Technologies . 15

4.3.1 Server . 16

4.3.1.1 Web Application Framework . 16

4.3.1.2 Asynchronous JavaScript Library . 16

4.3.1.3 CSS Framework . 17

4.3.1.4 DBMS . 17

4.3.1.5 Map . 17

4.3.2 Client . 18

5 Implementation 19

5.1 Technologies Used . 19

5.2 Prototype Iterations . 20

5.2.1 Server . 20

5.2.2 Client . 20

5.3 Final Implementation . 21

5.3.1 Android Client . 21

5.3.1.1 SCK Configuration . 21

5.3.1.2 Implementation Logic . 22

5.3.2 Mobile Web Application . 26

5.3.2.1 Back-end . 26

5.3.2.2 Data Formatting . 27

5.3.2.3 Logging . 28

5.3.2.4 Implementation Logic . 28

5.3.2.5 Front-end . 36

6 Testing 43

6.1 Unit and Integration Testing . 43

6.2 Performance . 44

7 Evaluation 45

7.1 DB Benchmarks . 45

7.2 Prototype Evaluation . 47

7.3 Planning . 47

7.4 Pilot Evaluation . 48

7.5 Final Evaluation . 48

8 Conclusion 49

8.1 Summary . 49

8.2 Future Work . 49

iii

8.3 Lessons Learnt . 49

Appendices 54

A Appendices 55

A.1 Appendices . 55

A.2 Resources . 55

A.3 Progress Reports, Sprint Retrospectives . 55

A.3.1 Progress Report 1 . 56

A.3.2 Progress Report 2 . 57

A.3.3 Progress Report 3 . 58

A.3.4 Progress Report 4 . 59

A.3.5 Progress Report 5 . 61

A.3.6 Progress Report 6 . 63

A.3.7 Progress Report 7 . 64

A.3.8 Progress Report 8 . 65

A.3.9 Progress Report 9 . 66

A.3.10 Progress Report 10 . 67

A.3.11 Semester 1 Retrospective Report . 68

A.3.12 Progress Report 11 . 73

A.3.13 Progress Report 12 . 74

A.3.14 Progress Report 13 . 75

A.3.15 Progress Report 14 . 76

A.3.16 Progress Report 15 . 77

A.3.17 Progress Report 16 . 79

A.3.18 Progress Report 17 . 80

A.3.19 Progress Report 18 . 81

A.3.20 Progress Report 19 . 82

A.3.21 Progress Report 20 . 83

A.3.22 Progress Report 21 . 84

A.4 Evaluation Documentation . 85

A.4.1 Consent Form . 86

A.4.2 Introduction Script . 87

A.4.3 Task Sheet . 89

A.4.4 Debrief Script . 91

A.4.5 Task Load Index Form . 93

A.5 Requirements Gathering Session . 94

A.6 Images . 95

iv

Chapter 1

Introduction

1.1 Background

In the recent years, knowing how to interpret environmental changes around us has become a more and more
integral part of maintaining nature clean and unpolluted. Climate changes have been a common occurrence on
many places around the globe, influenced by increased air pollution largely due to industrial activity and exhaust
gases from motor vehicles. The advent of high performance electrical vehicles such as Elon Musks Tesla car
model and Solar Citys solar panels have influenced the situation for the better [64] [63]. However, the significant
transition from oil and petrol to sustainable energy will probably require at least a few more decades.

What this means is that we need to be able to monitor the environmental aspects affected by these factors.
This will facilitate the observation and analysis of air and noise pollution in order to determine what effects
they have on nature and how those detrimental effects can be reduced with alternative mechanisms such as solar
panels and wind mills to facilitate the transition to a more environmentally-friendly future.

Aiming to enable every conscious citizen to participate in this process, the Fab Lab startup, located in
Barcelona, Spain, have started the Smart Citizen initiative [60]. Tomaz Dies and his team have come up with
an innovative piece of technology, the Smart Citizen Kit[61]. The project is still under development, but two
versions of the new kit have been released to the general public, the first line being distributed among the first
backers of the project who funded the Kickstarter campaign that made it all possible [59]. This kit represents a
sensor board that is readily-available and uses open source hardware and software to monitor the environment.

The Smart Citizen Kit device is at the heart of this project as it aims to enable normal citizens to collect
comprehensive environmental information so that it can be aggregated at a centralized server for dynamic vi-
sualizations at the fraction of the cost that would be involved if the same technology was purchased separately,
possibly from different sources.

1.1.1 Smart Citizen Kit

The Smart Citizen Kit is a crowd-sourced project that started from a KickStarter campaign about two years ago
(beginning of June, 2013, by Tomas Diez, Fab Lab director) [59]. Since then, 2 versions of the kit have been
released, the first one being distributed to the 517 project backers. The second, version 1.1 improves the user
experience as a whole and features a new kit firmware[60][58]. A version 2.0 of the API and web application is
currently under development It is an open source platform, consisting of the following logical layers - a hardware
device, a web service API (REST-based) and a web application.

The Smart Citizen Kit has the following sensors (figure 1.1a) that are used for data collection: solar, air
humidity and pollution (CO and NO2), temperature and noise sensor. It also constantly monitors the wi-fi
network availability(figure 1.1b) in the area to maintain high connectivity rates as data is transmitted to the
server every 60 seconds, unless the firmware is re-programmed. The hardware is built atop an Arduino Leonardo

1

board(figure 1.1c) so is compatible with the Arduino’s bespoke IDE tool. This means it is highly-configurable
and re-programmable depending on the user needs.

(a) Smart Citizen Kit
sensor board

(b) Data processing
board, Wi-Fly module

(c) Modified Arduino
Leonardo base board

Figure 1.1: Smart Citizen Kit structure

1.1.2 Web Services

One of the definitions of a web service is as follows: ’A web service is a software system designed to support
interoperable machine-to-machine interaction over a network’ [67]. Web services are more and more widely used
in the software engineering industry nowadays. They enable developers to leverage functional portable products
that are easily accessible and highly efficient [66]. This means that web services facilitate the information
exchange between web applications and are an integral part of applications that require constant updates from
external sources. They can be used to connect existing software (data exchange between different platforms
and different applications) or to improve the utilization of reusable application components (example, weather
reports, modulated to be easily reusable, relevant in this case).

The base of a web service architecture is the client-server model[51](figure 1.2a). This means that a web
service (supported by a server back-end structure) communicates with client applications via an API[65](figure
1.2b). There are different API communication mechanisms, such as SOAP[62] and REST[57] which enable
efficient entity transmission between server and client. RESTful web services have become increasingly used
over the last few years as they are much more lightweight and improve the system performance in general. The
SCK has a REST API (discussed in section 5.3.1) that allows for flexible integration with any standard web
service. The API is specifically modulated to increase the level of reusability for developers seeking to build an
application based on the retrieved environmental data[41].

It is important to clarify that more and more web applications are extensively relying on their API endpoints
when loading views or displaying/ retrieving any information on the front-end.

(a) Client-server
model structure

(b) Web API client-
server communica-
tion diagram

(c) Mobile web appli-
cation general struc-
ture and mobile de-
vice interaction

Figure 1.2: How web services operate and are used for client-server interaction.

1.1.3 Mobile Web Applications

A mobile web application (stucture shown in figure 1.2c) is an internet resource that is accessible on portable/
hand-held devices, such as smart phones, tablets, notebooks. The main difference between a standard web appli-
cation and a mobile web application is that the latter has been optimized to perform equally as efficient on smaller

2

screens as on regular desktop monitors. Mobile web applications might also include additional functionalities
considering the fact that a large number of them have specifically been designed for access from mobile devices.
Some examples of additional resources utilized include the GPS navigator, accelerometer, etc. These features
improve the performance of the application as well as make it more user-interactive.

There has been an ongoing debate whether it is better to develop mobile web or native mobile applications[56].
Native web applications are easier to optimize for hand-held devices as there are a number of tools to facilitate
the development process and there are frameworks in place to ensure that design and structure are consistent on
all devices (Google Android SDK is an example [2]). What is more, they tend to perform faster than mobile web
applications in a lot of cases. On the other hand, a carefully optimized mobile web application using a cloud
hosting and a NoSQL database can successfully compete with a native app in terms of performance, as the latter
still requires database access for core operations more often than not. However, native web applications have
their drawbacks as well. They have more pre-requisites for end-users as they require the application code to be
installed on the dedicated device, in the form of a client. This means that every time there is a new version of the
software, for the changes to be synchronized, users need to make sure they install the latest update. Introduction
of restructuring operations on a mobile web application is a much smoother transition as user feedback and per-
formance can be tracked right away triggering further modifications if necessary, while with a native application
this is not the case.

This project applies the client-server model(figure 1.2a) and implements a best-case scenario by utilizing the
benefits introduced by native code clients (Android application in this case) and a responsive RESTful web server
in the form of a mobile web application(figure 1.2c)). This aims to ensure end users get the best of both worlds
by making use of the stable user interface provided by the client application and utilizing the processing power
of a back-end server engine communicating directly with a NoSQL database instance.

1.2 Aims

The system aims to provide a responsive graphical user interface that will enable users to view environmental
data collected by themselves and others. It seeks to provide up-to-date information no matter where the user is
by pairing the Smart Citizen Kit with the GPS sensor of a mobile device - meaning that end-users will be able
to walk around and benefit from the crowd-sourced database while at the same time contributing and generating
more data that gets aggregated on the map right away. Users will be strongly encouraged to contribute to the
process by collecting data in order to improve the overall quality of the mobile application. The application aims
to primarily satisfy the needs of students and staff from the University of Glasgow. However, it could also be
used by managers from the City Council to create a large-scale map of the city and identify the most polluted
areas in order to take measures to reduce the level of toxic gases and potential noise disturbances. In other words,
this project could serve as a small-scale proof of concept that would hopefully encourage funding and be used as
a resource for future environment-related work.

The final product’s goal is to improve the overall experience of students and staff who live and study on
the premises of the Glasgow University Campus by helping them to identify areas that have higher air pollution
levels (NO2 and CO tracking) so that they can be avoided to improve health. It will also show the quietest places
that are suitable for strolls or when studying for exams.

Based on the aggregated data, the system seeks to provide customizable route recommendations that can be
based on different sorting criteria, such as air and noise pollution, route distance, accessibility and more.

1.3 Motivations

This project utilizes the precision and flexibility provided by the Smart Citizen Kit to enable everyone to con-
tribute to the cause of monitoring our environment, keeping it clean and minimizing the detrimental effects
resulting from human activity. Having 5 high-quality sensors on a single board provides a lot of opportunities

3

for application development in this area.

As explained in the opening paragraph, air and noise pollution are topics that are discussed more and more
often nowadays. While factories and traffic cause noise pollution and indirectly affect us psychologically (by
creating noise disturbances, etc) during their operation process, they also constantly emit toxic gases that neg-
atively affect our health. A lot more can be said on this topic, but the question remains whether contemporary
citizens can participate more actively in this process so that we can all take responsibility for the improvement
of the situation. And a dynamic system that can aggregate and visualize environmental information on a single
map, paired with the Smart Citizen Kit is the great foundation for the achievement of this goal. Furthermore, this
data aggregation process can be used to extend the application and implement a route recommendation feature
(based on pollution levels). In addition, as backed up by the section above 1.1.3, the system that this project
aims to implement will make use of the ’thin client’ programming concept to minimise the computational logic
in the client application and rely on a server for the data processing operations. This will facilitate server updates
without the strict necessity of introducing a new client version and require end-users to download and install it
every time a new feature has been implemented, aiming to attract more potential users.

4

Chapter 2

Context

2.1 Related Work

There have been multiple systems that have aimed to achieve similar goals, whether collectively in a single
project or in separate components. Below is a short description of related work along with the identification of
key differences when compared to the aims of this project.

Ear Phone[73](figure 2.1a)

This is a product from the CSIRO organisation, short for Commonwealth Scientific and Industrial Research
Organization, which is the Australian National Science Agency. The innovative idea behind this software tool is
that it is a crowd-sourced way to collect and analyze information about noise pollution. It does not rely on any
investment from people who would like to participate in the process in the sense that the final product is just open
source software. Everyone can install it on their phone and it aims to conserve resources as much as possible,
working in the background as long as your mobile device is on. There are some ethical constraints, that Rajib
Rana’s team claim to have successfully addressed. The application does not track your microphone input while
you are talking using a smart artificial intelligence engine to differentiate between surrounding sounds (classified
as noise) and normal conversations (that are disregarded by the engine). It also makes use of the phone’s GPS and
accelerometer sensors in order to determine the location of the device only when it is outdoor (as GPS coverage
within buildings is not reliable and reduces battery life faster) and handheld (the orientation of the phone is
used to determine this). All of the collected information is transferred to a centralized server once the phone is
connected to a Wi-Fi network. A major drawback of the system is the fact that those operations affect the battery
and could reduce the phone’s usage time to a few hours.

The system described above differs from the ’Dynamic Noise and Pollution Campus Map’ in terms of the
way data is collected. The latter collects a much wider range of information and takes care of mobile device
battery’s life by utilizing a specially tailored technology for data collection - the Smart Citizen Kit. It has precise
sound and air-pollution sensors, making the scope of the system much wider. What is more, the phone serves
only as an intermediary and transfers information between the sensor board and a centralized server, increasing
the potential time for application usage.

AQICN[47]

Air Quality Index CN(figure 2.1b) is an organization located in China, Beijing. It consists of a small team
of system engineers, who has relied on the US Embassies in China for the initial provision of PM2.5 for many
cities in Asia and more specifically China. These are precise sensors that enable accurate air pollution monitor-
ing in PPM (parts per million). The project is constantly expanding, with more sensors being statically installed
throughout cities. It spans the United Kingdom as well and there are hundreds of sensors on the territory of
the islands. The highest concentration of tracking devices is in Scotland, around the area of Glasgow and Ed-
inburgh(figure 2.1c), two of the cities taking significant participation in this environmental monitoring process
ultimately aiming to reduce air pollution.

5

The main difference in what ’Dynamic Noise and Pollution Campus Map’ aims to achieve is the degree of
interaction with the end user. The ’AQICN’ system is aimed primarily for scientist who can effectively analyse
information retrieved from static sensors and act upon it, while the main goal of the project is to involve end
users as much as possible, involving a portable sensor device, meaning that once pollution data is transmitted
to the server, a user can see the effect it has had on the aggregated map right away. Additionally, the scope is
different as ’AQICN’ operates solely with air pollution sensors.

Dust Maps[71]

This is another interesting low-cost crowd-sourced system. It relies on a fine particle dust sensor in order to
produce air pollution maps in different locations via grid representation. This is almost entirely the proprietary
technology of KIT (the Karlsruhe Institute of Technology). The researchers there have utilized a number of
off-the-shelf components, the main one being a fine dust sensor. This sensor’s accuracy is in the range of one
microgram per cubic meter, which is more than enough for smoke and coarser dust. However, it is not sufficient
to trap fine dust (which could be improved). The sensor technology is paired with the camera of a mobile
device, such as a smartphone and this allows for quick real-time data processing, followed by transmission to
a processing server’s back-end where the information gets aggregated on a map(figure 2.1e). An interesting
approach to incentivize more people to participate in the data collection process is the offer of bonuses and prizes
from the developers.

One of the main difference from the project described in this paper is that the prototype does not look very
easy to use(figure 2.1d) and although the team have promised to improve the style and introduce a convenient
clip to hold the sensor, it would still make using the smartphone relatively inconvenient as well as endanger the
fine sensor when it is carried around. ’DNPCM’ uses dedicated technology to monitor a user’s surroundings
and involves the prototype of a compact enclosure that can be attached to a backpack or carried in a pocket as
long as good ventilation is provided. The Arduino board serving the sensor board processes additional variable
information, which can be used to efficiently scale the system and improve its monitoring capabilities without
changing the hardware used for data collection.

There are also some interesting papers that relate to the idea behind this project. Here is a little information
in the form of an abstract about each of them:

The ’ExposureSense’[72] project in Switzerland involves the deployment of a number of sensors such as
CO and NO2 sensors on public transport vehicles: trams, buses, etc. ExposureSense is a more advanced version
which can also monitor people’s daily activities and compute the levels of pollution they have been exposed to
throughout their daily life. Another big change is the support it provides for additional sensor data collection by
plugging new sensors to improve the quality of air data collection. This paper also describes a crowd-sourced
system as it relies on smart phones and the voluntary participation of people. The project described in this paper
does not involve noise pollution tracking.

The article ’Noisemap: multi-tier incentive mechanisms for participative urban sensing’[69] describes
the Noisemap project and how it achieved its success. As the name suggests, this pollution system tracks noise
levels solely. Issues related to finding participants have been described as well as different ways to overcome
them. One of the main hindrances when testing such systems is that the device battery life decreases dramatically
due to the use of power to feed the sensor as well as the need of accurate GPS tracking and server data transmis-
sion. The authors of the paper claim that by using incentive schemes they managed to increase the number of
participants from 402 to 3 357 and for about 2 months each of them had captured data in the average duration of 6
hours (the total measurements this experiment captured were more than 85 000 which is considered a successful
outcome).

The main difference with ’DNPCM’ is that the scopes of the projects differ and the paper described above
focuses on the evaluation component while this paper regards system development and its testing and evaluation
as equally important integral part for successful project outcome.

The paper ’Mobile Application for Noise Pollution Monitoring through Gamification Techniques’[70]
is different in the sense that it provides a more cost-efficient evaluation technique. The main idea of the mobile
application that is described in the project is that noise pollution can be efficiently crowd-sourced if relying

6

on two main points - avoiding using external technology and relying on microphones present in any smartphone
nowadays as well as using gamification techniques in order to gravitate more people to the data collection process.

The second point of the approach is significant as it removes the need to provide other incentives such as
participant payments or prizes that can make the scaling of the process prohibitively expensive and not viable.
The paper also reiterates the fact that local authorities can make incredible use of this crowd-sourced information
to improve the quality of life for their citizens.

As with other papers, the scopes of the projects are different, as ’DNPCM’ aims to analyse noise and air
pollution.

(a) Ear Phone system
architecture (b) AQICN Air Pollu-

tion Index Project
(c) Glasgow Dumbar-
ton road air pollution

(d) Dust Maps Final
Assembly View

(e) Dust
Maps
internal
sensor
structure

Figure 2.1: Similar projects that have implemented software engineering products.

7

Chapter 3

Planning

3.1 Issue Analysis

The achievement of the goals that this project has set as a target has been facilitated by leveraging an efficient
mobile web application and a client application for data collection and processing. The client communication
with the sensor board is the main source of environmental information. However, a number of concerns that have
arisen at the early planning phase after some research were addressed at the start and possible resolutions were
considered. Some of the main ones have been mentioned in the sections below:

3.1.1 Battery life

With the continuous use of GPS and accelerometer sensors there comes the risk of draining any smart phones
battery at a very high rate. In order to address this concern in the final implementation, a step that was taken in the
planning process was to use the thin-client design pattern. This involved extracting most of the computational
logic to the server when designing its architecture from the early start. What this means is that when data is
collected the mobile device will use only the bare minimum of resources required to locate the device, retrieve
the sensor information and transmit to the centralized server for processing. This guarantees a much more
battery-friendly flow of operation in this application. The frequency of updates was also a significant concern
as it is directly tied to the accuracy of the system and inversely proportional to the battery life duration (as the
frequency of measurements increases, the processing power needed increases and so the operational time of the
device is reduced).

3.1.2 Sensor exposure

The air and noise sensors do not have protection as the board has been designed to be minimalistic in order to
avoid additional space constraints and to allow users to experiment depending on their particular needs. In the
aim of making sure that the SCK remains intact throughout the whole development and evaluation process, a
prototype carriage case was produced (as described in section 7.2, chapter 7). This case uses the location of the
key sensors used in this system to avoid the risk of microclimate development as much as possible by introducing
ventilation holes. They ensure an improved air circulation and increase the quality of the information retrieved
from the surrounding environment.For this system to function as expected and utilize the precise board sensor
capabilities, it needs to ensure that the sensors have a good air ventilation and there are no barriers that present
a risk to the accuracy of the data readings. Otherwise the data might become skewed and the performance rate
would drop dramatically.

8

3.1.3 Data Spikes

Sensor readings sometimes generate data spikes which might be an unreliable representation of the surrounding
environment (data formatting might influence this too). This might largely influence the statistical information
for an area on campus. One way to reduce the impact of this is to use range modes when tracking information,
meaning that if mode 1 is between 0 and 5 ppm, mode 2 - between 5 and 10 ppm, and so on, a difference between
two consecutive data readings cannot span a difference of more than a single mode. In other words, data can be
classified from mode 1 to mode 2, but the jump between 1 and mode 3 would classify such a data measurement
as unreliable, and so it could be disregarded. Calculating the average value of data readings collected from the
same location is another option. This is an operation that will limit the risk of losing valuable information that
is collected by participants in the evaluation and will decrease the influence of data outliers on the final results.
This approach has been employed when designing and implementing the system visualization modes as it is
considered to be the favourable one in terms of effectiveness.

3.1.4 Sensor accuracy (frequency of measurements taken)

The environmental updates transmitted by the Smart Citizen Kit are sent every 60 seconds by default. However,
when considering this time window in the context of this project it becomes clear that if the board is constantly
moving this time interval might be too long. The software can be overridden so that environmental data mea-
surements are taken every 30 seconds. Doing this more often (than 30 sec.) is not viable as transmission costs
become too high in terms of charging power. Wi-Fi connection instabilities also cause update congestions mean-
ing that, sometimes multiple updates are not timely transmitted to the server (as concluded after testing). Another
consideration is to give the end user the option to increase this interval depending on the movement speed. For
instance, if the device is static, a few minutes between updates might be sufficient, meaning that the SCK will
still save data every 30 seconds, but the Android client will not request a new update until the user-specified
temporal interval has expired.

3.1.5 Optimisation of the data space

The visualization of information on the map involves a working space constraint that needs to be carefully
addressed to prevent extreme rendering times and guarantee system scalability as well as easy data browsing for
end users. The maximum expected system data load is as follows:

• 10 days data generation, approx 5 hours/day (50 hrs)
• 10 evaluation participants (500 hrs total)
• 2 data readings/ min. (default settings)

500 h = 500 * 3600 s = 1 800 000 s
DR = 1 800 000/30 = 60 000 records

To tackle the large data set visualization, some of the following approaches can be used:

• Data aggregation - this option will involve multiple readings being aggregated into a single one, which is then
stored in the database or store all the information in the relevant collection and then aggregate it at run-time.
This would involve grouping each 5 (for example) sensor data readings and finding their average (dr1 + dr2
+ dr3 + dr4 + dr5)/5. It is important to note that considering each 5 data readings are grouped with a 30 sec.
window, the system is going to be deriving a single data reading aggregation each 2,5 min. which, for the
Glasgow University campus area, could be considered normal, taking into account walking speed.

• Changing the data post window (increase to reduce number of sensor readings) - least desirable, as the system
requires more granularity and data accuracy.

9

The notes here have provided food for thought when choosing the solution mechanism that has been applied in
the final implementation (5.3).

3.2 Implementation Techniques

The design structure of the system was a crucial part of the planning process. The client-server model is important
for providing responsive behaviour and abstracting business logic to the server, reducing the size of the Android
client as much as possible. Apart from having positive effect on the device’s battery life, this is also more secure
as the potential vulnerabilities are reduced and the client cannot potentially be exploited to hack the system.

Data storage was also an integral part considering the expected data load the system was designed to sustain.
SQL ([55]) and NoSQL ([54] and [49] were researched) solutions were considered for this and after a series of
tests to compare them, the relationless structure that Mongo DB provides proved to be much more efficient and
suitable for the nature of this project.

3.2.1 Agile Development Sprints

In order to ensure that an optimized development process was used and a high standard was maintained, the
Agile development practice (manifesto [45][46])(figure 3.1b) was employed. Two-week sprints were used to
implement major system components and streamline the process. The progress made on each iteration was
communicated and evaluated so that any required changes could be implemented in a short time span (figure
3.1a). Progress reports were produced on a weekly basis to present the newly implemented features and specify
the ongoing work(appendices, A.3).

3.3 Requirements

The requirements for the system were thoroughly discussed with the project supervisors to make sure that project
planning is consistent with the target end result (Q&A session, A.5).

3.3.1 Use Cases

The use cases for the project were considered to improve the structure planning process. The final software
engineering product would enable final users to:

• discover quieter areas on campus (to be used for outdoor/ indoor studying /i.e. exam revision/ or relaxation for
instance) (figure 3.1c)

• find the areas with least polluted air (for running, training of any form, healthy benefits or just for leisure
activities in general) (figure 3.1d)

• identify routes suitable for strolls (around Kelvingrove park for example, which is in close proximity to the
university campus) (figure 3.1e)

• help users who would like to meet new people in the cases when increased noise levels correspond to crowded
venues

• could also be useful for Glasgow City Council and help them evaluate the technology and apply it to improve
city life in general

• serve as a foundation for more similar university research/software engineering projects
• serve as a ground base and aid the further development of the innovative kit

10

(a) Agile Develop-
ment Practice

(b) Agile Manifesto

(c) Use Case 1 (d) Use Case 2 (e) Use Case 3

Figure 3.1: Project development practice (a,b). Use Cases (c,d,e).

3.3.2 User Stories

The ‘As a user, I want to‘ template was used to devise a final list of user stories that were split into smaller
chunks (issues) and assigned to backlogs(GitHub repository issues: [12]). Each Agile sprint had a corresponding
backlog of issues that had to be implemented to consider the iteration successful. One of the main advantages
of this template is that the the features that need to be implemented can be prioritized very clearly and directly.
Feedback from colleague students was very crucial in this process, as recording their thoughts on how such a
product can be viable it was possible to construct a stable base of user requirements. The final result is presented
in the following paragraphs. Below is a table showing the identified user stories:

User Requirements
’As a user, I want to see the data visually in order to understand it easier. For example, with different colours,
shapes, or styles in general.’
’As a student, I want to be able to see the noise and pollution data for different locations around campus to
check the air quality around the ’Student Apartments’ building where I live or check popular routes in the area.’
’As a user (student), I want this application to be user-friendly and intuitive so that I can use it to get the latest
data on my mobile device /phone, tablet/ whenever I need to.’
’As a user, I need to be able to see different data routes around Glasgow University campus in order to draw
conclusions about different areas.’
’As a user, I want to be able to choose from different visualization map styles in order to see correlations and
data patterns better.’
’As a user, I would like to be able to filter the data in order to display only routes/ locations that I prefer.’
’As a student, I would enjoy being able to see aggregated data statistics such as most popular or quietest route
in order to know where to go if I need to study for exams.’
’As a user, I would like to be able to see a wider range of information on the campus map in order to compare
different locations comprehensively.’

Table 3.1: Table representing requirements as user stories.

3.3.3 Functional, Non-Functional Requirements

The ’MoSCoW’ requirements rating system has been used to prioritize the functional requirements.

11

Functional Requirements
MUST
1.Use the SCK 1.1 to generate sample data that can be used to create a prototype of the final product by simu-
lating the mobile client and distributing the sensor readings across different latitude/longitude in the vicinity of
the university campus.
2.Gathered data must be processed and visualized on the server as a dynamic map. Readings information must
be aggregated to enable statistical evaluation.
3.SCK sensor readings must be paired with mobile device GPS data (latitude/ longitude) to establish positioning
(geolocation).
4.The dynamically generated noise and air-pollution campus map must be accessible on the client carrier de-
vice. The server’s UI must follow the mobile web application design standards and be compatible with mobile
devices.
SHOULD
5. Gathered information should be used to generate different routes/ paths around the Glasgow University
campus. This can later be used to generate statistical data and feed it back to the user /for instance, most
popular paths, quiet and fresh air routes, etc./.
6.Multiple visualization styles should be implemented/ tested. Some examples include - heat style map, general
gradient map, color-coded blocks/ grid elements, etc. This is necessary so that user feedback can be used to
improve the functionality of the mobile web application.
COULD
7.When significant amounts of data have been acquired, some filters on this information could be applied. For
example, sliders letting the user specify maximum/minimum values for noise or pollution and allowing them to
combine those.
8. Aggregated data can be used to generate statistics (in a row-based textual manner for instance) based on
different criteria. Some options: quietest to loudest route / location freshest to most polluted air route / location
most popular to least popular route longest to shortest route

WOULD
9.Apart from the main information about noise and pollution presented to the users, the system can also show
additional data from sensor readings (examples: time, SCK battery for convenient monitoring, etc.).

Table 3.2: Table representing functional requirements prioritized by using the MoSCoW rating model.

3.3.4 Non-Functional Requirements

Similarly, the non-functional requirements have been identified:

12

Non-Functional Requirements
’When using the application, I must be able to quickly determine what my exact location was when tracking a
route.’
’I must be able to access the mobile web application on my device and learn how to use the graphical interface
within an hour of usage.
’I need to see data visualized on a map and be able to interpret the interface state with ease within an hour of
using the application.’
’I need to be able to see my route on the map and I should learn how to track my location and movement within
an hour of application usage.’
’I need to learn how to select multiple map/visualization styles after 1 hour of using the system.’
’A nice feature would be to be able to filter data. This needs to be intuitive so that I can use it with ease after 1
hour of system familiarization.’
’It would be nice to see some statistical data. I need to be able to interpret all the statistical data displayed and
browse through it with no errors within 1 hour of application usage.’
’It would be nice to see temporal filtering as well, for example. This parameter should be easily accessible
when browsing through the data.’

Table 3.3: Non-functional requirements to specify the criteria associated with expected system behaviour.

13

Chapter 4

High-Level Design

4.1 Diagrams

During the planning phase, the system was iteratively designed using structural diagrams to provide a solid
base for the implementation phase of the project. A high-level framework diagram was prepared in order to
identify the key system components and their interactions(figure 4.1a). A mobile web application diagram for
the server was also designed to better illustrate the client-server communication using the application layers
(application programming interface, API) (figure 4.1b). In order to define the key user-system interactions, a
sequence diagram was generated(figure 4.1d). The modelling of the data source structure was presented in the
form of an entity-relationship diagram (figure 4.1e). Another representation of the data store in a Compressed
Chens (bubble) Notation is directly below:

1
2 [User] 1 ----- < has > ----- N [Device]
3 [Device] 1 ----- < provides > ----- N [Data Reading]
4 [Data Reading] M ----- < forms > ----- N [Route]
5 [Device] 1 ----- < has > ----- N [Route]

A class diagram was designed in the planning stage and has now been modified according to the final implemen-
tation(figure 4.2a, 4.2b).

(a) High-level archi-
tecture diagram

(b) Web API interac-
tions

(c) Application layers
communication

(d) UML sequence di-
agram

(e) ER diagram

Figure 4.1: System structure diagrams

4.2 Paper Prototypes

4.2.1 Server

The user interface of the server application was designed via paper prototypes. This allowed to shape the basic
framework that was used for prototype development in the initial Agile sprints. Below on figure 4.3 can be seen
the main views and UI elements that were designed:

14

(a) UML Class
compacted with key
classes

(b) UML Class with
fields

Figure 4.2: UML Class diagrams

(a) Mobile and
desktop server UI
wireframing (proto-
type version 1.0)

(b) Route and data
points filtering view
(version 1.0) (c) Server visualiza-

tion UI components:
filters, grid, styles
(version 2.0)

(d) Server matrix map
structure (2.0)

(e) Paper prototype of
desktop server main
view digitalised and
improved (version
2.0)

Figure 4.3: Server application UI paper prototyping

4.2.2 Client

The user interface of the client route tracking application was also designed with the help of wire-framing paper
sketches and digital UI mock-ups. The main iterative versions of the client prototyping process can be inspected
on figure 4.4 below (there is also a mock-up of the server on a mobile device to show how the client follows the
same structural style for usability purposes).

(a) Client application
wire-framing, main
views (prototype
version 1.1)

(b) Client applica-
tion main views,
design considerations
(version 1.2)

(c) Client home view,
more detailed (ver-
sion 1.2)

(d) Android device
mock-up to check vi-
sual appearance (e) Comparison to the

wire-frame for the
mobile view of the
server application

Figure 4.4: Client application UI paper prototyping

4.3 Technologies

The choice of technologies that were used in this project required careful considerations of different frameworks
and components in order to ensure that the final product is as streamlined as possible. A table of the final choices
is available in Chapter ’Implementation’, section 5.1.

15

4.3.1 Server

4.3.1.1 Web Application Framework

The design of the mobile web application involved 3 key requirements for the web application development
framework that was going to be used - customizability, scalability and high modularity (in order to improve code
maintenance and facilitate new component implementation). Consideration with regard to available documen-
tation, online resources and potential future expansion of the project was also taken. The main web application
frameworks that were compared were Spring MVC[42], Django[8] and Flask[20].

Customizability was an important factor from the start as the system built in this project required specific
data manipulation and the chosen framework needed to conform to this in order to enable the successful server
implementation. Starting from a structure complexity comparison, Flask[20] (Python-based) is the simplest of
the three options, followed by Django (Python-based) and Spring MVC (highly-customizable). While Django[8]
is a Python-based system and facilitates quick base application implementation providing a stable core that is
sufficiently configurable, it still lacked the levels of customizability Spring MVC provides. Flask, being a Python-
based micro-framework, appeared a very attractive option from the start as it is even further simplified than
Django and significantly less complex than Spring MVC. However, its ORM support in the face of SQLAlchemy
did not seem to be well documented. Although there were detailed instruction pages on the official website, code
listings seemed to be lacking some specific sections meaning that building a highly-customized project using this
framework would not have been as efficient as using the other two options. All in all, Spring MVC[42] was the
dominant choice in this aspect. Flask’s ORM support would also affect the scalability of the application in terms
of the expected main data set growth rate (number of datapoints in the database).

Considering documentation and support resource availability online, Spring MVC and Django were favorites.
Django was the more light-weight option. However, Spring MVC was very promising in terms of component
scalability and modularity - high cohesion and low coupling. This meant that if future development involved
multiple developers working together to expand the system server, Spring MVC would facilitate and smoothen
this transition with the modularity levels it provides. Using a Python-based framework such as Django or Flask
would reduce the levels of boilerplate code but it would be much less scalable in terms of functionality (a simple
application implemented in Python involves much less source code; as more components get introduced in the
system, however, Spring MVC as the Java-based option presented a much better alternative). After researching
Spring’s support for web service implementation, it became clear that it is very stable and particularly suitable
for REST-service development (especially if using Spring’s annotation-based configuration functionality).

Web Ap-
plication
Framework

Complexity Customizability ORM Support Documentation Maintainability

Flask 3(very low) 3 7(low) 7 3

Django 3(very low) 7(relatively
low)

3(good) 3(good doc.) 3(good)

Spring MVC 7(high) 3(highly cus-
tomizable)

3(very good) 3(good docu-
mentation)

3(great)

Table 4.1: A comparison between web application frameworks (WAF).

4.3.1.2 Asynchronous JavaScript Library

In order to provide an immersive user experience a responsive user interface was required. Asynchronous
JavaScript (the jQuery[31] JavaScript library) was used in order to reduce the number of calls to the database
and facilitate visualization generation without the need of page refreshes. Apart from reducing the potential
negative impact of Wi-Fi network bottlenecks, this also ensured timely response times and quick map rendering.

16

An alternative option to jQuery was considered, Zepto.js[44]. This is a new, open source library that aims to
remove some of the constraints that jQuery imposes and its developers claim that it is essentially an improved
modification of jQuery. A huge drawback for this library, however, was that the main source of support was the
official website and it is not as widely used, hence there is much less online documentation for it in general.

4.3.1.3 CSS Framework

The choice of CSS framework was also very important. Two main tools were considered in this section - Twitter
Bootstrap 3[43] and Boilerplate[7]. They both have advantages and disadvantages. Boilerplate allows develop-
ers to create a stable HTML5[28] base which can be used as a standing platform to create highly-customized
templates. However, it does not include all of the necessary components to build a fully functional website. On
the other hand, Bootstrap is able to provide the full package required to complete a fully-functional front-end
structure and also is quite flexible at the same time. Furthermore, the server application that was required for this
project had to be specifically optimized for mobile devices with smaller screens. The grid structure Bootstrap
provides appeared to be very suitable for the needs of the mobile web application from the start as it has different
categories of CSS classes based on the screen size, making the control of GUI appearance highly effective. These
arguments influenced the choice of Bootstrap for styling the implementation of the server’s front-end.

4.3.1.4 DBMS

In terms of database scalability, the maximum expected load (much higher than the evaluation numbers were,
with pilot evaluation including 4 participants and final evaluation - 5) on the system server was considered.
Assuming 10 days of data generation and 100 participants, with approximately 30 min./day data collection per
participant, the total daily collection is 5 hours, and total number of data points is about 60 000.

In order to determine the most suitable DBMS to handle this data load comprehensive benchmark tests were
carried out on an SQL and a NoSQL (MySQL[55] and Mongo DB[54] accordingly) database systems (expanded
in section 7). Specific database structure in the face of ER modelling is a priority in an SQL database engine such
as MySQL. On the other hand, the relationless structure of NoSQL makes it much more flexible and improves the
efficiency of producing different views of the data. In summary, results have shown that in terms of data insertion
and retrieval speed, Mongo DB far outperforms MySQL even when taking into consideration the efficient data-
caching MySQL provides when utilizing prepared statements.

4.3.1.5 Map

The choice of the map engine was also crucial during the plannind and design stages as this is one of the main
components of the system’s UI. Three highly functional options were considered after thorough research - Google
Maps API[26], OpenStreetMap[38] and MapBox[33]. OpenStreetMap was an interesting option as after some re-
search it turned out that the API it provides works very well with OpenLayers (an open source, high-performance
library for map overlays and customizations). However, the drawback with this engine was that since it is user-
generated, there was the risk that it is not 100% reliable (although it still provides effective routing services using
different modes, such as - foot, bicycle, car, even horse; very similar to Google Maps[25] in this sense). On the
other hand, while MapBox seemed much more reliable, hosting a huge map database on its servers, it turned
out that the developers have extensively limited the features provided in the free version of the service. The
free ’Starter’ plan has a limit of 50, 000 views per month (which is not a huge drawback considering that some
time will pass before the system starts generating such web traffic) and although it provides a list of predefined
map styles, users cannot use custom styles (a significant drawback since one of the main criteria was the option
to produce customized map views to highlight streets or satellite mode, especially for route recommendation).
Google Maps JavaScript API v3 has a daily limit of 25 000 map loads (also more than enough) and additionally,
each aspect of the map can be customized (examples - keyboard shortcuts, UI components - pan, map scale,
zoom levels, street view, etc.). Another important advantage that tipped the scales in Google Maps’ favor (it is

17

the final implementation choice) was the detailed documentation that is available online as it is currently the most
used service in this category.

4.3.2 Client

In order to implement the data collection and route tracking Android client, a couple of alternative solutions were
considered. One option was to implement the application using the native approach, utilizing an IDE such as
Google’s Android Studio[22]. This is one of the most efficient ways to develop Android applications. However,
native code is written in Java and the transferable Map API usage with the server was important as it provides
more stable compatibility of the client and server system components. The server would be using Google Maps
API v3 (built for JavaScript) while the client would have to use v2 (Java API implementation). What is more,
writing native code reduces the portability of the final product to other mobile OS-s such as Windows Phone and
Apple iOS.

An alternative solution that solves these disadvantages is the PhoneGap[39] open source framework for
mobile application development using standardized web APIs. It uses the core Apache Cordova’s engine[4]
and is thoroughly documented as well as widely used and highly recommended (as it became apparent after
careful research). Additionally, the framework which integrates JavaScript in the functionality of the compiled
sources with the help of the Node.js runtime environment has a build service supporting multiple OS-s (among
them are Apple iOS, Google Android and Windows Phone). The advantages PhoneGap demonstrated (as listed
above) made it the final choice for the client implementation. The two approaches were compared based on
these criteria and Apache Phonegap was selected as the better choice for the needs of this system. The use of
API v3 would be a great advantage as it means that it is compatible across the whole system (server and client
application). Last but not least, PhoneGap is has a very good maintainability level. A summary of the comparison
can be inspected below:

Client Im-
plementation
Approach

Lightweight Customizability Documentation Maintainability Cross-
platform
Compatibility

Native Android
Development

3(can be op-
timized very
well)

3(great config-
uration options)

3(good) 7(more difficult
to maintain for a
small-scale app)

7(requires port-
ing the whole
implementa-
tion)

PhoneGap App.
Container

3(lightweight
compiled
source)

3(great cus-
tomizability)

3(very well-
documented)

3(good doc.) 3(gread, allows
cross-platform
source compila-
tion)

Table 4.2: A comparison between native mobile application development and using an application container such
as Apache PhoneGap.

Apart from Node.js[37], other pre-requisites for Android development using PhoneGap included Android
SDK[2], Microsoft Visual Studio[34], Apache Ant[3] (for project building) and ADB[1] (Android Debug Bridge
- used for early emulator testing).

Since the jQuery library was the tool of choice for the development of the server component, this made
its mobile version - jQuery Mobile [32] a prime candidate for the JavaScript operations required in the client
implementation.

18

Chapter 5

Implementation

5.1 Technologies Used

The ’Planning’ section 3 describes the software development tool considerations. Based on the arguments pre-
sented in that section, the final choices for the whole system have been presented below:

System Component Implementation Tool Choice
Server
Web Application Frame-
work

Spring MVC [42] (as explained in section 4.3.1.1)

Logging Apache Slf4 Java facade [6] to faciliate debugging and maintenance
Project Management Apache Maven [5] for efficient project dependency mainagement and mainte-

nance (section 4.3.1)
Web Server Eclipse’s Jetty Web server and javax.servlet container [30]
JSP (JavaServer Pages)
for front-end structuring
JSON Parsing Google’s Gson JSON [24] object manipulation library
Asynchronous JavaScript jQuery [31] JS library (section 4.3.1.2)
CSS Framework Twitter Bootstrap 3.3 [43] (section 4.3.1.3)
DBMS Mongo DB [54] (a NoSQL solution, chosen after comprehensive benchmark-

ing 7)
Map Service Google Maps (API v3[26], section 4.3.1.5)
Client
Development Engine Apache PhoneGap 3.0[39][4] (section 4.3.2)
SDK Android Software Development Kit[2]
Testing & Debugging Android ADB (debug bridge)[1] for device emulation
JavaScript Library jQuery[32] mobile, specially designed for mobile device front-end elements

manipulation
Project Management Apache Ant[3] for building and compilation to source files (Apache Maven

was an option as well, configuration requires the installation of more pre-
requisites)

Map Service Google Maps (API v3[26] to maintain compatibility across the whole project
(section 4.3.2)

Table 5.1: Final implementation tool choices.

19

5.2 Prototype Iterations

This section highlights some of the main steps involved in the first Agile iteration which was followed by a
retrospective and feedback user sessions that fed into the final implementation.

5.2.1 Server

The first server iteration involved the implementation of the base visualization functionality. The user interface
was highly limited in order to identigy the most suitable plotting techniques for the map structures. A simu-
lation was generated using static data (from a single location) previously generated by the Smart Citizen Kit
device. More information about this first prototype is available below. As the client prototype had not been
implemented at this stage, a simulation was created by generating random locations withing the bounds of the
map and assigning them to dataRading objects when parsing the data in ’parser.jsp’. The utility function
’randomPosGen(lowLatBounds,
highLatBounds, lowLonBounds, highLonBounds)’ was used in order to generate the random lo-
cations (a visualization of 500 data readings is shown in firgure 5.1b). As displayedin 5.1b, the server is logging
each mouseover event via a marker listener to aid debugging . Data readings were plotted on the map surface with
different color-coding highghlighting different variables as shown in figure 5.1c. The circle radius depends on
the sensor reading value. The opacity/transparency of each circle is calculated using the formula x%/100 = cur-
rentValue/ maxValue where maxValue is in the non-healthy interval for the specific variable and currentValue
is the sensor reading value.

After completing this process, extensive testing and evaluation of the whole client-server architecture was
conducted (more details in the ’Evaluation’[7] and ’Testing’ [6] chapter) and the opinion of potential users was
requested so that the plan for the final implementation could be refined. This would include generating more
visualization modes and implementing a user interface as well as a route generation functionality.

(a) Server initial iter-
ation, data point view
(prototype version
1.0)

(b) 500 data readings
view, simulation with
sample data (version
1.1)

(c) Server data point
visualization, trans-
parency and radius;
green - NO2, red -
noise (version 1.2)

(d) Pop-ups with data
scaling on click (1.2)

(e) Pop-up (close-up)
environmental infor-
mation display (ver-
sion 1.2)

Figure 5.1: Server application UI paper prototyping

5.2.2 Client

The client prototype was implemented iteratively, component by component. The first feature that was the device
state checking - this needs to be done to ensure that the application is fired up without errors. The application
needs Wi-Fi access and network state checking to determine device connectivity as well as GPS data access.
Hence, the relevant Android permissions were enabled:

1 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
2 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
3 <uses-permission android:name="android.permission.ACCESS_LOCATION_EXTRA_COMMANDS" />
4 <uses-permission android:name="android.permission.INTERNET" />
5 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

20

Figure 5.2a below shows the main screen of the prototype. It has a field for route identifier - the ID can be
generated automatically using the following format: ’Route timestamp ’, if the field is left blank. The main view
has the basic route tracking buttons - ’Start’ and ’Stop’. ’Clear Data’ can be used to delete the local tracking
history. Figure 5.2b shows an improved version, including a temporal window field(can be used to specify
time window between updates in milliseconds) and sensor data feedback displayed in real-time below the main
buttons. There is also a link to the history page. Once a user has completed recording a route, they can browse
their history and access information from their previous route tracking sessions (figure 5.2c). The links in the list
can be tapped/ clicked to access the route meta-data page displaying the geolocation and contextual information
via Google Map API v3 pins/ ’Marker’ and ’Polyline’ objects (as shown on figures 5.2d and 5.2e).

(a) Client version 1.1
main screen

(b) Client main screen
(version 1.2) - tem-
poral window field
added

(c) History page view,
clickable routes (ver-
sion 1.2)

(d) Route page view,
data points (map
markers) hold envi-
ronmental data (v.
1.2)

(e) Showing GUI
behaviour side-
way (horizontal
wide-screen mode)

Figure 5.2: Server application UI paper prototyping

5.3 Final Implementation

5.3.1 Android Client

5.3.1.1 SCK Configuration

The first step was the SCK device firmware update. The Smart Citizen Kit team had just released a new software
version to drive the sensor to ensure that it matches the new API calls that they had previously introduced on
their main server. There are multiple ways to do this - using the service on the official web page after installing
the ’Codebender’ extension on Mozilla Firefox and Arduino’s drivers (this runs an applet which automatically
uploads the latest firmware version /the SCK 1.1 is currently equipped with 0.9.0 [40]/ on the board), manually
editing the configuration files in the firmware package and uploading them to the device or using the Arduino
IDE in order to set the parameters via command-line commands. The third approach was chosen as it is the most
efficient in the cases of firmware modification.

In order to optimize the process of collecting data and at the same time ensure that frequent sensor probing is
carried out (addressing the points identified in 3.1, ’Planning’ chapter 3) some important configuration measures
need to be taken. One of the main aspects is the size of the temporal window between two consecutive updates.
It needs to be small enough to allow for sufficiently frequent environmental data probing and at the same time
ensure that the risk of network congestion (and data losses during Wi-Fi transmission) is reduced to a minimum.
After significant testing with different window sizes (5, 10, 20, 30, 60 (default update time) seconds) it was
concluded that the optimum choice is a time window of 30 seconds. This is much better than the default time
imposed by the Smart Citizen Kit (60 sec.) and at the same time conserves device (SCK and carrier - tablet, smart
phone) battery power as well as prevents network congestion. As described in the ’Issue Analysis’3.1 section
GPS tracking and sending updates over a Wi-Fi network are the primary potential bottlenecks of this system
and they were eliminated in the initial implementation stage. The modification is highlighted in the code listing
below:

21

1 /*SENSOR READINGS constants*/
2
3 #define DEFAULT_TIME_UPDATE 30 //time between two consecutive updates is 30 seconds
4 #define DEFAULT_MIN_UPDATES 1 //minimum number of updates before posting
5 #define POST_MAX 20 //max number of postings at a time

Before each configuration can be tested, after the board has been connected via USB, the Wi-Fly module
needs to be activated using Arduino IDE’s ’Serial Monitor’: ’$$$’ (using the 115200 baud and ”No
line return” options). After this, the network parameters need to be set using the ”Carriage return” option
with the following commands - ”set wlan ssid SSID” (save the Wi-Fi id), ”set wlan key KEY” (password for
WEP and WEP64) (the Glasgow University campus ’eduroam’ Wi-Fi network uses this wireless encryption
protocol), ’set wlan phrase PHRASE’ (WPA1 and WPA2), ”set wlan ext antenna X” (configure the device to
use the external antenna using parameter ’1’). The final command is ”set wlan auth 4”. The code ’4’ is used
for WPA2 as there appears to be a security issue when connecting to the university network and this made it
necessary to use an alternative approach - set a smart phone as a mobile access point (acting as a Wi-Fi network
provider). The device’s MAC address can then be retrieved ”get mac” and utilized to connect the sensor to the
main server. In order to get back to the normal operational mode the ”exit” command can be used.

The main server (http://smartcitizen.me/ [61]) was used in the process as a monitoring tool to check how
updates in transmission frequency affect the performance of the system. After the configuration of the device
software is completed, the output it produces when probing its surroundings can be inspected using the ’Serial
Monitor’ in Arduino IDE. The format of the output is listed below:

1 Please, wait wifly sleep
2 *******************
3 SCK Connected!!
4 updates = 13
5 Posted to Server!
6 Old connection active. Closing...
7 Temperature: 26920 C RAW
8 Humidity: 26216 % RAW
9 Light: 88.90 lx

10 Battery: 100.00 %
11 Solar Panel: 0 mV
12 Carbon Monxide: 191.53 kOhm
13 Nitrogen Dioxide: 26.56 kOhm
14 Noise: 0 mV
15 Wifi Spots: 3
16 UTC: 2014-12-12 2:42:21
17 *******************

5.3.1.2 Implementation Logic

The Android application implementation with the chosen tools requires the configuration of PhoneGap, Android
SDK and ADB as well as Apache Ant.

After this process, the target application version needs to be specified using the Android SDK manager and
configuring Node.js - the minimum Android OS version the client supports is 1.9 so that older devices can still
install and run it without issues.

1 <!-- android_parser.js -->
2 <uses-sdk android:minSdkVersion="10" android:targetSdkVersion="19" ... />

A configuration ’xml’ script for the application needs to be prepared to include the metadata when compiling
the source code (the PhoneGap[39] build service was used for this task as it enables hydration/timely synchro-
nization so that new changes become visible in the compiled files immediately/, facilitates quick extraction for
Windows Phone[68], Android[48] and iOS[48], supports private application hosting as well as provides direct
code pulling from GitHub). The final configuration script (based in ’config.xml’) is structured as follows
(with the relevant Android APIs included):

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!-- config.xml reference: https://build.phonegap.com/docs/config-xml -->
3 <widget xmlns = "http://www.w3.org/ns/widgets"
4 xmlns:gap = "http://phonegap.com/ns/1.0"
5 id = "UGMAP"
6 version = "1.0.0">
7 <!-- project name, description and icon settings -->
8 <name>Dynamic Noise And Pollution Campus Map</name>
9

10 <description>
11 Generate a dynamic campus map via the innovative Smart Citizen Kit, developed by Fab Lab, Barcelona.

22

12 </description>
13
14 <preference name="phonegap-version" value="3.0.0" />
15 <icon src="img/icon.png" />
16
17 <author href="http://ppyordanov.com" email="ppyordanov@yahoo.com">
18 Peter Yordanov
19 </author>
20 <!-- api libraries used -->
21 <feature name="http://api.phonegap.com/1.0/file"/> <!-- used for storing the route data locally on the carrier device; provides

access to carrier device media contents, used in route data retrieval -->
22 <feature name="http://api.phonegap.com/1.0/geolocation"/> <!-- used for accurate geolocation tracking using the device GPS -->
23 <feature name="http://api.phonegap.com/1.0/network"/> <!-- facilitates Wi-Fi network resource utilization for environmental data

transmission to the server and network state checking (connected/not connected)-->
24 </widget>

The high-level structure of the client involves introducing a minimal GUI (in order to keep the ’thin client’
development paradigm) with the key functionality needed for effective geo-location tracking and environmental
data probing. Structural simplicity is crucial in this component.

A single template page has been used to design the main views. It has the following structure:

1 <!DOCTYPE html>
2 <html>
3
4 <head>
5 <title>UG Campus Map Application</title>
6 <meta name="description" content="Noise and Pollution Glasgow University Campus Map Application">
7
8 <!-- main scripts imported: jquery-1.6.4.min, jquery.mobile -->
9 <!-- css frameworks and styles - jquery.mobile, main style -->

10 ..
11 <script type="text/javascript" src="js/custom/utility.js"></script> <!-- utility functions for environmental data retrieval and

parsing -->
12 <script type="text/javascript" src="js/custom/track.js"></script> <!-- main functions for server data transmission and user

interface interactions control -->
13 </head>
14 <body onload="init();"></body> <!-- initialize network connection status check -->
15
16 <!-- HOME VIEW -->
17 <div data-role="page" id="home"> .. </div>
18
19 <!-- HISTORY VIEW -->
20 <div data-role="page" id="history"> .. </div>
21
22 <!-- ROUTE VIEW -->
23 <div data-role="page" id="route"> .. </div>
24
25 </body>
26 </html>

The home view (as shown in figure 5.3a) is the main page of the application. There are 5 key elements on this
page:

• a ’Route ID’ field - this is the route identifier that is automatically generated in case this field is left blank (it
has the format ”Route TS” where TS is the current time stamp in the form of a JavaScript Date() object)

• ’Time Window’ - this field is used to specify the temporal window for environmental data probing (in millisec-
onds); the default and minimum value is 30 seconds to match the number of times the SCK board transmits
updated to the device (which is one of the reasons for the minimum window constraint). Input in this field
is validated - if a numerical value cannot be parsed or it is less than the minimum, the default value remains
unchanged (defined as a global variable for consistency maintenance throughout the full program run-time
cycle):

1
2 var DEFAULT_WINDOW = 30 * 1000;
3 ..
4 var winVal = $("#window").val(); //input element id content retrieval via jQuery
5
6 //if field contents are empty, ’not a number’ check is false and the value is greater/equal to 30 seconds, update the window value
7 if (winVal != ’’ && isNaN(winVal) == false && winVal >= 30000) {
8 WINDOW = parseInt(winVal);
9 }

• ’SCK Device API Code’ - this is used to identify the Smart Citizen board that the client communicates with
via the main SCK API to retrieve information about its surroundings. This means that the Android application
can work with any SCK device and what is more, it can transmit updates remotely without the need to be
present at the location (due to the fact that there is an intermediary server associated with the communication),
making the data collection process even more streamlined. In case the API code provided by the user is invalid
(an error response is received, that is) the application informs the user and falls back to using the default
authentication code provided.

• a connection indicator - this is used to check whether the device is currently connected to a Wi-Fi network.

23

The implementation is based on the usage of the ’navigator’ JavaScript object:

1 if ((navigator.network.connection.type === ’none’ || navigator.network.connection.type === null ||
navigator.network.connection.type === ’unknown’)) {

2 $(’#connection’).html(’Not Connected’); //update the status of the application
3 $(’#start’).prop(’disabled’, true).addClass(’ui-disabled’); //disable the tracking button
4 }

• The ’Track’ button is used for starting and stopping route tracking sessions. It triggers an event which outputs
a ’flash’ message to the user depending on whether the process starts or ends (’Tracking in progress!’: figure
5.3b and ’Completed tracking and transmitted data to the server!’: figure 5.3c accordingly on successfull server
response). This message is dynamically generated via using jQuery[31] and has a ’fade out’ effect at 3000 ms
timeout. While tracking is in progress, the user can inspect the number of probes that have been collected in
the current session, tne context variable levels, geo-location data as well as time stamp information.
Route tracking relies on the use of the HTML5 geo-location API[21] which has a good support in most
browsers (became available around the end of 2010 for Opera Mobile). The ’localize()’ function pairs
environmental information to geo-location data. It uses the ’navigator.geolocation.watchPosition()’
call to retrieve the current location of the device, saving this in the ’location id’ variable. The function is
also called with an interval ’trackIntervalId’ (inherited by the value of the temporal window variable).
These variables are later used to stop tracking the location data, clear the function call interval and store the
data on the device prior to server transmission:

1 //track.js
2 //stop getting current location
3 clearInterval(trackIntervalId);
4 navigator.geolocation.clearWatch(location_id);
5
6 window.localStorage.setItem(route_id, JSON.stringify(route_data)); //store the route information

On successful location retrieval, the ’GEO LOCATION’ object is populated with the current lat/lon data and
then passed to the ’generateData()’ function to pair it with the values for noise, NO and CO2. Failures
to connect to the server are logged to the console as error messages. ’trackIntervalId’ ensures that the
function is called every ’n’ seconds while tracking. The timeout is set to 5 seconds to ensure high precision
and the ’enableHighAccuracy’ option parameter is enabled:

1 //utility.js
2 function localize() {
3 var options = {
4 enableHighAccuracy: true, //configure accuracy
5 timeout: 5000, //set request timeout
6 maximumAge: 0
7 };
8
9 var GEO_LOCATION = {}; // initialize the data object

10 var start_location_loaded = false; // a flag to check whether the initial location has been retrieved
11 location_id = navigator.geolocation.watchPosition(
12 //success
13 function (current_location) { //if successfull, generate and transmit data
14 GEO_LOCATION.location = current_location;
15 if (start_location_loaded == false) {
16 generateData(GEO_LOCATION.location);
17 start_location_loaded = true;
18 }
19 },
20 //fail
21 function (error_message) {
22 console.log(error_message); //if the request fails, log the error message to the console
23 },
24 ..// options
25);
26 trackIntervalId = setInterval(function () {
27 generateData(GEO_LOCATION.location); //set the interval using the value of WINDOW
28 }, WINDOW);
29 }

The SCK environmental data is retrieved by sending requests to the Smart Citizen Kit server’s API [41]. Data
is retrieved as JSON which is parsed to suit the data structure used by the server models and saved to the main
’context data’ array of associative array elements.

1 //track.js, utility.js
2 var SCK_API_CODE = "084122509ae13c389bf752915861249cff652249";
3 ..
4 var DATA_SOURCE = ’http://api.smartcitizen.me/v0.0.1/’ + SCK_API_CODE + ’/lastpost.json’;
5 ..
6 function getSCKData(location, routeId) {
7 var sample_data = {
8 no2: "",
9 co: "",

10 noise: "",
11 battery: "",
12 latitude: "",
13 longitude: "",
14 routeId: "",
15 timestamp: "",

24

16 light: "",
17 hum: "",
18 temp: ""
19 };
20 var json_obj = getSCKReading();
21 .. //populate the sample_data associative array and add to the main data structure
22 context_data.push(sample_data);
23 ..
24 }

The procedure is similar when retrieving the user and device informaiton once the tracking process is stopped
before transmitting the information to the server. It is stored in associative arrays and returned in order to be
added to the final parameterized object ’dataReadings’:

1 //utility.js
2 //retrieve user and device information once a user stops tracking in order to send the data to the server
3 function getUserData() {
4 var form_data = {
5 me: {
6 id: "",
7 username: "",
8 city: "",
9 country: "",

10 website: "",
11 email: "",
12 created: ""
13 }};
14 ..}
15 ..
16 function getDeviceData() {
17 var form_data = {
18 devices: [
19 {
20 id: "",
21 title: "",
22 description: "",
23 location: "",
24 created: "",
25 kit_version: ""
26 }
27]};
28 ..}

When the ’Stop Tracking’ button is pressed, the application saves the route in the (local) storage space of the
device and transmits it in case the ’context data’ array is not empty. A local saving operation is performed
so that a personal history could be kept on each device having the application installed instead of introducing
the need to provide authentication services and download all of this data from the server every time. The history
page displays the route information stored on the device in the form of a list of route id-s and their number (the
final version is shown in figure 5.3d). There is a button ’Clear Route Data From Device’ which allows users to
remove the local data saved by this application.

An associative array of aggregated data is created so that it can be parameterised by the Spring annotations
service when it reaches the main server’s end-point ’http://ugmap.me/addRoute’.

1 //if there is data to be transmitted, send to server
2 if (context_data.length != 0) {
3 //create the parameterized dictionary object by stringifying the main arrays
4 var dataReadings = {context: JSON.stringify(context_data),
5 user: JSON.stringify(user),
6 device: JSON.stringify(device)};
7 console.log(dataReadings); //log the final object for debugging
8 //transmit the dataReadings object to the ugmap.me server
9 $.ajax({

10 type: ’POST’,
11 url: "http://ugmap.me/addRoute",
12 data: dataReadings,
13 dataType: "json",
14 success: function (response) {
15 console.log(response);
16 }
17 });
18 }
19 //reset the key variables, ready for tracking again
20 route_id = null;
21 route_data = [];
22 context_data = [];

When a route from the list is clicked, the application showcases the route geo-location information plotted
on a map on the route view page in order to allow users to inspect personal routes on their devices (as displayed
in figure 5.3e).

25

(a) Final Android
client main page
(version 2.0)

(b) Route tracking
started - feedback
user message; envi-
ronmental data shown
at the bottom

(c) Route tracking
completed, data
transmission user
feedback

(d) History page,
routes list

(e) Single route page,
displaying route trail

Figure 5.3: Android Client application final version 2.0

5.3.2 Mobile Web Application

The mobile web application has been built using Apache Maven[5] and uses the Jetty servlet container [30]. The
DBMS of choice is Mongo DB[54] as it has proven to be a suitable option for the needs of this system (more
information about this is available in section 7.1, chapter 7).

The JavaScript library of choice is jQuery[31] and the CSS framework that the mobile web application’s
front-end builds on top of is Twitter Bootstrap 3[43] (as mentioned in the chapters 34).

5.3.2.1 Back-end

The first step in the implementation of an MVC server is to design the model structure. After this process has
been completed, the controllers can be designed in order to map the newly-created views to the system models.
The key models in the architecture of this mobile web application are as follows:

• DataReading (primary) - this data model is used to store the environmental data; it is the basic data block
in the implementation of the server. The main attributes are an identigying number - generated by Mongo
DB’s internal structures on insert, associated route and device identifiers, a timestamp, latitude/longitude to
represent the geolocation and the environmental variables retrieved from the SCK sensor board accompanied
by the current device battery level.

• Route (primary) - the route data model is used to serve as point of grouping data reading models into routes
by associating them to different id-s. Each route also corresponds to a particular SCK device.

• Device (secondary) - this model stores general device meta data that retrieved from the Smart Citizen Kit
API.

• User (secondary) - serves a purpose similar to the ’Device’ model. The secondary data models are used
on the server in order to show the source of environmental data that has been uploaded. In case the applica-
tion is expanded to support user authentication (chapter 8, section 8.2), they can be used to store additional
information attributes

These models are mapped to the relevant collections in the Mongo database using Spring MVC annotations:

1 @Document(collection = "DataReadings") //data readings collection
2 @Document(collection = "Routes") // collection for storing route documents
3 @Document(collection = "Devices") // devices collection
4 @Document(collection = "Users") //users collection

Repository classes in the form of interfaces extending ’MongoRepository<MODEL TYPE, String>’
are also used for object manipulation by means of key query methods implementation (as descriped in 7.1).

There is a single controller class to support the MVC paradigm - ’HomeController.java’. It contains
the main REST API endpoint implementation. ’/addRoute’ accepts POST requests and attempts to retrieve

26

conent parameters relevant to user and device meta-data as well as environmental information (data readings).
With the help of Google’s JSON Java library the parameterised objects are deserialized into the respective models
and stored in the database using the ’MongoRepository’ ’save()’ method call on the autowired database
collections in the class (’@Autowired’ annotation). Accessor methods for these global repository variables
have been implemented so that their instances can be accessed from the ’Benchmark.java’ class. All of the
operations are logged to the console.

1 @RequestMapping(value = "/addRoute", method = RequestMethod.POST)
2 public
3 @ResponseBody
4 String addRoute(@RequestParam("context") String json, @RequestParam("user") String userJSON, @RequestParam("device") String

deviceJSON) {
5 /* - parse the JSON strings into models using the Gson library
6 - save/update user and device data, create a new route and store data readings, logging the whole process
7 return "success";
8 }

The ’Home’ view constructs a ’ModelMap’ structure (internally implemented as a ’LinkedHashMap’)
of all data readings, routes, devices and users. This structure is returned to the main ’home.jsp’ template for
JavaScript parsing and processing:

1 @RequestMapping(method = RequestMethod.GET)
2 public String home(ModelMap model) {
3 List<DataReading> dataReadings = dataReadingRepository.findAll();
4 ..
5 model.addAttribute("dataReadingModels", dataReadings);
6 ..
7 LOGGER.info("Data Readings: " + dataReadings.size());
8 ..
9 return "home";

10 }

The spring MVC bean parameter configuration file (’mvc-dispatcher-servlet.xml’) contains the
system configuration information in order to enable server request handling. The data source bean component
has been set in this file (as specified in Chapter 7, 7.1 section). The Spring context request dispatching process
to the main controller as well as the resource, repository and view bean configuration is performed in this file:

1 <!-- mvc-dispatcher-servlet.xml -->
2 <context:component-scan base-package="com.springapp.mvc"/> <!-- base package specification -->
3 <context:annotation-config/>
4 <mongo:repositories base-package="com.springapp.mvc.repositories"/> <!-- wire the repository classes package -->
5 <mvc:resources mapping="/resources/**" location="/resources/"/>
6 <mvc:annotation-driven/> <!-- enable annotation-based request handling -->
7 <bean class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <!-- configure views directory structure -->
8 <property name="prefix" value="/WEB-INF/pages/"/>
9 <property name="suffix" value=".jsp"/>

10 </bean>
11 ..

5.3.2.2 Data Formatting

Apart from the noise variable, which is available directly in decibels from the sensor board, this is not the case
when processing humidity, solar power, CO and NO2. The level values for these variables are represented by
the actual sensor resistance levels in k (also known as RS). After contacting the co-founders of the product from
FabLab, Barcelona, it became clear, that they have programmed the firmware in this way on purpose. They are
currently conducting thorough testing to improve the way the base value (R0) for their sensors. ’R0’ and ’RS’
can be used to convert the raw resistance information to ppm (parts per million) using the following equation:

PPM VALUE = RS/R0

The current base value of ’R0’ has been set to 75 k (as recommended by FabLab’s laboratory experts after
contacting them to request more information about variable formatting). In order to facilitate the implementation
of this data format conversion, an important decision needed to be made. One option was to modify the C++
source files of the SCK firmware and re-upload it to the sensor. This would ensure that the values are identical
across all of the system components. However, this approach had one major drawback - it would introduce
additional modifications to the core of the sensor board driving software and would make transitions to newer
firmware versions unnecessarily inefficient. In order to avoid this potential drawback, another decision was
taken. All of the conversion logic was transferred to the data parsing module responsible for loading database
information from the database into RAM, ready for processing. This requires more processing in terms of the

27

number of executed operations compared to performing the conversion on the Android client prior to transmission
to the server where the data is directly inserted in the database. However, it is much more flexible as it facilitates
changes of the base ’R0’ value. This means that once the constant is changed from 75 k to a different value,
changes will immediately be reflected on the front end without the need to modify the contents of the database.

5.3.2.3 Logging

Logging has also been used in combination with the overridden ’toString()’ method implementations of
the main objects in order to provide prompt user feedback in the console while the server is running(figure 5.4a
and 5.4b). This procedure facilitates the debugging process and is crucial for all server implementation stages.
The Apache Log4J logging library for Java has been used to satisfy this requirement. ’toString()’ methods
have been optimized and rely on a standardized structure across all models:

1 public String toString() {
2 StringBuilder string = new StringBuilder(); //use a string builder for improved efficiency
3 string.append(this.getClass().getName() + " Object {" + Constants.NEW_LINE); //get the class and object name
4 .. //add model attribute information
5 string.append("}" + Constants.NEW_LINE);
6 return string.toString(); //return the result
7 }

(a) Logging data
set statistics (users,
devices, routes and
data readings) on
page load (b) Logging Android

client transmitted data
on REST endpoint re-
quest

Figure 5.4: Logging messages on the server console for system inspection.

Instead of logging to the console, this process can be performed in an external text file. This, however
requires writing access to the target directory and log size allocation limit and is not as efficient as the console
logging option which has been chosen to serve this system. The configuration can be seen in the following code
listing:

1 # root logging configuration - log4j.properties
2 # logging works at ’INFO’ level, highlighting the progress of the application at coarse-grained level to facilitate testing and

evaluation
3 log4j.rootLogger=INFO, stdout, file # configure the root logger
4 # console output formatting section
5 log4j.appender.stdout=org.apache.log4j.ConsoleAppender
6 log4j.appender.stdout.Target=System.out
7 log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
8 log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %-5p %c{1}:%L - %m%n

5.3.2.4 Implementation Logic

This section contains the description of the main server component’s logic (the asynchronous JavaScript process-
ing and how it ties to the relevant UI views). It includes thorough information about the algorithms used in the
visualization implementation.

A bounded map surface was enforced in order to optimize working space. This was devised via using a
’google.maps.LatLngBounds()’ object from API v3. Its constructor creates a rectangle from the points
at its south-west and north-east corners. These corners are represented by ’google.maps.LatLng()’ ob-
jects which have been declared in ’constants.js’ under the ’utility’ package as global variables. An event listener
is attached to the main map object so that each time the center point changes the previous state is stored and if
the new central point is not within the bounds of the imposed frame border, the map is rendered from the last
’stable’ location using the ’panTo()’ function.

28

1 var frameBorder = new google.maps.LatLngBounds(
2 new google.maps.LatLng(minLatBounds, minLonBounds),
3 new google.maps.LatLng(maxLatBounds, maxLonBounds)
4); //create a new bounds object to limit map surface panning
5 var lastCenter = map.getCenter(); //retrieve the current central point
6 google.maps.event.addListener(map, ’center_changed’, function () {
7 if (frameBorder.contains(map.getCenter())) { //once the center changes, check if withing the allowed bounds, if so, update the

current central point
8 lastCenter = map.getCenter();
9 return;

10 }
11 map.panTo(lastCenter); //otherwise pan to the last ’stable’ location
12 });

In order to implement the style switching and map controls configuration functionality, ’StyledMapType’
objects were created. All of them are stored in the ’map styles.js’ script in an array data structure for efficient
referencing. Those objects have a composite array structure - they comprise of ’stylers’ arrays of associa-
tive array elements and ’featureType’ attributes. The ’stylers’ array contains formatting options of
type ’MapTypeStyler’ which can be applied to map features. Attributes such as ’hue’, ’lightness’,
’saturation’, ’gamma’, ’weight’ etc. can be applied in this array. For instance, the ’color’ value can
be specified using an RGB hex string or modified by combining the HSL attributes. The ’featureType’ and
’elementType’ attributes are defined before ’stylers’ and used to specify the components for which the
style array will be used. The associative array objects can be aggregated to build more complex style arrays that
are later integrated into ’StyledMapType’ objects and can be applied to any ’google.maps.Map’ ob-
ject by using the ’maptypes.set(’style’, sMap)’ and ’setMapTypeId(’style’)’ functions.
All of these objects follow the same structure:

1 //utility/constants.js
2 ..
3 var centerLat = 55.872912;
4 var centerLon = -4.289657;
5 var center = new google.maps.LatLng(centerLat, centerLon);
6 //map/map.js
7 ..
8 var styleArray = [
9 {

10 featureType: "road",
11 elementType: "geometry",
12 stylers: [..]
13 }, ..]; //style properties including color codes are placed in this section
14 var sMap = new google.maps.StyledMapType(styleArray, {name: "Styled Map"}); //define a new ’StyledMapType’
15 ..
16 var myOptions = { //add comments explaining map style here
17 zoom: 16, // set the default zoom level
18 minZoom: 15, // specify the minimum and maximum allowed zoom levels
19 maxZoom: 18,
20 center: center, //set the map center point
21 mapTypeId: google.maps.MapTypeId.ROADMAP, //configure the initial MapTypeId
22 disableDefaultUI: false, // configure the UI controls
23 mapTypeControl: false, // disable map type control
24 panControl: true, //enable the pan control user option
25 panControlOptions: {
26 position: google.maps.ControlPosition.TOP_LEFT //locate the pan buttons at the top left map surface area
27 },
28 zoomControl: true, // enable zoom control
29 zoomControlOptions: {
30 style: google.maps.ZoomControlStyle.LARGE, // large buttons, optimized for smaller screens
31 position: google.maps.ControlPosition.TOP_LEFT // locate top left below the panControlOptions object
32 },
33 scaleControl: true, // enable the scale control to let users inspect grid map
34 streetViewControl: true // enable street view control
35 }; //define the map options
36 var map = new google.maps.Map(document.getElementById(’map-canvas’), mapOptions); //create the main map object using an options

associative array
37 map.mapTypes.set(’mapStyle’, sMap); //add the new map style to the ’mapTypes’
38 map.setMapTypeId(’mapStyle’); // use the mutator function to change the map style
39 ..

Once the map object has been initialized, the map is dynamically populated with the entities retrieved from
the main view (the ’home()’ method in ’HomeController.java’, ’controllers’ package) using Google
Maps API v3. The file ’parse.jsp’ is used as a parser to transfer the entities to associated array data structures
using JavaScript. At this time variable formatting occurs using the conversion equation described in ’Data For-
matting’, 5.3.2.2. In the ’markers routes’ script, map ’Markers’ are generated for each individual data reading
element, while routes are represented by ’Polyline’ objects:

1 //markers_routes.js
2 function populateMap() {
3 for (var i = 0; i < routes.length; i++) {
4 .. // process data readings and render routes, generating ’InfoWindow()’ objects showing the metadata for each
5 }
6 }
7 ..
8 function addPopUp(marker, content, trigger) { .. }
9 function generateMarker(dataReading, visible, map) { .. }

10 function generateRoute(newRoute, noiseAVG, coAVG, no2AVG, distance, duration, score, id) { .. }
11 function identifyValueRange() { .. }
12 function progressEvaluate(value, min, max) { .. }
13 function generatePopUpContent(noise, co, no2, battery, typeData, routeDistance, routeDuration, score, id, dataCount) { .. }

29

The signatures of the key functions that are called in the dynamic map population process (within the main
loop in ’populateMap()’) have been listed in the code snippet above. ’addPopUp()’ is used to bind
’Polyline’ and ’Marker’ objects to their ’InfoWindow()’ ’open’ event on tap/click (object references
are passed as input parameters). The ’generateMarker()’ and ’generateRoute()’ functions are used
in order to create the markers and routes and call the rest of the functions. ’identifyValueRange()’ is
key as it is used to determine the variable ranges (the minimum and maximum values are used to derive the range)
and facilitate the scaling that is available in the pop-ups associated with the map objects. In order to facilitate
the filtering operations associated with object timestamps, ’progressEvaluate()’ relies on the informa-
tion retrieved by ’identifyValueRange()’ in order to generate HTML5[28] progress bar elements and
dynamically insert them into the pop-ups as seen below. ’generatePopUpContent()’ is the general func-
tion for populating ’InfoWindow’ objects bound to data readings and routes. The number of input parameters
is necessary to facilitate the needs of multiple calling sources and improves the overall component reusability
levels. The ’typeData’ input parameter is crucial for this function as it determines the type of content that is
going to be generated when it is called: ’null’ is used to generate the meta-data contents for a data reading, ’>0’
is processed as a route and any negative integers including zero are an indication that the data for a map matrix
cell has been passed in. The values of parameters ’noise’, ’co’ and ’no2’ are used in the three cases, ’dataCount’
is used for the routes and grid map rendering, while ’battery’ can be inspected only for individual data readings.
’id’, ’routeDistance’ and ’routeDuration’ are used only for routes. The ’score’ parameter represents the overall
pollution index - a resulting score from an evaluation algorithm that is used by the route generation engine in the
route recommendation process.

The mobile application can also be used from a desktop machine. In order to enable the user to manipulate
the map controls, such as the pan buttons, zoom, scale and street view control, enabling or disabling shortcut
options controls have also been included to the user interface - keyboard shortcuts (enabling the use of the arrow
keys for map panning and the ”+” and ”-” keys or mouse scroll wheel for zooming in and out accordingly). This
functionality is implemented by calling ’toggleMapControls()’ every time the appropriate view element
is activated by a tap/click. Depending on the checkbox selection, the appropriate elements are rendered. In
the ’Styles’ dropdown menu, there is a collective checkbox for disabling/ enabling all UI controls. All of the
options have been enabled by default. Below is a code snippet for the pan control element from the view page
’styles.jsp’:

1 //styles.jsp
2 <label>
3 <input type="checkbox" name="styleOpts" value="panControl" checked> Pan Control <!-- pan control element with the ’panControl’ value,

part of the ’MapOptions’ object settings for map configuration, API v3 -->
4 </label>
5 ..

Once the state of the input elements changes, an event that renders the new map canvas state is triggered
resulting in the appropriate controls being enabled or disabled:

1 //user_interface.js
2 function toggleMapControls() {
3 $("input[name*=’styleOpts’]").each(function () {
4 var value = (this.checked ? true : false); // convert the 1/0 structure to standard boolean true/false
5 var type = $(this).attr("value");
6 map.set(type, value); // enable or disable the option based on the state of the elements in the view
7 });
8 } ..

Modes
The ’Modes’ architecture follows some important principles. An accordion drop-down menu has been used to
represent the mode options. Modes represent dynamically generated JavaScript (API v3) map overlays and they
can be shown or hidden via a checkbox at the top left corner of each configuration options group. These options
are disabled unless the main ’Show’ checkbox is not selected. This ensures that the back-end processing engine is
not going to apply more changes than necessary when generating the final overlay as only instructions associated
with the visible mode components are executed. Specific input elements have been used to facilitate the process
of rendering custom visualizations depending on the selected type:

30

1 //user_interface.js
2 function retrieveModes() {
3 // determine the modes that will be visualized
4 return selectedModes;
5 }
6 function renderMap(modes) { .. } //render the mode visualization depending on the result from ’retrieveModes()’

Data readings can be shown/ hidden and the meta-data ’on-click’ (tap) event triggering the appearance of
the meta-data pop-up can be enabled/ disabled. This is achieved by using the ’set()’ function applied to
each marker in the global markers data set ’POINT DATA’. When setting the new value of the ’visible’ marker
attribute, the state of the ’Disable Information’ checkbox available on the front-end UI is used. When processing
the main markers data structure, the total count of data readings is retrieved and displayed in the ’Data Points’
tab for statistical purposes.

The configuration settings for routes are similar as the 2 checkboxes serve the same purpose as in the previous
described mode. The total route number is also available. The ’Polyline’ objects’ thickness (in pixels) as
well as the transparency (in percentage) can be controlled via using the input fields. This is implemented via
using the ’strokeWeight’ and ’strokeOpacity’ attributes of the ’Polyline’ object accordingly:

1 // controls.js
2 ..
3 var thickness = parseInt($("#thicknessRoutes").val()); // retrieve the values from the input fields
4 var opacity = parseInt($("#opacityRoutes").val()) / 100;
5 ROUTE_DATA.forEach(function (entry) { //for each route in the main data structure
6 if (thickness !== NaN && thickness > 0) { // validate the thickness input
7 entry["route"].set("strokeWeight", thickness); //update the attribute
8 }
9 if (opacity !== NaN && (opacity > 0 && opacity <= 1)) { // validate opacity stroke, must be between 0 and 1.0 after division

if a number (’NaN’ indicated not a number)
10 entry["route"].set("strokeOpacity", opacity); //update the attribute
11 }
12 });
13 ..

The implementation of the ’Heat Map’ visualization is based on color-coding the data reading points using a
radial gradient that is green at its periphery and turns into red in the core (using a green-yellow-red HSL color-
scheme). Map areas where orange/red is the dominant color are most accurate in terms of aggregated average
data values. The heat map is initialized using the function ’generateHeatMap()’ in the ’heat map.js’
script under the ’map’ directory. It relies on a simplified data structure in the form of a plain array which stores
’LatLng’ objects to represent the geolocation (latitude/ longitude) of each marker. The values of the main
variables (noise and air pollutants - CO, NO2) are not required for this visualization. The array structure is parsed
into an ’MVCArray’ that can be processed by the ’visualization’ map object using the ’HeatmapLayer()’
function with an associative array of configuration options. Based on data point clustering, this function generates
the final visualization as a color-coded overlay atop the map surface when it needs to be rendered. On page
load, the data is only pre-processed and stored in the global ’HEAT MAP’ object to improve performance when
displayed using the ’setMap()’ function with the main ’Map’ object as an input parameter:

1 //heat_map.js
2 function generateHeatMap() {
3 var points = new google.maps.MVCArray(locationARR); // create an MVCArray using the plain locationARR as input
4 HEAT_MAP = new google.maps.visualization.HeatmapLayer({
5 data: points, //use ’points’ as a data source
6 radius: 50, //set the default radius size
7 map: null // do not render on the map
8 }); // pre-generate the heat map visualization and store in HEAT_MAP
9 //HEAT_MAP.setMap(map); when this instruction is executed at a later stage during UI interactions, the heat map will be rendered/

become visible
10 }

The grid map visualization structure is the most important mode as it is the primary component in the
mobile web application and the base data source when producing route recommendations. The ’Show/Hide’
checkbox has been implemented in this tab as well (when unchecked settings cannot be altered). The grid
data structure is stored in the global ’GRID’ object. It relies on the ’google.maps.geometry’ library
(libraries[52] are included in the main page source code as a ’googleapis.com’ [26] URL parameter: ’&li-
braries=geometry,visualization’) and more specifically, the ’spherical’ object and the ’computeOffset’
function. The only constraints imposed in this process are the grid surface size and the cell width/ height (in me-
ters). The grid surface size is determined by a north-west and a south-east point (variables ’northWestStart’
to represent the first point; ’minLatBounds’ and ’maxLonBounds’ used for the bounding box to frame the
map working space represent the limiting south-east point). The map grows from west to east being generated

31

on a row-by-row basis until a violation of the checks for geolocation containment withing the frame occurs. The
default matrix cell size is 50 by 50 meters and this can be controlled using the ’Tile Size’ input field on the UI.

1 //grid_map.js
2 function generateGrid(tileSize) {
3 //set east and south variables as 50 m offsets from northWestStart
4 for (var heightTiles = 0; heightTiles < heightTilesN; heightTiles++) {
5 //in each outer loop iteration, move the points to the south by ’tileSizeMeters’*’heightTiles’ where ’heightTiles’ is the number

of rows that have already been rendered; execute while within latitude bounds
6 newEast = google.maps.geometry.spherical.computeOffset(east, heightTiles * tileSizeMeters, southAngleDegrees);
7 newSouth = google.maps.geometry.spherical.computeOffset(south, heightTiles * tileSizeMeters, southAngleDegrees);
8
9 for (var widthTiles = 0; widthTiles < widthTilesN; widthTiles++) {

10 var tile = new google.maps.Rectangle();
11 ..// set the default tile options
12 var tileDATA = {tile: tile, noiseAVG: {sum: 0}, coAVG: {sum: 0}, no2AVG: {sum: 0}, count: 0}; //initialize the tile as a

composite object
13 GRID.push(tileDATA); //add the tile data to the grid object
14 //in each inner loop iteration, move the points to the east by the tile size in meters; execute while in bounds
15 var newEast = google.maps.geometry.spherical.computeOffset(newEast, tileSizeMeters, eastAngleDegrees);
16 var newSouth = google.maps.geometry.spherical.computeOffset(newSouth, tileSizeMeters, eastAngleDegrees);
17 }
18 }
19 }

Each row is constructed, starting from the location furthest to the west, generating the first cell, computing 50
m. offset to the east from both previous north-west and south-east points (’newEast’ and ’newSouth’). In
other words, the algorithm is sliding the points while within the allowed bounds. It generates a composite object
’tileDATA’ for each cell in order to store the color-coding, the number of data points corresponding to the cell
surface and the total sum (used for finding the average values when plotting the data). Pre-computation of these
values is not executed to allow for immediate reflection of changes when the data-set changes. ’InfoWindow’
object storing the meta-data for each cell are also generated int his function. When applying the settings, the
map is aggregated and the appropriate coloring is rendered for each cell in the function ’toggleGrid()’
if the ’Show/Hide’ checkbox is selected. Checks parse the selected variable from the radio button group as
well as the outline and fill transparency (outline display is optional) values from the input fields and validate
them. If a custom tile size has been specified, the matrix is rendered and aggregated again using the func-
tions ’generateGrid(tileSize)’ and ’updateGridAggregation()’. The grid map exploration
progress is also evaluated in this function based on the populated cells and the total number of cells in the ma-
trix using the function ’mapExplorationProgress()’ to determine the status in percentage. There are
two types of scaling. Relative scaling uses the following value range: min = (minimum dataset value), max =
(maximum dataset value). Absolute scaling uses a range determined by the norms the government imposes and
hence the grid map has green hue coloring in every cell. The raw values are then scaled based on the range
used and depending on the gradient choice (a RGB or HSL model) the color-codings range from red-green and
red-yellow-green accordingly. The second option is better when performing a comparative analysis of the cells.

The functions, facilitating the color-coding feature using different gradients, have been implemented in the
’utility.js’ class. ’convertToRGB()’ utilizes the ’rgb()’ (red-green-blue scheme) formatting to generate a
color-coding, where the red-green transition is facilitated by scaling the values for red and green in percentages.
The value for blue is not used here. The process is identical when generating an hsl (hue-saturation-lightness)
color-coding. Saturation and lightness keep their constant values, while the input parameter ’n’ is scaled between
0 and 120 degrees to achieve the red-yellow-green transition.

1 //utility.js
2 function convertToRGB(n) {
3 var B = 0; //blue coding is a constant; neutral effect to the final color
4 var R = Math.floor((255 * n) / 100); // scale the values for red and green
5 var G = Math.floor((255 * (100 - n)) / 100);
6 var RGB = "rgb(" + R + "," + G + "," + B + ")"; // encode final result and return
7 return RGB;
8 }
9 function convertToHSL(n) {

10 var H = (1 - n / 100) * 120; //scale only color hue between 0 and 120 degrees
11 var HSL = "hsl(" + H + ",100%,50%)"; // encode the final color, using constant values for saturation and lightness, then return
12 return HSL;
13 }

The indexed grid structure facilitates the observation of a single variable on the map surface at any given
time. When using the ’Relative’ scaling option, it helps to identify the areas where the variable values are
lowest and highest accordingly. However, in order to make it possible to compare multiple variables, the ’Point
Visualization’ mode has been implemented. It plots the datapoints for each variable type as a circle overlay with
a different opacity and radius size. This data is represented by using the ’google.maps.Circle’ object and

32

different color-codings, chosen by the user and is stored in the ’POINT VISUALIZATION’ global array. The
circle ’fillColor’ attribute is loaded depending on the choice of the input elements with names ’noiseColor’,
’coColor’ and ’no2Color’ on the ’modes.jsp’ page. The radius size is determined by the radius radio button group
in a similar fashion with the aid of the ’rangePercentage()’ function that has been used for the variable
scaling in the server system:

1 //constants.js
2 function rangePercentage(value, min, max) {
3 return (value - min) / (max - min) * 100; //scale any value to percentage based on a range it falls within (determined by the ’min’

and ’max’ input paramteres)
4 }
5 //point_vis.js
6 function generatePointVis(dataReading, visible, map, num) {
7 var noiseRadius = rangePercentage(dataReading.noise, minNoise, maxNoise) / 10;
8 ..
9 var pollutionOptions = {

10 .. //configure the options, including initial radius size, transparency and fill color
11 };
12 var noiseCircle = new google.maps.Circle(pollutionOptions);
13 ..
14 var element = {noiseCircle: noiseCircle, coCircle: coCircle, no2Circle: no2Circle, noise: noiseRadius, co: coRadius, no2: no2Radius};
15 POINT_VISUALIZATION.push(element); // add the composite object to the global data structure
16 }

Transparency is set via using the ’fillOpacity’ attribute which is divided by 100 to retrieve a value
between 0 and 1 as this is the documented operational range. Depending on whether the ’Show/Hide’ option has
been selected, the ’visible’ attribute’s value is changed. When the page is loaded, the ’generatePointVis()’
function is called in order to perform the data pre-processing. Once this configuration is loaded, the ’togglePointVis()’
function is called to visualize the points and it changes the radius size and color fillings accordingly.

Filters The implementation of the filter functionality relies on range jQuery sliders. The front-end elements
are dynamically modified depending on the UI interactions. The code snippet below shows the key logic when
the map is rendered. It is important to note that filters apply to the data readings, routes (applied to the overall
average variable values), the heat map data points, as well as the ’Point Visualization’ color-coded plot.

1 //constants_global.js
2 var baseStep = 0.001;
3 //map.js
4 ..
5 $("#noise").slider({
6 orientation: "horizontal", //specify orientation
7 range: true, //enable range
8 min: Math.floor(minNoise), // identify specific value range
9 max: Math.ceil(maxNoise),

10 values: [Math.floor(minNoise), Math.floor(maxNoise)], // set the initial slider handle positions
11 step: baseStep, //define the slider step, a constant used for each slider
12 slide: function (event, ui) {
13 .. //change the values on slider handles while sliding
14 },
15 stop: function (event, ui) {
16 .. //retrieve the values from slider handles once movement stops
17 renderData(); //render the data on the map
18 }
19 });
20 minRangeNoise = minNoise; // set the default minimum value
21 maxRangeNoise = maxNoise; // set the default maximum value
22 ..
23 function renderData() { //based on the filtering criteria, iterate over the main marker storage object ’POINT_DATA’ and route object

’ROUTE_DATA’, then visualize only the data points that fall within the range
24 locationARR = []; //reset the object used for heatMap generation in order to reflect changes for this visualization as well
25 ..
26 }

The sliders for CO, NO2 and temporal filtering have been implemented identically. However, when using
timestamps as a filtering criterion, the step is ’1’ based on the number of days in the range which is displayed
directly above the slider in the format shown in the following example: ’Time (days between 14-January-2015
and 13-March-2015)’. The size of the resulting data set is displayed for each filter in the format: ’(557 data
readings)’.

In order to implement the route generation mode, the Google Directions API[23] as well as the indexed grid
structure have been used. There is a form-style structure on the user interface. This structure houses the travel
mode selector in the form of a drop-down menu and the journey planner (containing the origin and destination
points as well as the route recommendation configuration criteria). The starting point automatically evaluates
as a ’LatLng()’ object representing the geolocation of the building on campus that is closest to the current
user’s location. This is done by implementing the base operation of the ’nearest neighbour’ algorithm which has
a stable linear complexity within the input size in its current implementation:

1 //locations.js
2 function findClosestCampusLocation(source){ .. }

33

3 //markers_routes.js
4 function retrieveDistance(loc1, loc2) { //retrieve the distance between two LatLng() objects in meters
5 return parseInt((google.maps.geometry.spherical.computeDistanceBetween(loc1, loc2).toFixed(2)));
6 }

The function ’findClosestCampusLocation(source)’ iterates over all of the ’places’ in the database
and finds the shortest distance using the linear search algorithm. As seen in the implementation of
’retrieveDistance(loc1, loc2)’ the API function
’google.maps.geometry.spherical.computeDistanceBetween()’ has been used to compute
the distances between each pair of ’LatLng()’ objects. The haversine formula was implemented originally in
a separate function in order to achieve this, but then it was replaced by the much more compact function call as
shown in the code snippet above.

Once the selections have been made, when the ’Apply’ button is tapped/ clicked, the application retrieves
the data input and calls the ’generateUserRoutes()’ function (if all the necessary parameters have been
supplied) which generates a request to Google Directions API:

1 //route_generation
2 function generateUserRoutes() {
3 mode = $("#mode").val(); //the selected travel mode is retrieved from the front-end element
4 var request = {
5 origin: starting_point, // journey origin location, closest building by default
6 destination: destination_point, // destination point
7 provideRouteAlternatives: true, // retrieve multiple routes
8 travelMode: google.maps.TravelMode[mode], // set the travel mode
9 unitSystem: google.maps.UnitSystem.METRIC // display distance using m and km

10 }; ..

The sorting criteria selected by the user determine how the results will be classified depending on their ’over-
all pollution index’. The general equation uses the weighted sum of random variables classification approach for
decision making. It assigns different weights to the variables. The weight depending on how relevant they are to
this application’s needs: W(duration) = 0.01, W(distance) = 0.01 (least significant), W(noise) = 0.20, W(CO) =
0.20, W(NO2) = 0.58 (this air pollutant is most toxic and hence has the highest coefficient, influencing the score
the most). The dangerous levels as for noise, CO, NO2 and the maximum expected route distance and duration
on campus have been used to calculate the maximum index score:

1 //constants_global.js
2 var absoluteMinNoise = 50; // in dB, decibels
3 var absoluteMaxNoise = 130;
4 var absoluteMinCO = 0; //in ppm, parts per million
5 var absoluteMaxCO = 30; //30-40 dangerous
6 var absoluteMinNO2 = 0; //in ppm, parts per million
7 var absoluteMaxNO2 = 150;
8 ..
9 function calculateMaximumOverallPollutionIndex() {

10 maximumOverallPollutionIndex = absoluteMaxNoise * noiseMultiplier + absoluteMaxCO * coMultiplier +
11 absoluteMaxNO2 * no2Multiplier + absoluteMaxRouteDistance * routeDistanceMultiplier + absoluteMaxRouteDuration *

routeDurationMultiplier;
12 }
13 //route_generation.js
14 var score = noiseAVG * noiseMultiplier + coAVG * coMultiplier + no2AVG * no2Multiplier + routeDistance * routeDistanceMultiplier +

routeDuration * routeDurationMultiplier;

(a) Expected value
of a weighted sum
of random variables
(search criteria)

Figure 5.5: Route recommendation based on the ’overall pollution index’

As displayed in the code snippet above, the final score for each retrieved route is calculated by using the
weighted sum of the independent variables. The expected value of the weighted sum of the random variables,
specified as search criteria by the user (distance, duration, avg. CO, NO2, noise) can be expressed with the gen-
eral equation shown in figure 5.5. The score is scaled via using the ’rangePercentage()’ function where
the maximum value is retrieved by ’calculateMaximumOverallPollutionIndex()’. The current
value is calculated in a similar fashion as the dot product of the variable current values vector and the variable
multipliers vector:

34

OverallPollutionIndex = currentNoise * noiseMultiplier + currentCO * coMultiplier + currentNO2 *
no2Multiplier + currentRouteDistance * routeDistanceMultiplier + currentRouteDuration * routeDura-
tionMultiplier
The maximum possible value as well as the current overall pollution value is calculated based on the variable
selections in the ’Route Statistics’ list on the ’Routes’ page (as shown in figure 5.13a). Variables which are
not selected are assigned ’0’ multipliers and therefore do not influence the scaling and final results in any way.
Based on the resulting percentage value, the ’identifyBestRoute()’ function sorts the array of routes
in ascending order and color codes them using 4 main hues: green, yellow, orange and red. If the resulting
recommendations are more than 4, every consecutive one is color-coded in red:

1 scores = scores.sort(compareIntegers);
2 for (var i = 0; i < scores.length; i++) {
3 if (i < colors.length) {
4 scoresColors[scores[i]] = colors[i];
5 }
6 else {
7 scoresColors[scores[i]] = colors[colors.length - 1]; //always red
8 }
9 }

The ’Locations’ view is implemented via using the HTML5 Geolocation API[21] as well as the Google
’visualization’[52] library in order to render images for each building on campus. Building data is kept in a .json
file - ’locations.json’ under the resource directory for maintenance purposes. a request is used to retrieve the
data, sort it and dynamically populate the view. The snippet below shows the storage structure of the file:

1 [{"label": "Adam Smith Building", "loc": [55.873727, -4.289915]}, ..] //store the building name and geolocation

After processing the JSON contents in the file, the Google Street View Image API[53] is used in order to
generate 200 by 120 px images of each building:

1 \lstset{language=JavaScript}
2 //locations.js
3 $.getJSON("/resources/locations/locations.json", function(json) { .. } //retrieve data request

The API call uses the object latitude and longitude to determine the location. The ’heading’ parameter
indicates the compass heading of the camera (hence, some buildings might appear to the side of images). The
possible values here range from 0 to 360 degrees depending on orientation. ’fov’, which is the field of view
represents the camera zoom level and ranges from 0 to 120. The maximum value has been used to render
images from a maximum distance, without any zoom, that is, in order to ensure optimum results. ’Pitch’ is
responsible for the vertical orientation of the camera, ranging between -90 and 90 degrees according to the official
documentation. A slightly upwards-looking angle of 10 degrees has been chosen after some experimenting with
the resulting images:

1 ..<img class=’streetViewImage’ src=’https://maps.googleapis.com/maps/api/streetview?size=200x120&location=" + entry.loc[0] + "," +
entry.loc[1] + "&heading=34&pitch=10&fov=120’> ..

This view can also be used to stop and start tracking the user’s location in order to conserve battery power
and improve application performance. The user is tracked by default in order to enable the application to display
a message when the destination point has been reached:

1 //map.js
2 userWatch = navigator.geolocation.watchPosition(function (position) { //track the device’s geolocation
3 renderMarker(map, currentUserLocation, position.coords.latitude, position.coords.longitude);
4 });
5 //navigator.js
6 function renderMarker(map, marker, latitude, longitude) {
7 ..
8 if(currentlyTrackingDestination){ //if the tracking flag is active, hence GPS is enabled
9 if(retrieveDistance(source, destination)<50){ //retrieve the distance to the destination and if the device is within 50m of

the destination, proceed
10 currentlyTrackingDestination = false; //turn off the flag
11 alert("You have reached your destination!"); //alert the user
12 navigator.geolocation.clearWatch(userWatch); //stop the tracking process
13 console.log("Stopped watching for location changes."); //log the changes to the console
14 }
15 }
16 }

The structure of the main views of the server application can be split into two main categories - user-
interactive and statistical. They have been described in the next section (’Front End’, 5.3.2.5).

35

5.3.2.5 Front-end

The main application views can be classified as follows:

User-interactive
The ’Styles’ navigation item (’styles.jsp’, figure 5.6a) can be used to control the behaviour and look of the map
engine. It uses pre-defined custom styles to improve the overall user experience when rendering visualizations.
There are 6 available map styles that the user can choose from. There is a classic road map style (suitable for
identifying the map buildings part of the campus as they have a specific brown color-coding). The ’Satellite’
view (figure 5.6e) has also been included and its ’tilted’ 45-degree view support allows the user to gain a 3D
perspective of the map space. The ’Grayscale’ and ’Blue Hue’ styles are more neutral and simple in order
to avoid distracting the user’s attention from the main data point map overlay. The high contrast provided by
the ’Dark Blue’ style highlights street names and enables users to quickly check their current location while
the simplicity of ’Roads’(figure 5.6d) renders a black-and-white version of the map surface, displaying only
streets. The last style allows users to concentrate on choosing the best route when targeting a specific building on
Glasgow University campus and is great when used in combination with the route recommendation functionality.
The users can also control the map UI components (pan, zoom, scale, street view controls as well as keyboards
if the application is used on a desktop machine) as shown in figure 5.6b.

(a) Style drop-down
menu in ’Styles’ view

(b) Map UI configura-
tion drop-down ’Con-
trols’ menu

(c) Map ’Classic’
style view (Google
Nexus 7 screen)

(d) Map ’Roads’ style
view

(e) ’Satellite’ style
view zoomed-in at
tilted angle

Figure 5.6: Server ’Styles’ view configuration

The ’Modes’ modal (implemented in ’modes.jsp’) provides the UI component for the application’s visual-
ization engine. It represents one of the most significant elements on the front-end. There are multiple map data
plotting modes in order to allow users to experiment and explore the information from different angles (generat-
ing multiple views). This facilitates the discovery of data outliers (extremely low or high values) and is also very
suitable for identifying variable levels correlations and trends. In order to keep the UI representation minimalistic
and optimized for smaller screens, an accordion jQuery menu implementation has been designed (figure 5.7a).

The ’Data Points’ mode can be used to hide and show map markers. The ’infoWindow’ object associated
with each marker contain the environmental data for all variables. The event listener for the pop-up open action
can be disabled using a checkbox available on the UI (figure 5.7b). The ’infoWindow”s contents represent
noise, CO and NO2 values (in dB and ppm accordingly) as well as display progress bars in order to aid the
understanding of a particular data point or an area with respect to the whole map. This is possible as the progress
bar shows a percentage value (from 0 to 100%, 5.7c) based on variable levels normalization. The data set is
scanned in order to identify the minimum/ maximum values and the range to achieve this effect. Color-coding
the bar was implemented in order to test whether it would improve the user perception of the presented values.
The conclusion from this experiment was that it is much less confusing to keep the coloring identical, relying on
the width scaling to produce the visualization. The total number of data readings in the database is also displayed
in the ’Data Points’ view. The page loading screen and the mobile navigation bar can be inspected on figure 5.7d
and 5.7e.

The functionality offered by the ’Routes’ mode allows to hide/show route poly-line data as well as enable/dis-
able ’infoWindow’ event triggers on route click, similar to the ’Data Points’ mode (figure 5.8b). The differ-
ence is that apart from the scaling, values are also averaged depending on the number of data points in the relevant

36

(a) Accordion menu:
used to compact the
style of the user inter-
face

(b) Data points con-
figuration

(c) Data points dis-
play on the map with
pop-ups enabled:
showing meta-data

(d) Main page load-
ing screen to improve
user experience

(e) Server mobile nav-
igation bar optimized
for smaller screens
(Google Nexus 7 de-
vice)

Figure 5.7: Server ’Modes’, ’Data Points’

route. The following formula is used: final variable value = variable levels sum/ route datapoints number. The
meta-data for each route also includes an estimated distance (in meters) as well as journey duration (assuming
walking speed). Two configuration options that facilitate combining the route poly-lines with other visualization
modes are the thickness and transparency field (figure 5.8b). The total number of routes in the database is also
displayed.

(a) ’Routes’ configu-
ration

(b) Route meta-data:
est. distance, dura-
tion, avg. variable
values

(c) Navigation bar
on desktop machine:
combination ’Data
Points’, ’Routes’

Figure 5.8: Server ’Modes’, ’Routes’

As the values of the noise and air pollutant variables are constantly changing, assessing the reliability of the
data set is a complex task. Depending on the time of day when the data was collected, there can be significant
differences. For instance - noise values will expectedly be low during late hours compared to daytime data
collection. A similar tendency can be identified when analysing air pollution levels (CO and NO2 levels normally
peak during day-time around lunch when the motor vehicle traffic is high). In order to tackle this, the ’Heat Map’
visualization has been devised. It uses the ’HSL’ color scheme - with colors ranging from red (high) to yellow to
green (low) depending on the saturation of data points in a particular area. Red areas on the campus map indicate
that there is a higher concentration of data readings in those locations. This dataset property can be used to infer
that the map is more accurate at the highlighted (red hue) locations as more frequent sensor probing has been
carried out there (as shown in figure 5.9b). The functionality for adjusting the radius scaling of each data point
has been implemented. This can be used to emphasize the more accurate areas better depending on the scale and
zoom level chosen by the user. Similar to other modes, the transparency of this visualization can be controlled
(in percentage) so that it can be combined with other elements - such as data reading markers in order to inspect
specific variable levels in dB and ppm (figure 5.9c). The data point radius scale can also be specified (figure
5.9a).

The most important mode is the ’Grid’ visualization. It makes use of the matrix JavaScript[29] data structure
comprising of indexed cells in order to generate a color-coded grid surface as an overlay atop the Glasgow
University campus map. There are multiple configuration options in order to allow users to produce highly-

37

(a) ’Heat Map’ con-
figuration

(b) Heat map visu-
alization: areas with
red hue have been
explored best/ visited
most often

(c) ’Heat Map’ and
’Data Points’ visu-
alization combination
for better map explo-
ration

Figure 5.9: Server, ’Modes’, ’Heat Map’

customized visualizations (settings shown in figure 5.10a). Unlike the first two modes, where environmental
information is available for all of the variables, in this case variables are isolated so that more dataset granularity
can be achieved (noise: figure 5.10b, CO: figure 5.10c, NO2: figure 5.10d). Depending on the variable choice in
the ’Variables’ radio button group, the engine renders different color mappings based on the selected type.

Each matrix cell has an ’infoWindow’ object association that is triggered on a tile tap/ click event. The
contents of the pop-up include the index of the grid cell, the number of data readings in the full dataset that are
located within the bounds of that cell’s surface as well as the average environmental variable values.

Additionally, a grid outline in the form of a black border can be rendered so that areas on the map that have
not been explored yet can be located more efficiently (using the ’Outline’ checkbox under the ’Grid’ sub-section)
as shown in figure 5.10e.

Other options are the gradient choice - using HSL (red-yellow-green, figure 5.10c) it is easier to identify the
middle value range while RGB (which uses red-green, figure 5.10d) allows for more comprehensive comparison
between any pair of cells. Data scaling can also be controlled - relative data scaling allows users to identify the
most polluted areas in the campus as the range of the data is always constrained to the maximum value in the
current data set (figure 5.10h). Using absolute scaling, however, allows users to see the information in relation
to the norms imposed by the government and uses the following data constraints in terms of maximum values
(calculated in ppm /parts per million/ and dB correspondingly): 30-40 ppm is the danger threshold for CO, while
for NO2 this is 1.5-1.6 ppm (as it is most toxic). In terms of noise, the pain threshold is around 130-150 dB and
this is used for its scaling. In order to improve the accuracy of the grid, the matrix cell size can be controlled.
The minimum size is 20 m, while the default one is 50 m (meaning that each tile has a width = height = 50
m.). The opacity of the cells’ filling and outline can be controlled as well to improve the output when generating
combined visualizations. Map exploration progress is presented as a percentage in the form of a progress bar:
totalExploration = exploredCellNumber / totalCellNumber. The exploration level will change depending on the
cell size the map is rendered with.

The grid map and marker visualization allow only a single variable to be rendered on the map surface at
any given time. In order to be able to inspect all of the variables simultaneously, the point visualization mode
has been designed. It allows users to plot the three main variables on the map, choosing different color coding
and scaling the data point radius (using multipliers as follows: x1, x2, x4, x10) for each one. This makes
highest/lowest values very easy to inspect and enables users to be able to conclude whether there are correlations
in the locations where maximum/minimum values for noise, CO and NO2 are recorded (examples are shown in
figure 5.11). This mode can be combined with the grid visualization in order to aid the data analysis as displayed
in figure 5.11d.

The next view of the mobile web application is the data filtering engine. This functionality facilitates dataset
filtering based on the specification of variable range limits. There are range sliders (double-sided sliders) for
noise (figure 5.12a), CO and NO2 as well as time (based on filtering by days, shown in figure 5.12b). Using these

38

(a) ’Grid Map’ visual-
ization mode settings

(b) Settings: noise,
50x50m matrix cell,
HSL gradiend, rela-
tive scaling

(c) Settings: CO,
50x50m matrix cell,
HSL gradient, relative
scaling, highest level
area inspection

(d) Settings: NO2,
40x40m matrix cell,
HSL gradient, relative
scaling

(e) Grid visualization
while navigation is
on: noise, 50x50m
matrix cell, HSL gra-
dient, relative scaling,
satellite view

(f) Settings: noise,
25x25m matrix cell,
HSL gradient, relative
scaling, street map

(g) Settings: noise,
35x35m matrix cell,
HSL gradient, abso-
lute scaling

(h) Settings: NO2,
20x20m matrix cell,
HSL gradient, relative
scaling, highest lev-
els, satellite

(i) Settings: NO2,
25x25m matrix cell,
HSL gradient, relative
scalin, street map

(j) Settings: CO,
35x35m matrix cell,
HSL gradient, abso-
lute scaling, street
map

Figure 5.10: Grid map visualizations

sliders the user can combine the range constraints and inspect the resulting map overlay changes immediately.
In order to streamline the filtering process further, scales showcasing the normal and dangerous levels for the
environmental variables have been included in each element of the accordion menu. In the process of variable
slider interaction, the number of data points in the resulting data set is immediately rendered at the top right area
above the relevant jQuery slider to improve the system feedback. The available slider range is determined based
on the minimum and maximum values of each variable (which have been used in other visualizations too). When
parsing the data, datapoint values are compared directly, while for routes the average levels for each variable are
used. The ’Data Points’ and ’Grid Map’ modes can be combined (figure 5.12c) to achieve a more comprehensive
visualization.

The route recommendation UI component is implemented in ’routes.jsp’. The main interaction ele-
ments are a travel mode selector and a journey planner (figure 5.13a). The available options for travel mode
are - walking (default, no vehicle), bicycling, driving (using a personal motor vehicle), transit (using any public
transport, such as the subway, a public bus, etc.). Using the ’Journey Planner’, the starting point and the destina-
tion can be specified. The implementation automatically populates the ’Starting Point’ field with the lat/lon data
for the database building which is currently closest to the device’s location. The destination can be specified by
typing the building name manually (the search engine on the web application is based around campus buildings
as the main location entities) while being assisted by the autocomplete functionality implementation. The more
efficient option is to tap/ click on any building on the map surface, automatically populating the destination field
via using jQuery[31] event probing that retrieves the ’closest neighbour’ (nearest campus building to the place
where a tap occurs). Based on the criteria selections (duration, distance, noise, CO and NO2) routes are scored
and sorted. The overall pollution index can be inspected to compare the color-coded routes (figure 5.13b and
5.13c).

The user can constantly keep track of their current location (figure 5.14c) so that they know how far from their
destination they are. As described in the ’Evaluation’ chapter (7), most users who participated in the evaluation

39

(a) ’Point Visualiza-
tion’ settings

(b) Settings: variable:
NO2, radius scaling:
none, color: blue

(c) Settings: vari-
ables: NO2, noise;
radius scaling: none;
color: NO2 - blue,
noise - green

(d) Variables: noise,
CO, NO2; radius scal-
ing: none; color: NO2
- blue, noise - green,
CO - red; 50m grid
showing CO

Figure 5.11: ’Point Visualization’ mode settings and map rendering

(a) ’Filters’ settings,
noise range slider

(b) Time range fil-
tering: the data col-
lected between 28.01
and 18.03 represents
270 data readings

(c) Noise filters:
70.965-81 dB com-
bined with the grid
vis. displaying noise

Figure 5.12: Variable filters settings and map rendering

process knew the Glasgow Unviersity Campus quite well, so although they found this tracking functionality very
useful, some of them preferred not to use it for battery conservation. The back-end algorithm produces a user
prompt (’You have reached your destination’) once the user is within a 50 m radius of the chosen destination
place(as show in figure 5.13e).

This ’Locations’ modal view (figure 5.14a) displays a list of all the locations in the database. It has control
buttons for the geolocation tracking functionality (it can be turned on and off (figure 5.14b) in order to facilitate
battery power conservation). Google’s Street View Image API[53] has been used to generate street view perspec-
tive imagery for each building. All of these operations are processed dynamically, which means that when new
buildings are included to the data-store, the front-end will be updated according to the applied changes. A jQuery
accordion menu stylized by using standard Bootstrap 3.3 elements has been used to facilitate the implementation
of this component. Map buildings can be inspected by using the ’View’ button which pans and zooms the main
map directly above the selected university campus location.

Statistical (secondary views)
These pages have mostly information purpose and have been designed to aid the user when interacting with
the rest of the server views. They contain general instructions and are aimed at improving the overall user
understanding of the project’s goal and application implementation.

The data view has not been designed for user viewing - it has been used for the benchmarking sessions with
SQL and NoSQL DBMS (as describred in 7.1). Its purpose is to assess the efficiency of a data-store mechanism
based on predefined criteria - the speed of a single (and thousands of) record insertion, retrieval and delete as
well as the retrieval of all records currently in the database.

The ’devices.jsp’ page view displays meta data about users and devices that have transmitted data to the

40

(a) Boyd Orr - library;
travel mode - walk-
ing; sorting variables
- noise, CO, NO2

(b) Inspecting the
returned routes and
checking what the
overall pollution
index is (distance
and duration criteria
added)

(c) Boyd Orr - J. Watt
South; travel mode -
bicycle; sorting vari-
able - NO2

(d) Boyd Orr - Hill-
head School user
tracking using the
street map.

(e) The user is
prompted upon reach-
ing their destination.

Figure 5.13: Route generation functionality, based on the grid data structure

(a) Displaying the
closest building to
the current user’s
location; showing the
selection of ’Boyd
Orr’ in the list of
buildings.

(b) Users can stop
the geolocation track-
ing to conserve the
battery power of their
device.

(c) The red dot
displays the current
user’s location if
tracking is enabled.

(d) Walking on cam-
pus and inspecting the
CO levels using the
street map.

(e) Location is up-
dated as the user
is moving from the
starting to the desti-
nation point (Western
Inf. - Davidson bldg).

Figure 5.14: Campus locations and geolocation tracking

server based on the Smart Citizen Kit API[41] calls. The JSON object transmitted after each route tracking
session contains this meta-data. If any attributes have changed values, the new ’User’ and device object
models are persisted in the NoSQL database. The code listing below shows how the JSON objects are loaded to
models before being inserted in the ’Users’ and ’Devices’ collection accordingly:

1 //controllers/HomeController.java
2 ..
3 public String addRoute(..){
4 User user = new Gson().fromJson(userJSON,User.class);
5 Device device = new Gson().fromJson(deviceJSON, Device.class);
6 ..
7 }

’sck.jsp’ is a page containing general information regarding the Smart Citizen Kit. It aims to help
potential users by providing an introductory paragraph about the sensor board and a link to the official website.
The ’About’ page (’about.jsp’) has a similar purpose. However, the content is associated to the idea of the
whole system and how the Smart Citizen Kit device contributes to the implementation of the application. As this
is a highly-specific context, many users need a reference point in order to understand how the system functions
so that they can make a better use of it. The addition of this information resulted from the user pilot evaluation
session (more information is available in the ’Evaluation’ chapter, section 7.4). Furthermore, it is beneficial in
terms of SEO (improves on-page search engine optimisation).

The client modal page enables users to download the latest version of the client application for environmental
data collection. The available mobile operating system choices at the moment are Google Android[48] (versions

41

1.9 and newer), Windows Phone[68]. Apple iOS[50] is currently not available as it turned out that all of the users
who participated in the evaluation process own a primary Android mobile device. Furthermore, compiling an
executable application file for iOS requires an iPhone developer certificate that needs to be granted by the Apple
developer portal.

(a) ’Devices’: dis-
playing user and
Smart Citizen Kit
meta-data for devices
that have submitted to
the server

(b) ’Client’: the route
tracking application
can be downloaded
from here

(c) Kit information
is available on the
’SCK’ page

(d) The ’About’ page
contains general in-
formation about the
project and guidance
on how to use the soft-
ware

Figure 5.15: ’Point Visualization’ mode settings and map rendering

All of the page views described above have been extracted into separate ’.jsp’ files in order to improve mod-
ularity. They have been injected in the main page (’home.jsp’). In order to optimize the overall server
front-end structure and reduce the boilerplate code to a minimum (producing a template architecture), the navi-
gation bar menu has also been extracted in a separate module - ’navigation.jsp’. Thus, it can be injected
in the source code of each main page of the web application. The structure of this page has been highlighted
below:

1 <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
2 <!DOCTYPE html>
3 <html lang="en">
4 <head>
5 .. <%-- metadata --%>
6 <meta content=’width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=0’ name=’viewport’ /> <%-- scaling on smaller

screens ensures that element proportionality is kept on smaller devices --%>
7 .. <%-- style sheet attachments --%>
8 .. <%-- JavaScript library and custom script attachments --%>
9 </head>

10 <body>
11 .. <%-- main map initialization --%>
12 .. <%-- navigation bar, data parser and views injection --%>
13 </body>
14 </html>

In order to produce an unique identity for the project’s look and feel, a custom logo was produced. It is
available as a vector graphic (’.fla’ file) in the project’s codebase and has been designed using Adobe Flash CS5.

42

Chapter 6

Testing

Performance testing, self-evaluation, usability, unit and integration testing was performed. The implementation
has been refactored to improve the specified indicators.

6.1 Unit and Integration Testing

Unit testing was performed on the back-end structures in order to ensure that the models function as expected. All
key interactions with the database instance were tested by using DAO (database access object) tests. The interface
classes, extending ’MongoRepository<>’ objects in the repository package ’com.springapp.mvc.repositories’
were used to facilitate this process. The model and controller tests are available in the ’test’ package in the
’ControllersTest’ and ’ModelsRepositoryTests’ classes. They can be run from the project par-
ent directory by executing the ’mvn test’ command.

The DAO tests use the ’@Autowired’ annotation to acces the main repository objects. The tests are
implemented using JUnit4 and run with the ’SpringJUnit4ClassRunner.class’ as well as use the
context configuration annotation ’@ContextConfiguration’ to link relevant resources. The four main
objects are tested by attribute modification using the accessor and mutator methods and primarily by inserting,
updating, deleting and searching for (based on id) them in the collections. The base framework of the DAO unit
tests is presented below:

1 // package test/java/com.springapp.mvc
2 public class ModelsRepositoryTests {
3 ..
4 @Before
5 public void setup() { .. } //set up tests, create test variables and save them in the data store using the autowired repository

objects
6 @Test
7 public void dataReadingFindByRouteIdTest() throws Exception { .. } //ensure that the retrieved entity belongs to the set of objects

with the same route id
8 @Test
9 public void dataReadingFindByDeviceIdTest() throws Exception { .. } //ensure that the retrieved entity belongs to the set of objects

with the same device id
10 @Test
11 public void dataReadingFindByIdTest() throws Exception { .. } //find by id
12 @Test
13 public void dataReadingInsertTest() throws Exception { .. }
14 @Test
15 public void dataReadingUpdateTest() throws Exception { .. }
16 @Test
17 public void dataReadingDeleteTest() throws Exception { .. } //similarly structured DAO tests have been created for the rest of the

models
18 @After
19 public void tearDown() { .. } //reset the database to its previous state, removing test-data
20 }

The tests have been configured to delete all of the test data inserted in the database after each run so that it
remains in the same state. Mock data is saved during the ’setup()’ method execution prior to running each test
and removed in the ’tearDown()’ function. This ensures that each unit test case is using the same test data
set representation in case there are any variable modifications.

The integration tests have been designed in order to test the separate system components that operate with
multiple models (the main reason why unit tests are implemented first is that they test the basic data structures

43

and allow composite components to be tested afterwards). They follow the ’happy-sad path’ testing - there are
multiple tests for each endpoint, a successful and a failing (invalid input/ bad request) test. The ’MockMvc’
object has been used. It facilitates the generation of customizable requests to the server’s endpoints and allows for
comprehensive testing by inspecting the response. Content-type and headers can be specified as well as request
body and all of this is done programmatically with high precision, again, relying on the context configuration
(’mvc-dispatcher-servlet.xml’). The controller tests have been designed to print out the request and
response data so that it can be carefully inspected on execution completion.

The ’ControllersTests’ class is similarly structured to the ’ModelsRepositoryTests’ class.
Mock data in the form of JSON strings is loaded into objects and it has been used to add a new route to the
database - along with the corresponding data points as well as a device and a user (if they do not exist, otherwise
are only updated). Below is a code listing showcasing the success route insertion test:

1 // package test/java/com.springapp.mvc
2 public void routeSuccessTest() throws Exception {
3 mockMvc.perform(post("/addRoute").contentType(MediaType.APPLICATION_JSON) // specify POST request content-type
4 .param("context", context) // add the context parameter as specified by the method signature
5 .param("user", userJSON) //user parameter
6 .param("device", deviceJSON)) // and device
7 .andDo(print())
8 .andExpect(status().isOk()); // assert that the response is 200 (OK, created)
9 }

(a) Unit and DAO
tests passing

(b) Integration (con-
trollers) tests passing

(c) Page loading time
(with caching)

Figure 6.1: Server unit, integration testing and loading performance

6.2 Performance

The performance of the server and the client has been tested. This involved tracking loading times for page
assets - images/ graphics as well as textual content and data parsing on page refresh. The rendering time for map
configuration changes was also inspected. The performance assessment function for page loading time has the
following implementation:

1 //utility/utility.js
2 function logPageLoadingTime() {
3 var loadingComplete = Date.now();
4 var userLoadTime = loadingComplete - performance.timing.navigationStart; //calculate the page loading time
5 console.log("Page Loading Time: " + userLoadTime + " ms"); //log the page loading time to the console
6 }

What this function calculates is the time passed between the point a user navigates to a specific page and the
point when all or most of the page assets have finished loading. The expected page loading time without caching
that would be considered within the norm is 0-2 seconds. Currently the page is loading for about 1-1.5 seconds
on average after code refactoring has been performed. A jQuery page loader was implemented on the front-end
in order to improve the user experience when the map takes 2-3 seconds to render.

Usability testing and user interface intuitiveness assessment was also performed. As the hosting server pro-
vides detailed graphs regarding the bandwidth, disk and CPU usage, those statistics have been analyzed. They
are split in two main categories - system and user resource utilization. A clear correspondence can be observed
between the data collection periods and the spikes in disk and bandwidth usage when viewing the data from
the last year (365 days), while the CPU statistics are only useful for shorter time spans. Logging has also been
implemented to facilitate testing and debugging (section 5.3, chapter 5).

44

Chapter 7

Evaluation

7.1 DB Benchmarks

Considering the fact that data store would be an integral part of the implementation process, a number of database
systems were considered and compared in terms of performance. They can be split into two main categories:

MySQL and Mongo DB Comparison
Having measured the approximate maximum load that the system should sustain (section 3.1, chapter 3), the
next task was to simulate this load on the server code by setting up an instance of each database engine and
performing standardized testing, followed by comparison of the results to determine best performance. Below
7.1 are presented more details regarding the benchmarks carried out as well as the results obtained at the end.
5000 sample data readings collected from the device while indoors were used as input data. The database
management systems were evaluated based on a number of different criteria. The following tests were carried
out:

Data Write Data Read Additional Tests
3insert thousands of records (5 000, 60
000, 200 000) records in the key DB
table (DataReading)

3single instance of type data
reading insertion

3update a single instance of
type data reading

3retrieve all records in DataReading
table

3retrieve a single instance of
type data reading from the table

3delete a single record from the table

Table 7.1: MySQL versus NoSQL benchmarking criteria.

(a) Data size: 5 000 (b) Data size: 60 000 (c) Data size: 200 000

Figure 7.1: Figures 7.1a, 7.1b, 7.1c showing MySQL tests

The test results can be seen in figures 7.1(MySQL) and 7.2(MongoDB). MySQL, having stable referen-
tial integrity enforcing mechanisms and as expected, fit very well in the designed entity-relationship model. It

45

(a) Data size: 5 000 (b) Data size: 60 000 (c) Data size: 200 000 (d) Data size: 5 000
000

Figure 7.2: Figures 7.2a, 7.2b, 7.2c, , 7.2d showing MongoDB tests

also demonstrated great data caching capabilities. The data access operations did internally rely on JDBC and
prepared statements to improve data retrieval efficiency. Hibernate was used as a form of a more advanced archi-
tecture to improve the potential need of scaling and provide robustness. Hibernate is an ORM (object-relational
mapping) library that significantly improves the interaction between the classes of an object oriented applica-
tion and a relational database (which MySQL is). Combined with bean parameters in a framework such as
Spring MVC it is a very efficient way to retrieve data from as well as insert data in the database. It facilitates
the creation of efficient DAO (data-access-object) structures and uses a dedicated session management tool - a
SessionFactory, to persist objects. HQL[27] is a powerful query language that has a syntax similar to SQL.
It was used in combination with MySQL to manipulate DAOs and is fully object oriented, which allows it to
parse software development hierarchy such as polymorphism, association and inheritance. It also uses prepared
statements internally, meaning that query strings are pre-compiled and stored at run-time for maximum efficiency
and increased reusability (statement caching).

Mongo DBs configuration utilized the MongoRepository object along with a Spring MVC XML config-
uration bean parameter to set up the database and add the relevant repositories for data access. A code listing of
both can be seen below:

1 //DataReading.java
2
3 package com.springapp.mvc.repositories;
4 import com.springapp.mvc.models.DataReading;
5 import org.springframework.data.mongodb.repository.MongoRepository;
6 /**
7 * Created by Peter Yordanov on 29.10.2014
8 */
9 public interface DataReadingRepository extends MongoRepository<DataReading, String> {

10
11 public DataReading findByRouteId(String routeId);
12 public DataReading findByDeviceId(String deviceId);
13 public DataReading findByBattery(Double battery);
14 public DataReading findById(String id);
15
16 }

1 <!-- mvc-dispatcher-servlet.xml -->
2
3 <beans>
4 ..
5 <mongo:repositories base-package="com.springapp.mvc.repositories"/>
6 <bean id="mongo" class="org.springframework.data.mongodb.core.MongoFactoryBean">
7 <property name="host" value="localhost"/>
8 </bean>
9 <;-- MongoTemplate for connecting and querying the documents in the database -->

10 <bean id="mongoTemplate" class="org.springframework.data.mongodb.core.MongoTemplate">
11 <constructor-arg name="mongo" ref="mongo"/>
12 <constructor-arg name="databaseName" value="ugmap"/>
13 </bean>
14 </beans>

MongoTeplate is another option for database collection access which provides more fine-grained control
over data store querying but for the needs of this project the MongoRepository object type proved to be more
efficient.

Couch DB is also a good NoSQL alternative and it was researched extensively. However, Mongo DB was
chosen as the NoSQL representative in the benchmarking process as it is more extensively documented online
and provides a ’query’-style language support.

Both database systems performed well with reasonably small-sized input. However, as the input set size

46

increased, Mongo DB performed times faster than MySQL (as shown in figures 7.1 and 7.2) proving to be much
better suited for the needs of the system and thus became the DBMS of choice. The source code for the database
benchmarks is located in the ’DataPopulation and ’Benchmark’ classes in the package ’utilities’.

7.2 Prototype Evaluation

Two prototype (section 5.2 in chapter 5) evaluation sessions were conducted to test the functionality and evaluate
the usability of the product prior to commencing the final implementation process(section 5.3 in chapter 5). Both
sessions lasted for about two hours and were conducted on the premises of the university campus. The SCK
case needed to be modified prior to this as the container that was previously used to store and carry it around
obstructs the noise, CO and NO2 sensors on the board due to the micro-climate environment it creates. In order
improve the sensor accuracy and reliability a new version was designed to protect the board and uncover the vital
sensors that the system relies on (the noise detector as well as the CO and NO2 chips) while still maintaining the
portability of the device. A small food storage container was used and two 2 ventilation holes were cut - one in
the lid and on the side so that air could flow freely as well as avoid sound wave obstructions. The SCK device
was carefully placed in the container using foam to introduce additional protection.

(a) SCK charging and
connecting

(b) New case (c) Assembly side
view

(d) Assembly top
view

(e) Prototype client
and server working as
expected

Figure 7.3: Prototype evaluation, case modification

There were some minor issues during the first evalutaion session. Data received from the device was con-
stantly monitored to verify that there is stable network access and updates are sent on regular time intervals.
Server route aggregation was also checked after each tracking session completion. However, Wi-Fi network
latency and delays as well as movement speed influenced transmission time and environmental data was not up-
dating properly. The accuracy of the GPS sensor embedded in the mobile device used (Nexus 7) started varying
which caused some fluctuations in the output. It was diagnosed that this variance results from the fact that the
GPS sensor needs some time (a few minutes) to precisely locate the device, improving the precision of each
consecutive geolocation update. The first prototype version of the client turned the GPS sensor on and off (every
30 sec. by default) in order to reduce the resource consumption levels, which turned out to be the issue. The final
implementation relies on the GPS sensor being turned on throughout the whole route tracking session (although
updates are retrieved every 30 sec.) in order to improve location precision.

7.3 Planning

For the purposes of user evaluation, a task sheet was designed in order to record objective opinion of each
volunteer participant. The task sheet was accompanied by a questionnaire. Some questions were asked before
the task sheet was handed to the participants in order to assess their understanding of the system functionality and
evaluate how usable the interface is based on initial impressions. On the other hand, the closing questions were
designed in order to discuss ideas and try to identify opportunities for future improvement. Those questions did
not only ask for comments and thoughts, they also allowed participants to rate different aspects of the application
. A Nasa TLX type form was used (appendix section A.4). This provides a very stable usability testing platform.
A questionnaire with three sections was also designed to get more feedback. The first section consists of opening

47

questions that are used to collect general statistical data. This is followed by a task section requiring participants
to use the route tracking and visualization software, while carrying the sensor boards. The third section consists
of the questions in the TLX form as well as questions aiming to document user experience. Participants are also
asked to give improvement suggestions. The complete task sheet is available in the appendix, section A.4. The
standard documentation - a consent form (section A.4), an introduction (section A.4) and a debrief script(section
A.4) are also available in the appendix.

7.4 Pilot Evaluation

Figure 7.4 shows the results from the pilot evaluation session. Participants considered the application useful and
75% said that they would use it if it becomes available on the web application catalogue for their device. Valuable
suggestions for improvement have been collected and addressed as documented in section 7.5.

(a) Status (b) Mobile devices (c) TLX group 1 (d) TLX group 2 (e) Overall ratings

Figure 7.4: Pilot evaluation questions and feedback

7.5 Final Evaluation

After the pilot evaluation session plenty of ideas for improvement were collected. All of them were implemented,
although they are entirely beyond the scope of the original functional requirements for the application. Automatic
population of the starting point with the users current location (or building on campus that is closest to the current
location) is currently available after being requested. Users can click anywhere on the map to select the closest
building in the database as a destination point, without having to type it in. There is also a navigator to show
the current location of the user and display a pop-up with a message (’You have reached your destination!’)
when they reach their desired location. Start/stop tracking functionality has been added to enable battery power
conservation. Instructions and guidance information specifying how to interact with the UI has been included on
the server (charts displaying the safe levels for noise, CO and NO2 have also been included) in order to improve
the usability of the software.

The results of the final evaluation session are shown in figure 7.5. Most participants stated that they would
use the application if it was to be released. Participants also helped to identify future work ideas by giving
suggestions for further improvement (section 8.2).

(a) Status (b) Mobile devices (c) TLX group 1 (d) TLX group 2 (e) Overall ratings

Figure 7.5: Pilot evaluation questions and feedback

48

Chapter 8

Conclusion

8.1 Summary

The main aim of this project was to develop an application that could be accessed from mobile devices and would
display a noise and pullution map of the Glasgow university campus. The implementation was facilitated by the
SCK sensor board which has the required sensors to enable comprehensive environmental tracking. The two
evaluation sessions that have been carried out (’Evaluation’, chapter 7) have indicated that users consider the
application useful and would use it if it becomes available for their mobile device.

8.2 Future Work

After the pilot evaluation and the implementation of suggested features, the volunteer participants in the final
evaluation continued to give suggestions for improvement. They helped to identify the following additional
features that could be implemented in future system releases:

1. Export functionality so that visualizations can be
saved for future reference. This can not only be
limited to image exports, ’.csv’ table files with
environmental values can also be saved for ex-
ample.

2. Implementing an automatic trigger on the An-
droid application which starts tracking once the
user is moving to reduce the complexity of the
process (this could be a useful feature, as long as
it can be enabled and disabled).

3. Additional search places when generating routes,
such as specific streets and addresses.

4. Additional device support for Windows Phone
and especially Apple iOS to increase the number
of potential users.

5. The design of a specialized user guide that
demonstrates all of the features one by one and
leads the user using hints available on the UI.

8.3 Lessons Learnt

The project has been of significant importance for the developer and author as it has provided a stable expe-
rience in the Android (Phonegap) and mobile web application development (Spring MVC) using the model-
view-controller programming paradigm. It has also lead to the obtainment of significant knowledge for data set
visualization and composite sensor technology (referring to the Smart Citizen Kit and Arduino development).
NoSQL database experiense has been gained as well, specifically during the DBMS benchmarking research pro-
cess and test validation. Additionally, the author’s knowledge about REST API[57] endpoints manipulation as
well as client-server model system development and maintenance(unit, integration testing) has greatly improved.

49

Bibliography

[1] Android Debug Bridge , a command-line tool for emulator instance connection and communication. http:
//developer.android.com/tools/help/adb.html. Accessed: 2015-03-25.

[2] Android SDK , android software development kit. http://developer.android.com/sdk/
index.html. Accessed: 2015-03-25.

[3] Apache Ant , a java library and a command-line tool used for process management. http://ant.
apache.org/. Accessed: 2015-03-25.

[4] Apache Cordova . http://cordova.apache.org/. Accessed: 2015-03-25.

[5] Apache Maven , a software project management and comprehension tool. http://maven.apache.
org/. Accessed: 2015-03-25.

[6] Apache Slf4 . http://www.slf4j.org/, a Java logging facade. Accessed: 2015-03-25.

[7] Boilerplate , a robust web application development framework. https://html5boilerplate.
com/. Accessed: 2015-03-25.

[8] Django Framework , a high-level python web framework that encourages rapid development and clean,
pragmatic design. https://www.djangoproject.com/. Accessed: 2015-03-25.

[9] DNPCM Client , client source code. https://github.com/ppyordanov/
Dynamic-Noise-and-Pollution-Map/tree/client. Accessed: 2015-03-25.

[10] DNPCM Client and Server Deployment , deployment instructions. https://github.com/
ppyordanov/Dynamic-Noise-and-Pollution-Map/blob/client/README.md. Ac-
cessed: 2015-03-25.

[11] DNPCM Client compiled , client compiled files. https://github.com/ppyordanov/
Dynamic-Noise-and-Pollution-Map/tree/client/GEN. Accessed: 2015-03-25.

[12] DNPCM development documentation , github issues. https://github.com/ppyordanov/
Dynamic-Noise-and-Pollution-Map/issues. Accessed: 2015-03-25.

[13] DNPCM milestones , github milestones and relevant tasks. https://github.com/ppyordanov/
Dynamic-Noise-and-Pollution-Map/milestones. Accessed: 2015-03-25.

[14] DNPCM Server , server source code. https://github.com/ppyordanov/
Dynamic-Noise-and-Pollution-Map/tree/master. Accessed: 2015-03-25.

[15] DNPCM Video , source file. https://drive.google.com/file/d/
0B4VtbfdyYAnbV1pwc1BpZW5YUkU/view?usp=sharing. Accessed: 2015-03-25.

[16] DNPCM Wiki , project wiki page. https://github.com/ppyordanov/
Dynamic-Noise-and-Pollution-Map/wiki. Accessed: 2015-03-25.

50

http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://ant.apache.org/
http://ant.apache.org/
http://cordova.apache.org/
http://maven.apache.org/
http://maven.apache.org/
http://www.slf4j.org/
https://html5boilerplate.com/
https://html5boilerplate.com/
https://www.djangoproject.com/
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/tree/client
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/tree/client
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/blob/client/README.md
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/blob/client/README.md
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/tree/client/GEN
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/tree/client/GEN
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/issues
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/issues
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/milestones
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/milestones
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/tree/master
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/tree/master
https://drive.google.com/file/d/0B4VtbfdyYAnbV1pwc1BpZW5YUkU/view?usp=sharing
https://drive.google.com/file/d/0B4VtbfdyYAnbV1pwc1BpZW5YUkU/view?usp=sharing
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/wiki
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/wiki

[17] Dynamic Noise and Pollution Campus Map , demonstration video. https://www.youtube.com/
watch?v=8V8YSHsBpTA. Accessed: 2015-03-25.

[18] Dynamic Noise and Pollution Campus Map , github repository page. https://github.com/
ppyordanov/Dynamic-Noise-and-Pollution-Map. Accessed: 2015-03-25.

[19] Dynamic Noise and Pollution Campus Map , official web page. http://ugmap.me/. Accessed: 2015-
03-25.

[20] Flask , a microframework for python based on werkzeug, jinja 2. http://flask.pocoo.org/. Ac-
cessed: 2015-03-25.

[21] Geolocation , html5 geolocation. http://www.w3schools.com/html/html5_geolocation.
asp. Accessed: 2015-03-25.

[22] Google Android Studio , android development ide. http://developer.android.com/sdk/
installing/index.html?pkg=studio. Accessed: 2015-03-25.

[23] Google Directions API , google maps api web services. https://developers.google.com/
maps/documentation/directions/. Accessed: 2015-03-25.

[24] Google Gson , official documentation. https://code.google.com/p/google-gson/. Ac-
cessed: 2015-03-25.

[25] Google Maps , official page. https://maps.google.com/. Accessed: 2015-03-25.

[26] Google Maps API V3 , the google map javascript api. https://developers.google.com/maps/
documentation/javascript/. Accessed: 2015-03-25.

[27] HQL , the hibernate query language. https://docs.jboss.org/hibernate/orm/3.3/
reference/en/html/queryhql.html. Accessed: 2015-03-25.

[28] HTML5 , html5 documentation. http://www.w3schools.com/html/html5_intro.asp. Ac-
cessed: 2015-03-25.

[29] JavaScript, official mozilla documentation. https://developer.mozilla.org/en-US/docs/
Web/JavaScript. Accessed: 2015-03-25.

[30] Jetty , a web server and servlet container provider. http://eclipse.org/jetty/. Accessed: 2015-
03-25.

[31] jQuery , a fast, small, and feature-rich javascript library. http://jquery.com/. Accessed: 2015-03-
25.

[32] jQuery Mobile , official documentation. http://jquerymobile.com/. Accessed: 2015-03-25.

[33] MapBox , one of the biggest providers of custom online maps for major websites such as foursquare,
pinterest, evernote, the financial times and uber. https://www.mapbox.com/. Accessed: 2015-03-
25.

[34] Microsoft VIsual Studio , official website. https://www.visualstudio.com/. Accessed: 2015-
03-25.

[35] Mongo DB Benchmarks , source code. https://github.com/ppyordanov/
Dynamic-Noise-and-Pollution-Map/tree/db/mongo. Accessed: 2015-03-25.

[36] MySQL Benchmarks , source code. https://github.com/ppyordanov/
Dynamic-Noise-and-Pollution-Map/tree/db/mysql. Accessed: 2015-03-25.

51

https://www.youtube.com/watch?v=8V8YSHsBpTA
https://www.youtube.com/watch?v=8V8YSHsBpTA
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map
http://ugmap.me/
http://flask.pocoo.org/
http://www.w3schools.com/html/html5_geolocation.asp
http://www.w3schools.com/html/html5_geolocation.asp
http://developer.android.com/sdk/installing/index.html?pkg=studio
http://developer.android.com/sdk/installing/index.html?pkg=studio
https://developers.google.com/maps/documentation/directions/
https://developers.google.com/maps/documentation/directions/
https://code.google.com/p/google-gson/
https://maps.google.com/
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/queryhql.html
https://docs.jboss.org/hibernate/orm/3.3/reference/en/html/queryhql.html
http://www.w3schools.com/html/html5_intro.asp
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
http://eclipse.org/jetty/
http://jquery.com/
http://jquerymobile.com/
https://www.mapbox.com/
https://www.visualstudio.com/
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/tree/db/mongo
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/tree/db/mongo
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/tree/db/mysql
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/tree/db/mysql

[37] Node JS , a platform built on chrome’s javascript runtime for easily building fast, scalable network applica-
tions. https://nodejs.org/. Accessed: 2015-03-25.

[38] OpenStreetMap , built by a community of mappers that contribute and maintain data about roads, trails,
cafs, railway stations, and much more, all over the world. http://www.openstreetmap.org/
copyright. Accessed: 2015-03-25.

[39] PhoneGap , a free and open source framework that allows you to create mobile apps using standardized
web apis. http://phonegap.com/. Accessed: 2015-03-25.

[40] SCK 0.9.1 , release beta 0.9.1. https://github.com/fablabbcn/Smart-Citizen-Kit/
releases/tag/v0.9.0. Accessed: 2015-03-25.

[41] SCK REST API , smart citizen kit api reference. http://api.smartcitizen.me/. Accessed:
2015-03-25.

[42] Spring MVC , official page. https://spring.io/. Accessed: 2015-03-25.

[43] Twitter Bootstrap , a popular html, css, and js framework for developing responsive, mobile first projects
on the web. http://getbootstrap.com/. Accessed: 2015-03-25.

[44] Zepto JS , a minimalist javascript library for modern browsers with a largely jquery-compatible api. http:
//zeptojs.com/. Accessed: 2015-03-25.

[45] Agile Manifesto, manifesto for agile software development. http://agilemanifesto.org/. Ac-
cessed: 2015-03-25.

[46] Agile, the essence of agile. https://gordonmcmahon.wordpress.com/2013/01/21/
the-essence-of-agile/. Accessed: 2015-03-25.

[47] Air Quality Index, air pollution in united kingdom: Real-time air quality index visual map. http://
aqicn.org/map/unitedkingdom/. Accessed: 2015-03-25.

[48] Android, official web page. https://www.android.com/phones/. Accessed: 2015-03-25.

[49] Apache Couch DB, official website. http://couchdb.apache.org/. Accessed: 2015-03-25.

[50] Apple iOS, official web page. https://www.apple.com/ios/. Accessed: 2015-03-25.

[51] Client-Server, programming model description. http://en.wikipedia.org/wiki/Client%E2%
80%93server_model. Accessed: 2015-03-25.

[52] Google Libraries, official documentation. https://developers.google.com/maps/
documentation/javascript/libraries. Accessed: 2015-03-25.

[53] Google Street View Image API, official documentation. https://developers.google.com/
maps/documentation/streetview/. Accessed: 2015-03-25.

[54] Mongo DB, official website. https://www.mongodb.org/. Accessed: 2015-03-25.

[55] MySQL, official website. http://www.mysql.com/. Accessed: 2015-03-25.

[56] Native vs. Web Development, trade-offs between the two approaches. http://thenextweb.com/
dd/2014/02/08/decide-responsive-website-native-mobile-app/. Accessed: 2015-
03-25.

[57] REST, what are restful web services. http://docs.oracle.com/javaee/6/tutorial/doc/
gijqy.html. Accessed: 2015-03-25.

52

https://nodejs.org/
http://www.openstreetmap.org/copyright
http://www.openstreetmap.org/copyright
http://phonegap.com/
https://github.com/fablabbcn/Smart-Citizen-Kit/releases/tag/v0.9.0
https://github.com/fablabbcn/Smart-Citizen-Kit/releases/tag/v0.9.0
http://api.smartcitizen.me/
https://spring.io/
http://getbootstrap.com/
http://zeptojs.com/
http://zeptojs.com/
http://agilemanifesto.org/
https://gordonmcmahon.wordpress.com/2013/01/21/the-essence-of-agile/
https://gordonmcmahon.wordpress.com/2013/01/21/the-essence-of-agile/
http://aqicn.org/map/unitedkingdom/
http://aqicn.org/map/unitedkingdom/
https://www.android.com/phones/
http://couchdb.apache.org/
https://www.apple.com/ios/
http://en.wikipedia.org/wiki/Client%E2%80%93server_model
http://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://developers.google.com/maps/documentation/javascript/libraries
https://developers.google.com/maps/documentation/javascript/libraries
https://developers.google.com/maps/documentation/streetview/
https://developers.google.com/maps/documentation/streetview/
https://www.mongodb.org/
http://www.mysql.com/
http://thenextweb.com/dd/2014/02/08/decide-responsive-website-native-mobile-app/
http://thenextweb.com/dd/2014/02/08/decide-responsive-website-native-mobile-app/
http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html
http://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html

[58] SCK Firmware, firmware releases. https://github.com/fablabbcn/Smart-Citizen-Kit/
releases. Accessed: 2015-03-25.

[59] SCK Kickstarter, start-up campaign page. https://www.kickstarter.com/projects/
acrobotic/the-smart-citizen-kit-crowdsourced-environmental-m. Accessed:
2015-03-25.

[60] SCK Updates, new sensor board models news. https://smartcitizen.me/posts/view/9. Ac-
cessed: 2015-03-25.

[61] Smart Citizen Kit, official page. https://smartcitizen.me. Accessed: 2015-03-25.

[62] SOAP, soap services description. http://www.w3schools.com/webservices/ws_soap_
intro.asp. Accessed: 2015-03-25.

[63] SolarCity, official website. http://www.solarcity.com/. Accessed: 2015-03-25.

[64] Tesla Motors, official page. http://www.teslamotors.com/. Accessed: 2015-03-25.

[65] Web API, description of web apis. http://en.wikipedia.org/wiki/Web_service#Web_
API. Accessed: 2015-03-25.

[66] Web Service Types, types description. http://www.w3schools.com/webservices/. Accessed:
2015-03-25.

[67] Web Service, what are web services. http://www.w3.org/TR/2004/
NOTE-ws-gloss-20040211/#webservice/. Accessed: 2015-03-25.

[68] Windows Phone, official web page. http://www.windowsphone.com/en-us. Accessed: 2015-
03-25.

[69] Julien Gedeon Roman Brtl Max Mhlhuser Immanuel Schweizer, Christian Meurisch. Noisemap: multi-tier
incentive mechanisms for participative urban sensing. Proceedings of the Third International Workshop on
Sensing Applications on Mobile Phones, (9), 2012.

[70] Mauricia Benedito Sergi Trilles Arturo Beltrn Laura Daz Joaqun Huerta Irene Garcia Mart, Luis E. Ro-
drguez. Mobile Application for Noise Pollution Monitoring through Gamification Techniques. Springer
Berlin Heidelberg, Berlin, Germany, 2012.

[71] Richard Moss. Crowdsourced Pollution Maps , smartphone sen-
sor generates crowdsourced pollution maps. http://www.gizmag.com/
smartphone-sensor-crowdsourced-pollution-map-karlsruhe/32932/. Accessed:
2015-03-25.

[72] J. ; Stojanovic D. ; Aberer K. Predic, B. Zhixian Yan ; Eberle. ExposureSense: Integrating daily activities
with air quality using mobile participatory sensing. PhD thesis, Department of Computing Science and
Mathematics; University of Ni, Serbia, 2013. Accessed: 2015-03-25.

[73] Nicholas Tufnell. Noise Pollution, noise pollution mapped by data collected
on smartphones. http://www.wired.co.uk/news/archive/2013-10/23/
crowd-sourced-noise-pollution-monitoring. Accessed: 2015-03-25.

53

https://github.com/fablabbcn/Smart-Citizen-Kit/releases
https://github.com/fablabbcn/Smart-Citizen-Kit/releases
https://www.kickstarter.com/projects/acrobotic/the-smart-citizen-kit-crowdsourced-environmental-m
https://www.kickstarter.com/projects/acrobotic/the-smart-citizen-kit-crowdsourced-environmental-m
https://smartcitizen.me/posts/view/9
https://smartcitizen.me
http://www.w3schools.com/webservices/ws_soap_intro.asp
http://www.w3schools.com/webservices/ws_soap_intro.asp
http://www.solarcity.com/
http://www.teslamotors.com/
http://en.wikipedia.org/wiki/Web_service#Web_API
http://en.wikipedia.org/wiki/Web_service#Web_API
http://www.w3schools.com/webservices/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice/
http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice/
http://www.windowsphone.com/en-us
http://www.gizmag.com/smartphone-sensor-crowdsourced-pollution-map-karlsruhe/32932/
http://www.gizmag.com/smartphone-sensor-crowdsourced-pollution-map-karlsruhe/32932/
http://www.wired.co.uk/news/archive/2013-10/23/crowd-sourced-noise-pollution-monitoring
http://www.wired.co.uk/news/archive/2013-10/23/crowd-sourced-noise-pollution-monitoring

Appendices

54

Appendix A

Appendices

A.1 Appendices

A.2 Resources

• Dynamic Noise and Pollution Campus Map Github repository page [18]

• DNPCM Server server source code[14]

• DNPCM Client client source code[9]

• DNPCM Client compiled client compiled files[11]

• Mongo DB Benchmarks source code[35]

• MySQL Benchmarks source code[36]

• DNPCM Wiki project wiki page[16]

• DNPCM development documentation Github issues[12]

• DNPCM milestones Github milestones and relevant tasks[13]

• DNPCM Client and Server Deployment deployment instructions[10]

• DNPCM Demonstration Video[17]

• DNPCM Video source file[15]

• Dynamic Noise and Pollution Campus Map official web page [19]

A.3 Progress Reports, Sprint Retrospectives

The reports have been ordered in chronological order:

55

Dynamic Noise and Pollution Campus Map

Tehnologies to be Used

 Spring MVC RESTful web service for back-end processing

 Twitter Bootstrap

 Google Developer Tools/PhoneGap(Apache Cordova) for the mobile client

implementation

 Google Maps API

 Smart Citizen Kit device and RESTful API

 jQuery for data vizualization

 D3 js (option)

 CouchDB/ SQL DBMS for remote data storage

Work Done

 UI prototyping

 user scenarios

 SCK 1.1 configuration

 general structural planning

 requirements capture

Work Under Way

 environment configuration

 server and database server setup

 data structure

Known Issues + Resolutions

 SCK firmware configuration via Arduino IDE (Windows) -> resolved by changing the

OS (UNIX) and using the serial monitor for manual upload

 Spring MVC model-view pair configuration -> resolved by updating the dispatcher

servlet to discover all classes

/Some of these choices are just options, there might be some changes in tools used as

development progresses./

Petar Yordanov, 14.10.2014

A.3.1 Progress Report 1

56

Dynamic Noise and Pollution Campus Map

/progress report/

Work Done Previous Week

• prepared structural diagrams
◦ ER diagram (including Chen's Notation) - link
◦ sequence diagram - link
◦ high level architectural diagram - link

• Spring initial models setup - link
• uploaded the updated 0.9.0 SCK firmware on the device (now transmits data every 30 sec.) -

link
• emailed SCK team to ask if they have open source authentication API to be used on the

server side /no response yet, got a detailed response for previous enquiries though/

Work Under Way

• database server setup
• MVC server configuration
• Bootstrap setup
• updating the wiki (interview Q&A, report 1 already published)
• data set simulation on server side
• looking at DNSimple and cloud based hosting services to serve DB and accommodate server

framework

Known Issues + Resolutions

• some minor issues when updating the software:
◦ the WiFly module would not detect any Wi-Fi networks
◦ the device could not connect

• resolution – used the IDE serial monitor to set network ssid, password and type manually
and reset the device

Petar Yordanov, 20.10.2014

A.3.2 Progress Report 2

57

Dynamic Noise and Pollution Campus Map

/progress report/

Work Done Previous Week

 MySQL database server setup

 MVC server configuration

 Bootstrap setup

 data set simulation on server side

 DigitalOcean droplet (5$/ month Ubuntu 14.10 x64 20 GB ssd 512 RAM) setup

Work Under Way

 populate DB

 visualise data (SIM)

Known Issues + Resolutions

 SCK developers are now implementing an oAuth system with open source API on the

official website which is going to be available in mid 2015, will not be possible to use their

authentication mechanism – this is good to know, not an issue, can process data

anonymously

Petar Yordanov, 28.10.2014

A.3.3 Progress Report 3

58

Dynamic Noise and Pollution Campus Map

/progress report/

Work Done Previous Week

• Parsing + loading models from JSON (custom deserialisation)
• MySQL tests (benchmarks: 5000, 60000, 200000 el. set)

o Results: fast update, retrieve and delete, slower insertion; larger data sets lead to

a significant slow-down; however, when caching is used, very fast execution

• MongoDB tests (benchmarks: 5000, 60000, 200000, 5000000 el. set)

o Results: extremely fast insertion -> 200 000 records for around 20 sec.; however,
caching is significantly less efficient while MySQL guarantees better
performance in the long run (in my opinion, looking at the test results)

Work Under Way

• visualise data (simulation)

Known Issues + Resolutions

• Auto-wiring the MongoDB template to the controller -> resolved by using the
@Autowired Spring annotation for bean parameters.

• Configuring the models to work with MongoDB, especially the Timestamp object (tried
to use mongo’s BSONTimestamp) -> resolved by reverting back to java.sql.Timestamp

Test Conclusions:

Mongo DB does an excellent job regarding data insertions - its capabilities/ insertion algorithm/
have no match considering this. Data retrieval, update and delete of single records is also very fast,
however, it is difficult to argue if much faster than MySQL .

All of the benchmarks have been completed without caching mechanisms being used. Not
surprisingly, Mongo DB has shown around x1.5 up to x2 faster data manipulation than MySQL and
this tendency is present for all of the data sets (I did not even think of running a 5 million data set
insertion script for the SQL DBMS).

Efficient data caching is one of the main advantantages of MySQL in this comparison. Although I
have not uploaded results with memory caching in use, I noticed that query execution (especially

A.3.4 Progress Report 4

59

database reading) for more lengthy operations dramatically decreases up to a multiplier of 2 after
each consecutive call to the database, which will inevitably lead to a very improved efficiency in a
long run. I would assume that it would be even much better than mongo. On the other hand, Mongo
DB delivers a great first impression for the users who will visit the page more rarely (in other
words, not make use of in-memory cache).

There is no need to consider the relational db structural benefits against the document-based, as the
plans for MySQL did not involve querying more than a table at a time (or 2) and this would not
affect the final decision much.

I did a quick search for similar tests/evaluations, and found some information confirming my
observations so far:

• http://www.moredevs.ro/mysql-vs-mongodb-performance-benchmark/

Repository Benchmarks:

• DB System Choice: https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-
Map/issues/27

• NoSQL DBMS Evaluation: https://github.com/ppyordanov/Dynamic-Noise-and-
Pollution-Map/issues/30

• MySQL Evaluation: https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-
Map/issues/29

Petar Yordanov, 04.11.2014

Dynamic Noise and Pollution Campus Map

/progress report/

Work Done Previous Week

• visualise data (simulation):
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/issues/10

o set up a VC pair (view-controller) to use the parsed JSON models and display
them on different locations around the university campus map

o display additional information to the system user (data readings and battery
status):
 CO
 NO2
 Noise
 Battery status

o scaled the data, defining maximum values for the relevant measures and

displayed it visually in bars; color-coding, etc. can be applied to improve
interpretation and usability

• updated wiki (added new sections to improve overall system documentation and project
structure)

• researched CO, NO2 and noise data scaling:
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/issues/47

• researched data formatting (CO and NO2 are raw sensor values at the moment, displayed
in kilo Ohms) -> the standard requires them to be in *ppm :
https://github.com/ppyordanov/Dynamic-Noise-and-Pollution-Map/issues/48

• code refactoring
o optimised controller
o improved JavaScript data processing

Work Under Way

• test multiple visualisation styles
• build up on the user interface of the mobile web app

A.3.5 Progress Report 5

61

Known Issues + Resolutions

• contacted the SCK team regarding NO2 and CO data formatting and they responded
promptly with details; the idea behind using raw data (kilo Ohms resistance) is to ensure
that when conversion to *ppm is used the sensors are going to be calibrated according to
the surrounding environment and Fab Lab are working on a solution to this at the time
being

• VC pairing for main controller and home view took a lot of trial and error as data needs
to be passed (after being parsed into models) to the client-side code .jsp file and then
accessed by JavaScript for populating a data structure in the script and visualizing this
information on the map canvas

• map infoWindow() instances content getting overwritten leading to same data being
displayed for each data reading -> resolved by using function closure, transfering marker
generation in a separate function after thorough research on the issue

*PPM – parts per million

Petar Yordanov, 11.11.2014

Dynamic Noise and Pollution Campus Map

/progress report/

Work Done Previous Week

• client prototyping: link
• Android development environment setup (Windows OS):

o Microsoft Visual Studio (2012 or later recommended)
o nodeJS v0.10.33
o PhoneGap v3.6.3-0.22.1 (requires the previous 2)
o standalone Android SDK: link

- AVD (Android Virtual Device)
- ADB (Android Debug Bridge)

o Apache Ant v1.9.4

• Android permissions research: link
• project building with Apache Ant: link
• initialized base PhoneGap Android project: link
• registered the test app on build.phonegap.com for maintainability: link

Work Under Way

• Android prototype implementation: link
• prototype testing/ evaluation

Known Issues + Resolutions

• PhoneGap configuration issues: could not avoid installing the required Visual Studio to
enable the software to initialize an empty project

• Android SDK configuration issues: failed access to SDK manager-> resolved by
manually editing one of the .bat scripts

• Android ADB would not recognize plugged in Android devices-> resolved by
reinstalling through SDK manager (tried a universal driver which did not work) after
thorough research

Petar Yordanov, 18.11.2014

A.3.6 Progress Report 6

63

Dynamic Noise and Pollution Campus Map

/progress report/

Work Done Previous Week

• client further prototyping:

◦ GUI update: link

• functionality added: link

◦ contextual information

◦ configuration options

• code debugging

• test data gathering (brief evaluation of the prototype): link

Work Under Way

• upgrading the client

• visualizing data on the map (debugging)

• more test data generation

Known Issues + Resolutions

• Google Map API v3 InfoWindow() instances are not visible on the map: link

• Internet connectivity checking with user prompt prior to tracking needs to be handled

Petar Yordanov, 25.11.2014

A.3.7 Progress Report 7

64

Dynamic Noise and Pollution Campus Map

/progress report/

Work Done Previous Week

 map visualizations techniques research (grid index)

 further Android client testing

Work Under Way

 implementing server-client interaction

 facilitating server-client communication by checking current network settings and Wi-Fi

connectivity

Known Issues + Resolutions

 grid indexing involves a trade-off between efficiency/ performance and precision;

significant precision would involve rendering very small tiles that would most definitely

impact rendering speed when basic map browsing is used (zoom –in and –out, dragging

around)

Petar Yordanov, 03.12.2014

A.3.8 Progress Report 8

65

Dynamic Noise and Pollution Campus Map

/progress report/

Work Done Previous Week

 Digital Ocean server configuration: link

 server code deployment: link

 Spring MVC RESTful infrastructure implementation for client communication: link

 event logging facilitated by SLF4J improved: link

 debugging

o client-server data transmission: link

o client position check window: link

Work Under Way

 testing around campus: link

 data filtering

Known Issues + Resolutions

 Digital Ocean confusing documentation and lacking support for Java MVC web

application frameworks (WAF) as documented in the source links above:

https://www.digitalocean.com/community/questions/spring-mvc-nosql-server-setup ;

resolved by researching for alternative toolkits, example: used “sysv-rc-conf” which

borrows its syntax directly from the currently deprecated UNIX package “chkonfig” that

was listed on one of the tutorials for automatic service initialization at startup (used for a

Mongo DB instance)

 CORS vs JSONP data transmission (advantages and disadvantages, trade-offs), Google’s

Gson vs Jackson JSON Processor -> highlighted in RESTful infrastructure issue

 HTML5’s geo-location service function changed to improve window interval

specification (further details in “debugging” links)

Petar Yordanov, 09.12.2014

A.3.9 Progress Report 9

66

Dynamic Noise and Pollution Campus Map

/progress report/

Work Done Previous Week

 SCK Eduroam WEP64 Connection: link

 domain registration: link

 Android application tracking accuracy improvement

 evaluation:

o 12.12.2014 Experiment: link

o 14.12.2014 Evaluation: link

Work Under Way

 development + continuous testing

Known Issues + Resolutions

 GPS time interval and geo-location lock inaccuracies: resolved by changing the device

data retrieval approach; previous implementation: get location once every 30 seconds (or

depending on user input for window size) – very inaccurate and unstable, timeouts/

delays; current implementation – use constant geo-tracking, no timeouts, much more

accuracy using helpers – accelerometer and previous location estimation techniques.

Results and evaluation: (links to evaluation sessions contain information on this)

 SCK Eduroam connection issue – resolved by setting up my device as a portable access

point on a private Wi-Fi network (I used GiffGaff)

Petar Yordanov, 14.12.2014

A.3.10 Progress Report 10

67

Dynamic Noise and Pollution Campus

Map

Personal Project 4 – Semester 1 Retrospective

Petar Yordanov (1103620)

School of Computing Science,

University of Glasgow

15.12.2014

A.3.11 Semester 1 Retrospective Report

68

1 | P a g e

Background
The project’s goal is building a dynamic noise and pollution campus map via using the

innovative Smart Citizen Kit board (https://smartcitizen.me/) developed by the company

FabLab in Barcelona, Spain. The device consists of two main boards that are connected

together - one is a modified Arduino Leonardo board and the other houses sensors for

environmental data retrieval. Sensors that are available in version 1.1 of the device (the one

this project is using) include – temperature, NO2, CO, solar, noise and humidity sensor.

The Smart Citizen Kit also has a micro SD card slot for firmware updates (there is an

integrated USB 2.0 connector port that can be used for this purpose as well). There is a

battery port that allows for device portability when it is not being charged via a USB cable

and a small battery slot for RTC settings (real-time clock) that can be used for better

accuracy configuration - normally, sensors update their values once every 60 seconds.

Description
It is important that both students and staff are aware of the air quality and levels of noise

around the university campus in order to allow them to know where the most appropriate

places to walk and study are. Building a dynamic map of the campus that can aggregate

information about air pollution (in PPM – parts per million) and noise (decibels) while at the

same time educating users what the normal values for these variables (noise and NO2, CO,

the main air pollutants) is a good solution to this task.

The features that the startup kit provides make it a very suitable product for this project’s

needs. It can be used as a portable probing device paired with a mobile device’s GPS sensor

in order to generate a dynamic campus map that is flexible and intuitive to use. One of the

possible use cases is suggesting quiet and clean air routes to end users. The final project

deliverable is a mobile application and a backend infrastructure. The project makes use of

the client-server software engineering paradigm allowing system users to consult the

application whenever they need environmental data information and also improve it by

participating in the data collection process (provided they have access to a Smart Citizen Kit).

The software system will be evaluated by recruiting volunteer participants to collect

environmental data and test the mobile application.

Progress
During the first semester, the following system components and features have been

implemented (and tested) to develop a final prototype:

 SCK configuration: firmware update and modification to improve accuracy

 Server:

o cloud hosting configuration and domain registration

2 | P a g e

o Database Evaluation: SQL versus NoSQL comprehensive evaluation and

testing with sample data (5 000 up to 5 000 000 records insertion and

retrieval) was carried out to compare performance; database systems tested:

MySQL and Mongo DB; Mongo DB was chosen as operation execution is

significantly faster

o RESTful API implementation to facilitate client-server communication

o environmental data visualization

 Client (Android application):

o route-tracking prototype

o configuration options

o SCK update retrieval functionality

o user tracking history storage

o client-server data transmission

 Evaluation:

o Smart Citizen Kit case modifications to get better sensor exposure

o generating environmental data readings (walking with different speed, trying

different kit containers)

o aggregating route information on the server’s database

Plan
The plan for the second semester is to increase the configuration options for the client

application and the server. The Android application needs to check mobile device internet

connectivity and GPS accuracy and let the user know if there is no satellite/ network

coverage (more user feedback in general). Data filters will be implemented on server side to

enable users to identify the loudest/ quietest and most/ least air-polluted places around

campus much easier (currently they need to look at the sensor values to do that).

Configuration settings will be based on an algorithm that will also let users extract routes

they are interested in (in close proximity to their current location for example) and have

certain PPM and decibel ranges for NO2, CO and noise accordingly.

Problems
Some of the more significant issues encountered include:

 Arduino IDE does not work very well with the prototype version of the kit and this

required significant research (contacted the FabLab team continuously) as well as

trial-and-error; successfully resolved

 GPS location accuracy variance and irregular time updates; resolved by changing the

location tracking approach

 “Eduroam” network SCK connection issues; resolved by using a mobile device as a

portable access point and sharing its Wi-Fi connection resources with the kit

3 | P a g e

Appendix A

 Android Client:

4 | P a g e

 System Server:

Dynamic Noise and Pollution Campus Map

/progress report & planning/

Semester 2 Plan

The second semester will be split into a few main periods facilitating final project presentation
(expected completion dates have been listed against each component):

• implementation finalisation: completion: around 15 February-March
o functionality
o testing

• further heuristic evaluation: completion: mid-February-March

• user testing + system improvements: completion: mid-February-around the start of

March (till mid-March)

• final report preparation + refinement:completion: mid-February-March to allow
plenty of time for execution

Implementation Layout (Incl. Heuristic Evaluation)

Below is a more detailed execution plan for the implementation component. It will include several
agile sprints to allow for performance improvements through retrospective sessions. The
incremental development process will build on the existing client-server framework which provides
a base (prototype) enabling more complex functionality integration. The main layout consists of the
following roughly described steps:

• client UI improvements and configuration
• map configuration options + routes
• unit testing
• refactoring
• deployment
• heuristic evaluation

Petar Yordanov, 15.01.2015

A.3.12 Progress Report 11

73

Dynamic Noise and Pollution Campus Map

/progress report & planning/

Work Done Previous Week

• Mongo DB server data exported for backup and local development: link
• JSP structure refactoring: link

o split main views into sub-components to create a template structure
o clearly labelled utility files (‘data.jsp’ and ‘parse.jsp’) used for raw data

processing
• jQuery & Bootstrap issue – discovered a bug on the UI and some jQuery UI library files

missing, now restored: link

Work Under Way

• Map Configuration : link
• Performance Assessment: link

Known Issues + Resolutions

• Mobile device screens UI misbehaviour – the server menu was not collapsing properly;
resolved by re-arranging included “js” script files (a conflict between Bootstrap and
Google Maps): link

*I will be presenting you this development iteration next week/week after

Petar Yordanov, 20.01.2015

A.3.13 Progress Report 12

74

Dynamic Noise and Pollution Campus Map

/progress report/

Work Done Previous Week

• server UI: link
• sensor data formatting: link
• sensor data scaling: link
• map configuration: link

Work Under Way

• map configuration: link

Known Issues + Resolutions

• server performance assessment: link

Petar Yordanov, 27.01.2015

A.3.14 Progress Report 13

75

Dynamic Noise and Pollution Campus Map

/progress report & planning/

Work Done Previous Week

• contacted Stephen Brewster and discussed project evaluation; he granted me permission
to conduct the sessions

• emailed the SCK team to ask for permission to use one of their BETA versioned
RESTful endpoint: key/device.js; using it to generate user/device data on the server:
link

• updated the client’s UI and finalized Android implementation: link
• finalized map configuration and server implementation:

o link1
o link2
o link3
o link4
o link5
o link6

• logo design (files on the repository)
• project DEMO

Work Under Way

• unit testing of the key server operations
• evaluation preparation
• dissertation

Known Issues + Resolutions

• used java.sql.timestamp to load the json into models before returning to the client
javaScript code; conflicts arised as Mongo DB’s BSON timestamp does not have a
converter/ mapper from the Java data type; resolved by using the Date() object from
java.util.date; now additional data such as timestamps can be used for filtering

Petar Yordanov, 04.02.2015

A.3.15 Progress Report 14

76

Dynamic Noise and Pollution Campus Map

/progress report & planning/

Work Done Previous Week

• updated the user interface to show route recommendations more comprehensively
• added user options for route ranking based on different statistics (duration, distance,

noise, CO, NO2)
• data collection sessions
• final interface interactions: link (showcasing all report points)
• unit testing completed (run ‘mvn test’ to execute tests): link

Work Under Way

• evaluation setup & planning

Known Issues + Resolutions

• had deprecated Spring MVC functions issues, was a very tricky issue that took a while to
resolve; the solution involved updating the framework version to make it compatible
with all of the installed dependencies (dependency data included to repository)

A.3.16 Progress Report 15

77

Petar Yordanov, 10.02.2015

Dynamic Noise and Pollution Campus Map

/progress report & planning/

Work Done Previous Week

• planned evaluation
• modified client to enable using multiple SCK devices: link
• prepared evaluation documentation: link
• full database backup: link

Work Under Way

• dissertation + pilot evaluation execution

Known Issues + Resolutions

• fixed a bug on the server when updating user and device information

Project Files

• http://ugmap.me/
• Android Route Tracking Client (.apk updated)

Petar Yordanov, 17.02.2015

A.3.17 Progress Report 16

79

Dynamic Noise and Pollution Campus Map

/progress report & planning/

Work Done Previous Week

• submitted evaluation application documentation
• final report LaTeX template setup
• report structural skeleton
• report draft ‘Introduction’ chapter completed:

o document link

Work Under Way

• revise ‘Introduction’
• final report ‘Context’ and ‘Implementation’ chapter

Note: The document link provided above is a draft version. It will be revisited and further changes
are pending. The Google Doc is just a tool for easy sharing of the textual representation of the
report. This will enable efficient change introduction upon receipt of feedback. All of this
information will be transferred to the final LaTeX template with all the corresponding images/
appendices and code listings to generate the final .pdf version.

Petar Yordanov, 25.02.2015

A.3.18 Progress Report 17

80

Dynamic Noise and Pollution Campus Map

/progress report & planning/

Work Done Previous Week

• report structural skeleton updated
• Chapter ‘Related Work’
• Chapter ‘Planning’
• Chapter ‘Design’
• report draft ‘Introduction’ chapter completed:

o document link

Work Under Way

• revise chapters
• final report ‘Context’ and ‘Implementation’ chapter

Note: The LaTeX document is rendered in parallel. Once it has more strict formatting, I will share
it as well.

Petar Yordanov, 02.03.2015

A.3.19 Progress Report 18

81

Dynamic Noise and Pollution Campus Map

/progress report & planning/

Work Done Previous Week

• pilot evaluation has been completed (used Nasa TLX forms and a questionnaire as well
as user monitoring to track relevant data); all participants collected environmental data ;
obtained useful feedback, new features have been implemented on the web application
server : link (important)

o a bug with marker rendering on the map has been resolved
o automatically populate the starting point with the user’s current location (or

building on campus that is closest to the current location)
o automatically populate lat/lon fields on location selection
o click anywhere on the map to select the closest building in the database as a

destination point, without having to type it in
o user navigator to show the current location of the user and display a pop-up (for

instance “You have reached your destination”) when they reach their desired
location

o timestamp filters have been improved
o added start/stop tracking functionality under ‘Locations’
o added relevant instructions to the server specifying how to interact with the UI

and included image tables to show safe levels for noise, CO and NO2
o added download links for the client application (Android and Windows Phone) as

well as completed ‘SCK’ and ‘About’ pages

• report draft revision:
o document link

Work Under Way

• revise chapters
• final report ‘Implementation’ and ‘Evaluation’ chapter

Note: The LaTeX document is rendered in parallel. Once it has more strict formatting, I will share
it as well. The final evaluation should be commencing shortly.

Petar Yordanov, 10.03.2015

A.3.20 Progress Report 19

82

Dynamic Noise and Pollution Campus Map

/progress report & planning/

Work Done Previous Week

• final evaluation has been completed; all participants collected environmental data ; it
was very rewarding to see that people’s satisfaction has certainly increased after the
implementation of suggested features during the pilot evaluation process (since most
participants were the same in both sessions); this can be seen on the forms that all
participants have filled out and will become particularly visible when the data is plotted
on graphs in the final report; the answers of the open questions involved praising
comments (which made me feel even more satisfied with the final result)

• ‘Implementation’ and ‘Evaluation’ draft has almost been completed

• the most up-to-date report version has been transferred to the LaTeX document and will
be made available to you for review by next week

Work Under Way

• the demonstration video is currently being prepared; it will be made available to you and
the project reader Dr. Alessandro Vinciarelli by the end of this week (I would like to
refine it)

• complete ‘Implementation’, ‘Testing’ and ‘Evaluation’ chapters in the dissertation
• revise the final report according to your feedback
• project presentation (at 9:50 on 27.03.15 in SAWB 422) preparation:

Petar Yordanov, 18.03.2015

A.3.21 Progress Report 20

83

Dynamic Noise and Pollution Campus Map

/final progress report & planning/

Work Done Previous Week

• Final report completed

Work Under Way

• Final report spell and grammar checking, editing and formatting
• Presentation preparation

Petar Yordanov, 25.03.2015

A.3.22 Progress Report 21

84

A.4 Evaluation Documentation

Participant evaluation pack:

85

Participant Consent Form: Dynamic Noise and Pollution
Campus Map
The aim of this experiment is to evaluate the system that has been produced to collect and visualize
environmental data using the Smart Citizen Kit sensor board.
The experiment will take about an hour to complete.

While the experiment is being carried out, some data will be collected. This will include:

- Participant’s status: student/ not a student
- Mobile device possession: positive/ negative
- Time taken completion of each task
- Total evaluation duration
- Destination choices
- Route Choices
- Questionnaire answers and suggestions for improvement

All results will be held in strict confidence, ensuring the privacy of all participants. No personal

information will be stored with the data.

Please note that it is the system, not you, that are being evaluated. You may withdraw from the
experiment at any time. Any data that has been collected until the point of withdrawal will be
discarded and not analyzed as a part of the summative evaluation.

If you have any further questions regarding this experiment, please contact:

Petar Yordanov
School of Computing Science,
University of Glasgow
1103620y@student.gla.ac.uk

I have read this information sheet, and agree to voluntarily take part in this experiment:

Name: ___________________________________ Email:__________________________

Signature: ________________________________ Date: ___________________________

This study adheres to the BPS ethical guidelines, and has been approved by the DCS ethics committee of

The University of Glasgow.. Whilst you are free to discuss your participation in this study with the

experimenter, if you would like to speak to someone not involved in the study, you may contact the chair

of the DCS Ethics Committee: Prof Stephen Brewster, stephen.brewster@glasgow.ac.uk

A.4.1 Consent Form

86

Introduction Script
Dynamic Noise and Pollution Campus Map Evaluation

Petar Yordanov

School of Computing Science,

University of Glasgow

16.02.2015

A.4.2 Introduction Script

87

Introduction

The general aim of this experiment is to evaluate the usability and applicability of the route
generation software that was produced as a part of the project. The involvement of other
people is a necessity due to the fact that potential users of the application are an invaluable
source of feedback when determining the product’s performance.

The experiment will involve walking around campus and making route choices based on the
feedback received from the mobile application. There will be 3 destinations that you would
need to choose and go to. You will also be asked to produce custom visualizations via the
system’s GUI. Tasks in this category will involve using the visualizations the UI enables you to
generate in order to determine the lowest and highest values for noise and air pollution on
campus and also understand how the locations change for each variable respectively (noise,
CO, NO2), are there correlations, as well as try to find out how accurate the map is in
different areas. You will also be testing the route recommendation functionality, choosing a
destination on campus and walking there. While you are walking you will be carrying a
sensor and collecting environmental information using the software product.

While the experiment is being carried out, some data will be collected. This will include:

- Participant’s status: student/ not a student
- Mobile device possession: positive/ negative
- Time taken completion of each task
- Total evaluation duration
- Destination choices
- Route Choices
- Suggestions for improvement

During the course of the experiment, I will be walking next to you in case you have any
questions. It is important to note that this experiment does not test your ability and/ or
performance, it has been designed with the sole purpose of software evaluation.

You are welcome to withdraw from this evaluation session at any time.

If you have any questions prior to the start of the experiment please ask. If you agree to
taking part in this evaluation session, please sign the consent sheet.

1 | P a g e

Task Sheet
Dynamic Noise and Pollution Campus Map Evaluation

Petar Yordanov

School of Computing Science,

University of Glasgow

16.02.2015

A.4.3 Task Sheet

89

Questions (part 1)

1. Are you a student?
2. If so, are you studying at the University of Glasgow?
3. How familiar are you with the university campus (on a scale of 1-5)?
4. Do you possess a mobile device (or multiple devices)?
5. If so, what brand/ brands?
6. Do you download mobile applications from the application catalogue that track your

location?

Tasks

1. Explore the data points and routes rendered on the map.
2. Using the user interface of the application, try to identify the where the highest values

for noise, CO and NO2 are on the map.
3. Using the custom visualizations, plot multiple variables on the map at the same time.
4. Using one of the visualization modes, identify the areas where the map is most accurate

– popular evaluation areas in other words.
5. Familiarize yourself with user interface of the Android application (once you think you

are ready, I will ask you some questions and give you a briefing).
6. Start the environmental collection process (using the Android client).
7. Find route recommendations to three buildings of your choice and walk to them, while

carrying the sensor and collecting data.
8. Please fill in the Nasa TLX form I will provide you with (rating mental, physical and

temporal demand as well as performance, effort and frustration).

Questions (part 2)

7. How would you rate the application on an overall basis (on a scale of 1-10)?
8. Would you use this application if it becomes available for free on the application web
catalogue for your device?
9. Is there anything in particular that you like/ dislike about this application? Please
comment.
10. How can this application be improved in your opinion?

1 | P a g e

Debrief Script
Dynamic Noise and Pollution Campus Map Evaluation

Petar Yordanov

School of Computing Science,

University of Glasgow

16.02.2015

A.4.4 Debrief Script

91

Participant Debrief

Thank you for agreeing to take part in this evaluation session.

The general aim of this experiment is to evaluate the usability and applicability of the route
generation software that was produced as a part of the project. The involvement of other
people is a necessity due to the fact that potential users of the application are an invaluable
source of feedback when determining the product’s performance.

My contact details are as follows. You are encouraged to note them down in case you have
further questions and/ or suggestions:

Email: 1103620y@student.gla.ac.uk
Project Supervisors: Dr. Iadh Ounis, Mr. Richard Mccreadie

If you have any questions, please feel free to contact me or the project’s supervisors using
the contact information provided above.

Thank you again for your participation!

1 | P a g e

Name Task Date

 Mental Demand How mentally demanding was the task?

 Physical Demand How physically demanding was the task?

 Temporal Demand How hurried or rushed was the pace of the task?

 Performance How successful were you in accomplishing what
you were asked to do?

 Effort How hard did you have to work to accomplish
your level of performance?

 Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

Figure 8.6

NASA Task Load Index

Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

Very Low Very High

Very Low Very High

Very Low Very High

Very Low Very High

Perfect Failure

Very Low Very High

A.4.5 Task Load Index Form

93

A.5 Requirements Gathering Session

A requirement gathering session was conducted to discuss important aspects of the system. This was an informal
requirements gathering interview to propose system implementation features and discuss system design direction
opinions.

1. Should this be a client-server based application or can it be a single, standalone mobile web application
using local data storage? How flexible is the framework choice?

• Any architectural hierarchy would suffice, as long as it‘s choice has been justified. The framework choice is
flexible.

2. Is data plotting flexible and if not, what are some guiding rules?

• plotting noise and pollution on the same map /overlapping/

• representation style colour-coded blocks, gradient map(heat map style), etc.

– flexible visualization techniques
– will be good to use multiple visualization styles/models

3. Is colour-coding enough to represent data or can there be added numerical values for more detailed
interface?

• good idea to experiment with different visualisation arrangements in order to iteratively refine the final inter-
face

4. Is route generation and manipulation a prime task or can be defined as consequential after the initial
campus map generation?

• a COULD HAVE requirement which needs to be implemented after the basic campus map functionality is
present

5. Is ranking the input entities feature that users can have voting impact on or it could be entirely dependent
on device readings?

• can be incorporated as a WOULD (would be nice to have) feature 6. Would you consider a good idea present-
ing some wider statistical data to the user as a potential feature?

• yes, a COULD/ WOULD HAVE functionality that will improve the overall performance of the application

7. Currently the device transmits data once every 60 sec. (1 minute). Do you think decreasing this to get
more accurate readings (considering the fact that the device is going to be moving) should be researched and is
potentially viable for this project?

• if the firmware can be configured to do this, yes

8. The device has sensors for Carbon Monoxide and Nitrogen Dioxide. Is there any particular requirement
about how the readings for those two toxic chemicals for humans should be plotted on the map (for example
separately or as a single entity by adding up the values for instance; could incorporate different weights)?

• should be researched further

• add the values and if needed refine results by applying different weights depending on toxic effects

94

A.6 Images

Thumbnail 1

95

Thumbnail 2

96

Thumbnail 3

97

Thumbnail 4

Thumbnail 5

Thumbnail 6

98

Thumbnail 7

Thumbnail 8

99

Thumbnail 9

Thumbnail 10

100

Thumbnail
11

101

Thumbnail 12

102

Thumbnail 13

Thumbnail 14

103

Thumbnail 15

Thumbnail 16

104

Thumbnail 17

Thumbnail 18

105

Thumbnail 19

106

Thumbnail 20

107

Thumbnail 21

108

Thumbnail 22

109

Thumbnail 23

110

Thumbnail 24

111

Thumbnail 25

112

Thumbnail 26

113

Thumbnail 27

114

Thumbnail 28

115

Thumbnail 29

116

Thumbnail 30

117

Thumbnail 31

118

Thumbnail 32

119

Thumbnail 33

120

Thumbnail 34

Thumbnail 35

121

Thumbnail 36

Thumbnail 37

122

Thumbnail 38

123

Thumbnail 39

124

Thumbnail 40

125

Thumbnail 41

126

Thumbnail 42

127

Thumbnail 43

128

Thumbnail 44

129

Thumbnail 45

130

Thumbnail 46

131

Thumbnail 47

132

Thumbnail 48

133

Thumbnail 49

Thumbnail 50

Thumbnail 51

134

Thumbnail 52

135

Thumbnail 53

136

Thumbnail 54

137

Thumbnail 55

138

Thumbnail 56

139

Thumbnail 57

140

Thumbnail 58

141

Thumbnail 59

142

Thumbnail 60

143

Thumbnail 61

144

Thumbnail 62

145

Thumbnail 63

146

Thumbnail 64

147

Thumbnail 65

148

Thumbnail 66

149

Thumbnail 67

150

Thumbnail 68

151

Thumbnail 69

152

Thumbnail 70

153

Thumbnail 71

154

Thumbnail 72

155

Thumbnail 73

156

Thumbnail 74

157

Thumbnail 75

158

Thumbnail 76

159

Thumbnail 77

160

Thumbnail 78

161

Thumbnail 79

162

Thumbnail 80

163

Thumbnail 81

164

Thumbnail 82

165

Thumbnail 83

166

Thumbnail 84

167

Thumbnail 85

168

Thumbnail 86

169

Thumbnail 87

170

Thumbnail 88

171

Thumbnail 89

172

Thumbnail 90

173

Thumbnail 91

174

Thumbnail 92

175

Thumbnail 93

176

Thumbnail 94

177

Thumbnail 95

178

Thumbnail 96

179

Thumbnail 97

180

Thumbnail 98

181

Thumbnail 99

Thumbnail 100

182

Thumbnail 101

183

Thumbnail 102

184

Thumbnail 103

185

Thumbnail 104

186

Thumbnail 105

187

Thumbnail 106

188

Thumbnail 107

189

Thumbnail 108

190

Thumbnail 109

191

Thumbnail 110

192

Thumbnail 111

193

Thumbnail 112

194

Thumbnail 113

195

Thumbnail 114

196

Thumbnail 115

197

Thumbnail 116

198

Thumbnail 117

199

Thumbnail 118

200

Thumbnail 119

201

Thumbnail 120

202

Thumbnail 121

203

Thumbnail 122

204

Thumbnail 123

205

206

	Introduction
	Background
	Smart Citizen Kit
	Web Services
	Mobile Web Applications

	Aims
	Motivations

	Context
	Related Work

	Planning
	Issue Analysis
	Battery life
	Sensor exposure
	Data Spikes
	Sensor accuracy (frequency of measurements taken)
	Optimisation of the data space

	Implementation Techniques
	Agile Development Sprints

	Requirements
	Use Cases
	User Stories
	Functional, Non-Functional Requirements
	Non-Functional Requirements

	High-Level Design
	Diagrams
	Paper Prototypes
	Server
	Client

	Technologies
	Server
	Web Application Framework
	Asynchronous JavaScript Library
	CSS Framework
	DBMS
	Map

	Client

	Implementation
	Technologies Used
	Prototype Iterations
	Server
	Client

	Final Implementation
	Android Client
	SCK Configuration
	Implementation Logic

	Mobile Web Application
	Back-end
	Data Formatting
	Logging
	Implementation Logic
	Front-end

	Testing
	Unit and Integration Testing
	Performance

	Evaluation
	DB Benchmarks
	Prototype Evaluation
	Planning
	Pilot Evaluation
	Final Evaluation

	Conclusion
	Summary
	Future Work
	Lessons Learnt

	Appendices
	Appendices
	Appendices
	Resources
	Progress Reports, Sprint Retrospectives
	Progress Report 1
	Progress Report 2
	Progress Report 3
	Progress Report 4
	Progress Report 5
	Progress Report 6
	Progress Report 7
	Progress Report 8
	Progress Report 9
	Progress Report 10
	Semester 1 Retrospective Report
	Progress Report 11
	Progress Report 12
	Progress Report 13
	Progress Report 14
	Progress Report 15
	Progress Report 16
	Progress Report 17
	Progress Report 18
	Progress Report 19
	Progress Report 20
	Progress Report 21

	Evaluation Documentation
	Consent Form
	Introduction Script
	Task Sheet
	Debrief Script
	Task Load Index Form

	Requirements Gathering Session
	Images

