(2,4) TREES

• Search Trees (but not binary)

• also known as 2-4, 2-3-4 trees

• very important as basis for Red-Black trees (so pay attention!)
Multi-way Search Trees

• Each internal node of a multi-way search tree T:
 - has at least two children
 - stores a collection of items of the form (k, x), where k is a key and x is an element
 - contains $d - 1$ items, where d is the number of children
 - “contains” 2 pseudo-items: $k_0 = -\infty$, $k_d = \infty$

• Children of each internal node are “between” items
 - all keys in the subtree rooted at the child fall between keys of those items

• External nodes are just placeholders
Multi-way Searching

- Similar to binary searching
- If search key $s < k_1$, search the leftmost child
- If $s > k_{d-1}$, search the rightmost child
- That’s it in a binary tree; what about if $d > 2$?
- Find two keys k_{i-1} and k_i between which s falls, and search the child v_i.

![Diagram of a multi-way tree with keys and search paths]

- What would an in-order traversal look like?
(2,4) Trees

- At most 4 children
- All external nodes have same depth
- Height h of (2,4) tree is $O(\log n)$.
- How is this fact useful in searching?

```
(2,4) Trees
```

```
(2,4) Trees
```
(2,4) Insertion

- Always maintain depth condition
- Add elements only to existing nodes

- What if that makes a node too big?
 - overflow

- Must perform a split operation
 - replace node ν with two nodes ν' and ν''
 - ν' gets the first two keys
 - ν'' gets the last key
 - send the other key up the tree
 - if ν is root, create new root with third key
 - otherwise just add third key to parent

- Much clearer with a few pictures...

Empty tree

Insert 4
4

Insert 6
4 6

Insert 12
4 6

Insert 15
4 6
(2,4) Insertion (cont.)

- Tree always grows from the top, maintaining balance
- What if parent is full?
(2,4) Insertion (cont.)

- Do the same thing:

- Overflow cascade all the way up to the root
 - still at most $O(\log n)$
(2,4) Deletion

- A little trickier
- First of all, find the key
 - simple multi-way search
- Then, reduce to the case where deletable item is at the bottom of the tree
 - Find item which precedes it in in-order traversal
 - Swap them
- Remove the item

- Easy, right?
- ...but what about removing from 2-nodes?

(2,4) Trees
(2,4) Deletion (cont.)

- Not enough items in the node
 - underflow

- Pull an item from the parent, replace it with an item from a sibling
 - called transfer

- Still not good enough! What happens if siblings are 2-nodes?

- Could we just pull one item from the parent?
 - too many children

- But maybe...
(2,4) Deletion (cont.)

• We know that the node’s sibling is just a 2-node
• So we *fuse* them into one
 - after stealing an item from the parent, of course

• Last special case, I promise: what if the parent was a 2-node?
(2,4) Deletion (cont.)

- Underflow can cascade up the tree, too.

Delete 14
(2,4) Conclusion

- The height of a (2,4) tree is $O(\log n)$.
- Split, transfer, and fusion each take $O(1)$.
- Search, insertion and deletion each take $O(\log n)$.
- Why are we doing this?
 - (2,4) trees are fun! Why else would we do it?
 - Well, there’s another reason, too.
 - They’re pretty fundamental to the idea of Red-Black trees as well.
 - And you’re covering Red-Black trees on Monday.
 - Perhaps more importantly, your next project is a Red-Black tree.

- Have a nice weekend!