AVL T R E E S

• Binary Search Trees
• AVL Trees
Binary Search Trees

- A binary search tree is a binary tree T such that
 - each internal node stores an item (k, e) of a dictionary.
 - keys stored at nodes in the left subtree of v are less than or equal to k.
 - Keys stored at nodes in the right subtree of v are greater than or equal to k.
 - External nodes do not hold elements but serve as placeholders.
Search

- The binary search tree T is a decision tree, where the question asked at an internal node v is whether the search key k is less than, equal to, or greater than the key stored at v.

- Pseudocode:

 Algorithm TreeSearch(k, v):

 Input: A search key k and a node v of a binary search tree T.

 Output: A node w of the subtree $T(v)$ of T rooted at v, such that either w is an internal node storing key k or w is the external node encountered in the inorder traversal of $T(v)$ after all the internal nodes with keys smaller than k and before all the internal nodes with keys greater than k.

  ```
  if $v$ is an external node then
      return $v$
  if $k = \text{key}(v)$ then
      return $v$
  else if $k < \text{key}(v)$ then
      return TreeSearch($k, T.\text{leftChild}(v)$)
  else
      \{ $k > \text{key}(v)$ \}
      return TreeSearch($k, T.\text{rightChild}(v)$)
  ```
Search (cont.)

- A picture:

 find(25) find(76)
Insertion in a Binary Search Tree

• Start by calling TreeSearch(k, T.root()) on T. Let w be the node returned by TreeSearch.

• If w is external, we know no item with key k is stored in T. We call expandExternal(w) on T and have w store the item (k, e).

• If w is internal, we know another item with key k is stored at w. We call TreeSearch(k, rightChild(w)) and recursively apply this algorithm to the node returned by TreeSearch.
Insertion in a Binary Search Tree (cont.)

- Insertion of an element with key 78:

a)

b)
Removal from a Binary Search Tree

- Removal where the key to remove is stored at a node (w) with an external child:
Removal from a Binary Search Tree (cont.)
Removal from a Binary Search Tree (cont.)

- Removal where the key to remove is stored at a node whose children are both internal:
Removal from a Binary Search Tree (cont.)

(b)
Time Complexity

- Searching, insertion, and removal in a binary search tree is $O(h)$, where h is the height of the tree.

- However, in the worst-case search, insertion, and removal time is $O(n)$, if the height of the tree is equal to n. Thus in some cases searching, insertion, and removal is no better than in a sequence.

- Thus, to prevent the worst case, we need to develop a rebalancing scheme to bound the height of the tree to $\log n$.
AVL Tree

- An AVL Tree is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1.

- An example of an AVL tree where the heights are shown next to the nodes:
Height of an AVL Tree

- **Proposition**: The height of an AVL tree T storing n keys is $O(\log n)$.

- **Justification**: The easiest way to approach this problem is to try to find the minimum number of internal nodes of an AVL tree of height h: $n(h)$.

- We see that $n(1) = 1$ and $n(2) = 2$

- for $n \geq 3$, an AVL tree of height h with $n(h)$ minimal contains the root node, one AVL subtree of height $n-1$ and the other AVL subtree of height $n-2$.

- i.e. $n(h) = 1 + n(h-1) + n(h-2)$

- Knowing $n(h-1) > n(h-2)$, we get $n(h) > 2n(h-2)$
 - $n(h) > 2n(h-2)$
 - $n(h) > 4n(h-4)$
 ...
 - $n(h) > 2^i n(h-2i)$

- Solving the base case we get: $n(h) \leq 2^{\frac{h}{2}-1}$

- Taking logarithms: $h < 2\log n(h) + 2$

- Thus the height of an AVL tree is $O(\log n)$
Insertion

• A binary search tree T is called balanced if for every node v, the height of v’s children differ by at most one.

• Inserting a node into an AVL tree involves performing an $\text{expandExternal}(w)$ on T, which changes the heights of some of the nodes in T.

• If an insertion causes T to become unbalanced, we travel up the tree from the newly created node until we find the first node x such that its grandparent z is unbalanced node.

• Since z became unbalanced by an insertion in the subtree rooted at its child y, $\text{height}(y) = \text{height}(\text{sibling}(y)) + 2$

• To rebalance the subtree rooted at z, we must perform a restructuring
 - we rename x, y, and z to a, b, and c based on the order of the nodes in an in-order traversal.
 - z is replaced by b, whose children are now a and c whose children, in turn, consist of the four other subtrees formerly children of x, y, and z.
Insertion (contd.)

- Example of insertion into an AVL tree.
Restructuring

• The four ways to rotate nodes in an AVL tree, graphically represented:

- Single Rotations:
Restructuring (contd.)

- double rotations:

```
T₀       T₂       T₃
  a = z   b = x   c = y
 T₁
```

```
T₀       T₂       T₃
  a = z   b = x   c = y
  T₁
```

```
T₀       T₂       T₃
  a = z   b = x   c = y
 T₁
```

```
T₀       T₂       T₃
  a = y   b = x   c = z
 T₁
```

```
T₀       T₂       T₃
  a = y   b = x   c = z
  T₁
```

```
T₀       T₂       T₃
  a = y   b = x   c = z
 T₁
```

```
T₀       T₂       T₃
  a = z   b = x   c = y
 T₁
```

```
T₀       T₂       T₃
  a = z   b = x   c = y
  T₁
```

```
T₀       T₂       T₃
  a = y   b = x   c = z
 T₁
```
Restructuring (contd.)

- In Pseudo-Code:

Algorithm restructure\((x)\):

Input: A node \(x\) of a binary search tree \(T\) that has both a parent \(y\) and a grandparent \(z\).

Output: Tree \(T\) restructured by a rotation (either single or double) involving nodes \(x, y,\) and \(z\).

1. Let \((a, b, c)\) be an inorder listing of the nodes \(x, y,\) and \(z\), and let \((T_0, T_1, T_2, T_3)\) be an inorder listing of the the four subtrees of \(x, y,\) and \(z\) not rooted at \(x, y,\) or \(z\).

2. Replace the subtree rooted at \(z\) with a new subtree rooted at \(b\).

3. Let \(a\) be the left child of \(b\) and let \(T_0, T_1\) be the left and right subtrees of \(a\), respectively.

4. Let \(c\) be the right child of \(b\) and let \(T_2, T_3\) be the left and right subtrees of \(c\), respectively.
Removal

• We can easily see that performing a removeAboveExternal(w) can cause T to become unbalanced.

• Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.

• We can perform operation restructure(x) to restore balance at the subtree rooted at z.

• As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.
Removal (contd.)

- example of deletion from an AVL tree:
Removal (contd.)

- example of deletion from an AVL tree
Implementation

• A Java-based implementation of an AVL tree requires the following node class:

```java
public class AVLItem extends Item {
    int height;

    AVLItem(Object k, Object e, int h) {
        super(k, e);
        height = h;
    }

    public int height() {
        return height;
    }

    public int setHeight(int h) {
        int oldHeight = height;
        height = h;
        return oldHeight;
    }
}
```
public class SimpleAVLTree extends SimpleBinarySearchTree implements Dictionary {

public SimpleAVLTree(Comparator c) {
 super(c);
 T = new RestructurableNodeBinaryTree();
}

private int height(Position p) {
 if (T.isExternal(p))
 return 0;
 else
 return ((AVLItem) p.element()).height();
}

private void setHeight(Position p) { // called only // if p is internal
 ((AVLItem) p.element()).setHeight
 (1 + Math.max(height(T.leftChild(p)),
 height(T.rightChild(p))));
}
private boolean isBalanced(Position p) {
 // test whether node p has balance factor
 // between -1 and 1
 int bf = height(T.leftChild(p)) - height(T.rightChild(p));
 return ((-1 <= bf) && (bf <= 1));
}

private Position tallerChild(Position p) {
 // return a child of p with height no
 // smaller than that of the other child
 if(height(T.leftChild(p)) >= height(T.rightChild(p))
 return T.leftChild(p);
 else
 return T.rightChild(p);
}
private void rebalance(Position zPos) {
 // traverse the path of T from zPos to the root;
 // for each node encountered recompute its
 // height and perform a rotation if it is
 // unbalanced

 while (!T.isRoot(zPos)) {
 zPos = T.parent(zPos);
 setHeight(zPos);

 if (!isBalanced(zPos)) { // perform a rotation
 Position xPos = tallerChild(tallerChild(zPos));
 zPos = ((RestructurableNodeBinaryTree) T).restructure(xPos);
 setHeight(T.leftChild(zPos));
 setHeight(T.rightChild(zPos));
 setHeight(zPos);
 }
 }
}
public void insertItem(Object key, Object element) throws InvalidKeyException {
 super.insertItem(key, element); // may throw an
 // InvalidKeyException
 Position zPos = actionPos; // start at the
 // insertion position
 T.replace(zPos, new AVLItem(key, element, 1));
 rebalance(zPos);
}

public Object remove(Object key) throws InvalidKeyException {
 Object toReturn = super.remove(key); // may throw
 // an InvalidKeyException
 if (toReturn != NO_SUCH_KEY) {
 Position zPos = actionPos; // start at the
 // removal position
 rebalance(zPos);
 }
 return toReturn;
}