ADVANCED ANALYSIS:
AMORTIZATION AND RECURRANCE RELATIONS

• amortized time complexity
• accounting method
• Java vectors
• Recurrence Relations
Amortized Running Time

• Amortized running time considers interactions between operations by studying the total running time of a series of operations.

• **Example:** a **Clearable Stack**: supports the usual stack methods plus operation

  ```
  clearStack(): Empty the stack by removing all its elements
  Input: None; Output: None
  ```

 clearStack takes $O(n)$ time in the worst case

• **Proposition:** A series of n operations on an initially empty clearable stack implemented with an array takes overall $O(n)$ time

• **Justification:**
 - Let $M_0..., M_{n-1}$ be the series of operations and $M_{i0}..., M_{ik-1}$ be the k-th *clearStack* operations in the series
 - We define $i_{-1} = -1$
 - The run time of operation M_{ij} is $O(i_j - i_{j-1})$ since at most $i_j - i_{j-1}$ elements can be on the stack
Amortized Running Time (cont)

- Thus the running time of all the clearStack operations is

\[O\left(\sum_{j=0}^{k-1} (i_j - i_{j-1})\right) \]

which is a telescoping sum.
- So the run time is \(O(n) \)

• **Definition:** the *amortized running time* of an operation within a series of operations is the worst-case running time of the entire series of operations divided by the number of operations.
Accounting Method

• The **accounting method** performs an amortization analysis with a system of credits and debits.

• Let’s view the computer as a vending machine that requires one cyber-dollar for a constant amount of computing time.

• An operation consists of a series of constant-time **primitive operations** that cost one cyber-dollar each.

• We will overcharge an operation that executes few primitives and use the profit to pay for operations that execute many primitives.

• We will need to set up a scheme for charging operations. This is known as the amortization scheme.
Amortization Scheme Example for a ClearableStack

• Assume one cyber-dollar is enough to pay for the push, pop, top, size, or isEmpty and for the time spent by the clearStack to dereference one element.

• We will charge 2 cyber-dollars though.

• So we undercharge clearStack but overcharge the other operations. When a clearStack operation is executed, the cyber-dollars stored in the stack are used to pay for derefencing the items.
Java Vectors

- The `java.util.Vector` class provides a convenient expandable data type in Java.

- A vector is a wrapper around an array that holds a variable called `capacityIncrement`. When the user inserts the \(n+1 \)st element into a vector of size \(n \), the size of the array is increased by `capacityIncrement` if it is positive, or doubled if `capacityIncrement` is 0.

- Consider the case of `capacityIncrement` = 0:
 - Copying an array into a larger array takes \(O(n) \) time, but this only happens for \(\log(n) \) insertions.
 - Each insertion has \(O(1) \) amortized running time
Java Vectors (contd.)

- **Justification:**
 The array doubles in size with the insertion of every 2^ith element (1^{st}, 2^{nd}, 4^{th}, etc.)

 - **Worst case:** we insert exactly $n = 2^i$ elements, so the last operation involves copying the entire array over again.

 We have n insertions, and n elements copied in the last insertion. We also have $i-1$ previous expansions of the array, which perform the following number of element-copy operations:

 \[
 \sum_{k=1}^{i-1} 2^k = 2^i - 1 = n - 1
 \]

 - The overall time complexity is proportional to $3n-1$, which is $O(n)$

- **But what if the `capacityIncrement` is, say, 3?**
 Do we still have the same amortization?

 - **No!** Copying an array into a larger array is $O(n)$, but this happens once every $n/capacityIncrement$ insertions.

 - Each insertion is amortized to $O(n)$
Java Vectors (contd.)

• **Justification:** \(c = \text{capacityIncrement} \)

 Let us assume that the original vector size is 0. The vector increases in size by the insertion of every \((ic)^{th}\) element \((1^{st}, c^{th}, 2c^{th}, \text{etc.})\)

 Worst case: we insert exactly \(n = ic \) elements, so the last operation involves copying the entire array.

 We have \(n \) insertions, and \(n \) elements copied on the last insertion.

 We also have \(i-1 \) other array copies, for a total of:

 \[
 \sum_{k=0}^{i-1} ck = c \sum_{k=0}^{i-1} k = c \frac{i(i - 1)}{2}
 \]

 previous element copies.

• The overall time complexity is proportional to
 \(n(n-1/(2c)) \), which is \(O(n^2) \)
Recurrence Relations
The Pizza Slicing Problem

How many pieces of pizza can you get with N straight cuts?

1 cut 2 slices
2 cuts 4 slices
3 cuts 6 slices

... N cuts 2N slices

But ... who said you should cut through the center every time?
A Better Slicing Method ...

When cutting, intersect all previous cuts and avoid previous intersection points!

4 cuts
11 slices!!

5 cuts
16 slices!!
So ... How Many Pieces?

The N-th cut creates N new pieces.
Hence, the total number of pieces given by N cuts, denoted $P(N)$, is given by the following two rules:

- $P(1) = 2$
- $P(N) = P(N-1) + N$

Recursive definition of $P(N)$!
Recurrence Relations

- The pizza-cutting problem is an example of recurrence relation, where a function $f(N)$ is recursively defined.

 (Base Case) \[f(1) = 2 \]

 (Recursive Case) \[f(N) = f(N-1) + N \quad \text{for } N \geq 2 \]

- The standard method for solving recurrence relations, called “unfolding”, makes repeated substitutions applying the recursive rule until the base case is reached.

\[
\begin{align*}
 f(N) &= f(N-1) + N \\
 f(N) &= f(N-2) + (N-1) + N \\
 f(N) &= f(N-3) + (N-2) + (N-1) + N \\
 & \quad \vdots \\
 f(N) &= f(N-i) + (N-i+1) + \ldots + (N-1) + N \\
\end{align*}
\]

The base case is reached when $i = N - 1$

\[
\begin{align*}
 f(N) &= 2 + 2 + 3 + \ldots + (N-2) + (N-1) + N \\
 f(N) &= N \frac{(N+1)}{2} + 1 = O(N^2)
\end{align*}
\]
Towers of Hanoi

Goal: transfer all N disks from peg A to peg C

Rules:
- move one disk at a time
- never place larger disk above smaller one

Recursive solution:
- transfer $N - 1$ disks from A to B
- move largest disk from A to C
- transfer $N - 1$ disks from B to C

Total number of moves:
- $T(N) = 2 \cdot T(N - 1) + 1$
Solution of the Recurrence for Towers of Hanoi

Recurrence relation:

- \(T(N) = 2 \cdot T(N - 1) + 1 \)
- \(T(1) = 1 \)

Solution by unfolding:

\[
T(N) = 2 \cdot (2 \cdot T(N - 2) + 1) + 1 = 4 \cdot T(N - 2) + 2 + 1 = 4 \cdot (2 \cdot T(N - 3) + 1) + 2 + 1 = 8 \cdot T(N - 3) + 4 + 2 + 1 = \ldots
\]

\[
= 2^i \cdot T(N - i) + 2^{i-1} + 2^{i-2} + \ldots + 2^1 + 2^0
\]

the expansion stops when \(i = N - 1 \)

\[
T(N) = 2^{N-1} + 2^{N-2} + 2^{N-3} + \ldots + 2^1 + 2^0
\]

This is a geometric sum, so that we have:

\[
T(N) = 2^N - 1 = O(2^N)
\]
Another Recurrence

\[T(N) = 2T\left(\frac{N}{2}\right) + N \quad \text{for } N \geq 2 \]

\[T(1) = 1 \]

\[
T(N) = 2 \left(2T\left(\frac{N}{4}\right) + \frac{N}{2} \right) + N
= 4T\left(\frac{N}{4}\right) + 2N
= 4 \left(2T\left(\frac{N}{8}\right) + \frac{N}{4} \right) + 2N
= 8T\left(\frac{N}{8}\right) + 3N
= \ldots
= 2^i T\left(\frac{N}{2^i}\right) + iN
\]

The expansion stops for \(i = \log N \), so that

\[T(N) = N + N \log N \]
Solving Recurrences by “Guess and Prove”

\[T(N) = 2T\left(\frac{N}{2}\right) + N \quad \text{for} \quad N \geq 2 \]
\[T(1) = 1 \]

Step 1: Take a wild guess that

\[T(N) = N + N \log N \]

Step 2: Prove it by induction:

Basis

\[T(1) = 1 + \log 1 = 1 \]

Inductive Step

\[T(N) = 2T\left(\frac{N}{2}\right) + N = 2\left(\frac{N}{2} + \frac{N}{2} \log \frac{N}{2}\right) + N \]

\[T(N) = N + N(\log N - 1) + N = N + N \log N \]
A More Difficult Example

\[T(N) = 2T(\sqrt{N}) + 1 \quad T(2) = 0 \]

\[
2T(N^{1/2}) + 1 \\
2(2T(N^{1/4}) + 1) + 1 \\
4T(N^{1/4}) + 1 + 2 \\
8T(N^{1/8}) + 1 + 2 + 4 \\
\ldots \\
2^i T\left(\frac{1}{N^{2^i}}\right) + 2^0 + 2^1 + \ldots + 2^i - 1
\]

The expansion stops for \(N^{2^i} = 2 \)
i.e., \(i = \log\log N \)

\[T(N) = 2^0 + 2^1 + \ldots + 2^{\log\log N - 1} = \log N. \]
Proofs by Induction

We want to show that property P is true for all integers $n \geq n_0$

Basis:
prove that P is true for n_0.

Inductive Step:
prove that

if P is true for all k such that $n_0 \leq k \leq n - 1$

then P is also true for n
An Example of Proof by Induction

\[S(n) = \sum_{i=1}^{n} i = n\frac{(n+1)}{2} \quad \text{for } n \geq 1 \]

Basis:

\[S(1) = 1\frac{(1+1)}{2} = 1 \quad \text{Easy, Right?} \]

Inductive Step:

Assume \(S(k) = k\frac{(k+1)}{2} \) for \(1 \leq k \leq n-1 \)

\[S(n) = \sum_{i=1}^{n} i = \sum_{i=1}^{n-1} i + n = S(n-1) + n \]

\[= (n-1)\frac{(n-1+1)}{2} + n = \frac{(n^2 - n + 2n)}{2} \]

\[= n\frac{(n+1)}{2} \]