Connectivity and Biconnectivity
Connected Components

Connected Graph: any two vertices connected by a path

![Connected Graph Example](image)

- connected
- not connected

Connected Component: maximal connected subgraph of a graph
Equivalence Relations

A *relation* on a set S is a set R of ordered pairs of elements of S defined by some property

Example:
- $S = \{1,2,3,4\}$
- $R = \{(i,j) \in S \times S \text{ such that } i < j\}$
 $= \{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$

An *equivalence relation* is a relation with the following properties:
- $(x,x) \in R$, $\forall x \in S$ (reflexive)
- $(x,y) \in R \Rightarrow (y,x) \in R$ (symmetric)
- $(x,y), (y,z) \in R \Rightarrow (x,z) \in R$ (transitive)

The relation C on the set of vertices of a graph:
- $(u,v) \in C \iff u$ and v are in the same connected component

is an equivalence relation.
DFS on a Disconnected Graph

After dfs(1) terminates:

<table>
<thead>
<tr>
<th>k</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>val[k]</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
DFS of a Disconnected Graph

- Recursive **DFS** procedure visits all vertices of a connected component.
- A **for** loop is added to visit all the graph

```plaintext
for all k from 1 to N
    if val[k] = 0
        dfs(k)
```

![Graph Diagram](image-url)
Representing Connected Components

Array comp [1..N]
comp[k] = i if vertex k is in i-th connected component
New **DFS Algorithm**

Inside DFS:

replace

\[id = id + 1; \]

\[val[k] = id; \]

with

\[comp[k] = id; \]

Outside DFS:

\[
\text{for all } k \text{ from 1 to } N \\
\text{if } comp[k] = 0 \\
id = id + 1; \\
dfs(k);
\]
DFS Algorithm for Connected Components

Pseudocoded

```java
dfs (int k);

comp[k] = vertex.id;
vertex  = adj[k];

Vertex vertex
while (vertex != null)
    if (val[vertex.num] == 0)
        dfs (vertex.num);
        vertex = vertex.next;
    . . .

for all k from 1 to N
    if (comp[k] == 0)
        id = id + 1;
        dfs (k);
```

TIME COMPLEXITY: \(O (N + M) \)
Cutvertices

Cutvertex (separation vertex): its removal disconnects the graph

If the Chicago airport is closed, then there is no way to get from Providence to beautiful Denver, Colorado!

- Cutvertex: ORD
Biconnectivity

Biconnected graph: has no cutvertices

New flights: LGA-ATL and DFW-LAX make the graph biconnected.
Properties of Biconnected Graphs

- There are two disjoint paths between any two vertices.
- There is a simple cycle through any two vertices.

By convention, two nodes connected by an edge form a biconnected graph, but this does not verify the above properties.
Biconnected Components

Biconnected component (block): maximal biconnected subgraph

Biconnected components are edge-disjoint but share cutvertices.
Finding Cutvertices:
Brute Force Algorithm

for each vertex v
 remove v;
 test resulting graph for connectivity;
 put back v;

Time Complexity:
• N connectivity tests
• each taking time $O(N + M)$

Total time:
• $O(N^2 + NM)$
DFS Numbering

We recall that depth-first-search partitions the edges into tree edges and back edges

- (u,v) tree edge \iff val [u] < val [v]
- (u,v) back edge \iff val[u] > val[v]

We shall characterize cutvertices using the DFS numbering and two properties ...
Root Property

The root of the DFS tree is a cutvertex if it has two or more outgoing tree edges.

- no cross/horizontal edges
- must retrace back up
- stays within subtree to root, must go through root to other subtree
Complicated Property

A vertex \(v \) which is not the root of the DFS tree is a cutvertex if \(v \) has a child \(w \) such that no back edge starting in the subtree of \(w \) reaches an ancestor of \(v \).
Definitions

• \(\text{low}(v) \): vertex with the lowest val (i.e., “highest” in the DFS tree) reachable from \(v \) by using a directed path that uses at most one back edge

• \(\text{Min}(v) = \text{val}(\text{low}(v)) \)
DFS Algorithm for Finding Cutvertices

1. Perform **DFS** on the graph

2. Test if root of DFS tree has two or more tree edges (**root property**)

3. For each other vertex v, test if there is a tree edge (v,w) such that $\text{Min}(w) \geq \text{val}[v]$ (**complicated property**)

$$\text{Min}(v) = \text{val}(\text{low}(v))$$ is the minimum of:

- $\text{val}[v]
- \text{minimum of } \text{Min}(w) \text{ for all tree edges } (v,w)
- \text{minimum of } \text{val}[z] \text{ for all back edges } (v,z)$

Implement this **recursively** and you are done!!!!
Finding the Biconnected Components

- DFS visits the vertices and edges of each biconnected component consecutively
- Use a stack to keep track of the biconnected component currently being traversed