EXTERNAL MEMORY COMPUTING

- hierarchical memory management
- B-trees
- external sorting
The Memory Hierarchy

- Many problems that modern computers are given to solve (analyzing scientific data, running Win95, etc.) require large amounts of storage.

- In an ideal world, all the necessary information could be stored on chip in the processor’s registers, but that would be hideously expensive.

- Instead, computers use a memory hierarchy where there is a tradeoff between speed and volume.

- The hierarchy consists of four layers:
 - Registers
 - Cache memory
 - Internal memory (RAM)
 - External memory (Disk)
The Memory Hierarchy (contd.)

- The hierarchy (for a typical workstation):

<table>
<thead>
<tr>
<th></th>
<th>Access time (CPU cycles)</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers:</td>
<td>1 cycle</td>
<td>$\sim 2^{10}$ bytes</td>
</tr>
<tr>
<td>Cache:</td>
<td>5 cycles</td>
<td>$\sim 2^{20}$ bytes</td>
</tr>
<tr>
<td>Internal:</td>
<td>50 cycles</td>
<td>$\sim 2^{26}$ bytes</td>
</tr>
<tr>
<td>External:</td>
<td>2,000,000 cycles</td>
<td>$\sim 2^{32}$ bytes</td>
</tr>
</tbody>
</table>
Caching and Blocking

• Since the performance loss is so great when external memory needs to be accessed, several techniques have been developed to avoid this bottleneck.

• These are based on one of two assumptions about the data:
 - *Temporal Locality*: If data is used once, it will probably be needed again soon after.
 - *Spatial Locality*: If data is used once, the data next to it will probably be needed soon after.

• **Caching** uses virtual memory which is based on Temporal Locality.
 - An address space is provided that is as large as the secondary storage space.
 - When data is requested from secondary storage, it is transferred to primary storage (**cached**).

• **Blocking** is based on Spatial Locality.
 - When data is requested from secondary storage, a large contiguous block of data is transferred into primary storage.
 (a block of data is **paged**).
Block Replacement Policies

- We assume we have a fully associative cache, that is, a block from external memory can be placed in any slot of the cache.
- The CPU determines if the virtual memory location accessed is in the cache, and if so where.
- If it is not in the cache the block of external memory, containing the location is transferred into the cache.
- If there are no slots free in the cache, then we must determine which block should be evicted.
- Common policies to determine the block to evict:
 - Random
 - First-In, First-out (FIFO)
 - Least Frequently used (LFU)
 - Least Recently used (LRU)
- Random is easy to implement and takes O(1) time
Block Replacement Policies (cont)

- **FIFO** is also easy to implement, it uses temporal locality and takes $O(1)$ time.

- **LFU** requires more overhead but can still be implemented in $O(1)$ time using a special type of priority queue. But it penalizes recently added blocks.

- **LRU** is the most effective policy in practice. It can be implemented in $O(1)$ time with a special type of priority queue.
The Marker Policy

- mark bit associated with every block in the cache
- if a block in the cache is accessed, it is marked
- if all the blocks become marked, they get all unmarked
- evict a random unmarked block

• this policy is a good approximation of LRU, but is simpler to implement
External Searching

• Let’s look at the problem of implementing a dictionary of a large collection of items that do not fit in primary memory.

• In maintaining a dictionary in external memory we want to minimize the number of times we transfer a block between secondary and primary memory, known as a **disk transfer**, during queries and updates.

• The list-based sequence implementation of a dictionary requires $O(n)$ transfers per query or update.

• The array-based sequence implementation of a dictionary requires $O(n/B)$ transfers per query or update, where B is the size of a block.

• In a binary search tree implementation of a dictionary, in the worst case each node accessed will be in a different block. Thus it requires at least $\log n$ transfers per query or update.

• But we can do better ...
(a, b) Trees

• An (a,b) tree is a tree such that:
 - a and b are integers such that $2 \leq a \leq (b+1)/2$
 - each internal node has at least a children and at most b children
 - all external nodes have the same depth

• Insertion and deletion are similar to insertion and deletion in (2, 4) trees.

• Properties:
 - the height is $O(\log_a n)$, that is, $O(\log n / \log a)$
 - processing a node takes $t(b)$ time

• A search, insertion, or deletion takes time:

$$O\left(\frac{t(b)}{\log a} \log n\right)$$

and accesses

$$O\left(\frac{\log n}{\log a}\right)$$

nodes ($O(1)$ nodes for each level of the tree).
Example
B-Trees

• To minimize disk access we must select values for a and b such that each tree node occupies a single disk block.

• Let B be the size of a block

• A B-tree of order d is an (a,b) tree with $a = d/2$ and $b = d$.

• We choose d such that a node fits into a single disk block. This implies a, b, and d are $\Theta(B)$.

• Each search or update requires accessing $O(\log n / \log a)$ nodes.

• Thus, an B-tree requires $O(\log n / \log B)$ disk transfers for any update or search operation.