
1External Memory Computing

EXTERNAL MEMORY
COMPUTING

• hierarchical memory management

• B-trees

• external sorting

2External Memory Computing

The Memory Hierarchy
• Many problems that modern computers are given to

solve (analyzing scientific data, running Win95, etc.)
require large amounts of storage.

• In an ideal world, all the necessary information
could be stored on chip in the processor’s registers,
but that would be hideously expensive.

• Instead, computers use amemory hierarchy where
there is a tradeoff between speed and volume.

• The hierarchy consists of four layers:
- Registers
- Cache memory
- Internal memory (RAM)
- External memory (Disk)

3External Memory Computing

The Memory Hierarchy (contd.)
• The hierarchy (for a typical workstation):

Access time (CPU cycles) Volume

Registers: 1 cycle ~210bytes

Cache: 5 cycles ~220bytes

Internal: 50 cycles ~226bytes

External: 2,000,000 cycles ~232bytes

Bigger

Faster

Registers

Cache

Internal Memory

External Memory

CPU

4External Memory Computing

Caching and Blocking
• Since the performance loss is so great when external

memory needs to be accessed, several techniques
have been developed to avoid this bottleneck.

• These are based on one of two assumptions about
the data:
- Temporal Locality: If data is used once, it will

probably be needed again soon after.
- Spatial Locality: If data is used once, the data next

to it will probably be needed soon after.

• Caching usesvirtual memory which is based on
Temporal Locality.
- An address space is provided that is as large as the

secondary storage space.
- When data is requested from secondary storage, it

is transfered to primary storage (cached).

• Blocking is based on Spatial Locality.
- When data is requested from secondary storage, a

large contiguous block of data is transfered into
primary storage.
(ablock of data ispaged).

5External Memory Computing

Block Replacement Policies
• We assume we have afully associative cache, that

is, a bock from external memory can be placed in
any slot of the cache.

• The CPU determines if the virtual memory location
accessed is in the cache, and if so where.

• If it is not in the cache the block of external memory,
containing the location is transfered into the cache.

• If there are no slots free in the chache, then we must
determine which block should be evicted.

• Common policies to determine the block to evict:
- Random
- First-In, First-out (FIFO)
- Least Frequently used (LFU)
- Least Recently used (LRU)

• Random is easy to implement and takes O(1) time
New block Old block (chosen at random)

Random policy:

6External Memory Computing

Block Replacement Policies
(cont)

• FIFO is also easy to to implement, it uses temporal
locality and takes O(1) time

• LFU requires more overhead but can still be
implemented in O(1) time using a special type of
priority queue. But it penalizes recently added
blocks.

• LRU is the most effective policy in practice. It can
be implemented in O(1) time with a special type of
priority queue.

New block Old block (present longest)

FIFO policy:

8:00am 9:05am 7:10am 7:30am 10:10am 8:45am7:48am

insertion time

New block Old block (least recently used)

LRU policy:

last access time

7:25am 9:22am 6:50am 8:20am 10:02am 9:50am8:12am

7External Memory Computing

The Marker Policy
• mark bit associated with every block in the cache

• if a block in the cache is accessed, it is marked

• if all the blocks become marked, they get all
unmarked

• evict a random unmarked block

• this policy is a good approximation of LRU, but is
simpler to implement

New block Old block (unmarked)

Marker policy:

marked:

8External Memory Computing

External Searching
• Let’s look at the problem of implementing a

dictionary of a large collection of items that do not
fit in primary memory.

• In maintaing a dictionary in external memory we
want to minimize the number of times we transfer a
block between secondary and primary memory,
known as adisk transfer, during queries and
updates.

• The list-based sequence implentation of a dictionary
requires Ο(n) transfers per query or update.

• The array-based sequence implentation of a
dictionary requires O(n/B) transfers per query or
update, where B is the size of a block.

• In a binary search tree implentation of a dictionary,
in the worst case each node accessed will be in a
different block. Thus it requires at least log n
transfers per query or update.

• But we can do better ...

9External Memory Computing

(a, b) Trees
• An (a,b) tree is a tree such that:

- a and b are integers such that 2≤ a ≤ (b+1)/2
- each internal node has at least a children and at

most b children
- all external nodes have the same depth

• Insertion and deletion are similiar to insertion and
deletion in (2, 4) trees.

• Properties:
- the height is O(logan), that is, O(log n / loga)
- processing a node takes t(b) time

• A search, insertion, or deletion takes time:

and accesses

nodes (O(1) nodes for each level of the tree).

O
t b()

alog
----------- nlog 

 

O
nlog
alog

----------- 
 

10
E

xternal M
em

ory C
om

puting

E
xam

ple

7066 989575744543 635929241211 8583 864038 41 5048 51 53 56

3722 5846 8072 93

6542

11External Memory Computing

B-Trees
• To minimize disk access we must select values for a

and b such that each tree node occupies a single disk
block.

• Let B be the size of a block

• A B-treeof order d is an (a,b) tree with a = d/2 and
b=d.

• We choose d such that a node fits into a single disk
block. This implies a, b, and d areΘ(B).

• Each search or update requires accessing
O(log n / log a) nodes.

• Thus, an B-tree requires O(log n / log B) disk
transfers for any update or search operation.

